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ABSTRACT
Network embedding effectively transforms complex network data
into a low-dimensional vector space and has shown great perfor-
mance in many real-world scenarios, such as link prediction, node
classification, and similarity search. A plethora of methods have
been proposed to learn node representations and achieve encour-
aging results. Nevertheless, little attention has been paid on the
embedding technique for bipartite attributed networks, which is a
typical data structure for modeling nodes from two distinct parti-
tions.

In this paper, we propose a novel model called BiANE, short
for Bipartite Attributed Network Embedding. In particular, BiANE
not only models the inter-partition proximity but also models the
intra-partition proximity. To effectively preserve the intra-partition
proximity, we jointly model the attribute proximity and the struc-
ture proximity through a novel latent correlation training approach.
Furthermore, we propose a dynamic positive sampling technique to
overcome the efficiency drawbacks of the existing dynamic negative
sampling techniques. Extensive experiments have been conducted
on several real-world networks, and the results demonstrate that
our proposed approach can significantly outperform state-of-the-
art methods.

CCS CONCEPTS
•Computingmethodologies→Dimensionality reduction and
manifold learning; • Information systems → Social networks.
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Figure 1: An e-commerce example of bipartite attributed net-
works. Nodes in the network can be categorized into two at-
tributed partitions: users and items.

1 INTRODUCTION
Networks are ubiquitous data structures that have been extensively
utilized to model a plethora of real-world problems such as molec-
ular structures [6], social networks [22–24, 38], and recommender
systems [41, 43]. Network embedding has become an efficient and
effective approach to model network structure and has attracted
significant attention recently. It aims to transform a network into a
low-dimensional vector space and has shown great performance in
many downstream tasks, such as link prediction, node classification,
and similarity search.

This paper studies the bipartite attributed networks, which are
not well addressed by existing efforts on network embedding. In a
bipartite attributed network, nodes are categorized into two parti-
tions and edges only exist between nodes from different partitions.
Moreover, each node is associated with a set of attributes. Bipartite
attributed networks can model many real-world scenarios. For ex-
ample, as illustrated in Figure 1, user activities on an e-commerce
website can be formalized as a bipartite attributed network: nodes
are categorized into users and items, while edges among nodes
represent the interactive behaviors between users and items. Nodes
may have attributes, such as user profiles (e.g., gender, age, occupa-
tion, location) and item features (e.g., category, brand, price). Other
typical applications include bibliographical networks [2], biological
networks [30], and risk assessment [17].

In principle, there are two key observations that lie at the core of
bipartite attributed network embedding. First, we need to preserve
the inter-partition proximity among the nodes, which captures the
across-partition relationships conveyed by the edges of bipartite
networks. More importantly, we also need to preserve the intra-
partition proximity that refers to the underlying proximity within
each partition. To be more specific, the intra-partition proximity
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consists of both structure and attribute aspects for nodes within the
same partition. On the one hand, nodes, which have similar “inter-
action” behaviors with the nodes in the other partition, should have
high proximity. For example, if two users co-like the same items
(e.g., users Mario and Ricardo), they should have larger potential
high-order similarity. Previous works [10, 11, 18, 26, 43, 46] have
claimed this point and validated that the modeling such high-order
similarity can enhance the performance of recommendation tasks.
On the other hand, each node is associated with a set of attributes,
which can provide auxiliary information to enhance representation
learning. The intuition is that similar nodes tend to share similar
attributes, resulting to similar behaviors in the network. Take Fig-
ure 1 again as an example. Alicia and Lisa are both young ladies,
and they probably would spend some money consuming cosmetics.

Despite numerous solutions have been proposed for network
embedding recently, we argue that they are not sufficient for em-
bedding bipartite attributed networks as they fail to effectively
preserve the intra-partition proximity for following reasons.

First, previous works overlook the specific “correlation” between
the attribute and structure proximity when preserving them. The
attribute information and the structure information are two differ-
ent modalities, they have a highly non-linear relationship. However,
since they describe different aspects of the same node, they not
only present mutual complementarity but also share an underlying
coherence in the embedding manifold, to which we refer as the
attribute-structure correlation. For instance, two scholars with simi-
lar research interests (attribute) may co-publish papers (structure),
or both have some connections with specific researchers (structure).
Unfortunately, existing methods neither preserve the attribute prox-
imity and the structure proximity simultaneously nor model the
attribute-structure correlation effectively due to the highly non-
linear relationship. Thus they render inferior embeddings.

Second, modeling the high-order structure proximity within each
partition introduces scalability issues. Existing works [10, 11] add
large amounts of additional links within each partition to benefit
from modeling such structure proximity, but they also make the
network much denser than before and introduce the scalability
problem. The scalability problem is even more exaggerated when it
comes to the case of embedding methods with dynamic negative
sampling strategies, which introduce severe computation complexi-
ties. A common solution is to use static negative sampling strategies
to reduce complexity. Nevertheless, previous works [8, 9, 48, 49]
have proved that static negative sampling strategies fail to reflect
the varying node information distribution in the embedding space
during the training process and may lead to vanishing gradients
(see Section 2.3 for more details). Hence, they suffer from scalability
issues and yield unsatisfactory results on large networks.

Motivated by the aforementioned gaps, we propose a novel em-
bedding model, namely Bipartite Attributed Network Embedding,
or BiANE for short. In order to model the intra-partition proxim-
ity, we augment intra-partition edges to existing edges presented
in the network for intra-partition modeling. Then we employ au-
toencoders to compress the attribute information and the structure
information separately and specifically devise a strategy called
Latent Correlation Training by introducing auxiliary transforming
kernels to project the attribute and structure encodings to a novel la-
tent space to model the attribute-structure correlation. Meanwhile,

we perform inter-partition modeling to tune model parameters and
ameliorate the learning embeddings. Furthermore, so as to obtain
satisfying embeddings and overcome complexity defects caused by
dynamic negative sampling strategies, we propose a novel dynamic
positive sampling technique and draw samples from a k-nearest
neighbor index to train the model effectively and efficiently.

