
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2020

Trajectory similarity learning with auxiliary supervision and Trajectory similarity learning with auxiliary supervision and

optimal matching optimal matching

Hanyuan ZHANG

Xingyu ZHANG

Qize JIANG

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Zhenbang SUN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Citation Citation
ZHANG, Hanyuan; ZHANG, Xingyu; JIANG, Qize; ZHENG, Baihua; SUN, Zhenbang; SUN, Weiwei; and WANG,
Changhu. Trajectory similarity learning with auxiliary supervision and optimal matching. (2020).
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama,
Japan, 2020 July 11-17. 3209-3215.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5276

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5276&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Hanyuan ZHANG, Xingyu ZHANG, Qize JIANG, Baihua ZHENG, Zhenbang SUN, Weiwei SUN, and Changhu
WANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5276

https://ink.library.smu.edu.sg/sis_research/5276

Trajectory Similarity Learning with Auxiliary Supervision and Optimal Matching
Hanyuan Zhang1,2,3 , Xingyu Zhang1,2,3 , Qize Jiang1,2,3 , Baihua Zheng4 , Zhenbang

Sun5 , Weiwei Sun1,2,3 , Changhu Wang5

1School of Computer Science, Fudan University
2Shanghai Key Laboratory of Data Science, Fudan University

3Shanghai Institute of Intelligent Electronics & Systems
4Singapore Management University
5ByteDance AI Lab, Beijing, China

{hanyuanzhang16,zhangxinyu,qzjiang18,wwsun}@fudan.edu.cn
bhzheng@smu.edu.sg, {sunzhenbang,wangchanghu}@bytedance.com

Abstract

Trajectory similarity computation is a core prob-
lem in the field of trajectory data queries. How-
ever, the high time complexity of calculating the
trajectory similarity has always been a bottleneck
in real-world applications. Learning-based meth-
ods can map trajectories into a uniform embedding
space to calculate the similarity of two trajectories
with embeddings in constant time. In this paper, we
propose a novel trajectory representation learning
framework Traj2SimVec that performs scalable and
robust trajectory similarity computation. We use a
simple and fast trajectory simplification and index-
ing approach to obtain triplet training samples ef-
ficiently. We make the framework more robust via
taking full use of the sub-trajectory similarity infor-
mation as auxiliary supervision. Furthermore, the
framework supports the point matching query by
modeling the optimal matching relationship of tra-
jectory points under different distance metrics. The
comprehensive experiments on real-world datasets
demonstrate that our model substantially outper-
forms all existing approaches.

1 Introduction
Evaluating the similarity between trajectories is a common
task required by a wide range of applications, such as trajec-
tory clustering [Lee et al., 2007], anomaly trajectory detec-
tion [Meng et al., 2019; Wu et al., 2017], and road completion
of maps [Chao et al., 2019; Shan et al., 2015]. Many trajec-
tory distance metrics have been proposed to measure the sim-
ilarity between two trajectories, including the Dynamic Time
Warping (DTW) [Müller, 2007], the Fréchet distance [Eiter
and Mannila, 1994], and the Hausdorff distance [Belogay et
al., 1997]. These metrics require quadratic computational
complexity O(l2), where l is the maximum length of the tra-
jectories. It is time-consuming when faced with long trajec-
tories, which limits the use of these distance metrics in many
real-life scenarios.

Existing trajectory similarity evaluation methods can be
clustered into two categories, the classical non-learning-
based methods vs. learning-based methods. Those in the
former category either reduce the top-k similarity search by
designing an index and pruning strategy for the trajectory
database [Chen et al., 2010; Shang et al., 2017], or rely
on an approximate solution [Driemel and Silvestri, 2017;
Agarwal et al., 2015]. However, they are designed by hand-
crafted heuristic approaches for one or two specific distances
and hence are difficult to be generalized to other distance con-
ditions. Methods in the latter category map trajectories into a
d-dimensional uniform embedding representation with learn-
able functions. The distance between two l-length trajecto-
ries is converted to the distance between two d-dimensional
vectors. In other words, it reduces the complexity of trajec-
tory similarity evaluation from O(l2) to O(d). The improve-
ment is considered significant as d << l2. In addition, the
representation vectors of trajectories can be used as a pre-
trained embedding that could be an input of a learning-based
model for downstream applications like trajectory classifi-
cation. Currently, there are many trajectory representation
learning methods for similarity computation [Li et al., 2018;
Zhang et al., 2019; Chow et al., 2018; Yao et al., 2018;
Wang et al., 2019]. Among them, [Yao et al., 2019] is the
state-of-the-art method, which uses seed-guided neural met-
ric learning method to compute trajectory similarity.

