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ABSTRACT This article presents the modeling and solution of an extended type of split delivery vehicle
routing problem (SDVRP). In SDVRP, the demands of customers need to be met by efficiently routing a
given number of capacitated vehicles, wherein each customer may be served multiple times by more than
one vehicle. Furthermore, in many real-world scenarios, consumption of vehicles en route is the same as
the goods being delivered to customers, such as food, water and fuel in rescue or replenishment missions
in harsh environments. Moreover, the consumption may also be in virtual forms, such as time spent in
constrained tasks. We name such a real-world SDVRP as Split Delivery Vehicle Routing Problem with
Goods Consumed during Transit (SDVRP-GCT). In this paper, we give mathematical formulas to model
SDVRP-GCT and provide solutions by extending three ant colony algorithms. To the best of our knowledge,
this is the first research work specifically focussing on the SDVRP-GCT problem and its solutions. To assess
the effectiveness of our proposed ant colony algorithms, we first apply them on widely adopted SDVRP
benchmarking instances on different scales and their correspondingly extended SDVRP-GCT instances.
Then, we formulate a real-world SDVRP-GCT instance for further assessment. Based on the extensive
experimental results, we discuss the pros and cons of our proposed solutions and subsequently suggest their
preferable application scenarios. In summary, our proposed solutions are shown as highly efficient in solving
SDVRP-GCT instances.

INDEX TERMS Split delivery vehicle routing problem (SDVRP), goods consumed during transit,
optimization, ant colony algorithms.

I. INTRODUCTION
The Vehicle Routing Problem (VRP) has always been an
active and important topic in logistics. In VRP, a set of routes
for a fleet of vehicles starting from one or more depots must
serve certain geographically scattered locations or customers,
under a variety of constraints [1]. The main objective of
VRP is to minimize the total travel distance of vehicles.
Ever since 1959 [2], VRPs have been widely studied due
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to their practical relevance to real-world applications and
considerable difficulty in objective optimizations. There have
been a number of noteworthy exact and heuristic algorithms
developed for VRPs in recent decades (e.g., models reviewed
in [3]). In VRPs, each customer is served by a vehicle
only once. However, in many practical situations, when the
customer’s demand is less than the capacity of the vehicle,
the constraint that each customer is served by a vehicle only
once may result in high empty loading rate and wasting
of vehicle resources. When the customer’s demand exceeds
the capacity of the vehicle, the traditional VRP which only
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provides one delivery service for each customer cannot meet
the customer’s demand. Therefore, Dror and Trudeau [4] first
proposed split delivery VRP (SDVRP) in 1989, wherein each
customer may be served more than once (by multiple vehicles
or multiple times by the same vehicle). At first, it was thought
that the routing costs would be increased by split deliveries,
but this relaxation has resulted in a larger set of solutions and
reduced costs [5]. The study of Archetti et al. [6] showed
that reasonable split deliveries are able to not only effectively
reduce the number of vehicles, but also save the total routing
costs, which can reach up to 50%.

However, to the best of our knowledge, the scope of all
prior SDVRP studies have not taken into account the situation
that the goods ordered or required by the customers are
consumed during transit. A typical example of such scenarios
is rescue or replenishment in harsh environments, such as
deserts and areas affected by snow or thunderstorms. In such
scenarios, the long distance travel (including return) will
consume a significant amount of critical resources such as
water, food and fuel that may be impossible to get refills.
It is worth noting that the route consumption and customer
demand are not necessarily actual goods, but also may be in
virtual forms. The ‘‘goods’’ is a general term that could be
extended to represent time consumed or transportation cost,
etc. Therefore, another scenario, which may be modeled as a
type of traveler’s problem, is depicted as follows: a traveler
plans to travel through a finite set of tourism attractions
within a limited time period, then not only the time to
be spent at each tourism attraction should be included as
part of the travel cost, but also the time to be spent on
the road should be taken into consideration. These practical
problems that have to consider the Goods Consumed during
Transit (GCT) are regarded as an extension to SDVRP.
In such circumstances, we have to ensure that each vehicle
has enough resources to be consumed on its way back to
the depot. Therefore, the optimization objective of GCT
problems extends that of the conventional VRP or SDVRP by
adding in the consideration of goods consumed during transit.
We name this type of under-investigated problems as SDVRP
with Goods Consumed during Transit (SDVRP-GCT).