To summarize, we make the following contributions.
(1) We study the problem of bipartite attributed network em-

bedding and propose a novel model called BiANE. BiANE extracts
the attribute information as well as the structure information and
effectively aggregates them together and maintain their underly-
ing correlation. BiANE simultaneously models the inter-partition
proximity and the intra-partition proximity of the network and
integrates each other to ameliorate the learning result.

(2) We introduce an efficient dynamic positive sampling strategy,
which improves the training result and makes our model scalable
for large scale networks.

(3) Extensive empirical studies are conducted on several real-
world network datasets and experimental results demonstrate the
superior efficacy and efficiency of the proposed BiANE model.

2 RELATEDWORK
In this section, we review some existing works related to our work
and address their drawbacks for bipartite attributed network em-
bedding. To save space, we only name a few state-of-the-art works.

2.1 Network Embedding
Network embedding has become a hot topic across multiple fields.
Earlier works DeepWalk [29] and node2vec [13] utilize random
walks to simulate word sequences and then apply a Skip-gram
model [28] to learn node embeddings.Metapath2vec [5] andHIN2vec
[7] extends DeepWalk [29] by exploiting different types of meta-
paths to guide random walks on heterogenous networks. HEP [51]
uses a neighborhood propagation mechanism for embedding re-
construction. ANRL [50] adopts neighborhood enhancement au-
toencoders and attribute-aware skip-gram models to preserve the
attribute proximity and the structure proximity. AANE [15] is fab-
ricated in a distributed manner and utilizes a joint learning process
for attributed network embedding. However, they neither preserve
the attribute proximity nor model the attribute-structure correla-
tion explicitly. Hence, they are inadequate for embedding bipartite
attributed networks.

2.2 Bipartite Network Modeling
Most efforts on bipartite networks are exerted on node ranking
or click-through rate (CTR) problems. BPR [31] and RankALS [33]
rank nodes by optimizing pairwise-ranking objectives. Wide&Deep
[4] and DeepFM [14] propose deep models to tackle CTR problems.
However, all these works only output a single score, which fails to
convey rich information like network embeddings.

BiNE [10] is the first work that is designed to embedding bipar-
tite networks. It specifically models the structure proximity within
each partition by augmenting intra-partition edges. NGCF [43] pro-
duces node embedding by modeling the collaborative signal and
high-order connectivities of user-item bipartite interactions. GC-
MC [36] and STAR-GCN [47] employ graph convolution networks
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Figure 2: The overall framework of BiANE model. The learning algorithm can be mainly divided into two phases: (1) Intra-
Partition ProximityModeling, where we address two key points in training: Latent Correlation Training andDynamic Positive
Sampling (2) Inter-Partition Proximity Modeling. The whole model is trained in an end-to-end manner. Dashed lines in G
represent underlying intra-partition neighbor relationships within each partition.

[20] to perform matrix completion on bipartite networks. Never-
theless, they either ignore the node attributes or are not scalable in
modeling the attribute-structure correlation. Therefore, they yield
unsatisfactory results for bipartite attributed network embedding.

2.3 Negative Sampling Strategy
Another line of related works is about negative sampling. Negative
sampling is a critical step in embedding learning as it guides the
direction of gradient variation. Most models [1, 29, 34] adopt a
pre-defined static distribution for negative sampling, e.g., uniform
distribution, Bernouli distribution or a distribution that is propor-
tional to 3

4 power of the node degree. As the training proceeds,
the static distribution can not capture the variation of embedding
space. Static sampling may also introduces the vanishing gradient
problem in the later training phase [3, 42, 49].

Other models [8, 9, 48, 49] resort to a dynamic sampling strategy
to circumvent the static sampling problem, but they suffer from
high computation complexity (O(n2)). GraphGAN [39] tries to re-
duce the complexity by constructing BFS-trees in the offline stage.
Unfortunately, the offline construction phase still requires a qua-
dratic complexity. Thus, such an approach can only handle graphs
with at most a few thousands of nodes.

3 METHODOLOGY
In this section, we propose BiANE, an end-to-endmodel for bipartite
attributed networks representation learning (see Figure 2 for an
overview).We first illustrate the notations and present the definition
of the bipartite attributed network embedding problem. The overall
framework of our BiANE model will be introduced subsequently.
Next, we elaborate on our model in detail. At last, we give some
discussions and analysis on the proposed model.

3.1 Notations and Problem Definition
Throughout this paper, matrices are denoted as uppercase bold
letters (e.g., A), vectors as lowercase bold letters (e.g., a), and scalars
are denoted as lowercase italic alphabets (e.g., p). The transpose
of a matrix or a vector is denoted as AT or aT. We describe the i𝑡ℎ
row of matrix A as a𝑖 and the element of i𝑡ℎ row and j𝑡ℎ column as
a𝑖 𝑗 . Key notations are summarized in the Table 1.

Let G = (U, V , E, XU , XV ) be a bipartite attributed network,
where U denotes the node set for one type while V denotes node

set for the other. E stands for the edge set of the network. 𝑒𝑚𝑛

denotes the an edge in E between two nodes 𝑢𝑚 and 𝑣𝑛 where
𝑢𝑚 ∈ U and 𝑣𝑛 ∈ V . XU and XV stand for the attribute informa-
tion matrix for U, V respectively. The goal of bipartite attributed
network embedding is to map all nodes in G to a vector in the
low-dimensional embedding space H ∈ R𝑑 , where each node is
represented as a d-dimension embedding vector h.