However, existing learning-based methods still suffer from
some shortcomings. First, supervised models like [Yao et al.,
2019] need to calculate the distance for all trajectory pairs to
construct training samples. The time complexity of this pro-
cess isO(n2l2), where n is the training set size. This cost lim-
its the training set size of the model. In order to improve its
scalability, we construct triplet training samples with a sim-
ple and fast trajectory simplification and indexing method,
which can efficiently obtain approximate neighboring trajec-
tories from massive trajectory dataset. Second, existing meth-
ods utilize the distance between two complete trajectories to
evaluate their similarity but ignore the rich information car-
ried by sub-trajectories and the mutual constraint relationship
between them. We propose a novel sub-trajectory-based loss
function to supervise distance between sub-trajectory pairs,

which makes our model more robust and helps to improve the
performance of similarity computation. Third, a trajectory
could be considered as a set of points, and distance metrics
like Fréchet, DTW and Hausdorff essentially find the optimal
matching between two trajectory point sets under different
rules. In some scenarios, we care about these point matching
relationships rather than distance values. Consequently, it is
desirable to support point-matching query that locates, for a
given point, its optimal matching point(s) from another tra-
jectory. Existing methods ignore the matching relationship,
so they can not support the point-matching query. We pro-
pose a point matching loss to learn the optimal matching re-
lationships between points.

In brief, we make four contributions in this paper:
• We propose a simple yet efficient approach to locate ap-

proximate neighbors for any trajectory in a massive tra-
jectory dataset, with the help of trajectory simplification
and a tree structure index. This approach allows us to ex-
pand the size of the training set with a much lower cost
and hence effectively addresses the scalability issue.
• We design a sub-trajectory distance loss function that

fully leverages the distances between sub-trajectories
obtained from dynamic programming for auxiliary su-
pervision. It improves both the robustness of the model
and its performance in similarity computation.
• We propose a point matching loss function to learn the

optimal matching relationship between points. It allows
our model to support the optimal point matching query
under different distance metrics.
• We conduct comprehensive experiments on two real-

world datasets to evaluate our model. The results
demonstrate the advantage of our model over the state-
of-the-art baselines.

2 Related Work
Existing accelerated trajectory similarity computation meth-
ods can be broadly divided into two categories, non-learning-
based methods and learning-based methods.

Non-learning-based methods can be further clustered into
two categories, according to the type of queries supported.
The first category supports top-k nearest neighbor search.
They use tree-based index structures like k-d tree, ball-tree or
R-tree to maintain trajectory data hierarchically and speed up
the search processing [Chen et al., 2010; Shang et al., 2017].
For example, [Chen et al., 2010; Gowanlock and Casanova,
2015] performed pruning optimization techniques based on
whether the sub-trajectories and point segments are within
a bounding box, respectively. However, these methods only
support top-k similarity search and can not compute the sim-
ilarity between any two trajectories. The second category
speeds up the computation by designing heuristic algorithms
for spatial and temporal characteristics. [Driemel and Sil-
vestri, 2017] designed a set of hash functions to speed up the
computation of Fréchet and Hausdorff distance. [Chen et al.,
2005] proposed a method of pruning by grid histograms to
approximate the similarity. [Agarwal et al., 2015] proposed a
fast approximate algorithm for DTW distance. These meth-
ods mainly rely on hand-crafted heuristic rules for specific

distances and hence there are room for further improvement.
Learning-based methods mainly learn trajectory embed-

ding vectors to represent the similarity relationship through
learnable functions. [Li et al., 2018; Zhang et al., 2019;
Yao et al., 2018; Wang et al., 2019] all used similar encoder-
decoder models to obtain trajectory vector representations
and use different spatio-temporal characteristics as features.
[Chow et al., 2018] used the actor-critic reinforcement learn-
ing method to model trajectory distance. [Yao et al., 2019]
proposed a neural metric learning approach to compute the
similarity with pair-wise distance as guidance. These meth-
ods neither fully mine the distance information between sub-
trajectories nor explicitly restrict the matching relationship
between trajectory points under different distance metrics.

3 Preliminary
Definition. A trajectory is a sequence of locations with times-
tamps. For any two trajectories X and Y , S(X,Y) measures
the similarity between them. Here, S can be the distance met-
rics like Fréchet distance F , DTWD, and Hausdorff distance
H , etc. Our research problem is to learn the approximate sim-
ilarity function G(X,Y) through the neural network learning
functions, such that G is close to S and can be calculated in
constant timeO(d), where d is the dimension of the trajectory
representation vector. Besides, we will also use neural net-
work G to learn the optimal matching points in Y for points
in X under different distance metrics.
Distance metrics. In this paper, we use Fréchet distance F ,
Hausdorff distanceH , and DTWD as representative distance
metrics to measure the similarity of a given trajectory pair
〈X,Y 〉. They are computed differently, representing the simi-
larity measurement of trajectories from different perspectives.

In discrete form, they can be calculated by dynamic pro-
gramming [Bellman and others, 1954] or enumeration. Mi,j

(M ∈ {F,D,H}) refers to the corresponding distance be-
tween two sub-trajectories X(1:i) and Y(1:j). Notation X(1:i)

refers to a sub-trajectory formed by the first i points of X .
The state transition equations are as follows,

Fi,j = max(min(Fi−1,j , Fi−1,j−1, Fi,j−1), dpi,qj) (1)

Di,j = min(Di−1,j , Di−1,j−1, Di,j−1) + d(pi, qj) (2)

Hi,j = max(maxt∈{1,...,i}minh∈{1,...,j} d(pt, qh), (3)

maxt∈{1,...,j}minh∈{1,...,i} d(qt, ph))

4 Methodology
We propose a deep representation learning model
Traj2SimVec as a solution. Our model consists of three
parts, training data construction, trajectory encoder, and
two types of supervised loss functions. First, training data
construction generates triplet training samples. Second,
trajectory encoder takes samples generated in previous step
as inputs and map them to similarity space and matching
space respectively to get trajectory representation vectors.
Third, two types of supervised loss functions guide the
learning in two different spaces.