In this research, we adopt and extend ant colony optimiza-
tion (ACO) [7] algorithms to solve SDVRP-GCT as they have
been shown as performing well in solving SDVRPs. ACO is
a nature-inspired optimization method, which simulates the
food-foraging behaviors of ant colonies when they explore
the surroundings of the anthill and leave pheromone along the
trace to guide others in food-finding. ACO has been success-
fully applied to various classical combinatorial optimization
problems, e.g., telecommunication routing [8], travelling
salesman problem (TSP) [9], product design [10], virtual
machine deployment [11], bi-objective pathfinding [12], and
vehicle routing problem [2]. The motivations of our work are
mainly two folds: to investigate whether SDVRP-GCT can be
efficiently solved by extending existing solutions to SDVRP,
and to further identify the pros and cons of the proposed
solutions.

Our main contributions in this paper are as follows:

1) We formally formulate SDVRP-GCT in the form of
equations and inequalities.

2) We propose three ACO algorithms to solve SDVRPs,
focusing on SDVRP-GCT, wherein vehicle en route
consumption is the same as goods to be delivered to
customers.

3) We apply the three proposed ACO algorithms on
eighteen widely adopted SDVRP instances and their
correspondingly extended SDVRP-GCT instances as
well as an own collected real-world SDVRP-GCT
instance for thorough assessments.

The rest of the paper is organized as follows. In Section II,
we introduce relevant literature on VRP, SDVRP and ACO
algorithms. In Section III, we model SDVRP-GCT by
making relevant assumptions and presenting mathematical
formulations. In Section IV, we introduce our proposed
ACO algorithms with details. In Section V, we first apply
the proposed ACO algorithms on eighteen benchmarking
instances and a real-world SDVRP-GCT instance, and
then present and discuss the experimental results. Finally,
in Section VI, we conclude this paper.

II. RELATED WORK
Firstly, based on the chronological order, we review several
classical VRP variants. Capacitated VRP (CVRP) [2] takes
into account the fact that every vehicle has a limited capacity
and no customer demand exceeds its capacity. Periodic VRP
(PVRP) [13] studies the time-efficient routing problem that
customers require different delivery time slots and aims to
find a feasible solution that minimizes the total cost of
the route in a certain time frame. The study of Dynamic
VRP (DVRP) [14] involves dynamic operation, which is
characterized by constantly changing information, such as
vehicle location, customer orders, etc. Then the appropriate
vehicle is assigned according to the customer’s request.
In VRP with Time Windows (VRPTW) [15], each customer
has a delivery deadline and the earliest delivery time. With
the constraint of the given time windows, the total cost not
only includes the distance or time cost during the trip, but
also includes the waiting time cost such as the vehicle arriving
at the customer’s location too early. Split-delivery VRP
(SDVRP) [4] considers certain realistic cases where customer
demand exceeds vehicle capacity and allows each customer
to be served by more than one vehicle. Time-dependent
VRP (TDVRP) [16] extends the classical static shortest path
problem to further consider time variation between nodes.
It assumes that the cost variability in relation to time and
travel time between any pair of nodes depends on distance,
road conditions and weather conditions, etc. Stochastic VRP
(SVRP) [17] considers the occurrence of stochastic factors,
such as stochastic customer, stochastic demand and stochastic
delivery time. Multi-depot VRP (MDVRP) [18] has multiple
depots and each customer is served by vehicles from one of
them and each route must start and end at the same depot.
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Open VRP (OVRP) [19] differs from the traditional vehicle
routing problem in that the vehicles travel on an open route,
rather than a closed route, and they do not have to return
to the depot, or if required, they can visit the customer in
the reverse order. In VRP with Simultaneous Pickups and
Deliveries (VRPSPD) [20], vehicles deliver the goods to each
customer and meet their pickup requirements at the same
time. Multi-echelon VRP (MEVRP) [21] studies logistics
transportation by multiple echelons, such that the delivery
of goods from the depot to the customers is decomposed
into from the depot to the intermediate depots and then
from the intermediate depots to the customers. Green VRP
(GVRP) [22] considers the environmental and ecological
impacts when finding the shortest route based on minimizing
the fuel consumption or reducing carbon emissions.