Table 1: Notations

Notations Definition
W(𝑘)

𝑥 ,W(𝑘)
𝑧 encoder parameters

Ŵ(𝑘)
𝑥 , Ŵ(𝑘)

𝑧 decoder parameters

W̃(𝑘)
𝑥 , W̃(𝑘)

𝑧
transforming

kernel parameters

x, z attribute and high-order
structure features

x̂, ẑ reconstructed vectors
x′, z′ autoencoder encodings
x̃, z̃ latent representations
h final embeddings

We present some key concepts as follows:
Concept 1. (The Attribute Proximity). Given any two nodes from a
bipartite attributed network, the attribute proximity measures the
similarity of their attributes. Nodes with similar attributes should
have their embedding vectors closer in the latent space.
Concept 2. (The Structure Proximity) The goal is to capture the
topological similarity from the graph structure. Specifically, the
structure proximity can be interpreted in two aspects: the first-order
proximity and the high-order proximity. The first-order proximity
is determined by if there is a direct linking edge between two nodes.
The high-order proximity represents the similarity between the
neighbor sets of two nodes.

3.2 Overall Framework
The overall framework of BiANE is shown in Figure 2. The frame-
work preserves two kinds of proximity: the inter-partition proxim-
ity and the intra-partition proximity. Given a bipartite attributed
network, we first perform partitioning on the network according to
different node types. Subsequently, we extract the structure infor-
mation and the attribute information from either partition and feed
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them into different autoencoders. We incorporate the first-order
proximity preserving in the autoencoder learning process and pro-
pose a novel attribute-structure correlation training in another
latent space for each partition. At last, we aggregate the encod-
ing vectors from the aforementioned autoencoders and model the
inter-partition proximity of the bipartite attributed network.

3.3 Inter-Partition Proximity Modeling
For bipartite attributed networks, the most important properties
are the links that exist across two partitions, to which we refer
as the inter-partition relationships of bipartite networks. For the
nodes that are linked across partitions, we must ensure that their
embeddings should capture the inter-partition relationship in the
embedding space. For an edge 𝑒𝑚𝑛 between 𝑢𝑚 and 𝑣𝑛 , we regard
their joint probability as the inter-partition proximity between
them:

𝑝 (𝑚,𝑛) = 𝜎 (hT𝑚 · h𝑛) , (1)

where 𝜎 stands for the sigmoid function. Here we treat h𝑚 and h𝑛
as the final embedding for node 𝑢𝑚 and node 𝑣𝑛 respectively. We
will explain how we get the embedding vector h in the following
subsection.Wemaximize the likelihood function of joint probability
by minimizing the following loss function:

𝐿1 = −
∑

𝑒𝑚𝑛 ∈E
log𝜎 (hT𝑚 · h𝑛) −

∑
𝑛′=1
E𝑣𝑛′∼𝑃𝑛 (𝑣) log𝜎 (−h

T
𝑚 · h𝑛′) ,

(2)
where 𝑃𝑛 (𝑣) is the negative sampling distribution.

3.4 Intra-Partition Proximity Modeling
We now illustrate how to integrate the intra-partition proximity
modeling with the inter-partition proximity modeling. Without
loss of generality, we use U to elaborate and the same idea goes
for the partition V .

BiANE captures both the attribute proximity and the structure
proximity for intra-partition modeling. For each node 𝑢, we first
extract raw features for the attribute information and the struc-
ture information as x and z, respectively. Subsequently, x and z
are fed into two independent autoencoders to learn their compact
representations x′ and z′. Finally, we jointly model the attribute
proximity and the structure proximity in a single loss function.
Raw Feature Extraction: Each node is associated with attributes.
We normalize the numerical attributes and use one-hot to encode
categorical attributes. After that, we concatenate all of them as our
attribute information x. To obtain the structure information for
modeling the intra-partition proximity, we connect two nodes 𝑢𝑚
and 𝑢𝑛 from U if they share a common neighbor 𝑣 ∈ V and the
connected edge could be assigned a weight (e.g., Jaccard or cosine
similarity on their neighbors in V). The directly connected nodes
are referred as the intra-partition neighbors. Based on the intra-
partition neighbors, we can synthesize an intra-partition network
within each partition. The intra-partition neighbors represent the
first-order relationships for nodes within the same partition. To
model the high-order structure proximity, we build the high-order
structure proximity matrix Z as the following:

Z = A1 + A2 + · · · + Ak−1 + Ak , (3)

where A𝑘 is the normalized k-step probability transition matrix
on the intra-partition network and z𝑖 𝑗 ∈ Z denotes the high-order
proximity feature of i𝑡ℎ node and j𝑡ℎ node. By this means, we can
obtain the high-order structure information z for each node inside
the partition.
Compact Feature Learning: We feed the raw features extracted
into two separate autoencoders for the attribute information and
the structure information respectively. See Figure 3 for illustration.
We feed the features x and z into two independent autoencoders to
obtain encodings x′ and z′ as well as reconstructed vectors x̂ and ẑ.
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Figure 3: The architecture for the intra-partition proximity
modeling module. Specifically, Latent Correlation Training
and Dynamic Positive Sampling are performed in the latent
space after we transform x′ and z′ to x̃ and z̃ respectively by
transforming kernels.

We minimize the following reconstruction loss function to cap-
ture the attribute information and the structure information:

𝐿2 =
∑
𝑖

∥x̂𝑖 − x𝑖 ∥2 +
∑
𝑖

∥ẑ𝑖 − z𝑖 ∥2 . (4)

With this approach, both the attribute information and the struc-
ture information can be effectively extracted as the reconstruction
process of autoencoders can enhance neural components to capture
the data manifold smoothly and reduce noise [32].
Joint Modeling: We jointly model the attribute encoding and the
structure encoding to preserve the first-order proximity by opti-
mizing the following loss:

𝐿3 = −
∑

a𝑚𝑛>0
log𝜎 (x′𝑚

T · x′𝑛) −
∑
𝑛′=1
E𝑣𝑛′∼𝑃 ′

𝑛 (𝑣) log𝜎 (−x
′
𝑚
T · x′𝑛′)

−
∑

a𝑚𝑛>0
log𝜎 (z′𝑚

T · z′𝑛) −
∑
𝑛′=1
E𝑣𝑛′∼𝑃 ′

𝑛 (𝑣) log𝜎 (−z
′
𝑚
T · z′𝑛′) ,

(5)
where a𝑚𝑛 denotes the element of the adjacency matrix for the syn-
thesized intra-partition network and 𝑃 ′𝑛 (𝑣) is the negative sampling
distribution.

