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a b s t r a c t 

This work concerns the maximum capture facility location problem with random utilities, i.e., the prob- 

lem of seeking to locate new facilities in a competitive market such that the captured demand of users 

is maximized, assuming that each individual chooses among all available facilities according to a random 

utility maximization model. The main challenge lies in the nonlinearity of the objective function. Moti- 

vated by the convexity and separable structure of such an objective function, we propose an enhanced 

implementation of the outer approximation scheme. Our algorithm works in a cutting plane fashion and 

allows to separate the objective function into a number of sub-functions and create linear cuts for each 

sub-function at each outer-approximation iteration. We compare our approach with the state-of-the-art 

method and, for the first time in an extensive way, with other existing nonlinear solvers using three data 

sets from recent literature. Our experiments show the robustness of our approach, especially on large 

instances, in terms of both computing time and number instances solved to optimality. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

We consider a facility location problem in a competitive mar- 

ket, a problem that has been receiving a growing attention in the 

last decade. The problem concerns how to locate new facilities in 

a competitive market such that the captured demand of users is 

maximized, assuming that each individual chooses among all avail- 

able facilities according to a random utility maximization model. In 

this problem, two aspects are taken into account, namely, the de- 

mand of customers and the competitors in the market. For the lat- 

ter, the companies that would like to locate new facilities have to 

compete for their market share. To address these aspects, several 

competitive facility location models have been proposed in the lit- 

erature. In general, these models are based on the assumption that 

customers choose among different facilities based on a given util- 

ity that they assign for each location. Such utilities are typically 

functions of facility attributes/features, e.g., distances, prices and 

transportation costs. 

There are basically two main modeling approaches for the prob- 

lem. The first approach, which we refer to as the deterministic ap- 

proach , is based on the assumption that customers choose a facil- 

ity in a deterministic way. For example, ReVelle (1986) proposes a 
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model in which customers choose the closest facility among dif- 

ferent competitors. This model, therefore, implies that all the de- 

mand of a zone is assigned entirely to a facility, which is not real- 

istic. An alternative approach is the model proposed in Huff (1964) , 

in which the demand captured by a facility is proportional to the 

attractiveness of the facility and inversely proportional to the dis- 

tance. The reader can consult Berman, Drezner, Drezner, and Krass 

(2009) for a review. 

The second modeling approach is referred to as the probabilis- 

tic approach , in which the demand of customers is captured by a 

probabilistic model, i.e., a model that can assign probabilities to 

the facilities. The random utility maximization framework; see for 

instance Ben-Akiva and Lerman (1985) or McFadden (1973) , is pop- 

ular in this context. Under this framework, we assume that there is 

a random utility associated with each facility, and it is determined 

by the attributes/features of the facility. Under the “utility maxi- 

mization” assumption, this way of modeling allows us to compute 

the probability that a customer chooses a facility versus other fa- 

cilities. Then, the facility location problem can be described as fol- 

lows: How to locate facilities in a competitive market such that 

the expected market share captured by the new facilities is max- 

imized (so, the problem is also called as the “maximum capture”

problem). 

Among the random utility maximization models in the lit- 

erature, the multinomial logit (MNL) is widely used due to its 

https://doi.org/10.1016/j.ejor.2020.01.020 
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simple structure. The first MNL-based facility location approach 

was introduced by Benati and Hansen (2002) and had several ap- 

plications afterwards, e.g., locating schools ( Haase & Müller, 2013a ), 

preventive health-care facilities ( Haase & Müller, 2015 ) and sit- 

ing park-and-ride facilities ( Aros-Vera, Marianov, & Mitchell, 2013 ). 

The advantage of this approach, compared to the deterministic 

one, is that the probabilistic models allow consideration of the 

characteristics of the facilities and customers to model the choice 

decisions, and the choice model can be trained/estimated using su- 

pervised data of customer choice decisions, so the demand of cus- 

tomers can be predicted more accurately. The challenge, however, 

lies in the fact that the corresponding data-driven discrete opti- 

mization problems are nonlinear, thus they are typically difficult to 

solve. Existing approaches address this challenge by reformulating 

the problems into Mixed-Integer Linear Programing (MILP) models, 

which are convenient to solve. Different MILP models have been 

proposed by Benati and Hansen (2002) , Hasse (2009) and Zhang, 

Berman, and Verter (2012) . These reformulations have been eval- 

uated and compared by Haase and Müller (2014) and they con- 

cluded that the one proposed in Hasse (2009) is the most effi- 

cient. This MILP reformulation has been further strengthened by 

Freire, Moreno, and Yushimito (2016) using tighter coefficients in 

some inequalities. Recently, Ljubi ́c and Moreno (2018) proposed 

a Branch-and-Cut algorithm based on a multicut implementation 

of outer-approximation plus specifically-derived sub-modular cuts. 

This approach is currently the state-of-the-art for the maximum 

capture facility location problem under the MNL. 

Although the MNL model is popular for the maximum capture 

facility location problem, it is important to note that there are 

more flexible choice models that can be used. One of the most 

preferable models in the demand modeling literature is the mixed 

MNL (MMNL), which is fully flexible for approximating any ran- 

dom utility maximization model ( McFadden & Train, 20 0 0 ). This 

model has been also considered in some facility location studies, 

e.g., Müller, Haase, and Kless (2009) and Haase and Müller (2013a) . 

It is worth noting that the above studies solve the MMNL-based 

problems using MILP approaches, i.e., linearizing objective func- 

tions and using MILP solvers, which have been shown to be dom- 

inated by the Branch-and-Cut procedure proposed by Ljubi ́c and 

Moreno (2018) . 

