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This work concerns the maximum capture facility location problem with random utilities, i.e., the prob-
lem of seeking to locate new facilities in a competitive market such that the captured demand of users
is maximized, assuming that each individual chooses among all available facilities according to a random
utility maximization model. The main challenge lies in the nonlinearity of the objective function. Moti-
vated by the convexity and separable structure of such an objective function, we propose an enhanced
implementation of the outer approximation scheme. Our algorithm works in a cutting plane fashion and
allows to separate the objective function into a number of sub-functions and create linear cuts for each
sub-function at each outer-approximation iteration. We compare our approach with the state-of-the-art
method and, for the first time in an extensive way, with other existing nonlinear solvers using three data
sets from recent literature. Our experiments show the robustness of our approach, especially on large
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instances, in terms of both computing time and number instances solved to optimality.
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1. Introduction

We consider a facility location problem in a competitive mar-
ket, a problem that has been receiving a growing attention in the
last decade. The problem concerns how to locate new facilities in
a competitive market such that the captured demand of users is
maximized, assuming that each individual chooses among all avail-
able facilities according to a random utility maximization model. In
this problem, two aspects are taken into account, namely, the de-
mand of customers and the competitors in the market. For the lat-
ter, the companies that would like to locate new facilities have to
compete for their market share. To address these aspects, several
competitive facility location models have been proposed in the lit-
erature. In general, these models are based on the assumption that
customers choose among different facilities based on a given util-
ity that they assign for each location. Such utilities are typically
functions of facility attributes/features, e.g., distances, prices and
transportation costs.

There are basically two main modeling approaches for the prob-
lem. The first approach, which we refer to as the deterministic ap-
proach, is based on the assumption that customers choose a facil-
ity in a deterministic way. For example, ReVelle (1986) proposes a
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model in which customers choose the closest facility among dif-
ferent competitors. This model, therefore, implies that all the de-
mand of a zone is assigned entirely to a facility, which is not real-
istic. An alternative approach is the model proposed in Huff (1964),
in which the demand captured by a facility is proportional to the
attractiveness of the facility and inversely proportional to the dis-
tance. The reader can consult Berman, Drezner, Drezner, and Krass
(2009) for a review.

The second modeling approach is referred to as the probabilis-
tic approach, in which the demand of customers is captured by a
probabilistic model, i.e., a model that can assign probabilities to
the facilities. The random utility maximization framework; see for
instance Ben-Akiva and Lerman (1985) or McFadden (1973), is pop-
ular in this context. Under this framework, we assume that there is
a random utility associated with each facility, and it is determined
by the attributes/features of the facility. Under the “utility maxi-
mization” assumption, this way of modeling allows us to compute
the probability that a customer chooses a facility versus other fa-
cilities. Then, the facility location problem can be described as fol-
lows: How to locate facilities in a competitive market such that
the expected market share captured by the new facilities is max-
imized (so, the problem is also called as the “maximum capture”
problem).

Among the random utility maximization models in the lit-
erature, the multinomial logit (MNL) is widely used due to its
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simple structure. The first MNL-based facility location approach
was introduced by Benati and Hansen (2002) and had several ap-
plications afterwards, e.g., locating schools (Haase & Miiller, 2013a),
preventive health-care facilities (Haase & Miiller, 2015) and sit-
ing park-and-ride facilities (Aros-Vera, Marianov, & Mitchell, 2013).
The advantage of this approach, compared to the deterministic
one, is that the probabilistic models allow consideration of the
characteristics of the facilities and customers to model the choice
decisions, and the choice model can be trained/estimated using su-
pervised data of customer choice decisions, so the demand of cus-
tomers can be predicted more accurately. The challenge, however,
lies in the fact that the corresponding data-driven discrete opti-
mization problems are nonlinear, thus they are typically difficult to
solve. Existing approaches address this challenge by reformulating
the problems into Mixed-Integer Linear Programing (MILP) models,
which are convenient to solve. Different MILP models have been
proposed by Benati and Hansen (2002), Hasse (2009) and Zhang,
Berman, and Verter (2012). These reformulations have been eval-
uated and compared by Haase and Miiller (2014) and they con-
cluded that the one proposed in Hasse (2009) is the most effi-
cient. This MILP reformulation has been further strengthened by
Freire, Moreno, and Yushimito (2016) using tighter coefficients in
some inequalities. Recently, Ljubi¢ and Moreno (2018) proposed
a Branch-and-Cut algorithm based on a multicut implementation
of outer-approximation plus specifically-derived sub-modular cuts.
This approach is currently the state-of-the-art for the maximum
capture facility location problem under the MNL.

Although the MNL model is popular for the maximum capture
facility location problem, it is important to note that there are
more flexible choice models that can be used. One of the most
preferable models in the demand modeling literature is the mixed
MNL (MMNL), which is fully flexible for approximating any ran-
dom utility maximization model (McFadden & Train, 2000). This
model has been also considered in some facility location studies,
e.g., Miiller, Haase, and Kless (2009) and Haase and Miiller (2013a).
It is worth noting that the above studies solve the MMNL-based
problems using MILP approaches, i.e., linearizing objective func-
tions and using MILP solvers, which have been shown to be dom-
inated by the Branch-and-Cut procedure proposed by Ljubi¢ and
Moreno (2018).