… …

Far Input

Anchor Input

Near Input

… …

… …

Anchor-Far Distance

Matrix 𝐸𝑀

Anchor-Near

Distance Matrix 𝐷𝑀

𝐷12

Calculate

Distance

by DP
𝐷23 𝐷44

𝐸42𝐸33 𝐸55

Sub-traj

Distance

Supervision

Trajectory Encoder

Figure 1: An example of sub-trajectory distance loss.

4.1 Training Sample Construction
Our model requires both the distance and matching relation-
ship of trajectory pairs to supervise the learning. As reported
by existing works [Faghri et al., 2017], the choice of sam-
ple pairs has an essential impact on the final performance of
learning models. [Yao et al., 2019] enumerates the distances
between any pair of trajectories to find the top-k most similar
results as samples. However, it suffers from high computation
cost as there are in total O(n2) trajectory pairs, making it im-
practical for massive datasets. For example, given a middle-
sized trajectory set T with n = 100, 000 and l = 100, a total
ofO(1014) trajectory point distance calculations are required.

We adopt a different approach by taking in similar trajec-
tory pairs (but not necessarily the most similar pairs) as in-
put to reduce the cost of forming training samples. We use
a simple yet effective trajectory simplification and an index
structure to obtain similar trajectory pairs as model samples
quickly. Trajectory simplification [Chen et al., 2009] is a
compression method that reduces the size of the trajectory
but retains the subject structure of the trajectory. Here, we
divide the trajectory evenly into k segments and average the
trajectory points of each segment as the representative point,
to obtain a new trajectory of uniform length k. Given a trajec-
tory T = {p1, p2, · · · , pl} of l points, its simplified trajectory
T ′ is

T ′ = { 1
c1

∑c1

i=1
pi,

1

c2

∑c1+c2

i=c1+1
pi, · · · ,

1

ck

∑l

i=1+l−ck
pi}

Here, pi = (lati, loni) represents a point with latitude and
longitude and

∑k
i=1 ci = l with ci ∈ [b lk c, b

l
k c + 1]. A

trajectory is then represented as a 2k-dimensional vector, in
the form of (T ′.lat1, T ′.lon1, · · · , T ′.latk, T ′.lonk).

Given a trajectory set T , we simplify all the trajectories in
T and index them using a 2k-dimensional k-d tree [Bentley,
1975]. Note, each point in the k-d tree corresponds to the
simplified trajectory of a trajectory in T . When we construct
training samples, we randomly sample a point from the k-d
tree as an anchor input Ia, and locate its k nearest neighbors
with the help of k-d tree, which incurs a time complexity of
O(log n). Among those k returned neighbors, we randomly
select one as near input Ine. We then randomly sample an-
other point in the k-d tree as far input If to complete the con-
struction of one triplet training sample, which is in the form
of 〈Ia, Ine, If 〉.

4.2 Sub-trajectory Distance Loss
In order to learn the trajectory representation, we need the
trajectory encoder function f : traj −→ vector to encode
a trajectory to a vector. As shown in Figure 1, the trajec-
tory encoder is a RNN-type model (e.g., GRU [Chung et al.,
2014], LSTM [Gers et al., 1999] or other network structures).
As introduced in Section 3, we use dynamic programming or
enumeration to compute the distance between trajectories X
and Y and get a distance matrix DM . Each element Dij in
DM represents the distance between sub-trajectories X(1:i)

and Y(1:j). Existing methods [Yao et al., 2019] only use the
last element D|X||Y | in DM as the supervision signal, but ig-
nore the other crucial sub-trajectory distance constraints car-
ried by other elements in DM . To leverage such rich and ad-
ditional supervision information, we design a sub-trajectory
distance loss mechanism for auxiliary supervision.

First, we feed the original trajectories Ta, Tne, and Tf in
T corresponding to Ia, Ine and If in a training sample into
the RNN-based trajectory encoder to obtain the correspond-
ing hidden state vectors Ha = {ha1 , · · · , ha|Ta|}, H

ne, and
Hf . Then, we map the trajectories into a specific space dedi-
cated to computing similarity through a similarity space map-
ping unit fhid→sim that is in residual network structure. For
an intermediate hidden state vector hi, fhid→sim calculates
the vector vi in the similarity space as follows.