Finally, we concatenate x′ and z′ to obtain the final embedding
h and utilize h for the inter-partition proximity modeling.

3.5 Latent Correlation Training
The attribute information and the structure information are two dif-
ferentmodalities, they provide complementary information for each
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other. Besides, they both describe the same network, which implies
they share an underlying coherence. As mentioned in Section 1, we
consider their coherence and complementarity together and gen-
erally name it as the attribute-structure correlation. To achieve the
maximum utilization of the attribute information and the structure
information, we should incorporate such correlation in network
embeddings as much as possible.

Nevertheless, these two information reflect different properties
of the network, their latent modalities are highly non-linear, intro-
ducing great difficulties in modeling the attribute-structure correla-
tion. [8] has proved that neither shallow operations (e.g., concate-
nation and element-wise difference) nor sharing neural layers can
be sufficient to capture the mutual coherence or complementarity.

To address the issue, we introduce a novel training procedure
to preserve the attribute-structure correlation. Considering x′ and
z′ in encoding space, an intuitive approach is to enhance their
joint probability to enforce them coherently. Besides, since they
are extracted from separate autoencoders, they deliver complemen-
tary information. However, since x′ and z′ have been utilized to
model the first-order proximity in their own encoding space di-
rectly, adding extra loss functions to optimize their joint probability
may introduce additional disturbances in their encoding space, mak-
ing the aforementioned joint modeling training more unstable and
affect the overall training in a non-deterministic manner.

To overcome such limitations, we employ two auxiliary space
transforming kernels to switch the space from encodings to a new
latent space and project the encodings to latent representations
(see Figure 3 for illustration):

x̃ = 𝛿 (𝑘) (W̃(𝑘)
𝑥 (· · · 𝛿 (1) (W̃(1)

𝑥 x′ + b̃(1)𝑥 ) · · · ) + b̃(𝑘)𝑥 ) ,

z̃ = 𝛿 (𝑘) (W̃(𝑘)
𝑧 (· · · 𝛿 (1) (W̃(1)

𝑧 z′ + b̃(1)𝑧 ) · · · ) + b̃(𝑘)𝑧 ) .

(6a)

(6b)
We define the correlation between the attribute information and
the structure information for any two nodes as the joint probability
of their latent representations:

𝑝 (𝑚,𝑛) = 𝜎 (x̃T𝑚 · z̃𝑛) . (7)
If two nodes are linked in the synthetic intra-partition network, it
is very likely to infer that their attribute information and structure
information have a strong correlation. We maximize the aforemen-
tioned joint probability in the latent space to ensure the correlation
can be incorporated in our model. For each node 𝑢, the node with
the strongest correlation is 𝑢 itself. Thus, we should maximize the
joint probability of its own x̃ and z̃ in the new latent space:

𝐿4 = −
∑
𝑚=𝑛

log𝜎 (x̃T𝑚 · z̃𝑛) −
∑
𝑛′=1
E𝑣𝑛′∼𝑃 ′

𝑛 (𝑣) log𝜎 (−x̃𝑚
T · z̃𝑛′) ,

(8)
where 𝑃 ′𝑛 (𝑣) is the negative sampling strategy. By this means, we
can ameliorate the parameters of encoders and transforming ker-
nels through model training and enforce the attribute-structure
correlation is well integrated into our model parameters.

3.6 Dynamic Positive Sampling Strategy
Negative sampling plays an important role in the network em-
bedding optimization process, which requires bunches of negative
cases to help determine the boundary of “similarity”. Traditional ap-
proaches adopt a static sampling strategy, e.g., random sampling or

popularity sampling. However, static approaches keep the sampling
criterion unchanged during training, which does not reflect the
node informativeness in the varying embedding space. Moreover,
static sampling provides the same negative distribution for differ-
ent nodes, which fail to capture the local features of the network,
resulting in the gradient vanishing issue or a poor local optimum
problem for training [3, 42, 49].

One possible solution is to sample negative cases from a dynamic
negative sampling distribution [8, 9]. To be more specific, for each
node, we calculate the joint probabilities from a node 𝑢 to all other
nodes. Then, the negative samples for 𝑢 are generated by following
a distribution that is proportional to the dynamically calculated
joint probabilities. Due to dynamic sampling, the distribution can
adapt to the training processing and is able to circumvent the poten-
tial vanishing gradient problem [9, 49], yielding satisfactory results.
However, this approach costs O(n2) complexity for dynamic distri-
bution computation in each round, which will severely degenerate
the scalability and efficiency of the training process. Such deficiency
is even exaggerated in our scenario since we physically augment
intra-partition links for modeling the structure proximity within
the partition, which significantly “enlarges” the network, making
it too dense to update the sampling distribution dynamically.
Dynamic Positive Sampling.Motivated by the aforementioned
drawbacks, we propose a novel dynamic positive sampling strategy
and combine it with static negative sampling for loss function 𝐿4
defined in Equation 8. The advantage of our approach is two-fold:
(1) The dynamic positive sampling strategy could drive the entire
training process and alleviate the effect of vanishing gradients; (2)
It overcomes the performance issue for dynamic negative sampling
strategy since both static sampling and dynamic positive sampling
can be processed efficiently.