Our contribution: In this paper, we exploit the convexity and
separability of the objective function and propose an enhanced im-
plementation of the multicut outer-approximation algorithm. Our
algorithm allows to create a set of piecewise linear functions that
outer-approximate separated parts of the objective function by op-
portunely clustering the customers. This is based on the outer-
approximation scheme (Duran & Grossmann, 1986), i.e., it works
in a cutting plane fashion by solving a MILP at every iteration,
but it allows to generate several cuts per iteration instead of one
per iteration as in the original framework. On the other hand,
our algorithm differs from the “multicut” Branch-and-Cut proce-
dure of Ljubi¢ and Moreno (2018) by the fact that it generates
cuts for groups of demand points instead of cuts for every de-
mand point and it is a Cutting Plane approach instead of a Branch
and Cut. From a computational standpoint, this enhanced imple-
mentation is compared with the state-of-the-art one proposed
by Ljubi¢ and Moreno (2018) and, for the first time, with two
outer-approximation based mixed-integer nonlinear programming
(MINLP) solvers from the BONMIN package (Bonami et al., 2008)
using the three data sets from recent literature. Our computa-
tional experiments show that our approach is more robust and
more efficient, especially with the real-life large-scale instances
from a park-and-ride location problem in New York City, where
the number of demand points is huge. This more detailed compar-
ison highlights the strength of each of the different algorithmic in-
gredients, shedding light on the trade-off between single vs multi

cut approaches and between Cutting Plane vs Branch-and-Cut
algorithms.

The paper is structured as follows. Section 2 presents the max-
imum capture problem under the random utility maximization
framework. Our algorithm is presented in Section 3. Section 4 re-
ports the computational results comparing the performance of our
approach with other exact approaches in the literature. Finally,
Section 5 concludes.

2. Maximum capture facility location under random utilities

We are interested in a situation where a firm wants to locate
new facilities in a market in which customers are already served
by existing competitors. To capture the customers’ demand, we as-
sume that a customer selects a facility in the market according
to a random utility maximization model. Such a model associates
a decision-maker/customer with a random utility and we assume
that the customer chooses a facility by maximizing his/her utility.
Once a choice model is specified, the firm can select a set of lo-
cations to open new facilities to maximize their expected market
share given by the choice model.

To describe the problem in detail, we assume that, in the mar-
ket, there are M = {1,..., m} available locations and we denote by
Y c M the set of locations that have facilities of the competitor
company. Let I be the set of zones where customers are located
and g; be the number of customers located in zone iel, where a
zone can be defined as a geographical area. We can also view I as
a set of groups of customers. The objective is to maximize the ex-
pected number of customers by locating facilities in a subset of lo-
cations X ¢ M. Note that X and Y are not necessarily disjoint, i.e.,
the firm can consider to open a new facility at a location where
there are already facilities from the competitor. We denote by R(X)
the expected number of customers given by facilities in X. There-
fore, R(X) can be computed as

RX) = 3" PG jIX.Y),

iel jeX

where P(i, j|X, Y) is the probability that a customer located in zone
i selects facility jeX. As mentioned, a random utility maximiza-
tion model associates each pair of location jeXUY and zone iel
with a random utility uy, which is typically a sum of two parts,
ie., ujj = v;; + €5, where v;; refers to the deterministic part of the
utility and often contains observed attributes/features of location j
and zone i, and €;; is a random term that is unknown to the ana-
lyst. The random utility maximization framework assumes that the
customer selects a facility by maximizing the associated random
utility. More precisely, the framework allows to compute the prob-
ability that a customer i selects a facility located at j as

P(i, jIX.Y) = P(u;; > uy, Vi’ e XUY).

If the MNL model is used to predict the choice probabilities of cus-
tomers, then R(X) can be computed as

D jex €%
ZjeX evi + ZjeY e’

where v;; = (8*)Ta;; is the utility associated with location j and
a customer located in zone i, * are the parameters of the MNL
model and a; is the vector of features/attributes associated with
location j and customers at zone i. For notational simplicity, we
denote V;; = e"ii.

Then, the maximum capture problem under the MNL model can
be written as

RX) =) "a;

iel

(1)

> Vi
max JeX 7

G0 77 (2)
XM T L jex Vi + U
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where U} =Y.y e, which is a constant in the optimization
problem. We can also formulate (2) as a MINLP model as

XV
o) 24 (23-":1 xVy 0] ) ’ (FL-MNL)
jef12,...m)

where xj, j € M, is equal to 1 if location j is selected and x; =0
otherwise.