C = σ(Wi · hi + bi) ∗ tanh(Wc · hi + bc) (4)

ĥi = σ(Wo · hi + bo) ∗ tanh(C) (5)

vi = hi + ĥi (6)

We can get the vector representations V a = {va1 , · · · ,
va|Ta|} of trajectories Ta in the similarity space. V ne and V f

can be obtained in the same way.
We can obtain the distance matrix DM for the trajectory

pair 〈Ta, Tne〉 and the distance matrix EM for the trajec-
tory pair 〈Ta, Tf 〉, based on the distance metrics calculation
introduced in Section 3. Each element Dij ∈ DM repre-
sents the real distance between the sub-trajectories Ta(1:i) and
Tne(1:j). The similarity between them can be modeled by the
L2 distance ‖vai − vnej ‖2. We randomly sample r elements
{Di1,j1 , Di2,j2 , · · · , Dir,jr} from DM as supervised signals
to define the sub-trajectory loss function Lsim

near between Ta
and Tne. Here D′it,jt = exp(−α · Dit,jt) ∈ [0, 1] is the
normalized similarity of Dit,jt , and α is a tunable parameter
controlling the similarity value. We can get the sub-trajectory
loss Lsim

far between Ta and Tf in a similar way.

Lsim
near =

1

r

∑r

t=1
D′it,jt(D

′
it,jt − exp(−‖vait − v

ne
jt ‖2))

2

In addition to the above loss function, we also add distance
supervision to the entire trajectory pairs. In summary, Eq. (7)
defines the sub-trajectory distance loss function, where n1 =
|Ta|, n2 = |Tne|, and n3 = |Tf |.

Lsim = D′n1,n2
(D′n1,n2

− exp(−‖van1
− vnen2

‖2))2

+ E′n1,n3
(E′n1,n3

− exp(−‖van1
− vfn3

‖2))2

+ Lsim
near + Lsim

far

(7)

Matching Space

Mapping Unit

… …

… …

… …

… …

Anchor

Trajectory

Contrastive

Trajectory
Point Matching Relationship

under Fréchet/DTW Distance

Match Pair

𝑑𝑖𝑠𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ 𝑑𝑖𝑠𝑚𝑎𝑡𝑐ℎ
Triplet Loss

Trajectory Encoder

Optimal Path under DP

Figure 2: The example of trajectory point matching loss.

Loss function defined in Eq. (7) allows the model to learn
not only the similarity between two complete trajectories, but
also the similarity between different sub-trajectories. Conse-
quently, it is equipped with the intermediate distance infor-
mation of trajectory pairs. As an auxiliary supervision loss
function, it has the following two advantages. First, the inter-
mediate distance information, to some extent, provides more
trajectory pair samples and makes the model more robust.
Second, the intermediate supervisory information can effec-
tively reduce the risk of vanishing gradient of long sequences.

4.3 Trajectory Point Matching Loss

As mentioned before, the distance between two trajectories
is essentially determined by the matching criteria defined by
different metrics. Take Fréchet as an example. Assume an
optimal path between Ta and Tne is inferred by Eq. (1), de-
noted as 〈(1, 1), (2, 2), (2, 3), · · · , (|Ta|, |Tne|)〉. This is to
say, based on the optimal point matching defined by Fréchet
distance, the 1st point in Ta matches the 1st point in Tne,
the 2nd point in Ta matches the 2nd and the 3rd points in
Tne, and so on. In some applications, we care about this opti-
mal point matching relationship but not the real distance. For
example, an interesting application of Fréchet distance is to
indicate the shortest length of dog leash required for move-
ment between a person and a dog. The optimal matching can
tell us the corresponding positions where the dog owner took
the leash when the dog was at a certain position like a gar-
den under the Fréchet distance. The optimal matching rela-
tionship under some distance metrics (e.g., Fréchet distance
and DTW) is very complicated, which requires an enumer-
ation (e.g., dynamic programming) to get the optimal path.
In order to support a faster retrieval of the optimal matching
points, we propose the trajectory point matching loss, which
uses the matching space mapping unit to enable the model to
learn the matching relationship.

First, we construct the matching space mapping unit
fhid→mat. Since the optimal matching is a global solution
that only can be obtained after computing the entire trajec-
tory similarity, the hidden state vector hl needs to represent
the information of the entire trajectory T = {p1, p2, ..., pl} to
help the intermediate hidden state ht to be effectively mapped
into a matching space. For an intermediate hidden state vec-
tor ht, fhid→mat uses an LSTM cell C to combine ht and hl
in the matching space. We can get the vector representations

Dataset Porto Shanghai
Trajectories (n) 999,082 1,278,550
Trajectory points (n× l) 45.6×106 121.7×106

Trajectory sampling interval 15.01 sec 9.39 sec
Trajectory minimum length 10 10
Trajectory maximum length 3836 5549
Trajectory length mean 45.67 95.19

Table 1: The description and statistics of the datasets.

M of a trajectory T in the matching space by fhid→mat.

M = {m1,m2, · · · ,ml} = fhid→mat(H)

= {C1([h1, hl]),C2([h2, hl]), · · · ,Cl([hl, hl])}

As shown in Figure 2, for a point pi ∈ Ta and a point
qj ∈ Tne, we learn whether they match each other based on
their distance in the matching space by triplet loss [Schroff
et al., 2015]. We use random sampling to sample r′ triples
{〈pi1 , qj1 , ql1〉, · · · , 〈pir′ , qjr′ , qlr′ 〉}, where 〈pit , qjt〉s refer
to the optimal matching pairs in Ta and Tne and 〈pit , qlt〉s
are the mismatching pairs. Eq. (8) defines the trajectory point
matching loss between Ta and Tne, where ξ is the margin
value and ma

it
is the matching space vector of it-th point

pit in Ta. We can get the trajectory point matching loss
Lmatch
far between Ta and Tf in the same manner. There-

after, we define the trajectory point matching loss Lmatch as
Lmatch
far + Lmatch

near .