Our contribution : In this paper, we exploit the convexity and 

separability of the objective function and propose an enhanced im- 

plementation of the multicut outer-approximation algorithm. Our 

algorithm allows to create a set of piecewise linear functions that 

outer-approximate separated parts of the objective function by op- 

portunely clustering the customers. This is based on the outer- 

approximation scheme ( Duran & Grossmann, 1986 ), i.e., it works 

in a cutting plane fashion by solving a MILP at every iteration, 

but it allows to generate several cuts per iteration instead of one 

per iteration as in the original framework. On the other hand, 

our algorithm differs from the “multicut” Branch-and-Cut proce- 

dure of Ljubi ́c and Moreno (2018) by the fact that it generates 

cuts for groups of demand points instead of cuts for every de- 

mand point and it is a Cutting Plane approach instead of a Branch 

and Cut. From a computational standpoint, this enhanced imple- 

mentation is compared with the state-of-the-art one proposed 

by Ljubi ́c and Moreno (2018) and, for the first time, with two 

outer-approximation based mixed-integer nonlinear programming 

(MINLP) solvers from the BONMIN package ( Bonami et al., 2008 ) 

using the three data sets from recent literature. Our computa- 

tional experiments show that our approach is more robust and 

more efficient, especially with the real-life large-scale instances 

from a park-and-ride location problem in New York City, where 

the number of demand points is huge. This more detailed compar- 

ison highlights the strength of each of the different algorithmic in- 

gredients, shedding light on the trade-off between single vs multi 

cut approaches and between Cutting Plane vs Branch-and-Cut 

algorithms. 

The paper is structured as follows. Section 2 presents the max- 

imum capture problem under the random utility maximization 

framework. Our algorithm is presented in Section 3 . Section 4 re- 

ports the computational results comparing the performance of our 

approach with other exact approaches in the literature. Finally, 

Section 5 concludes. 

2. Maximum capture facility location under random utilities 

We are interested in a situation where a firm wants to locate 

new facilities in a market in which customers are already served 

by existing competitors. To capture the customers’ demand, we as- 

sume that a customer selects a facility in the market according 

to a random utility maximization model. Such a model associates 

a decision-maker/customer with a random utility and we assume 

that the customer chooses a facility by maximizing his/her utility. 

Once a choice model is specified, the firm can select a set of lo- 

cations to open new facilities to maximize their expected market 

share given by the choice model. 

To describe the problem in detail, we assume that, in the mar- 

ket, there are M = { 1 , . . . , m } available locations and we denote by 

Y ⊂ M the set of locations that have facilities of the competitor 

company. Let I be the set of zones where customers are located 

and q i be the number of customers located in zone i ∈ I , where a 

zone can be defined as a geographical area. We can also view I as 

a set of groups of customers. The objective is to maximize the ex- 

pected number of customers by locating facilities in a subset of lo- 

cations X ⊂ M . Note that X and Y are not necessarily disjoint, i.e., 

the firm can consider to open a new facility at a location where 

there are already facilities from the competitor. We denote by R ( X ) 

the expected number of customers given by facilities in X . There- 

fore, R ( X ) can be computed as 

R (X ) = 

∑ 

i ∈ I 
q i 

∑ 

j∈ X 
P (i, j| X, Y ) , 

where P ( i , j | X , Y ) is the probability that a customer located in zone 

i selects facility j ∈ X . As mentioned, a random utility maximiza- 

tion model associates each pair of location j ∈ X ∪ Y and zone i ∈ I 

with a random utility u ij , which is typically a sum of two parts, 

i.e., u i j = v i j + εi j , where v i j refers to the deterministic part of the 

utility and often contains observed attributes/features of location j 

and zone i , and ε ij is a random term that is unknown to the ana- 

lyst. The random utility maximization framework assumes that the 

customer selects a facility by maximizing the associated random 

utility. More precisely, the framework allows to compute the prob- 

ability that a customer i selects a facility located at j as 

P (i, j| X, Y ) = P (u i j ≥ u i j ′ , ∀ j ′ ∈ X ∪ Y ) . 

If the MNL model is used to predict the choice probabilities of cus- 

tomers, then R ( X ) can be computed as 

R (X ) = 

∑ 

i ∈ I 
q i 

∑ 

j∈ X e 
v i j ∑ 

j∈ X e 
v i j + 

∑ 

j∈ Y e 
v i j 

, (1) 

where v i j = (β∗) T a i j is the utility associated with location j and 

a customer located in zone i , β∗ are the parameters of the MNL 

model and a ij is the vector of features/attributes associated with 

location j and customers at zone i . For notational simplicity, we 

denote V i j = e v i j . 

Then, the maximum capture problem under the MNL model can 

be written as 

max 
X⊂M 

∑ 

i ∈ I 
q i 

∑ 

j∈ X V i j ∑ 

j∈ X V i j + U 

i 
Y 

, (2) 
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where U 

i 
Y 

= 

∑ 

j∈ Y e 
v i j , which is a constant in the optimization 

problem. We can also formulate (2) as a MINLP model as 

max 
x j ∈{ 0 , 1 } 

j∈{ 1 , 2 ,. ... ,m } 

∑ 

i ∈ I 
q i 

( ∑ m 
j=1 x j V i j ∑ m 

j=1 x j V i j + U i Y 

)
, 

(FL-MNL) 

where x j , j ∈ M , is equal to 1 if location j is selected and x j = 0 

otherwise. 

Even though the MNL is widely used to model discrete choice 

behaviors due to its simple structure, it is well-known that the 

model exhibits the independence of irrelevant alternatives (IIA) 

property. In this context, the property implies that for two facil- 

ities, the ratio of the choice probabilities is the same no matter 

what other facilities are available or what the attributes/features 

of the other facilities are. This is, in general, not reasonable and to 

relax the IIA property, several choice models have been proposed. 