Even though the MNL is widely used to model discrete choice
behaviors due to its simple structure, it is well-known that the
model exhibits the independence of irrelevant alternatives (IIA)
property. In this context, the property implies that for two facil-
ities, the ratio of the choice probabilities is the same no matter
what other facilities are available or what the attributes/features
of the other facilities are. This is, in general, not reasonable and to
relax the IIA property, several choice models have been proposed.
Among them, the mixed MNL model is one of the most preferable
(Train, 2003). In the MMNL model, it is assumed that the utilities
v;; are no-longer deterministic, but contain some random compo-
nents. To approximate the choice probabilities as well as the ex-
pected number of customers, one needs to sample over the ran-
domness of the utilities. Formally speaking, the maximum capture
problem under the MMNL model can be formulated as (Haase,
Miiller, Krohn, & Hensher, 2016)

max ¥ % Zq'(iz;":mv"7 : )
x;{0.1} N &g T\ SRV ) (FL-MMNL)
je(1.2...m)
where {Vl} ..... Vl’]V} and {Uil, ..., UIN} are N realizations of V;; and

U{,, sampled over the randomness of the utilities v;;. Indeed, FL-
MMNL shares the same structure of the FL-MNL, meaning that, in
general, any algorithm being able to solve FL-MNL can be used to
solve FL-MMNL (Haase & Miiller, 2013b; Haase et al., 2016; Miiller
et al., 2009). Note that we write FL-MNL and FL-MMNL in their
simplest forms and different business constraints can be included,
e.g., a constraint on the number of facilities that the firm would
like to open or constraints on the budget the firm has to open fa-
cilities.

It is worth noting that beside the MMNL model, authors in
demand modeling also consider the multivariate extreme value
(MEV) model (McFadden, 1981) to relax the IIA property of the
MNL. However, the main advantage of using either the MNL or the
MMNL model is that the resulting objective functions are convex
and can be linearized, so the problems under the MNL or MMNL
can be solved exactly by MILP solvers. On the contrary, the objec-
tive functions given by the MEV are typically nonlinear and non-
convex, making the resulting models way more difficult to solve
exactly.

As pointed out, the nonlinearity of the objective functions of
both FL-MNL and FL-MMNL are convex. Basically, FL-MNL and FL-
MMNL are 0-1 fractional linear programming models, for which
it is possible to reformulate the nonlinear models into mixed-
integer linear programming ones (Wu, 1997). In the context of
competitive facility location, this has been done in some previous
studies, e.g., Benati and Hansen (2002), Hasse (2009) and Zhang
et al. (2012). It is important to note that the objective functions
of FL-MNL and FL-MMNL are concave and continuously differen-
tiable, so, a convex MINLP solver such as the BONMIN (Bonami
et al,, 2008) can be used to solve the problem. In addition, one
can take this advantage to build a Branch-and-Cut procedure with
outer-approximation cuts. As already discussed, such an approach
is studied in Ljubi¢ and Moreno (2018) and has been shown to
achieve the state-of-the-art results for the maximum capture facil-
ity location problem under the MNL model. In the remainder of the
paper, we concentrate on the competitive facility location under
the MNL model because, as previously shown, it has the same the-
oretical complexity of that under the (more realistic) MMNL model

and it is still quite challenging to solve. Nevertheless, we will dis-
cuss computational issues related to solve the MMNL version at
the end of the computational section.

3. Multicut outer-approximation scheme

In this section, we focus on the use of the outer-approximation
scheme to solve the facility location problem under the MNL
model. In particular, our approach is motivated by the fact that
the objective function can be separated into several sub-functions,
each of which is convex and continuously differentiable. This sug-
gests the idea of building an outer-approximation for each sub-
function by using subgradient cuts. In the following, we describe
the multicut version and show how the new scheme can be ap-
plied to the maximum capture problem.

The maximum capture facility location problem can be written
in general form as the following integer nonlinear programming
problem:

minixmize G(x)
subject to Ax<b (P1)
xe (0,1},

where Ax <b are some linear business constraints, e.g., upper and
lower bounds on the number of facilities that the company would
like to open. Moreover, in the context of the maximum capture
problem under the MNL, one can show that the objective function
G(x) is convex and continuously differentiable, which is essential
for the use of the outer-approximation scheme.

The general idea of the outer-approximation scheme (Duran
& Grossmann, 1986) is to create a piecewise linear and convex
function Q(x) that underestimates G(x), i.e., Q(x)<G(x),Vx. If this
function is tight at every integer point in the feasible set of the
problem, i.e., Q(x) = G(x), Vx € {0,1}", Ax <b, then we can find
an optimal solution to FL-MNL by solving min{Q(x)|x {0, 1},
Ax <b}. To this end, one can reformulate (P1) as ming,{0]6 > G(x)}
(plus the regular constraints). Then, we can relax the constraint
6 >G(x) and consider 6 as an underestimator of G(x). An outer-
approximation algorithm is basically an iterative procedure in
which at each iteration we add cuts in (x, #)-space to approximate
the shape of G(x). This is done until we find a solution (x*, 6*)
such that 8* = G(x*). It is also well-known that the algorithm ter-
minates after a finite number of iterations.