SDVRP plays a significant role in VRP research.
Archetti et al. [6] showed that compared with VRP, SDVRP
can significantly reduce travel distance and fleet size. Several
new variants of the conventional SDVRP have been explored
in the literature. For example, SDVRP with Time Windows
(SDVRPTW) [23] takes into account that each customer can
only be visited by one or more vehicles within a specified
time interval. Split Delivery Weighted VRP (SDWVRP) [24]
considers the relationship between the weight of goods and
the distance cost, where ‘‘weight’’ can also represent the pri-
ority of customers. Multi-depot SDVRP (MDSDVRP) [25]
determines the best delivery route and location of multiple
depots when serving customer demands if the depots are
not defined in advance. In Commodity-constrained SDVRP
(C-SDVRP) [26], each customer has multiple commodity
demands and when a vehicle delivers a commodity to a
customer, the full amount requested by the customer must
be provided. SDVRP with Minimum Delivery Amounts
(SDVRP-MDA) [27] allows a customer’s demand to be
delivered by multiple vehicles, but each visit requires
a minimum delivery quantity. SDVRP with 3D Loading
Constraints [28] considers the 3D loading of cargoes by
using the least number of 3D containers to load the goods
to minimize the cost. SDVRP with uncertain travel time and
demands [29] plans vehicle routes when delivering critical
supplies to people in need after a disaster.

Since the formal formulation of SDVRP [4], many scholars
have studied its difficulty, solution characteristics, upper
and lower bounds of solution, solution algorithms, etc.
Methods to solve SDVRP may be generally divided into two
categories: exact algorithms and heuristic ones. The pioneer
exact algorithm was proposed by Dror et al. [30] in 1994.
They provided a mixed-integer programming formulation of
SDVRP and developed an arc-column equation that combines
new effective inequality classes. Jin et al. [31] proposed
a two-stage algorithm with valid inequality constraints to
solve SDVRP. Archetti et al. [32] proposed two exact
branch-and-cut algorithms to solve SDVRP based on two
relaxed formulations that provide lower bounds to the
optimum.Although the exact algorithmsmay find the optimal
solution to the problem, its computational time increases

exponentially with the expansion of problem size. Therefore,
exact algorithms may only be suitable for solving small-scale
instances. To efficiently deal with large-scale instances,
heuristic algorithms are often applied to obtain ‘‘sub-optimal
solutions’’ or ‘‘satisfactory solutions’’. At present, the most
commonly adopted heuristic algorithms are Simulated
Annealing (SA) [33], Genetic Algorithm (GA) [34], Tabu
Search (TS) [35], Ant colony optimization (ACO) [7],
Artificial Neural Network (ANN) [36], Particle Swarm
Optimization (PSO) [37], etc.

Ant colony optimization algorithm (ACO) is a kind of
heuristic algorithm. It summarizes AS (Ant System) [7],
ACS (Ant Colony System) [9], [38], MMAS (Max-Min
Ant System) [39] and other ant algorithms under a uni-
fied framework. Although they are collectively known as
ACO, they are different in the implementation process and
have their own characteristics. Because we extended the
existing ACO algorithms to solve SDVRP-GCT instances,
we follow their original names in this paper. The pioneer
AS was proposed by Dorigo et al. [7], as an efficient
solution to combinatorial optimization problems. In order
to search for better results in a relatively larger solution
space, a modified ACS was proposed by Gambardella and
Dorigo [9], [38]. ACS uses both global and local update
rules to adjust pheromone concentration, which makes the
solution of ACS more generic. Moreover, ACS applies the
pseudorandom-proportional transition rule, which is con-
ducive to transitions towards nodes connected by short edges
and with a large amount of pheromone. To better deal with
the stagnation phenomena often observed in AS, MMAS [39]
was proposed by Stutzle and Hoos, by incorporating three
effective mechanisms, namely to update the pheromone of
the best solution path in each iteration, to limit the amount
of the pheromone, and to initialize all pheromones to large
values as a conducive way to explore the large solution space.
These mechanisms try to prevent MMAS from premature
convergence to non-global optimal solutions and better utilize
pheromones. AS, ACS andMMASwere all initially designed
to solve traveling salesman problems (TSPs) [40]. TSP can be
easily described as the problem of finding the shortest path to
visit each node once and only once. Up till now, these three
algorithms have been applied to many other combinatorial
optimization problems such as vehicle routing problems and
quadratic assignment problems. AS can quickly find suitable
solutions, and has been successfully applied to solve many
problems such as finding the optimal path on a graph. ACS
is more generic and has higher efficiency when compared
to other algorithms in solving symmetric and asymmetric
TSPs. MMAS is one of the best ACO algorithms in solving
TSPs because pheromones and updating rules are carefully
regulated.