Among them, the mixed MNL model is one of the most preferable 

( Train, 2003 ). In the MMNL model, it is assumed that the utilities 

v i j are no-longer deterministic, but contain some random compo- 

nents. To approximate the choice probabilities as well as the ex- 

pected number of customers, one needs to sample over the ran- 

domness of the utilities. Formally speaking, the maximum capture 

problem under the MMNL model can be formulated as ( Haase, 

Müller, Krohn, & Hensher, 2016 ) 

max 
x j ∈{ 0 , 1 } 

j∈{ 1 , 2 ,. ... ,m } 

1 
N 

N ∑ 

n =1 

∑ 

i ∈ I 
q i 

( ∑ m 
j=1 x j V 

n 
i j ∑ m 

j=1 x j V 
n 

i j 
+ U in 

Y 

)
, (FL-MMNL) 

where { V 1 
i j 

, . . . , V N 
i j 
} and { U 

i 1 
Y 

, . . . , U 

iN 
Y 

} are N realizations of V ij and 

U 

i 
Y 
, sampled over the randomness of the utilities v i j . Indeed, FL- 

MMNL shares the same structure of the FL-MNL , meaning that, in 

general, any algorithm being able to solve FL-MNL can be used to 

solve FL-MMNL ( Haase & Müller, 2013b; Haase et al., 2016; Müller 

et al., 2009 ). Note that we write FL-MNL and FL-MMNL in their 

simplest forms and different business constraints can be included, 

e.g., a constraint on the number of facilities that the firm would 

like to open or constraints on the budget the firm has to open fa- 

cilities. 

It is worth noting that beside the MMNL model, authors in 

demand modeling also consider the multivariate extreme value 

(MEV) model ( McFadden, 1981 ) to relax the IIA property of the 

MNL. However, the main advantage of using either the MNL or the 

MMNL model is that the resulting objective functions are convex 

and can be linearized, so the problems under the MNL or MMNL 

can be solved exactly by MILP solvers. On the contrary, the objec- 

tive functions given by the MEV are typically nonlinear and non- 

convex, making the resulting models way more difficult to solve 

exactly. 

As pointed out, the nonlinearity of the objective functions of 

both FL-MNL and FL-MMNL are convex. Basically, FL-MNL and FL- 

MMNL are 0–1 fractional linear programming models, for which 

it is possible to reformulate the nonlinear models into mixed- 

integer linear programming ones ( Wu, 1997 ). In the context of 

competitive facility location, this has been done in some previous 

studies, e.g., Benati and Hansen (2002) , Hasse (2009) and Zhang 

et al. (2012) . It is important to note that the objective functions 

of FL-MNL and FL-MMNL are concave and continuously differen- 

tiable, so, a convex MINLP solver such as the BONMIN ( Bonami 

et al., 2008 ) can be used to solve the problem. In addition, one 

can take this advantage to build a Branch-and-Cut procedure with 

outer-approximation cuts. As already discussed, such an approach 

is studied in Ljubi ́c and Moreno (2018) and has been shown to 

achieve the state-of-the-art results for the maximum capture facil- 

ity location problem under the MNL model. In the remainder of the 

paper, we concentrate on the competitive facility location under 

the MNL model because, as previously shown, it has the same the- 

oretical complexity of that under the (more realistic) MMNL model 

and it is still quite challenging to solve. Nevertheless, we will dis- 

cuss computational issues related to solve the MMNL version at 

the end of the computational section. 

3. Multicut outer-approximation scheme 

In this section, we focus on the use of the outer-approximation 

scheme to solve the facility location problem under the MNL 

model. In particular, our approach is motivated by the fact that 

the objective function can be separated into several sub-functions, 

each of which is convex and continuously differentiable. This sug- 

gests the idea of building an outer-approximation for each sub- 

function by using subgradient cuts. In the following, we describe 

the multicut version and show how the new scheme can be ap- 

plied to the maximum capture problem. 

The maximum capture facility location problem can be written 

in general form as the following integer nonlinear programming 

problem: 

minimize 
x 

G (x ) 

subject to Ax ≤ b 
x ∈ { 0 , 1 } m , 

( P1 ) 

where Ax ≤ b are some linear business constraints, e.g., upper and 

lower bounds on the number of facilities that the company would 

like to open. Moreover, in the context of the maximum capture 

problem under the MNL, one can show that the objective function 

G ( x ) is convex and continuously differentiable, which is essential 

for the use of the outer-approximation scheme. 

The general idea of the outer-approximation scheme ( Duran 

& Grossmann, 1986 ) is to create a piecewise linear and convex 

function Q ( x ) that underestimates G ( x ), i.e., Q ( x ) ≤ G ( x ), ∀ x . If this 

function is tight at every integer point in the feasible set of the 

problem, i.e., Q(x ) = G (x ) , ∀ x ∈ { 0 , 1 } n , Ax ≤ b, then we can find 

an optimal solution to FL-MNL by solving min { Q ( x )| x ∈ {0, 1} n , 

Ax ≤ b }. To this end, one can reformulate ( P1 ) as min θ , x { θ | θ ≥ G ( x )} 

(plus the regular constraints). Then, we can relax the constraint 

θ ≥ G ( x ) and consider θ as an underestimator of G ( x ). An outer- 

approximation algorithm is basically an iterative procedure in 

which at each iteration we add cuts in ( x , θ )-space to approximate 

the shape of G ( x ). This is done until we find a solution ( x ∗, θ ∗) 

such that θ ∗ = G (x ∗) . It is also well-known that the algorithm ter- 

minates after a finite number of iterations. 