We are now ready to modify loss function 𝐿4 to enable dynamic
positive sampling:

𝐿4 = −
∑
𝑚=𝑛
𝑜𝑟

𝑢𝑚,𝑢𝑛∼�̃� (𝑚,𝑛)

log𝜎 (x̃T𝑚 · z̃𝑛) −
∑
𝑛′=1
E𝑣𝑛′∼𝑃 ′

𝑛 (𝑣) log𝜎 (−x̃𝑚
T · z̃𝑛′) ,

(9)

where 𝑝 (𝑚,𝑛) stands for the dynamic positive sampling distribution
and 𝑃 ′𝑛 (𝑣) remains to be the static sampling distribution. Through
dynamic positive sampling, we can draw samples that are poten-
tially closed in the latent space and achieve better training perfor-
mance.

In the cause of reducing computation complexity, we employ
HNSW [27] for constructing indexes to achieve efficient dynamic
positive sampling. Specifically, for x̃ of each node, we search its
k-nearest neighbors in the latent space through HNSW indexes.
The k-nearest neighbors are returned as positive cases and we
push their x̃ and z̃ closer in the embedding space to maintain these
positive correlations. The same goes for z̃. HNSW has been proved
to be efficient with lower dimensionality (usually no larger than 32).
Henceforth, we enforce the aforementioned transforming kernels
to reduce the dimension of latent representations into a small value
(e.g., 16, 32).

We combine all optimization functions together as our final
optimization function that jointly optimizes the embedding vectors:

𝐿 = 𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 . (10)

Session 1C: Graph-based Analysis  SIGIR ’20, July 25–30, 2020, Virtual Event, China

153



Algorithm 1 Learning algorithm for BiANE
Input: G = (U,V, E,XU ,XV ), embedding dimension d,

learning rate 𝜂, positive sample number k.
Output: node embedding H ∈ Rd .
1: Construct two partitions U and V
2: Intialize all model parameters 𝜃
3: Obtain the structure feature via Eq. 3
4: while not converged do
5: Feed x and z into autoencoders to obtain x′, z′, x̂, and ẑ
6: Update autoencoders parameters via Eq. 4
7: Update encoders parameters via Eq. 5
8: Transform to x′ and z′ to x̃ and z̃ via Eq. 6
9: Build up HNSW indexes based on x̃ and z̃
10: Perform k-NN positive sampling for each x̃ and z̃
11: Update encoders and kernels parameters via Eq. 9
12: Concatenate x′ and z′ to obtain embedding h
13: Update encoders parameters via Eq. 2
14: end while
15: return node embedding H

We employ static negative sampling for 𝐿1, 𝐿3 and 𝐿4. The dynamic
positive sampling strategy is devised for 𝐿4, which is used to drive
the training process efficiently.

The training process of BiANE is summarized in Algorithm 1.
Lines 5-6 compress the attribute information and the structure
information through autoencoders. Line 7 models the first-order
proximity within each partition. Lines 8-11 perform dynamic posi-
tive sampling in the latent space and model the correlation between
the attribute information and the structure information. Lines 12-13
model the inter-partition proximity.

3.7 Complexity Analysis
Assuming that there exists n nodes within the bipartite attributed
network and each node is associated with m edges on average,
thus compact feature learning (Eq. 4) costs O(n) time and inter-
partitionmodeling (Eq. 2) takesO(nm) complexity. After generating
synthetic networks within each partition, we will have nm2 intra-
partition links, which means the time complexity for joint modeling
(Eq. 5) isO(nm2). For correlation training, both the construction and
search procedures for HNSW take O(n log (n)) time. Therefore, the
overall time complexity of BiANE is O(n + nm + nm2 + 2n log (n)),
which can be simplified as O(n log (n)) since 𝑚 ≪ 𝑛 for most
networks. As a result, the efficiency and scalability of our solution
have been validated.

4 EXPERIMENTS
In this section, we first describe our experimental datasets and
the competitor baselines. Then, we conduct experiments on link
prediction and node classification to demonstrate the efficacy and
efficiency of our proposed BiANE model.

4.1 Dataset Descriptions
We evaluate the performance of our proposed model on three real-
world datasets. The statistics of the datasets are summarized in
Table 2 (Sparsity is computed as 1 − #𝑙𝑖𝑛𝑘

#𝑢𝑠𝑒𝑟×#𝑖𝑡𝑒𝑚 ).

1) MovieLens Dataset1. MovieLens contains over 1,000,000 rat-
ings for public movies from anonymous users. Each user is associ-
ated with a profile with three categorical features while each movie
is classified into several categories, which we deemed as attributes
for each node. All ratings from the dataset are made on a 5-star
scale (whole-star ratings only). Following the experimental setting
of [25, 40, 48], we only regard 5-star ratings as links (or positive
feedback), and all other ratings as non-links.
2) AMiner Dataset2. AMiner [35] is a free online academic dataset,
which contains information of more than 2,000,000 papers and
1,700,000 researcher profiles. We classify the venues of papers to
eight categories as metapath2vec [5]. We sample papers with ab-
stract information from the dataset as well as relevant authors, and
we treat the abstract and authors’ research interests as the attribute
information for papers and authors respectively. Following the set-
ting of [44], we transform the attribute information into continuous
vectors by Doc2Vec [21].
3) Alibaba Dataset. Alibaba dataset is collected from user activity
logs from Taobao website, a world-leading e-commerce platform.
The dataset contains over 1,000,000 users and 21,000 items and
each user or item is associated with a profile, which includes both
categorical and numerical features.We randomly sample a subgraph
from the dataset to conduct our experiments.