We now discuss an extended version of the outer-
approximation algorithm proposed in Duran and Grossmann
(1986), which allows to create several piecewise linear and convex
functions to outer-approximate G(x). This is motivated by the fact
that the objective function in our context is separable, i.e., G(x)
can be written as a sum of convex functions. This suggests that it
is possible to add several cuts to the master problem at each itera-
tion of the outer-approximation algorithm. The idea of introducing
multiple cuts for separable objective functions is well-known in
the stochastic programming literature, i.e., the multicut L-shape
method (see Birge & Louveaux, 1988, for instance).

We assume that the objective function can be written as a sum
of T convex functions

T
G =Y g

t=1
Then, the corresponding master problem can be defined as
T
>0
t=1

Ax<b
Iex — 16, < 7o;

minimize
X

subject to
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0 > Ly
xe{0,1}7,

where IT;x —16; <y is the set of subgradient cuts correspond-
ing to g:(x) and L; is a lower bound of g¢(x). The multicut outer-
approximation works as follows. At each iteration, for a given can-
didate x* € X, (up to) T subgradient cuts are added to the master
problem

0> Vg (xX)(x—x)+gx), t=1,...,T, (P2)

where Vgi(x*) is the gradient of gi(x*) at x*. The procedure stops
when it finds a solution (x*, 65, ...,05) such that Z[T=1 0 > G(x*).
Similarly to the classical approach, one can show that the multicut
algorithm always terminates after a finite number of steps, and the
returned solution is optimal to (P1).

We now get back to the maximum capture facility location
problem, in which the objective function is a sum of linear frac-
tional functions

Z’ﬁ: XV
G(x):_zqi(mﬂf”i )
2 XVij + Uy

iel

t=1...,T

If we divide the set of clients I by T disjoint subsets Iy, ..
define

ZT=1 XjVij
X) =— | =—=———,
8 (x) Zq'(Z}":] XV + UL

el

. Ir, and

then, we can write G(x) = Zle g:(x), and the multicut outer-
approximation scheme can be applied.

A typical business constraint for the facility location problem
is I < Z}":] xj <u, where | and u are the minimum and max-
imum number of facilities that the firm would like to open.
Proposition 1 below indicates that, to maximize the expected num-
ber of customers, one needs to open as many facilities as possible.
In other words, we can reduce a bound constraint into a p-median
constraint, i.e., 7' x; =1, 1 € Ny.

Proposition 1. Assume that x* is an optimal solution to (P1), in
which the constraint Ax<b is replaced by 152'}1:1 Xj <u, then
Y X =

Proof. The following remark is easy to verify. Given i1, and x € {0,
1}™, for any o >0 we have

it XV YimixVi+a
Yt xVig Uy T X XV o+ Uy
Inequality (4) implies that, we can get better objective values by

opening more faculties. The proposition is just a direct result of
the above remark. O

(4)

The master problem (P2) is initialized with some lower bounds
L of gi(x). Since g¢(x) is convex, these lower bounds can be com-
puted by solving the nonlinear convex optimization problem

Ly = min X), 5
t XE[O‘ll’ngt( ) (5)
Ax<b
with a note that solving (5) could be expensive, and we need to
solve that nonlinear problem for each t =1,...,T. Using (4), we
can have a faster way to obtain lower bounds for g;(x) as
Yl XV
&) = — Z (m]]l],
i \ 2=t Xvii + Uy
m V.
z—Z<,?*”i)WemnW (6)
ST Vg + U

Moreover, if we consider the problem with a business constraint
ZT:l xj =r, where r is the number of facilities to be opened, then

we can obtain tighter bounds by sorting the utilities {V;;, j=
1,..., m} and using the following inequality, which is easy to vali-

.
2k Vit
Dkt Vij;c +Uy

,ji) is a permutation of {1,...,m} such that Vij,- >
1

m
CVxe {0, 1)™ ) x;=r. (7)
=

iel;
where (ji, ...
V. >V

ify = = Vijhy

2Similarly to the classical outer-approximation algorithm (Duran
& Grossmann, 1986), if the multicut algorithm finds a candidate so-
lution x* € {0, 1} that has been already found previously, then x*
is an optimal solution to P1. This suggests a way to avoid recom-
puting the objective function G(x), which could be costly with large
instances. More precisely, each time a solution x* is found, we can
add x* to a set Z and also save the objective value G(x*). At each it-
eration, after solving the master problem to obtain (x*,6*,...,05),
we can first check if x* is in Z, then we can return x* as an optimal
solution. Otherwise, we compute the gradient of g;(.) at x* and add
the corresponding subgradient cuts to the master problem.