We now discuss an extended version of the outer- 

approximation algorithm proposed in Duran and Grossmann 

(1986) , which allows to create several piecewise linear and convex 

functions to outer-approximate G ( x ). This is motivated by the fact 

that the objective function in our context is separable, i.e., G ( x ) 

can be written as a sum of convex functions. This suggests that it 

is possible to add several cuts to the master problem at each itera- 

tion of the outer-approximation algorithm. The idea of introducing 

multiple cuts for separable objective functions is well-known in 

the stochastic programming literature, i.e., the multicut L-shape 

method (see Birge & Louveaux, 1988, for instance ). 

We assume that the objective function can be written as a sum 

of T convex functions 

G (x ) = 

T ∑ 

t=1 

g t (x ) . 

Then, the corresponding master problem can be defined as 

minimize 
x 

T ∑ 

t=1 

θt 

subject to Ax ≤ b 

�t x − 1 θt ≤ π0 t t = 1 . . . , T 



T. Mai and A. Lodi / European Journal of Operational Research 284 (2020) 874–881 877 

θt ≥ L t t = 1 . . . , T 

x ∈ { 0 , 1 } m , 

where �t x − 1 θt ≤ π0 t is the set of subgradient cuts correspond- 

ing to g t ( x ) and L t is a lower bound of g t ( x ). The multicut outer- 

approximation works as follows. At each iteration, for a given can- 

didate x ∗ ∈ X , (up to) T subgradient cuts are added to the master 

problem 

θt ≥ ∇g t (x ∗)(x − x ∗) + g t (x ∗) , t = 1 , . . . , T , ( P2 ) 

where ∇g t ( x 
∗) is the gradient of g t ( x 

∗) at x ∗. The procedure stops 

when it finds a solution (x ∗, θ ∗
1 
, . . . , θ ∗

T 
) such that 

∑ T 
t=1 θ

∗
t ≥ G (x ∗) . 

Similarly to the classical approach, one can show that the multicut 

algorithm always terminates after a finite number of steps, and the 

returned solution is optimal to ( P1 ). 

We now get back to the maximum capture facility location 

problem, in which the objective function is a sum of linear frac- 

tional functions 

G (x ) = −
∑ 

i ∈ I 
q i 

( ∑ m 

j=1 x j V i j ∑ m 

j=1 x j V i j + U 

i 
Y 

)
. 

If we divide the set of clients I by T disjoint subsets I 1 , . . . , I T , and 

define 

g t (x ) = −
∑ 

i ∈ I t 
q i 

( ∑ m 

j=1 x j V i j ∑ m 

j=1 x j V i j + U 

i 
Y 

)
, 

then, we can write G (x ) = 

∑ T 
t=1 g t (x ) , and the multicut outer- 

approximation scheme can be applied. 

A typical business constraint for the facility location problem 

is l ≤ ∑ m 

j=1 x j ≤ u, where l and u are the minimum and max- 

imum number of facilities that the firm would like to open. 

Proposition 1 below indicates that, to maximize the expected num- 

ber of customers, one needs to open as many facilities as possible. 

In other words, we can reduce a bound constraint into a p-median 

constraint, i.e., 
∑ m 

j=1 x j = r, r ∈ N + . 

Proposition 1. Assume that x ∗ is an optimal solution to ( P1 ), in 

which the constraint Ax ≤ b is replaced by l ≤ ∑ m 

j=1 x j ≤ u, then ∑ m 

j=1 x 
∗
j 
= u . 

Proof. The following remark is easy to verify. Given i ∈ I , and x ∈ {0, 

1} m , for any α ≥ 0 we have ∑ m 

j=1 x j V i j ∑ m 

j=1 x j V i j + U 

i 
Y 

≤
∑ m 

j=1 x j V i j + α∑ m 

j=1 x j V i j + α + U 

i 
Y 

. (4) 

Inequality (4) implies that, we can get better objective values by 

opening more faculties. The proposition is just a direct result of 

the above remark. �

The master problem ( P2 ) is initialized with some lower bounds 

L t of g t ( x ). Since g t ( x ) is convex, these lower bounds can be com- 

puted by solving the nonlinear convex optimization problem 

L t = min 

x ∈ [0 , 1] m 

Ax ≤b 

g t (x ) , (5) 

with a note that solving (5) could be expensive, and we need to 

solve that nonlinear problem for each t = 1 , . . . , T . Using (4) , we 

can have a faster way to obtain lower bounds for g t ( x ) as 

g t (x ) = −
∑ 

i ∈ I t 

( ∑ m 

j=1 x j V i j ∑ m 

j=1 x j V i j + U 

i 
Y 

)

≥ −
∑ 

i ∈ I t 

( ∑ m 

j=1 V i j ∑ m 

j=1 V i j + U 

i 
Y 

)
, ∀ x ∈ { 0 , 1 } m . (6) 

Moreover, if we consider the problem with a business constraint ∑ m 

j=1 x j = r, where r is the number of facilities to be opened, then 

we can obtain tighter bounds by sorting the utilities { V i j , j = 

1 , . . . , m } and using the following inequality, which is easy to vali- 

date: 

g t (x ) ≥ −
∑ 

i ∈ I t 

( ∑ r 
k =1 V i j i 

k ∑ r 
k =1 V i j i 

k 
+ U 

i 
Y 

) 

, ∀ x ∈ { 0 , 1 } m , 

m ∑ 

j=1 

x j = r, (7) 

where ( j i 
1 
, . . . , j i m 

) is a permutation of { 1 , . . . , m } such that V 
i j i 

1 
≥

V 
i j i 

2 
≥ . . . ≥ V 

i j i m 
. 