Lmatch
near =

1

r′

∑r′

t=1
min

(
0, ξ − exp(−‖ma

it −m
ne
jt ‖2)+

exp(−‖ma
it −m

ne
lt ‖2)

)
(8)

5 Experiments
We conduct comprehensive experiments to compare the per-
formance of our model with existing competitors.
Datasets. We use two real trajectory datasets in our ex-
perimental study, namely Porto that was extracted from
open source dataset available at https://kaggle.com/c/pkdd-
15-predict-taxi-service-trajectory-i and Shanghai. Table 1 re-
ports the description and statistics of the two datasets.
Hyperparameters. We split each dataset into training set,
validation set and test set in the ratio 3:1:6. We set the length
of simplified trajectory T ′ to 5, and the number of elements
sampled from distance matrix D and E to 10 (i.e., k = 5,
r = 10). The tunable parameter α is the reciprocal of the
maximum distance of training sample distances for Fréchet
and Hausdorff distance, and the mean plus three times the
variance of training sample distances for DTW. The margin
value ξ of point matching loss is 0.01. The sampled triple
number of point matching loss is 10 (i.e., r′ = 10). The
trajectory representation vector has a dimensionality of 128
(i.e., d = 128). We use the LSTM model as the RNN encoder
and matching space mapping unit. The hidden unit is 128.
We train the model using Adam algorithm [Kingma and Ba,
2014] with an initial learning rate at 0.001. All the weights
are uniformly initialized to (− 1√

128
, 1√

128
).

Metrics. Following the state-of-the-art approach [Yao et al.,
2019], we adopt HR@10, HR@50 and R10@50 as major

performance metrics. The top-k hitting ratio (HR@k) exam-
ines the overlap (in terms of percentage) between the returned
top-k results and the ground truth; top-t recall for the top-k
ground truth (Rk@t) evaluates the top-k ground truth recov-
ered by the top-t produced by different methods.
Competitors. We implement histogram [Chen et al., 2005],
traj2vec [Yao et al., 2018], t2vec [Li et al., 2018], NT-No-
SAM [Yao et al., 2019], and NEUTRAJ [Yao et al., 2019]
as representatives. histogram is a non-learning based em-
bedding method, which splits a region into grids and ap-
proximates the similarity by counting the number of tra-
jectory points in different grids. traj2vec and t2vec are
both auto-encoder models, but t2vec uses additional em-
bedding and attention techniques and processes the data
noise. NEUTRAJ is the state-of-the-art trajectory similar-
ity learning method with its source code openly available at
https://github.com/yaodi833/NeuTraj. It is a metric learning
approach using seed-guided neural network to compute simi-
larity. NT-No-SAM is a weaker version of NEUTRAJ, which
replaces the spatial attention module with standard LSTM.

5.1 Overall Evaluation
The performance of similarity search. We evaluate the per-
formance of similarity computation approaches for the top-
k similarity search task. We randomly selected 10,000 tra-
jectories from the test set, and try to find top-k similar tra-
jectories from the entire test set (600k+ and 700k+ trajec-
tories in Porto and Shanghai) for each of these trajectories.
Since NEUTRAJ and NT-No-SAM need to calculate the dis-
tance matrix for all trajectory pairs in the training set to con-
struct training samples, they cannot handle large datasets. In-
stead, we randomly select 10,000 trajectories from the train-
ing set to form their training samples. As reported in Ta-
ble 2, our model Traj2SimVec outperforms all the competi-
tors substantially. Compared with state-of-the-art algorithm
(NEUTRAJ), Traj2SimVec performs much better. For exam-
ple, it achieves at least 25%+ gain in terms of HR@10 on
both datasets. Although Traj2SimVec and NEUTRAJ both
use metric learning methods to learn the similarity of tra-
jectories, Traj2SimVec performs better since it is scalable to
large-scale datasets and it uses a sub-trajectory distance loss
for extra auxiliary supervision. In addition, we report the
testing time, preprocessing and training time required by dif-
ferent methods in Figure 3. We compare the non-vectorized
method to directly query the similarity of original trajecto-
ries with learning models. The results show that the testing
time for learning models is significantly shorter than non-
vectorized method. We could also observe that NEUTRAJ
and Nt-No-SAM require significantly longer preprocessing
time than other methods, as they have to calculate the tra-
jectory distance matrix for training.
The performance of point matching. We evaluate the per-
formance of point matching approaches for the top-k match-
ing task. We implement two baselines, namely Nearest and
Order. Nearest finds the nearest neighbor in the correspond-
ing trajectory as a matching point for every query point.
Order uses the relative position of each point in the entire
trajectory as a distance metrics. Given a trajectory T1 =
{p1, · · · , p5}, the relative position of point p3 ∈ T1 is 3/5.