We describe the multicut outer-approximation scheme in
Algorithm 1. The difference between Algorithm 1 and the standard
outer-approximation algorithm presented in Bonami et al. (2008) is
that: (i) at each iteration, the multicut algorithm creates several
subgradient cuts and then adds them to the master problem, (ii)
we do not solve the continuous relaxation of the problem to ini-
tialize the master problem, instead, we compute the lower bound
by using either (6) or (7), and (iii) we save the set of binary so-
lutions found at each iteration to avoid recomputing the objective
function and its gradient. The latter (simple) modification helps to
reduce the computing time in cases that the objective function is
expensive to evaluate, and/or the outer-approximation algorithm
only needs a few iterations to converge.

Algorithm 1: Multicut outer-approximation algorithm.

begin

# Initialization

Step 1. Chose a lower bound L;, t =1,...,T and a
convergencetolerance € > 0, and Z = ¢.

Step 2. Initialize the master problem (P2) with empty IT.
Step 3. Compute (x*,05,...,07) as the first solution by
solving (P2).

# Iteratively adding cuts until getting an optimal solution
Step 4. If x* € Z then go to Step 6, otherwise set

Z =ZU{x*} and compute G(x*)

Step 5. If ZL] 03 = G(x*) — €, then go to Step 6,
otherwise

5.1 Compute Vg (x*), t =1,...,T, and add subgradient
cuts to the master problem (P2)
0 > Vg (x)(x —x*) + g (x"), t=1,....T

5.2 Solve (P2) to obtain new solution (x*, 65, ..
go back to Step 4

.,0%), and

# Finalization
Step 6. Return x* as an optimal solution and Zthl 0f as
the optimal value.

Basically, the advantage of the multicut algorithm is that it al-
lows to add cuts based on each concave component of the objec-
tive function. Therefore, we can expect that the approach can ex-
plore better the structure of the nonlinear function, and requires
less iterations to converge as compared to the single-cut one. How-
ever, the number of cuts added to the master problem is T times
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larger than the single-cut version, leading to the fact that each iter-
ation of the multicut algorithm is more expensive than an iteration
of the single-cut one. If the number of clients, i.e. |I|, is small, then
we can choose T = [I|. In cases that |I| is too large, we can select
T« |I| to avoid having too many cuts added to the master problem.
This trade-off is discussed in details at the end of the computation
evaluation of the next section.

4. Computational experiments

In this section, we evaluate the performance of our multicut
outer-approximation (MOA) algorithm on standard data sets from
the literature and we provide a comparison between MOA and the
state-of-the-art approach proposed by Ljubi¢ and Moreno (2018),
i.e., a Branch-and-Cut algorithm based on a multicut implemen-
tation of outer-approximation and sub-modular cuts. Let use de-
note this approach by BC. We use the three data sets used in
Ljubi¢ and Moreno (2018) as benchmark instances. We also com-
pare our approach with other existing convex MINLP solvers that
are based on the outer-approximation scheme as well. More pre-
cisely, we consider the algorithms implemented in the BONMIN
package (Bonami et al.,, 2008). Note that BONMIN contains 4 dif-
ferent algorithms for solving convex MINLP problems and two of
them are based on the outer-approximation scheme, i.e., one is an
outer-approximation decomposition algorithm (denoted as BM-0A)
and the other one is a hybrid outer-approximation-based Branch-
and-Cut algorithm (denoted as BM-HYB). In general, both BC and
BM-HYB are based on a Branch-and-Cut scheme, i.e., the outer ap-
proximation is performed within a unique enumeration tree. The
main difference between the two approaches is that BC uses sub-
modular cuts in addition to outer-approximation cuts and it gen-
erates cuts for each fractional (concave) component of the objec-
tive function. On the other hand, BM-HYB generates cuts for the
entire objective function, which means that only one cut is gener-
ated at each iteration. It is also important to note that the BM-OA
also generates subgradient cuts for the entire objective function,
while for the MOA we divide the set of separable components of
the objective function into some smaller groups, and we generate
cuts for each group (Eq. (3), where T is the number of group).

We refer the reader to Bonami et al. (2008) for a detailed de-
scription of these algorithms. We use a MATLAB interface of BON-
MIN, i.e., the OPTI Toolbox (http://www.i2c2.aut.ac.nz/Wiki/OPTI/)
for the experiments.

4.1. Experimental setting

We briefly describe the three data sets in the following and
refer the reader to Ljubi¢ and Moreno (2018) and Freire et al.
(2016) for more details.

e HM14: The data set includes instances generated randomly in a
plane, with [I] € {50, 100, 200, 400} and | M| € {25, 50, 100}.

e ORIlib: The data set consists of 11 problems, in which there are
eight problems with |I| =50, |M| € {25,50} and three prob-
lems with |I| = 1000, | M| = 100.

e P&R-NYC (or simply NYC): the data set comes from a large-
scale park-and-ride location problem in New York City, with
|I| = 82,341 and | M| = 59. These are the largest and most chal-
lenging instances, as reported by previous studies.