Similarly to the classical outer-approximation algorithm ( Duran 

& Grossmann, 1986 ), if the multicut algorithm finds a candidate so- 

lution x ∗ ∈ {0, 1} m that has been already found previously, then x ∗

is an optimal solution to P1 . This suggests a way to avoid recom- 

puting the objective function G ( x ), which could be costly with large 

instances. More precisely, each time a solution x ∗ is found, we can 

add x ∗ to a set Z and also save the objective value G ( x ∗). At each it- 

eration, after solving the master problem to obtain (x ∗, θ ∗, . . . , θ ∗
T 
) , 

we can first check if x ∗ is in Z , then we can return x ∗ as an optimal 

solution. Otherwise, we compute the gradient of g t (.) at x ∗ and add 

the corresponding subgradient cuts to the master problem. 

We describe the multicut outer-approximation scheme in 

Algorithm 1 . The difference between Algorithm 1 and the standard 

outer-approximation algorithm presented in Bonami et al. (2008) is 

that: (i) at each iteration, the multicut algorithm creates several 

subgradient cuts and then adds them to the master problem, (ii) 

we do not solve the continuous relaxation of the problem to ini- 

tialize the master problem, instead, we compute the lower bound 

by using either (6) or (7) , and (iii) we save the set of binary so- 

lutions found at each iteration to avoid recomputing the objective 

function and its gradient. The latter (simple) modification helps to 

reduce the computing time in cases that the objective function is 

expensive to evaluate, and/or the outer-approximation algorithm 

only needs a few iterations to converge. 

Algorithm 1: Multicut outer-approximation algorithm. 

begin 

# Initialization 

Step 1. Chose a lower bound L t , t = 1 , . . . , T and a 

convergencetolerance ε > 0 , and Z = ∅ . 
Step 2. Initialize the master problem (P2) with empty �. 

Step 3. Compute (x ∗, θ ∗
1 
, . . . , θ ∗

T 
) as the first solution by 

solving (P2). 

# Iteratively adding cuts until getting an optimal solution 

Step 4. If x ∗ ∈ Z then go to Step 6, otherwise set 

Z = Z ∪ { x ∗} and compute G (x ∗) 
Step 5. If 

∑ T 
t=1 θ

∗
T 

≥ G (x ∗) − ε, then go to Step 6, 

otherwise 

5.1 Compute ∇g t (x ∗) , t = 1 , . . . , T , and add subgradient 

cuts to the master problem (P2) 

θt ≥ ∇g t (x ∗)(x − x ∗) + g t (x ∗) , t = 1 , . . . , T 

5.2 Solve (P2) to obtain new solution (x ∗, θ ∗
1 , . . . , θ

∗
T ) , and 

go back to Step 4 

# Finalization 

Step 6. Return x ∗ as an optimal solution and 

∑ T 
t=1 θ

∗
T 

as 

the optimal value. 

Basically, the advantage of the multicut algorithm is that it al- 

lows to add cuts based on each concave component of the objec- 

tive function. Therefore, we can expect that the approach can ex- 

plore better the structure of the nonlinear function, and requires 

less iterations to converge as compared to the single-cut one. How- 

ever, the number of cuts added to the master problem is T times 



878 T. Mai and A. Lodi / European Journal of Operational Research 284 (2020) 874–881 

larger than the single-cut version, leading to the fact that each iter- 

ation of the multicut algorithm is more expensive than an iteration 

of the single-cut one. If the number of clients, i.e. | I |, is small, then 

we can choose T = | I| . In cases that | I | is too large, we can select 

T � | I | to avoid having too many cuts added to the master problem. 

This trade-off is discussed in details at the end of the computation 

evaluation of the next section. 

4. Computational experiments 

In this section, we evaluate the performance of our multicut 

outer-approximation (MOA) algorithm on standard data sets from 

the literature and we provide a comparison between MOA and the 

state-of-the-art approach proposed by Ljubi ́c and Moreno (2018) , 

i.e., a Branch-and-Cut algorithm based on a multicut implemen- 

tation of outer-approximation and sub-modular cuts. Let use de- 

note this approach by BC. We use the three data sets used in 

Ljubi ́c and Moreno (2018) as benchmark instances. We also com- 

pare our approach with other existing convex MINLP solvers that 

are based on the outer-approximation scheme as well. More pre- 

cisely, we consider the algorithms implemented in the BONMIN 

package ( Bonami et al., 2008 ). Note that BONMIN contains 4 dif- 

ferent algorithms for solving convex MINLP problems and two of 

them are based on the outer-approximation scheme, i.e., one is an 

outer-approximation decomposition algorithm (denoted as BM-OA) 

and the other one is a hybrid outer-approximation-based Branch- 

and-Cut algorithm (denoted as BM-HYB). In general, both BC and 

BM-HYB are based on a Branch-and-Cut scheme, i.e., the outer ap- 

proximation is performed within a unique enumeration tree. The 

main difference between the two approaches is that BC uses sub- 

modular cuts in addition to outer-approximation cuts and it gen- 

erates cuts for each fractional (concave) component of the objec- 

tive function. On the other hand, BM-HYB generates cuts for the 

entire objective function, which means that only one cut is gener- 

ated at each iteration. It is also important to note that the BM-OA 

also generates subgradient cuts for the entire objective function, 

while for the MOA we divide the set of separable components of 

the objective function into some smaller groups, and we generate 

cuts for each group ( Eq. (3) , where T is the number of group). 

We refer the reader to Bonami et al. (2008) for a detailed de- 

scription of these algorithms. We use a MATLAB interface of BON- 

MIN, i.e., the OPTI Toolbox ( http://www.i2c2.aut.ac.nz/Wiki/OPTI/ ) 

for the experiments. 

4.1. Experimental setting 

We briefly describe the three data sets in the following and 

refer the reader to Ljubi ́c and Moreno (2018) and Freire et al. 