Due to the novelty of the SDVRP-GCT instances, wherein
the consumption during transit is considered, existing solu-
tions to SDVRP that do not consider such route consumption
cannot be straightforwardly applied. New algorithms are
in need to solve SDVRP-GCT instances. Considering the
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effectiveness of the aforementioned ACO algorithms, we pro-
pose three algorithms by extending the existing ACO algo-
rithms, i.e., AS, ACS and MMAS. Moreover, the extended
algorithms are more generic than their original versions
and can be used to solve both SDVRP and SDVRP-GCT
instances. Last but not least, our extended algorithms have
their own pros and cons on different instances, and there is
no single algorithm outperforms the others on all instances
(see Section V). In this research, we assess their capability by
conducting extensive experiments, and further suggest their
preferable application scenarios.

III. MODELING SDVRP-GCT
In this section, we formulate SDVRP-GCT mathematically.
We first provide an intuitive example of SDVRP-GCT.
We then present the assumptions of SDVRP-GCT. Finally,
we present its mathematical formulations.

FIGURE 1. Differences between SDVRP and SDVRP-GCT. (a) Standard
SDVRP. (b) SDVRP-GCT, wherein goods consumption along the route is
labeled accordingly.

SDVRP-GCT inherits the components involved in SDVRP,
namely a fleet of vehicles, one depot node, a specific
number of nodes of customers known a prior, and a network
connecting all the nodes including the depot, wherein each
edge of the network represents the route between two nodes.
Figure 1a shows a simple example of a standard SDVRP
with four nodes (inclusive of the depot node with index
#0). Each customer (#1, #2 and #3) needs one or more
vehicles to deliver the ordered goods.Moreover, every vehicle
must start from and return to the only depot. The numbers
labelled within the customer nodes indicate the customer’s
demand. If all available vehicles have the same capacity of 15,
for SDVRP, one vehicle can first serve Node #1 and then
serve Node #3 because the sum of demand of these two
nodes is exactly 15. However, for SDVRP-GCT, as shown
in Figure 1b, the numbers labelled along each edge denote
the vehicle consumption associated with the respective routes
(e.g., the vehicle consumption and the customer ordered
goods are the same type of fuel). Therefore, a vehicle cannot
serve both Nodes #1 and #3 in a single delivery trip, because
the total amount of goods required is 2+10+3+5+2 = 22,
which exceeds the vehicle’s capacity.

A. ASSUMPTIONS IN SDVRP-GCT
Before we present the mathematical formulations of
SDVRP-GCT, we first introduce the assumptions made in
SDVRP-GCT as follows:

1) The properties of all entities, namely the involved
vehicles, the location of the depot, the customers’
location and demand, and the consumption associated
with each route, will remain constant during the entire
servicing period.

2) There is only one edge between any two nodes and the
cost of travel is the same for either direction.

3) The costs only consist of the customer demand and the
route consumption. All the other costs, such as vehicle’s
maintenance, the staff’s salaries, the service time at
customers’ locations, etc., are not considered.

4) The route consumption during transit is proportional to
the distance of the route.

5) Any customer ordered goods or transportation demand is
served directly from the depot. Furthermore, all involved
customers do not interact with one another.

6) Vehicles can reload or replenish only at the depot when
being assigned for delivery.

7) All vehicles have the same capacity and the customers
do not have preferences of delivery vehicles.

B. FORMULATION OF SDVRP-GCT

TABLE 1. List of parameters and variable used in SDVRP-GCT.