Only constraints of the form }7';x; =r are considered, with
re{2,..., 10}. For the NYC data set, we also test with r = [|M|/2],
i.e., r = 29. Similar to previous studies, we specify the deterministic
part of the utility associated with a location j € M as v;; = —fc;;
and v; = —Bac;y for each competitor j/, where c; is the distance
between zone/client i and location j. The parameter B refers to

the sensitivity of customers about the perceived utilities and pa-
rameter « represents the competitiveness of the competitors. We
choose the same parameters as in Ljubi¢ and Moreno (2018), i.e.,
o ={0.01,0.1,1} and B ={1,5,10} for data sets HM14 and OR-
lib, and B ={0.5,1,2} and @ = {0.5, 1, 2} for the NYC. For the NYC
data set and its chosen parameters, we refer the reader to Holguin-
Veras, Reilly, and Aros-Vera (2012) for more details. It is important
to note that, in general, other features of the zones/clients and lo-
cations can be used to model customers’ utilities, and the param-
eters B and o can be learned in supervised fashion on data about
how customers select the locations. In summary, we test on three
data sets, in which the number of instances in HM14, ORlib, NYC is
972, 891, 90, respectively. These are also the instances considered
in Ljubi¢ and Moreno (2018) and Freire et al. (2016).

The experiments are conducted on a PC with processor In-
tel(R)Core(TM) CPUs of 2.8 gigahertz, RAM of 12 gigabytes and
operating system Window 10. The MOA algorithm is coded in
MATLAB and linked to IBM-ILOG CPLEX 12.6 optimization routines
under default settings. We also take the code used in Ljubi¢ and
Moreno (2018) to generate results for the BC approach.

4.2. Computational evaluation and comparison

This section provides comparison results using the instances
described above. An important setting for our MOA algorithm is
the number of cuts T. Indeed, 1 <T<|l|. On the one hand, if we
choose small T, the MOA may perform similarly to the single-cut
version, thus, may require a large number of iterations to con-
verge. On the other hand, if T is large, the MOA may better ex-
plore the structure of the objective function, hence, would be able
to reduce the number of iterations but the master problem at each
iteration becomes more costly to solve. To achieve good perfor-
mance, we choose T = min{|I|, 100} for the HM14 instances and
T = min{|I|, 1000} for ORIib data set. For the largest instances from
NYC data set, because |I| = 82,341, we only choose T = 20. Those
values represent a reasonable compromise in the attempt of not
over tuning the algorithm while a detailed discussion on the im-
pact of T on the performance of the MOA algorithm is reported at
the end of the section. Given T, we simply cluster the customers
into groups of the same size (except the last group, as |I| may be
not divisible by T).

Table 1 reports the computational comparison of the four ap-
proaches, i.e, MOA, BC, BM-OA and BM-HYB, for the HM14 data
set. We report, in the table, the number of solved instances within
a time limit of one hour and the average CPU time (in seconds)
among those instances solved to optimality. For the MOA and BM-
OA, we report the average number of iterations for the instances
that can be solved by both approaches. We also indicate in bold
the largest number of solved instances, as well as the best CPU
time(s), and we only compare the computing time between meth-
ods that perform the best in terms of number of solved instances.
Note that each row of the table corresponds to 81 solved instances.

Table 1 indicates the strength of both BC and MOA as compared
to the BOMMIN ones, as they are capable of solving all the in-
stances to optimality in a few seconds on average. Overall, BC is
faster than MOA in terms of computing time although in almost all
cases the difference is negligible and, on average, way smaller than
one order of magnitude. We also notice that, in terms of number
of solved instances, BM-HYB is better than BM-OA, but if we look
at the average computing times over solved instances, BM-OA is
faster than BM-HYB. It is also interesting to see that, among the
instances that BM-OA is capable of solving successfully, the algo-
rithm only needs a few seconds and very few iterations to reach
optimality.

Table 2 reports the comparison results of the four approaches
for the ORIib instances under a time limit of one hour. Each row of
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Table 1

Numerical results for HM14 instances, grouped by the problem name (81 instances per row).

# (Solved instances)

Computing time (s)*

# (Iterations)*

1 [V  BC MOA BM-OA BM-HYB BC MOA  BM-OA BM-HYB MOA BM-OA
50 25 81 81 67 72 002 005 373 49.16 200 270
50 50 81 81 60 68 006 0.10 051 58.16 178 227
50 100 81 81 48 65 026 032 162 76.76 263 185
100 25 81 81 68 78 004 011 018 4429 1.90 235
100 50 81 81 45 59 012 028 243 24,55 224 251
100 100 81 81 43 43 061 066 3.74 102.03 272 242
200 25 81 81 55 65 007 029 1.06 1.90 212 347
200 50 81 81 45 65 026 076 118 71.98 224 196
200 100 81 81 42 59 128 454 462 76.74 2388 291
400 25 81 81 40 59 016 249 285 1.16 240 245
400 50 81 81 36 57 057 366 413 494 256 239
400 100 81 81 43 45 271 1290 662 63.11 326 312
Average 81 81 493 62.4 051 218 272 479 239 253

* Average among solved instances. BC: Branch&Cut (Ljubi¢ & Moreno, 2018) MOA: Multicut outer-approximation
(Algorithm 1) BM-OA: BONMIN’s single-cut outer-approximation BM-HYB: BONMIN’s Branch&Cut

Table 2

Numerical results for ORlib data set, grouped by the problem name (81 instances per row).