1 0 k 2 5 0 k 4 M 1 0 0 M
1 0 0 m

1
1 0

1 0 0
1 k

1 0 k
1 0 0 k

1 M

1 0 k 2 5 0 k 4 M 1 0 0 M
 0 . 1

Tim
e (

s)

N u m b e r o f q u e r i e s 1 0 0 5 0 0 2 k 1 0 k1
1 0

1 0 0
1 k

1 0 k
1 0 0 k

 P r e p r o c e s s i n g
 T r a i n i n g / T e s t i n g
 t 2 v e c
 N E U T R A J
 N T - N o - S A M
 T r a j 2 S i m V e c
 t r a j 2 v e c
 h i s t o g r a m
 n o n - v e c t o r i z e d

1 0 0 5 0 0 2 k 1 0 kN u m b e r o f t r a j e c t o r i e s

Figure 3: The testing time (left), preprocessing and training time
(right) of different methods on Fréchet distance under Porto dataset.

0 2 4 6 8 10 12
Fréchet distance (km)

0.00%

0.05%

0.10%

0.15%

R
at

io

Random
Approx

 H R 1 0 H R 5 0 H R 1 0 H R 5 0 H R 1 0 H R 5 0
0 . 0
0 . 2
0 . 4
0 . 6

H R 1 0 H R 5 0 H R 1 0 H R 5 0 H R 1 0 H R 5 0F r é c h e t D T W H a u s d o r f f

S a m p l e s : R a n d o m A p p r o x i m a t e

Figure 4: Distance distribution of training samples and peformance
of Traj2SimVec under different sampling approaches.

Consequently, its nearest point in another trajectory T2 is the
one located at the same relative position. The point optimal
matching relationship in Hausdorff distance finds the point in
another trajectory that is closest to it, which is equivalent to
the baseline Nearest. However, the point optimal matching
relationship under the distance metrics of DTW and Fréchet
is much more complicated. We use M@1, M@5 and M@10
as performance metrics. M@k examines the overlap percent-
age of the returned top-k nearest points and the ground truth
optimal matching points. As shown in Table 3, Traj2SimVec
consistently outperforms both baseline methods with notice-
able advantage. It shows that the distance between points and
the order of points in the trajectory cannot characterize the re-
lationship of point optimal matching well. Our model learns
more complex matching rules than baselines.

5.2 Performance of Traj2SimVec
The effectiveness of approximate sampling. Figure 4 re-
ports the distribution of distances of trajectory pairs in train-
ing set under two different sampling approaches. Random
sampling (RS) randomly selects a trajectory from the train-
ing set to form a sample pair with anchor trajectory Ta. Ap-
proximate nearest sampling (AS) uses trajectory simplifica-
tion and indexing to find a trajectory close to Ta to form a
trajectory pair with Ta. As reported, samples formed by AS
have much shorter distances, as compared with those gener-
ated by RS. This demonstrates the superior performance of
the training sample construction component of Traj2SimVec.
We also report the performance of our model trained by dif-
ferent training samples under Porto dataset in Figure 4. As
observed, samples generated by AS approach are more pow-
erful as they help the learning model to achieve a much better
performance. That is to say, our model can construct approxi-
mate near and far samples to effectively train on a large-scale
dataset, which enhances the scalability of our model.
The effectiveness of sub-trajectory distance loss. In or-
der to demonstrate the effectiveness of the proposed sub-
trajectory distance loss with auxiliary supervision, we com-

Fréchet DTW Hausdorff
Dataset Method HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

histogram 0.0111 0.0255 0.0336 0.0149 0.0331 0.0420 0.0115 0.0269 0.0359
traj2vec 0.1039 0.1457 0.3003 0.1336 0.1789 0.3729 0.0931 0.1236 0.2598

Porto t2vec 0.2401 0.2832 0.4655 0.2476 0.2922 0.4819 0.2219 0.2543 0.4313
NT-No-SAM 0.4727 0.5909 0.8021 0.3931 0.4979 0.7329 0.4024 0.5004 0.7512
NEUTRAJ 0.4751 0.5928 0.8071 0.4126 0.5223 0.7525 0.3992 0.5029 0.7484

Traj2SimVec 0.5919 0.7017 0.9011 0.5332 0.6669 0.8988 0.5270 0.6251 0.8694
histogram 0.0212 0.0393 0.0547 0.0270 0.0488 0.0666 0.0238 0.0463 0.0657
traj2vec 0.0936 0.1317 0.2888 0.1047 0.1413 0.3199 0.0667 0.0966 0.2229

Shanghai t2vec 0.2735 0.2921 0.5021 0.2690 0.2856 0.4849 0.2064 0.2202 0.4234
NT-No-SAM 0.4663 0.5894 0.7628 0.2484 0.3393 0.5674 0.3260 0.3999 0.7077
NEUTRAJ 0.4774 0.5981 0.7944 0.2597 0.3497 0.5857 0.3272 0.4032 0.7092

Traj2SimVec 0.6136 0.6910 0.8902 0.3626 0.4829 0.7376 0.4805 0.5625 0.8867

Table 2: The performance of similarity computation approaches on Fréchet, Hausdorff and DTW distances under Porto and Shanghai dataset.