The definitions of all parameters and variables used in
SDVRP-GCT are given in Table 1. We assume that a network
consists of N customers (nodes), M vehicles and one depot,
which is represented by Node #0. Each edge in the network
representing the connection between two nodes is associated
with certain amount of route consumption. Each customer i
with demand qi must be satisfied by one or more vehicles.
In comparison with SDVRP, when modeling SDVRP-

GCT, an important factor is that the consumption en route
has to be considered. In each delivery, each vehicle’s
capacity is divided into customer demand capacity and route
consumption capacity. The capacity of each vehicle must be
greater than the total route consumption from the depot to
any customer and back to depot. For each routine of a vehicle
(starting from the depot → serving a number of customers
→ finally returning to the depot), the sum of all customer
demands served or partially served by the vehicle must be
equal to or less than the customer demand capacity Qc, and
the total route consumption must be equal to or less than the
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route consumption capacity Qr . Moreover, the sum of route
consumption and customer demand must be equal to or less
than the vehicle capacity, i.e., Qc + Qr ≤ Q.
The solutions of an SDVRP-GCT can be obtained by

optimizing the following objective function:

Z = min
N∑
i=0

N∑
j=0,j6=i

M∑
k=1

xijk · dij, (1)

subject to the following constraints:

N∑
i=0

M∑
k=1

xijk ≥ 1, j ∈ {0, 1, . . . ,N }, (2)

N∑
j=0

M∑
k=1

x0jk ≤ M , (3)

N∑
j=1

x0jk =
N∑
j=1

xj0k ∈ {0, 1}, k ∈ {1, . . . ,M}, (4)

N∑
i=0

xipk −
N∑
j=0

xpjk = 0, p ∈ {0, . . . ,N }, k ∈ {1, . . . ,M},

(5)
M∑
k=1

yik = qi, i ∈ {0, 1, . . . ,N }, (6)

0 ≤ yik ≤ qi, i ∈ {0, 1, . . . ,N }, k ∈ {1, . . . ,M}, (7)
N∑
i=1

yik +
N∑
i=0

N∑
j=0

xijkrij ≤ Q, k ∈ {1, . . . ,M}, (8)

Q− (r0i + ri0) ≥ 0, i ∈ {0, 1, . . . ,N }. (9)

The objective function defined in (1) tries to minimize
the total travel distance of all vehicle routes. Since route
consumption is proportional to route distance, the objective
function is equivalent to minimize the total route consump-
tion. Equation (2) guarantees that each node is visited at least
once. Equation (3) indicates that a maximum number of M
vehicles are allowed to departure from the depot at the same
time. Equation (4) ensures that each vehicle leaving the depot
must return to the depot. Equation (III-B) ensures that the
number of vehicles arriving at a node equal to the number
of vehicles of leaving the same node. Equations (6) and (7)
ensure that the demand of all nodes is satisfied.

In SDVRP-GCT, we divide the capacity of vehicles Q into
customer demand capacity Qc and route consumption capac-
ity Qr , which correspond to the demand requirement at each
node and consumption en route, respectively. Furthermore,
we consider two specific scenarios in SDVRP-GCT based on
whetherQr is considered when formulating the problem. The
two scenarios are described as follows:
(i) The route consumption capacity Qr is not considered.

In this scenario, the only constraint on vehicles is
customer demand capacity Qc, whereby the problem
turns into a standard SDVRP that (9) should be removed

and (8) should be changed to the following:

N∑
i=1

yik ≤ Qc, k ∈ {1, . . . ,M}. (10)

(ii) The route consumption capacity Qr is considered. This
scenario is the major focus of this paper, i.e., SDVRP-
GCT, which has been described in the earlier sections.
In SDVRP-GCT, all vehicles need to consider both Qr
and Qc as formulated in (8) and (9).

In brief, Scenario (i) can be regarded as standard SDVRP,
which does not consider route consumption. Scenario (ii)
considers route consumption as the same type of resource as
customers demand. We focus on Scenario (ii) in this paper,
because it can be used to solve an under-investigated type
of practical problem, such as rescue in harsh environments
wherein a significant amount of critical resources for the
trapped people will be consumed en route.

It is well known that the classical SDVRP is an NP-hard
problem [41], [42]. SDVRP-GCT is more complicated than
SDVRP because the route consumption during transit is taken
into consideration as well. Therefore, SDVRP-GCT is also an
NP-hard problem. To effectively solve the NP-hard problem,
three extended ACO algorithms are proposed in this paper.