# (Solved instances)

Computing time (s)*

# (Iterations)*

Name BC MOA BM-OA BM-HYB  BC MOA BM-OA BM-HYB MOA  BM-OA
cap101 81 81 81 81 0.03 0.06 0.14 3.84 2.00 1.99
cap102 81 81 81 81 0.03 0.06 0.17 3.14 2.19 2.09
cap103 81 81 81 81 0.03 0.06 0.10 3.15 2.00 1.85
cap104 81 81 81 81 0.03 0.06 0.15 3.35 1.90 2.10
cap131 81 81 81 81 0.09 0.12 0.12 4.16 241 2.16
cap132 81 81 81 81 0.09 0.12 0.09 3.77 237 1.99
cap133 81 81 81 81 0.09 0.11 0.08 4.00 2.25 2.15
cap134 81 81 81 81 0.09 0.12 0.10 5.51 2.36 1.98
capa 73 73 55 60 150.14 24264 131.00 1601.30 8.95 6.53
capb 75 71 59 57 13346  404.11 47.18 1437.95 5.10 7.51
capc 64 66 59 62 71.25 284.22 1944 748.00 4.59 5.81
Average 78.2  78.0 74.6 75.2 32.30 84.70 18.05 347.10 3.28 3.29

* Average among solved instances.

the table corresponds to 81 instances and we also indicate the best
performance in bold. We can separate the instances into two sets;
the first set consists of instances of |I| = 100 (cap101 - cap134) and
the second set contains instances of 1000 customer zones (capa,
capb, capc). While the former is easy for the four approaches, the
latter is more challenging to be solved. More precisely, BC and
MOA perform the best in terms of number of solved instances,
and BC is slightly better than the MOA, solving overall 2 more in-
stances within the time limit, although, again, the computing times
are close, in the same order of magnitude. In addition, BC is also
faster than MOA in terms of computing time. Furthermore, even if
worse than BC and MOA in terms of number of solved instances,
the average computing times of the BM-OA are remarkably smaller
as compared to other approaches. Moreover, when comparing the
two BONMIN solvers, we see that BM-OA and BM-HYB perform
similarly in terms of number of solved instances, but BM-OA is
much faster in terms of computing time. Those observations are
in line with the well-known observation that, in case the number
of MILPs to be solved is very small, classical outer approximation
algorithms are faster than hybrid (branch-and-cut based) ones.
We now discuss the numerical results for the largest data
set. Table 3 reports what we obtained when testing the four ap-
proaches on the instances from the NYC data set, in which each
approach is given a time budget of one hour and each row corre-
sponds to 9 instances. Clearly, our MOA improves over other ap-
proaches either solving more instances within the time limit or
doing it faster. More precisely, only MOA is able to solve all the
instances to optimality. In general, BC is better than the two ap-
proaches from BONMIN in terms of number of solved instances,

but if we look at the average CPU times, the BONMIN ones and
our MOA are remarkably faster, this time over an order of magni-
tude faster. The reason is that the NYC instances contains a large
number of clients/demand points (i.e., 82,341). Because BC gener-
ates cuts for each demand point, the number of cuts becomes very
large and the problem becomes expensive to solve. On the other
hand, for the other approaches (BONMIN and MOA), cuts are only
generated for the aggregated objective function (for the BONMIN)
or for groups of demand points (MOA), so way less cuts are gener-
ated per iteration.

Moreover, we notice that the number of iterations required by
our MOA is 6 times larger than that required by the BM-OA. This is
in line with the computing times observed. It is also worth noting
that, even being similar in terms of number of solved instances,
BM-OA is about 3 times faster than BM-HYB. As already partially
observed, if BM-OA can solve the problem, it does it in few itera-
tions and it is faster than other approaches, otherwise it does not
solve the problem.

In summary, Tables 1-3 report comparison results based on
three sets of instances HM14, ORlib and NYC. The results indi-
cate the robustness of BC and MOA as compared to the two BON-
MIN solvers. Namely, BC is slightly better than the MOA approach
for the simulated instances, i.e., ORlib and HM14, but significantly
worse than MOA for the real and large ones (i.e. NYC). The re-
sults are also consistent with those reported in the previous stud-
ies (Ljubi¢ & Moreno, 2018), with a note that BC seems to perform
a bit worse in our experiments, which may be due to the differ-
ences between the machines used for the tests. Based on the com-
parative results reported in Ljubi¢ and Moreno (2018) with respect
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Table 3
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Numerical results for NYC data set, grouped by r (9 instances per row).