Dataset Porto (Fréchet) Porto (DTW) Shanghai (Fréchet) Shanghai (DTW)
Method M@1 M@5 M@10 M@1 M@5 M@10 M@1 M@5 M@10 M@1 M@5 M@10
Nearest 0.1484 0.2995 0.4361 0.1931 0.3318 0.4482 0.2125 0.2991 0.3794 0.2265 0.3047 0.3729
Order 0.1087 0.2979 0.4688 0.1470 0.4147 0.6127 0.0563 0.1548 0.2585 0.0723 0.2066 0.3368

Traj2SimVec 0.3353 0.6649 0.8010 0.3338 0.7373 0.8780 0.3153 0.5602 0.6872 0.3049 0.5442 0.6799

Table 3: The performance of point optimal matching approaches on Fréchet and DTW distances under Porto and Shanghai dataset.

H R 1 0 H R 5 0 H R 1 0 H R 5 0 H R 1 0 H R 5 00 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 7

 N o A u x i l i a r y A u x i l i a r y
 N o A u x i l i a r y - 0 . 1 G A u x i l i a r y - 0 . 1
 N o A u x i l i a r y G a p A u x i l i a r y G a p

F r é c h e t D T W H a u s d o r f f 1 6 3 2 6 4 1 2 8 2 5 6 0
4 0 0
8 0 0
1 2 0 0
1 6 0 0

D i m e n s i o n

 T i m e

 F r é c h e t D T W H a u s d o r f f
H R @ 1 0 1 0
H R @ 5 0 1 0
R 1 0 @ 5 0 H

Tim
e (

s)

0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Figure 5: Left: The performance of Traj2SimVec with and with-
out sub-trajectory distance loss as auxiliary supervision. Right: The
performance under different vector dimensions.

pare it with the model without the auxiliary supervision. As
shown in Figure 5, the model using sub-trajectory distance
loss as auxiliary supervision performs better than the model
without sub-trajectory distance loss. We also keep only the
first 10% sub-trajectory for each trajectory in the test set,
and conduct experiments on the sub-trajectories to test the
robustness of the model, denoted as Auxiliary−0.1 and No
Auxiliary−0.1 in the left subfigure of Figure 5. We could
observe from the result that the gap of decline in the model
with auxiliary supervision is significantly smaller than the
model without auxiliary supervision. This proves that our
sub-trajectory distance loss not only improves the overall per-
formance , but also effectively supervises the similarity rela-
tionship of sub-trajectories, making the model more robust.
The impact of the dimensions of representation vector. In
all the above experiments, a trajectory is represented by a
128-dimensional vector. In order to evaluate the impact of
the dimensions d of the vector, we evaluate the performance
Traj2SimVec under different settings (i.e., 16, 32, 64, 128,
and 256), with result reported in the right subfigure of Fig-
ure 5. It is observed that Traj2SimVec gradually improves its
performance as the vector dimension increases, and it reaches

its best performance when d = 128. This shows that the rep-
resentation vector of a trajectory needs enough large dimen-
sion to represent the spatio-temporal information of the tra-
jectory, but a space of too many dimensions actually increases
the difficulty of learning. In addition, we report the time cost
of computing vector distance and performing top-k similarity
search on the entire test set under different d settings. We
test the time cost on an AMD Ryzen Threadripper 2950X
processor with 32 threads. As d increases, it only requires
more time for computing the trajectory similarity. However,
as compared with computing similarity between original tra-
jectories that requires more than 20 hours, the evaluation of
trajectory similarity in this vector space is far more efficient.

6 Conclusion
In this paper, we propose a novel trajectory similarity learning
model Traj2SimVec. It adopts trajectory simplification and
indexing technique to reduce the cost of generating samples,
hence making it applicable to large datasets; it proposes a
sub-trajectory distance loss to further improve the robustness
and performance of the model; and it utilizes a point matching
loss to learn the optimal matching between points.

Acknowledgements
This research is supported in part by the National Natural
Science Foundation of China under grant 61772138, the Na-
tional Key Research and Development Program of China un-
der grant 2018YFB0505000,2019YFB1704400 and the Na-
tional Research Foundation, Prime Ministers Office, Singa-
pore under its International Research Centres in Singapore
Funding Initiative. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research
Foundation, Singapore.

References
[Agarwal et al., 2015] Pankaj K Agarwal, Kyle Fox, Jiang-

wei Pan, and Rex Ying. Approximating dynamic time
warping and edit distance for a pair of point sequences.
arXiv preprint arXiv:1512.01876, 2015.

[Bellman and others, 1954] Richard Bellman et al. The the-
ory of dynamic programming. Bulletin of the AMS,
60(6):503–515, 1954.

[Belogay et al., 1997] E Belogay, C Cabrelli, U Molter, and
R Shonkwiler. Calculating the hausdorff distance between
curves. Information Processing Letters, 64, 1997.

[Bentley, 1975] Jon Louis Bentley. Multidimensional bi-
nary search trees used for associative searching. CACM,
18(9):509–517, 1975.

[Chao et al., 2019] Pingfu Chao, Wen Hua, and Xiaofang
Zhou. Trajectories know where map is wrong: an itera-
tive framework for map-trajectory co-optimisation. World
Wide Web, pages 1–27, 2019.