IV. EXTENDING ANT COLONY OPTIMIZATION (ACO)
ALGORITHMS TO SOLVE SDVRP-GCT

FIGURE 2. Illustrations of the nature-inspired ant colony optimization.
(a) Ants in a straight path. (b) An obstacle is added in a straight path.
(c) Ants randomly selects alternative paths. (d) Ants aggregate to the
shorter path [43].

The solutions of SDVRP-GCT can be obtained by finding
a set of minimum cost vehicle routes to facilitate the
delivery plans from the depot to a number of customer
locations. The behaviors of the vehicles are deemed similar
to the food-seeking behavior of ant colonies (see Figure 2).
Regarding the depot in SDVRP-GCT as the nest in ACO and
customers in SDVRP-GCT as food in ACO, we can solve
SDVRP-GCT by applying three extended ACO algorithms,
which we name Ant System for SDVRP-GCT (ASGCT), Ant
Colony System for SDVRP-GCT (ACGCT) and Max-Min
Ant System for SDVRP-GCT (MMGCT), respectively. These
three algorithms are extended based on the respective clas-
sical ACO algorithms to solve the SDVRP-GCT instances.
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When a vehicle plans to serve the next customer, if the sum
of next customer’s demand and route consumption (from the
current customer→ the next customer→ returning to depot)
exceeds the remaining vehicle capacity, the vehicle serves
part of the next customer’s demand and the remaining part
will be served by other vehicles. We will describe the detailed
processes of these three extended ACO algorithms in the
following subsections.

A. ANT SYSTEM FOR SDVRP-GCT (ASGCT)
Conforming to the generality of ACO-based algorithms,
we use the term ‘‘vehicle’’ interchangeably with ‘‘ant’’.
In Ant System for SDVRP-GCT (ASGCT), every ant always
starts from the depot, then it chooses the next node according
to the amount of pheromone in all available paths based on the
Ant Movement Rule (see Section IV-A1). Once all ants have
explored their routes, the Global PheromoneMatrix Updating
Rule (see Section IV-A2) is invoked.

1) ANT MOVEMENT RULE
Suppose there areM ants in an ASGCT. If Ant k is currently
located at Node i, the next Node j to be visited is chosen based
on the probability defined as follows:

Pkij(t) =


[τij(t)]α[ηij(t)]β∑

u∈allowedk [τiu(t)]
α[ηiu(t)]β

, j ∈ allowedk,

0, otherwise,
(11)

where allowedk denotes the set of all feasible unvisited nodes
that can be visited by Ant k in this iteration such that Ant
k’s remaining load is enough to go to that node and return
to depot afterwards, τij denotes the amount of pheromone
in the path connecting Nodes i and j, ηij = 1/dij denotes
the heuristic information of objective, α denotes the intensity
parameter of residual pheromone, and β denotes the intensity
parameter of heuristic information.

2) GLOBAL PHEROMONE MATRIX UPDATING RULE
The pheromones gradually decay over time. When ants
complete a cycle, the pheromone matrix τij is updated as
follows:

τij(t + 1) = (1− ρ)τij(t)+1τij(t, t + 1), (12)

1τij(t, t + 1) =
M∑
k=1

1τ kij (t, t + 1), (13)

1τ kij (t, t + 1) =
{
z/Ck , i, j ∈ Rk ,
0, otherwise,

(14)

where ρ denotes the pheromone evaporation rate, which
enhances the global search capability of the ant system and t
denotes the index of the timestamp (iteration number). Term
1τ kij (t, t + 1) denotes the amount of pheromone left by Ant
k along the route from Node i to Node j in this iteration.
Moreover,1τij(t, t+1) denotes the increment of pheromone
on the road between Node i and Node j in this iteration,

z denotes a constant, which affects the convergence speed of
the algorithm, Ck denotes the total cost of Ant k traversed
in this iteration, and Rk denotes the routes that Ant k has
traversed.