Table 2: Dataset Statistics

Dataset #user #item #link #user-
attr

#item-
attr sparsity(%)

MovieLens 6,000 3,069 225,344 3 1 0.9878
AMiner 80,461 66,107 168,525 1 1 0.9999
Alibaba 38,140 7,913 59,237 18 28 0.9998

4.2 Baseline Methods
To show the superior performance of the proposed models, we
compare BiANE with state-of-the-art network embedding methods.
The details of these methods are listed as follows.
• DeepWalk [29]: DeepWalk employs random walks to get node
sequences and treat them as word corpus. A Skip-gram model
[28] is then applied on them to obtain node embeddings.

• node2vec [13]: This work defines a flexible notion to perform
biased random walks to obtain node sequences and utilizes a
Skip-gram model [28] to learn node embeddings.

• SDNE [37]: SDNE adopts autoencoders to compress the infor-
mation of the node’s local neighborhood and jointly models the
first-order proximity and the second-order proximity to encode
the network structure.

• metapath2vec++ [5]: metapath2vec++ treats node sequences
on predefined metapaths as word corpus and then utilizes a Skip-
grammodel [28] and a heterogeneous negative sampling strategy
to learn node embeddings.

• BiNE [10]: BiNE is the state-of-the-art model for representation
learning on bipartite networks. It models the proximity across
two partitions and the node proximity within the same parti-
tion. Since it doesn’t support node attributes, only the structure
proximity can be captured.

1https://grouplens.org/datasets/movielens/
2https://aminer.org/aminernetwork
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• NGCF [43]: NGCF leverages high-order connectivities in the
user-item interaction graph and adopts an embedding propaga-
tion mechanism to harvest the collaborative signal from recom-
mender systems.

• ANRL [50]: ANRL develops a neighborhood enhancement au-
toencoder to extract the attribute information and designs an
attribute-aware skip-gram model to preserve the direct and indi-
rect neighborhood proximity for embedding networks.

• AANE [15]: AANE is fabricated in a distributed manner for at-
tributed network embedding at scale. It jointly performs attribute
affinity decomposition and penalizes the embedding difference
between connected nodes.

• FeatWalk [16]: FeatWalk is a scalable framework that deals with
the heterogeneous feature embedding problem. It incorporates
multiple instance feature matrices and network structures to gen-
erate feature-based node sequences and use a Skip-gram model
[28] for node embeddings.

• STAR-GCN [47]: STAR-GCN is a recently proposed GCN ex-
tended model for recommender systems that supports node at-
tributes. It adopts a stacked and reconstructed GCN architecture
and employs a mask technique to learn node embeddings.

4.3 Implementation Details
For all baselines, we used the default implementation released by
the original authors and the parameters are tuned for optimal per-
formance. Noticing that ANRL, AANE, and FeatWalk targets for
embedding homogeneous attributed networks and have one en-
coder for node attributes only, we concatenate attributes from two
partitions by padding them with 0 to a fixed length. To compare
fairly, we set the embedding dimension as 128 for all methods.

Table 3: #neurons in each layer for attribute autoencoders

Datasets MovieLens AMiner Alibaba
Partition U 30-48-64-48-30 128-64-128 94-64-94
Partition V 18-42-64-42-18 128-64-128 73-64-73

For BiANE, we randomly initialize model parameters with a
standard Xavier normal distribution [12] and optimizing the model
with Adam [19]. To obtain high-order structure features for each
partition, we adopt metapath2vec++ [5] via two meta-path schemes
(U − V − U or V − U − V) to obtain a 128-dimension vectors
as z for each node within its partition. Thus, we set the neurons
for structure autoencoder for both partitions in all datasets as 128-
64-128. The number of attributes varies for different datasets and
we list the parameters for attribute autoencoders in Table 3. The
transforming kernels for all datasets are set as 64-16 to reduce
the representation dimension to 16 for HNSW k-NN search. The
number of HNSW 3 dynamic sampling cases k is set as 5 for all
datasets. The dimension of the final embedding vector h is set to
be 128, the same as other baseline methods for a fair comparison.

4.4 Efficacy Study
4.4.1 Link Prediction. Link prediction is a typical task for network
representation learning. The goal is to predict whether there exists a
3We use the implementation from nmslib: https://github.com/nmslib/nmslib

link between two given nodes. For each dataset, We randomly hold
out 70% links for training, 10% as the validation set, and the remain-
ing 20% links are treated as the test set. Since the validation/test set
contains only positive cases (links), we randomly sample the same
number of negative cases (non-links) for validation and test. After
training, we use logistic regression to predict the probability of a
link. Following previous works [10, 11, 45], we employ two metrics,
the area under the ROC curve (AUC-ROC) and the area under the
Precision-Recall curve (AUC-PR) to evaluate the performance.

Table 4: Link Prediction Results

Model
MovieLens AMiner Alibaba
AUC
(ROC)

AUC
(PR)

AUC
(ROC)

AUC
(PR)

AUC
(ROC)

AUC
(PR)

DeepWalk 0.6583 0.6229 0.7730 0.8378 0.8074 0.8353
node2vec 0.6597 0.6296 0.8169 0.8649 0.8605 0.8846
SDNE 0.7454 0.7393 0.5638 0.5646 0.5863 0.6267

metapath2vec++ 0.7243 0.6736 0.6935 0.7480 0.8188 0.8346
BiNE 0.7616 0.7297 0.5997 0.5812 0.6886 0.6411
NGCF 0.7547 0.7117 0.7692 0.8290 0.8574 0.8856
ANRL 0.5554 0.5449 0.8350 0.8251 0.6639 0.6429
AANE 0.7010 0.6670 0.5943 0.5924 0.7142 0.6852

FeatWalk 0.7117 0.7007 0.7589 0.8086 0.7948 0.8180
STAR-GCN 0.7621 0.7405 0.6455 0.6587 0.5924 0.5721
BiANE 0.7711 0.7409 0.8972 0.9054 0.8903 0.8997

The link prediction results are shown in Table 4. The best result
in each case is highlighted in bold. We can observe that the pro-
posed BiANE outperforms all compared baselines, and some key
observations are presented as follows:
• For homogeneous network embedding methods, DeepWalk and
node2vec perform well on Alibaba and AMiner datasets, while
they achieve relatively inferior results on MovieLens. This is
because nodes in MovieLens are more densely connected and
random walk based approaches introduce noises when the walk
reaches several hops away from the starting node. In contrast,
SDNE achieves better results on MovieLens as it focuses more on
local neighborhoods by explicitly employing the first-order and
second-order proximity. Nevertheless, SDNE under-performs
in AMiner and Alibaba datasets as it can only extract limited
information from the local neighborhood in sparse networks.