(2016) for more details. 

• HM14: The data set includes instances generated randomly in a 

plane, with | I | ∈ {50, 100, 200, 400} and |M| ∈ { 25 , 50 , 100 } . 
• ORlib: The data set consists of 11 problems, in which there are 

eight problems with | I| = 50 , |M| ∈ { 25 , 50 } and three prob- 

lems with | I| = 10 0 0 , |M| = 100 . 
• P&R-NYC (or simply NYC): the data set comes from a large- 

scale park-and-ride location problem in New York City, with 

| I| = 82 , 341 and |M| = 59 . These are the largest and most chal- 

lenging instances, as reported by previous studies. 

Only constraints of the form 

∑ m 

j=1 x j = r are considered, with 

r ∈ { 2 , . . . , 10 } . For the NYC data set, we also test with r = |M| / 2 � , 
i.e., r = 29 . Similar to previous studies, we specify the deterministic 

part of the utility associated with a location j ∈ M as v i j = −βc i j 

and v i j ′ = −βαc i j ′ for each competitor j ′ , where c ij is the distance 

between zone/client i and location j . The parameter β refers to 

the sensitivity of customers about the perceived utilities and pa- 

rameter α represents the competitiveness of the competitors. We 

choose the same parameters as in Ljubi ́c and Moreno (2018) , i.e., 

α = { 0 . 01 , 0 . 1 , 1 } and β = { 1 , 5 , 10 } for data sets HM14 and OR- 

lib, and β = { 0 . 5 , 1 , 2 } and α = { 0 . 5 , 1 , 2 } for the NYC. For the NYC 

data set and its chosen parameters, we refer the reader to Holguin- 

Veras, Reilly, and Aros-Vera (2012) for more details. It is important 

to note that, in general, other features of the zones/clients and lo- 

cations can be used to model customers’ utilities, and the param- 

eters β and α can be learned in supervised fashion on data about 

how customers select the locations. In summary, we test on three 

data sets, in which the number of instances in HM14, ORlib, NYC is 

972, 891, 90, respectively. These are also the instances considered 

in Ljubi ́c and Moreno (2018) and Freire et al. (2016) . 

The experiments are conducted on a PC with processor In- 

tel(R)Core(TM) CPUs of 2.8 gigahertz, RAM of 12 gigabytes and 

operating system Window 10. The MOA algorithm is coded in 

MATLAB and linked to IBM-ILOG CPLEX 12.6 optimization routines 

under default settings. We also take the code used in Ljubi ́c and 

Moreno (2018) to generate results for the BC approach. 

4.2. Computational evaluation and comparison 

This section provides comparison results using the instances 

described above. An important setting for our MOA algorithm is 

the number of cuts T . Indeed, 1 ≤ T ≤ | I |. On the one hand, if we 

choose small T , the MOA may perform similarly to the single-cut 

version, thus, may require a large number of iterations to con- 

verge. On the other hand, if T is large, the MOA may better ex- 

plore the structure of the objective function, hence, would be able 

to reduce the number of iterations but the master problem at each 

iteration becomes more costly to solve. To achieve good perfor- 

mance, we choose T = min {| I| , 100 } for the HM14 instances and 

T = min {| I| , 10 0 0 } for ORlib data set. For the largest instances from 

NYC data set, because | I| = 82 , 341 , we only choose T = 20 . Those 

values represent a reasonable compromise in the attempt of not 

over tuning the algorithm while a detailed discussion on the im- 

pact of T on the performance of the MOA algorithm is reported at 

the end of the section. Given T , we simply cluster the customers 

into groups of the same size (except the last group, as | I | may be 

not divisible by T ). 

Table 1 reports the computational comparison of the four ap- 

proaches, i.e., MOA, BC, BM-OA and BM-HYB, for the HM14 data 

set. We report, in the table, the number of solved instances within 

a time limit of one hour and the average CPU time (in seconds) 

among those instances solved to optimality. For the MOA and BM- 

OA, we report the average number of iterations for the instances 

that can be solved by both approaches. We also indicate in bold 

the largest number of solved instances, as well as the best CPU 

time(s), and we only compare the computing time between meth- 

ods that perform the best in terms of number of solved instances. 

Note that each row of the table corresponds to 81 solved instances. 

Table 1 indicates the strength of both BC and MOA as compared 

to the BOMMIN ones, as they are capable of solving all the in- 

stances to optimality in a few seconds on average. Overall, BC is 

faster than MOA in terms of computing time although in almost all 

cases the difference is negligible and, on average, way smaller than 

one order of magnitude. We also notice that, in terms of number 

of solved instances, BM-HYB is better than BM-OA, but if we look 

at the average computing times over solved instances, BM-OA is 

faster than BM-HYB. It is also interesting to see that, among the 

instances that BM-OA is capable of solving successfully, the algo- 

rithm only needs a few seconds and very few iterations to reach 

optimality. 

Table 2 reports the comparison results of the four approaches 

for the ORlib instances under a time limit of one hour. Each row of 

http://www.i2c2.aut.ac.nz/Wiki/OPTI/
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Table 1 

Numerical results for HM14 instances, grouped by the problem name (81 instances per row). 