# (Solved instances)

Computing time (s)*

# (Iterations)*

r BC MOA BM-OA BM-HYB BC MOA BM-OA BM-HYB MOA  BM-OA
2 7 9 6 6 232.47 4.46 1.18 13.57 7.67 1.83
3 8 9 6 6 311.05 9.14 0.99 5.55 8.67 2.00
4 8 9 6 6 236.06 11.06 0.67 5.88 8.5 2.00
5 8 9 7 7 314.42 12.56 0.89 7.95 17.71 1.71
6 9 9 6 6 414.74 14.85 1.60 5.33 7.33 2.50
7 9 9 8 8 337.44 12.29 1.06 11.45 10.12 2.25
8 8 9 8 8 249.66 14.75 0.76 16.95 9.5 213
9 8 9 8 8 248.35 17.10 0.82 15.50 8.00 2.25
10 9 9 8 8 360.08 19.83 11.67 6.37 6.25 2.38
29 9 9 8 8 395.61 0.47 15.32 8.23 4.25 2.58
Average 8.3 9 7.1 7.1 309.99 8.80 3.50 9.68 12.13 2.16
* Average among solved instances.
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Fig. 1. Performance of MOA algorithm with respect to the numbers of cuts per iteration.

to other approaches in the literature, i.e., the convex programming
approach proposed by Benati and Hansen (2002), the linearization
technique proposed by Hasse (2009) and the B&B procedure by
Freire et al. (2016), we can also conclude that MOA is competitive,
generally improving over those other exact methods.

To have a closer look at the performance of the MOA algorithm
when the number of cuts T varies, we take, from each data set, a
representative problem. Then, we run MOA on the corresponding
instances with different number of cuts per iteration (i.e., T), and

we report the number of solved instances, computing times and
number of iterations.

To be more precise, we take a problem with |I| = |[M]| = 100
from HM14 instances, a problem with |I| = 1000, | M| = 100 from
ORIlib and all instances of the NYC data set. Each problem from
HM14, ORIib results in 81 instances, and the one from NYC results
in 90 instances. We let T varies from 1 to 100 for the HM14 in-
stances, Te {1, 1000} for the ORIib instances, and Te< ({1, 300} for
the NYC ones. We also give a time limit of one hour to our MOA
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algorithm. Fig. 1 shows the number of solved instances, the av-
erage computing times and average number of iterations when T
varies. The figure shows that when T increases, the average num-
ber of iterations decreases quickly, and the average number of
solved instances increases for the HM14 and NYC instances. For the
ORIib instances, the number of solved instances slightly decreases
when T> 500. This is in line with the remark that when T is large,
the master problem becomes expensive to be solved and MOA can-
not converge to optimality within the time budget. For the HM14
instances, the computing times reduce quickly when T increases
from 1 to 20. For the NYC instances, the algorithm achieves the
best performance, in terms of computing time, with T =50. We
also notice that MOA performs differently for the ORIlib instances,
as the average computing times grow dramatically fast when T> 1.
This implies that, for these instances, the single-cut version con-
verges faster as compared to the MOA with T> 1.

In this paper, we focus on MNL instances but noting that a max-
imum capture problem under the MMNL model can be viewed as a
problem under the MNL with extended customer zones (or clients),
so the methods discussed above can be applied. Nevertheless, due
to large numbers of demand points, MMNL instances would be-
come (even more) challenging for the B&C and classical outer-
approximation methods. Our clustering approach is a promising di-
rection in the sense that it requires less cuts than the B&C method
while being able to partially capture the separable structure of the
objective function. However, the question of how to cluster the de-
mand points remains not straightforward and we keep this for fu-
ture work.

5. Conclusions

In the paper, we have proposed an enhanced implementation
of the outer approximation scheme to solve the facility location
maximum capture problem under random utilities. Our algorithm
is based on the outer-approximation scheme but it allows to ma-
nipulate the number of subgradient cuts per iteration, instead of
one cut per iteration as in a standard outer-approximation al-
gorithm, or one cut per one demand point per iteration as in
the state-of-the-art approach. Detailed computational experiments
compare, for the first time, several variants of the outer approxi-
mation scheme allowing to shed light on the strength of the var-
ious ingredients, namely, single vs multi cut and Putting Plane vs
Branch and Cut. The results show that our MOA algorithm is very
competitive, often better than the state-of-the-art approach, espe-
cially on large instances. The MOA algorithm favorably compares
with other outer-approximation based algorithms implemented in
the BONMIN package, and our results indicate the robustness of
our clustered implementation of the multicut version.

The MOA algorithm proposed here is not restricted to the max-
imum capture facility location problem with random utilities but
can be used for any MINLP in which the objective function can
be separated into several convex functions. Our results show that,
by introducing more cuts per iteration, we can help an outer-
approximation algorithm converge faster to optimality. This sug-
gests that this multicut version could possibly be a good alterna-
tive to the single-cut one for other applications. Along with the
above remarks, the idea of creating several cuts for separable con-
vex functions would be also useful to handle separable convex
nonlinear constraints as already observed by Hijazi, Bonami, and
Ouorou (2013).
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