• For heterogeneous embedding methods, metapath2vec++ and
BiNE do not achieve competitive results compared to homoge-
neous embedding methods, except for the MovieLens dataset.
The reason is that for dense bipartite networks, the node type
information is more useful than the sparse networks to reduce
noise introduced by random walks. NGCF obtains competitive
results in three datasets. This is mainly attributed to its successful
modeling of high-order connectivities facilitates the preservation
of collaborative signal, which has exactly validated the rationality
of our modeling of the structure proximity within each partition.

• For attributed network embedding methods, ANRL, AANE, and
FeatWalk obtain relatively stable results. Since they do not con-
sider to differentiate the attribute information according to par-
titions, they introduce more noise into embeddings. Thus, they
demonstrate inferior results. STAR-GCN achieves high AUC
value in MovieLens while obtaining unsatisfactory results in
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Table 5: Node Classification Results

Model
AMiner Alibaba

60% 80% 60% 80%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.4427 0.2689 0.4440 0.2736 0.3800 0.1194 0.3866 0.1026
node2vec 0.4587 0.2907 0.4583 0.2898 0.3661 0.0992 0.3879 0.1001
SDNE 0.2833 0.1141 0.2842 0.1132 0.3800 0.0919 0.3765 0.0907

metapath2vec++ 0.3926 0.2183 0.3925 0.2199 0.3809 0.1122 0.3860 0.1030
BiNE 0.2648 0.1074 0.2648 0.1067 0.4011 0.0828 0.3999 0.0828
NGCF 0.3417 0.0968 0.3408 0.1094 0.4005 0.0818 0.3986 0.0850
ANRL 0.7772 0.6777 0.7778 0.6779 0.4015 0.0818 0.3992 0.0815
AANE 0.7574 0.6651 0.7550 0.6616 0.3986 0.0912 0.3967 0.0913

FeatWalk 0.3779 0.1977 0.3819 0.2009 0.3759 0.1581 0.3910 0.1554
STAR-GCN 0.2951 0.1278 0.2938 0.1276 0.4008 0.0818 0.3980 0.0814
BiANE 0.8000 0.7137 0.7976 0.7115 0.4078 0.1866 0.4245 0.1795

Table 6: Node Classification Results for Ablation Study

Model
AMiner Alibaba

60% 80% 60% 80%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BiANE-ATTR 0.7931 0.7089 0.7925 0.7069 0.4062 0.1423 0.4024 0.1327
BiANE-STRUC 0.3818 0.2047 0.3841 0.2077 0.3958 0.0888 0.3961 0.0851
BiANE-INTER 0.7961 0.7083 0.7924 0.7059 0.3977 0.1691 0.4144 0.1673

BiANE-CONCAT 0.7973 0.7063 0.7949 0.7032 0.4065 0.1798 0.4125 0.1646
BiANE-LAYER 0.7967 0.7093 0.7947 0.7051 0.3986 0.1754 0.4087 0.1701

BiANE-IS 0.7970 0.7118 0.7939 0.7075 0.4015 0.1786 0.4201 0.1755
BiANE-ISL 0.7985 0.7079 0.7966 0.7057 0.4087 0.1849 0.4131 0.1726
BiANE 0.8000 0.7137 0.7976 0.7115 0.4078 0.1866 0.4245 0.1795

Table 7: Link Prediction Results for Ablation Study

Model
MovieLens AMiner Alibaba
AUC
(ROC)

AUC
(PR)

AUC
(ROC)

AUC
(PR)

AUC
(ROC)

AUC
(PR)

BiANE-ATTR 0.6007 0.5892 0.8761 0.8692 0.7433 0.7216
BiANE-STRUC 0.7593 0.7270 0.7305 0.7817 0.8806 0.8911
BiANE-INTER 0.7423 0.7016 0.8915 0.9022 0.8881 0.8965

BiANE-CONCAT 0.7658 0.7348 0.8935 0.9033 0.8873 0.8946
BiANE-LAYER 0.7674 0.7378 0.8935 0.9032 0.8861 0.8923

BiANE-IS 0.7690 0.7393 0.8942 0.9043 0.8903 0.9000
BiANE-ISL 0.7690 0.7385 0.8957 0.9057 0.8902 0.8996
BiANE 0.7711 0.7409 0.8972 0.9054 0.8903 0.8997

AMiner and Alibaba. The main reason is that its key insights is
to aggregate information from local neighbors and is bound to
suffer from sparsity issues, which is in line with SDNE.

• BiANE achieves the best result. Since our model can capture
the high-order structure proximity and the first-order proximity
within intra-partition, our model is more robust to network spar-
sity. Besides, our model leverages the auxiliary information from

node attributes, which can bring further improvements to em-
bedding results. Hence, preserving the intra-partition proximity
for each partition can contribute more constructive information
to enhance the performance of the proposed model.