# (Solved instances) Computing time (s) ∗ # (Iterations) ∗

| I | | V | BC MOA BM-OA BM-HYB BC MOA BM-OA BM-HYB MOA BM-OA 

50 25 81 81 67 72 0.02 0.05 3.73 49.16 2.00 2.70 

50 50 81 81 60 68 0.06 0.10 0.51 58.16 1.78 2.27 

50 100 81 81 48 65 0.26 0.32 1.62 76.76 2.63 1.85 

100 25 81 81 68 78 0.04 0.11 0.18 44.29 1.90 2.35 

100 50 81 81 45 59 0.12 0.28 2.43 24.55 2.24 2.51 

100 100 81 81 43 43 0.61 0.66 3.74 102.03 2.72 2.42 

200 25 81 81 55 65 0.07 0.29 1.06 1.90 2.12 3.47 

200 50 81 81 45 65 0.26 0.76 1.18 71.98 2.24 1.96 

200 100 81 81 42 59 1.28 4.54 4.62 76.74 2.88 2.91 

400 25 81 81 40 59 0.16 2.49 2.85 1.16 2.40 2.45 

400 50 81 81 36 57 0.57 3.66 4.13 4.94 2.56 2.39 

400 100 81 81 43 45 2.71 12.90 6.62 63.11 3.26 3.12 

Average 81 81 49.3 62.4 0.51 2.18 2.72 47.9 2.39 2.53 

∗ Average among solved instances. BC: Branch&Cut ( Ljubi ́c & Moreno, 2018 ) MOA: Multicut outer-approximation 

( Algorithm 1 ) BM-OA: BONMIN’s single-cut outer-approximation BM-HYB: BONMIN’s Branch&Cut 

Table 2 

Numerical results for ORlib data set, grouped by the problem name (81 instances per row). 

# (Solved instances) Computing time (s) ∗ # (Iterations) ∗

Name BC MOA BM-OA BM-HYB BC MOA BM-OA BM-HYB MOA BM-OA 

cap101 81 81 81 81 0.03 0.06 0.14 3.84 2.00 1.99 

cap102 81 81 81 81 0.03 0.06 0.17 3.14 2.19 2.09 

cap103 81 81 81 81 0.03 0.06 0.10 3.15 2.00 1.85 

cap104 81 81 81 81 0.03 0.06 0.15 3.35 1.90 2.10 

cap131 81 81 81 81 0.09 0.12 0.12 4.16 2.41 2.16 

cap132 81 81 81 81 0.09 0.12 0.09 3.77 2.37 1.99 

cap133 81 81 81 81 0.09 0.11 0.08 4.00 2.25 2.15 

cap134 81 81 81 81 0.09 0.12 0.10 5.51 2.36 1.98 

capa 73 73 55 60 150.14 242.64 131.00 1601.30 8.95 6.53 

capb 75 71 59 57 133.46 404.11 47.18 1437.95 5.10 7.51 

capc 64 66 59 62 71.25 284.22 19.44 748.00 4.59 5.81 

Average 78.2 78.0 74.6 75.2 32.30 84.70 18.05 347.10 3.28 3.29 

∗ Average among solved instances. 

the table corresponds to 81 instances and we also indicate the best 

performance in bold. We can separate the instances into two sets; 

the first set consists of instances of | I| = 100 (cap101 - cap134) and 

the second set contains instances of 10 0 0 customer zones (capa, 

capb, capc). While the former is easy for the four approaches, the 

latter is more challenging to be solved. More precisely, BC and 

MOA perform the best in terms of number of solved instances, 

and BC is slightly better than the MOA, solving overall 2 more in- 

stances within the time limit, although, again, the computing times 

are close, in the same order of magnitude. In addition, BC is also 

faster than MOA in terms of computing time. Furthermore, even if 

worse than BC and MOA in terms of number of solved instances, 

the average computing times of the BM-OA are remarkably smaller 

as compared to other approaches. Moreover, when comparing the 

two BONMIN solvers, we see that BM-OA and BM-HYB perform 

similarly in terms of number of solved instances, but BM-OA is 

much faster in terms of computing time. Those observations are 

in line with the well-known observation that, in case the number 

of MILPs to be solved is very small, classical outer approximation 

algorithms are faster than hybrid (branch-and-cut based) ones. 

We now discuss the numerical results for the largest data 

set. Table 3 reports what we obtained when testing the four ap- 

proaches on the instances from the NYC data set, in which each 

approach is given a time budget of one hour and each row corre- 

sponds to 9 instances. Clearly, our MOA improves over other ap- 

proaches either solving more instances within the time limit or 

doing it faster. More precisely, only MOA is able to solve all the 

instances to optimality. In general, BC is better than the two ap- 

proaches from BONMIN in terms of number of solved instances, 

but if we look at the average CPU times, the BONMIN ones and 

our MOA are remarkably faster, this time over an order of magni- 

tude faster. The reason is that the NYC instances contains a large 

number of clients/demand points (i.e., 82,341). Because BC gener- 

ates cuts for each demand point, the number of cuts becomes very 

large and the problem becomes expensive to solve. On the other 

hand, for the other approaches (BONMIN and MOA), cuts are only 

generated for the aggregated objective function (for the BONMIN) 

or for groups of demand points (MOA), so way less cuts are gener- 

ated per iteration. 

Moreover, we notice that the number of iterations required by 

our MOA is 6 times larger than that required by the BM-OA. This is 

in line with the computing times observed. It is also worth noting 

that, even being similar in terms of number of solved instances, 

BM-OA is about 3 times faster than BM-HYB. As already partially 

observed, if BM-OA can solve the problem, it does it in few itera- 

tions and it is faster than other approaches, otherwise it does not 

solve the problem. 

In summary, Tables 1 –3 report comparison results based on 

three sets of instances HM14, ORlib and NYC. The results indi- 

cate the robustness of BC and MOA as compared to the two BON- 

MIN solvers. Namely, BC is slightly better than the MOA approach 

for the simulated instances, i.e., ORlib and HM14, but significantly 

worse than MOA for the real and large ones (i.e. NYC). The re- 

sults are also consistent with those reported in the previous stud- 

ies ( Ljubi ́c & Moreno, 2018 ), with a note that BC seems to perform 

a bit worse in our experiments, which may be due to the differ- 

ences between the machines used for the tests. Based on the com- 

parative results reported in Ljubi ́c and Moreno (2018) with respect 
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Table 3 

Numerical results for NYC data set, grouped by r (9 instances per row). 