[Chen et al., 2005] Lei Chen, M Tamer Özsu, and Vincent
Oria. Robust and fast similarity search for moving object
trajectories. In SIGMOD’05, pages 491–502, 2005.

[Chen et al., 2009] Yukun Chen, Kai Jiang, Yu Zheng,
Chunping Li, and Nenghai Yu. Trajectory simplification
method for location-based social networking services. In
LSBN’09, pages 33–40, 2009.

[Chen et al., 2010] Zaiben Chen, Heng Tao Shen, Xiaofang
Zhou, Yu Zheng, and Xing Xie. Searching trajectories by
locations: an efficiency study. In SIGMOD’10, pages 255–
266, 2010.

[Chow et al., 2018] Ka-Ho Chow, Anish Hiranandani,
Yifeng Zhang, and S-H Gary Chan. Representation
learning of pedestrian trajectories using actor-critic
sequence-to-sequence autoencoder. arXiv preprint
arXiv:1811.08069, 2018.

[Chung et al., 2014] Junyoung Chung, Caglar Gulcehre,
KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence mod-
eling. arXiv preprint arXiv:1412.3555, 2014.

[Driemel and Silvestri, 2017] Anne Driemel and Francesco
Silvestri. Locality-sensitive hashing of curves. arXiv
preprint arXiv:1703.04040, 2017.

[Eiter and Mannila, 1994] Thomas Eiter and Heikki Man-
nila. Computing discrete fréchet distance. Technical re-
port, Citeseer, 1994.

[Faghri et al., 2017] Fartash Faghri, David J Fleet,
Jamie Ryan Kiros, and Sanja Fidler. Vse++: Im-
proving visual-semantic embeddings with hard negatives.
arXiv preprint arXiv:1707.05612, 2017.

[Gers et al., 1999] Felix A Gers, Jürgen Schmidhuber, and
Fred Cummins. Learning to forget: Continual prediction
with lstm. 1999.

[Gowanlock and Casanova, 2015] Michael Gowanlock and
Henri Casanova. Distance threshold similarity searches:

Efficient trajectory indexing on the gpu. TPDS,
27(9):2533–2545, 2015.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Lee et al., 2007] Jae-Gil Lee, Jiawei Han, and Kyu-Young
Whang. Trajectory clustering: a partition-and-group
framework. In SIGMOD’07, pages 593–604, 2007.

[Li et al., 2018] Xiucheng Li, Kaiqi Zhao, Gao Cong, Chris-
tian S Jensen, and Wei Wei. Deep representation learning
for trajectory similarity computation. In ICDE’18, pages
617–628, 2018.

[Meng et al., 2019] Fanrong Meng, Guan Yuan, Shaoqian
Lv, Zhixiao Wang, and Shixiong Xia. An overview on
trajectory outlier detection. Artificial Intelligence Review,
52(4):2437–2456, 2019.

[Müller, 2007] Meinard Müller. Dynamic time warping. In-
formation retrieval for music and motion, pages 69–84,
2007.

[Schroff et al., 2015] Florian Schroff, Dmitry Kalenichenko,
and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR’15, pages 815–823,
2015.

[Shan et al., 2015] Zhangqing Shan, Hao Wu, Weiwei Sun,
and Baihua Zheng. Cobweb: a robust map update system
using gps trajectories. In UBICOMP’15, pages 927–937,
2015.

[Shang et al., 2017] Shuo Shang, Lisi Chen, Zhewei Wei,
Christian S Jensen, Kai Zheng, and Panos Kalnis. Tra-
jectory similarity join in spatial networks. Proceedings of
the VLDB Endowment, 10(11):1178–1189, 2017.

[Wang et al., 2019] Zheng Wang, Cheng Long, Gao Cong,
and Ce Ju. Effective and efficient sports play retrieval with
deep representation learning. In SIGKDD’19, pages 499–
509, 2019.

[Wu et al., 2017] Hao Wu, Weiwei Sun, and Baihua Zheng.
A fast trajectory outlier detection approach via driving be-
havior modeling. In CIKM’17, pages 837–846, 2017.

[Yao et al., 2018] Di Yao, Chao Zhang, Zhihua Zhu, Qin Hu,
Zheng Wang, Jianhui Huang, and Jingping Bi. Learning
deep representation for trajectory clustering. Expert Sys-
tems, 35(2):e12252, 2018.

[Yao et al., 2019] Di Yao, Gao Cong, Chao Zhang, and Jing-
ping Bi. Computing trajectory similarity in linear time: A
generic seed-guided neural metric learning approach. In
ICDE’19, pages 1358–1369, 2019.

[Zhang et al., 2019] Yifan Zhang, An Liu, Guanfeng Liu,
Zhixu Li, and Qing Li. Deep representation learning of ac-
tivity trajectory similarity computation. In ICWS’19, pages
312–319, 2019.

	Trajectory similarity learning with auxiliary supervision and optimal matching
	Citation
	Author

	Introduction
	Related Work
	Preliminary
	Methodology
	Training Sample Construction
	Sub-trajectory Distance Loss
	Trajectory Point Matching Loss

	Experiments
	Overall Evaluation
	Performance of Traj2SimVec

	Conclusion