4.4.2 Node Classification. Node Classification is another widely
used method for evaluating the performance of network embedding.
To evaluate comprehensively, we randomly select {60%, 80%} nodes
to train a logistic regression classifier and then test the classifier
performance on the rest of the nodes. To measure the performance
of the classification task, we use Micro-F1 and Macro-F1 for eval-
uation. For the methods that require attribute encoding (ANRL,
AANE, FeatWalk, STAR-GCN, BiANE), we do not involve ground-
truth labels of the classification tasks. We present the classification
results of item-purchase-level for Alibaba dataset, and paper-venue
class for AMiner dataset. Since MovieLens dataset only contains a
single label for each node, we do not conduct experiments on the
MovieLens dataset due to insufficient attribute information.

The results are shown in Table 5 and the best results are marked
in bold. STAR-GCN and SDNE again perform badly on these datasets
for they fail to tackle the sparsity problem, even though STAR-GCN
is able to aggregate the attribute information. For other methods
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Figure 4: Efficiency of dynamic sampling strategy w.r.t network volume. We do not report the running time for Importance
Sampling at the scale of 107 nodes for it could not complete a single round of sampling within a week.

that can handle associated network attributes, we can observe that
they present competitive results for using the attribute informa-
tion. FeatWalk’s performance on AMiner dataset is an exception.
The reason is that the attribute information for AMiner dataset is
numerical (note that we adopt Doc2Vec [21] to obtain features for
AMiner dataset), FeatWalk can not generate good feature-based
node sequences. BiANE again achieves the best results. This is
mainly because BiANE successfully leverages the attribute infor-
mation and differentiates them according to different partitions. In
addition, the latent correlation training within each partition can
enhance the integration of the attribute information and the struc-
ture information, which also accounts for the superior performance
of our proposed model.

4.5 Ablation Study
We conduct an ablation study to evaluate each part of our model.
We configure BiANE to the following settings:

• BiANE-ATTR: We utilize the attribute information from the
network only and do not explicitly consider the structure infor-
mation in the intra-partition proximity modeling,

• BiANE-STRUC: We model the intra-partition proximity with-
out incorporating the attribute information.

• BiANE-INTER: We only perform the compact feature learning
and the inter-partition proximity modeling of the network.

• BiANE-CONCAT: We do not perform latent correlation training
and combine the attribute encoding with structure encoding
through direct concatenation.

• BiANE-LAYER: We do not perform latent correlation training
and integrate the attribute encoding and structure encoding by
feeding them through neural layers.

• BiANE-IS: We directly train the attribute-structure correlation
on the attribute encoding space and the structure encoding space.
The sampling strategy is importance sampling with a sampling
probability distribution exp (�̃� (𝑚,𝑛))∑

𝑛′ exp (�̃� (𝑚,𝑛′)) , and the number of pos-
itive sampling cases k is also set as 5.

• BiANE-ISL: We perform latent correlation training on the latent
space from the output of transforming kernels. The sampling
strategy is the same as BiANE-IS.

We conduct experiments on link prediction and node classification,
and the results are presented in Table 7 and 6. The best results
are highlighted in bold and second best results are underlined. We
can observe that incorporating both the attribute information and
the structure information can enhance the representation learning

results. BiANE-INTER shows inferior performance on both tasks
compared to the ones with the intra-partition proximity modeling.
BiAN-CONCAT, BiANE-LAYER combine attribute encoding and
structure encoding during the intra-partition proximity modeling,
they show better performance compared to the former configured
models. BiANE-IS, BiANE-ISL achieve competitive results among all
configuredmodels, proving the rationality of our attribute-structure
correlation modeling and our intuition of dynamic sampling strat-
egy. Specifically, BiANE-ISL is generally better than BiANE-IS, con-
firming that the attribute-structure correlation training should be
better performed on a separate latent space, so as to circumvent
the potential disturbance and instability problems introduced by
modeling correlation directly on the encoding space.

Generally speaking, BiANE achieves the best results on most
experiments among all configured models, which demonstrates
that the HNSW-based dynamic positive sampling strategy can also
reach better or similar improvements on network embeddings as
the importance sampling strategy. Compared to BiANE-ISL, our
proposed dynamic sampling strategy is more robust and noise-
intolerant. Thus, the superiority of BiANE has been proved.

4.6 Efficiency Study
The dynamic sampling strategy is heavily affected by the size of
the network, so we synthesize networks of different scales to test
the efficiency of the sampling strategy. We generate random graphs
with nodes number ranging from 103 to 107 and perform our HNSW-
based dynamic sampling strategy to evaluate the efficiency. We
also present the performance of the importance sampling strategy
with a sampling probability exp (�̃� (𝑚,𝑛))∑

𝑛′ exp (�̃� (𝑚,𝑛′)) as the baseline. The
embedding dimension is set as [16, 64, 128, 300] for experiments
and the number of sampling cases k is set as 10. All experiments are
conducted on a single Linux server with 40 Intel(R) Xeon(R) CPU
(Gold 6138 CPU @ 2.00GHz) and 512G memory. To fairly evaluate
the efficiency, either strategy is tested on a single core with a single
thread during the running process. We report the running time
(both IO and computation time) as the metric for evaluation and
results are shown in Figure 4. We can observe that HNSW-based
sampling is more efficient than importance sampling. Importance
sampling even could not complete a single round of sampling with
a network of 107 nodes within a week. Specifically, the smaller the
dimension is, the more efficient the strategy is, which proves that
the efficiency of our proposed approach.
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5 CONCLUSION
In this work, we present BiANE, a novel model that targets to tackle
the challenges of bipartite attributed network embedding. BiANE
augments intra-partition links for bipartite attributed networks
and employs autoencoders to aggregate the attribute and structure
information within each partition and perform latent correlation
training to preserve their highly non-linear relationship in a new
latent space. Moreover, we adopt an efficient dynamic positive sam-
pling strategy to ameliorate the training process with competitive
complexity. Comprehensive experiments are conducted on several
real-world networks and the results demonstrate that BiANE can
achieve significant gains against state-of-the-art methods.
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