# (Solved instances) Computing time (s) ∗ # (Iterations) ∗

r BC MOA BM-OA BM-HYB BC MOA BM-OA BM-HYB MOA BM-OA 

2 7 9 6 6 232.47 4.46 1.18 13.57 7.67 1.83 

3 8 9 6 6 311.05 9.14 0.99 5.55 8.67 2.00 

4 8 9 6 6 236.06 11.06 0.67 5.88 8.5 2.00 

5 8 9 7 7 314.42 12.56 0.89 7.95 17.71 1.71 

6 9 9 6 6 414.74 14.85 1.60 5.33 7.33 2.50 

7 9 9 8 8 337.44 12.29 1.06 11.45 10.12 2.25 

8 8 9 8 8 249.66 14.75 0.76 16.95 9.5 2.13 

9 8 9 8 8 248.35 17.10 0.82 15.50 8.00 2.25 

10 9 9 8 8 360.08 19.83 11.67 6.37 6.25 2.38 

29 9 9 8 8 395.61 0.47 15.32 8.23 4.25 2.58 

Average 8.3 9 7.1 7.1 309.99 8.80 3.50 9.68 12.13 2.16 

∗ Average among solved instances. 

(a) HM14 (b) ORlib

(c) P&R-NYC
Fig. 1. Performance of MOA algorithm with respect to the numbers of cuts per iteration. 

to other approaches in the literature, i.e., the convex programming 

approach proposed by Benati and Hansen (2002) , the linearization 

technique proposed by Hasse (2009) and the B&B procedure by 

Freire et al. (2016) , we can also conclude that MOA is competitive, 

generally improving over those other exact methods. 

To have a closer look at the performance of the MOA algorithm 

when the number of cuts T varies, we take, from each data set, a 

representative problem. Then, we run MOA on the corresponding 

instances with different number of cuts per iteration (i.e., T ), and 

we report the number of solved instances, computing times and 

number of iterations. 

To be more precise, we take a problem with | I| = |M| = 100 

from HM14 instances, a problem with | I| = 10 0 0 , |M| = 100 from 

ORlib and all instances of the NYC data set. Each problem from 

HM14, ORlib results in 81 instances, and the one from NYC results 

in 90 instances. We let T varies from 1 to 100 for the HM14 in- 

stances, T ∈ {1, 10 0 0} for the ORlib instances, and T ∈ {1, 300} for 

the NYC ones. We also give a time limit of one hour to our MOA 
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algorithm. Fig. 1 shows the number of solved instances, the av- 

erage computing times and average number of iterations when T 

varies. The figure shows that when T increases, the average num- 

ber of iterations decreases quickly, and the average number of 

solved instances increases for the HM14 and NYC instances. For the 

ORlib instances, the number of solved instances slightly decreases 

when T > 500. This is in line with the remark that when T is large, 

the master problem becomes expensive to be solved and MOA can- 

not converge to optimality within the time budget. For the HM14 

instances, the computing times reduce quickly when T increases 

from 1 to 20. For the NYC instances, the algorithm achieves the 

best performance, in terms of computing time, with T = 50 . We 

also notice that MOA performs differently for the ORlib instances, 

as the average computing times grow dramatically fast when T > 1. 

This implies that, for these instances, the single-cut version con- 

verges faster as compared to the MOA with T > 1. 

In this paper, we focus on MNL instances but noting that a max- 

imum capture problem under the MMNL model can be viewed as a 

problem under the MNL with extended customer zones (or clients), 

so the methods discussed above can be applied. Nevertheless, due 

to large numbers of demand points, MMNL instances would be- 

come (even more) challenging for the B&C and classical outer- 

approximation methods. Our clustering approach is a promising di- 

rection in the sense that it requires less cuts than the B&C method 

while being able to partially capture the separable structure of the 

objective function. However, the question of how to cluster the de- 

mand points remains not straightforward and we keep this for fu- 

ture work. 

5. Conclusions 

In the paper, we have proposed an enhanced implementation 

of the outer approximation scheme to solve the facility location 

maximum capture problem under random utilities. Our algorithm 

is based on the outer-approximation scheme but it allows to ma- 

nipulate the number of subgradient cuts per iteration, instead of 

one cut per iteration as in a standard outer-approximation al- 

gorithm, or one cut per one demand point per iteration as in 

the state-of-the-art approach. Detailed computational experiments 

compare, for the first time, several variants of the outer approxi- 

mation scheme allowing to shed light on the strength of the var- 

ious ingredients, namely, single vs multi cut and Putting Plane vs 

Branch and Cut. The results show that our MOA algorithm is very 

competitive, often better than the state-of-the-art approach, espe- 

cially on large instances. The MOA algorithm favorably compares 

with other outer-approximation based algorithms implemented in 

the BONMIN package, and our results indicate the robustness of 

our clustered implementation of the multicut version. 

The MOA algorithm proposed here is not restricted to the max- 

imum capture facility location problem with random utilities but 

can be used for any MINLP in which the objective function can 

be separated into several convex functions. Our results show that, 

by introducing more cuts per iteration, we can help an outer- 

approximation algorithm converge faster to optimality. This sug- 

gests that this multicut version could possibly be a good alterna- 

tive to the single-cut one for other applications. Along with the 

above remarks, the idea of creating several cuts for separable con- 

vex functions would be also useful to handle separable convex 

nonlinear constraints as already observed by Hijazi, Bonami, and 

Ouorou (2013) . 
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