Algorithm 1 ASGCT
1: Initialize parameters α, β, ρ,M , z,Q,maxiter ;
2: Initialize τij(0) = τ0 for all node pairs;
3: Set iterate index t = 0, current position now = 0;
4: for t = 1 to maxiter do
5: for each ant k = 1 to M do
6: Set demand = demand of nodes;
7: Set capacity vk = Q;
8: while

∑N
j=1 demandj 6= 0 do

9: Put nodes required constraints that demandj > 0
and vk − (cnow,j + cj,0) > 0 into allowedk ;

10: if allowedk is not empty then
11: Compute transition probability according

to (11);
12: Select the subsequent node j according to

roulette wheel selection [44], then add j into
the path;

13: vk = vk − cnow,j, now = j;
14: if vk − demandj ≥ cj,0 then
15: demandj = 0; vk = vk − demandj;
16: else
17: demandj = demandj − (vk − cj,0);
18: vk = cj,0;
19: end if
20: else
21: Return to depot 0; Reload set vk = Q;
22: end if
23: end while
24: if ant k has not returned to the depot then
25: Add 0 to the path;
26: end if
27: end for
28: Save the shortest paths of allM ants in this iteration;
29: Update pheromone according to (12), (13) and (14);
30: t = t + 1;
31: end for
32: Output the shortest paths;

The overall procedure of using Ant System for
SDVRP-GCT (ASGCT) is summarized in Algorithm 1.
Specifically, to satisfy Constraint (8), Algorithm 1 checks
whether a Node k is included in allowedk (see Line 10).
Moreover, Line 10 ensures that an ant can successfully return
to the depot with enough supply. In addition, Algorithm 1 also
automatically determines the maximum amount of demand
required by the selected Node j can be met to ensure the ant
can successfully return to the depot. Lines 14 to 18 consider
two different serving behaviors: (i) if the vehicle can return to
the depot after serving the full extent of demand required by
the customer being served, it will serve the customer to the
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full extent, otherwise (ii) the vehicle reserves the necessary
amount of supply and returns to the depot afterwards. In the
latter case, the demand of the last visited customer is partially
served by this vehicle. The best solution, which leads to the
minimum overall traveled distance, is then obtained over
iterations.

B. ANT COLONY SYSTEM FOR SDVRP-GCT (ACGCT)
In order to improve the effectiveness of ants in route selection,
Ant Colony System (ACS) was first proposed in [38]. ACS is
a well-known meta-heuristic algorithm in the ACO family.
In ACS, a group of artificial ants collaboratively search for
the optimal solutions with shared information.

Comparing to ASGCT, ACGCT introduces the rules
of local update, global update, and a modified version
of pseudo-random-proportional transition. In ACGCT, only
the best solution from the beginning of the trial updates
the pheromone trial according to the global update rule.
Specifically, in ACGCT, the global pheromone matrix τij is
updated as follows:

τij(t + 1) = (1− ρ)τij(t)+ ρ1τij(t, t + 1), (15)

1τij(t, t + 1) = 1/Costgb, (16)

where the superscript gb denotes the best solution which
found until iteration t (global-best solution) and Costgb

denotes the cost of the global-best solution.
When an ant chooses a Node j as the next node to visit,

the pheromone of the current Node i to Node j is updated
according to the following local update rule:

τij(t + 1) = (1− ε)τij(t)+ ετ0, (17)

where ε denotes the pheromone evaporation in local update
process and τ0 denotes the initial pheromone value.

Lastly, the pseudo-random-proportional transition rule is
defines as follows:

j =
{
argmaxj∈allowedk{[τ (i, j)]

α[η(i, j)]β}, if q ≤ q0,
Pkij(i, j), otherwise, (18)

where q0 is a predefined parameter (q0 ∈ [0, 1]) and q is
a random number uniformly distributed in the [0, 1] interval.
The definitions of η, α, β, ρ,1τij(t, t+1) and Pkij(i, j) remain
the same as those introduced in ASGCT.

The ACGCT algorithm for solving SDVRP-GCT is shown
in Algorithm 2. It is worth noting that the local update rule is
applied when each ant selects a new node (see Line 14), and
the global update rule is performed on the global optimal path
after all ants have travelled through all nodes (see Line 30).

C. MAX-MIN ANT SYSTEM FOR SDVRP-GCT (MMGCT)
Min-Max Ant System (MMAS) [39] was proposed to better
deal with the potential premature convergence problem
often observed in AS. Several MMAS-based variations
for VRP were proposed and have shown convincing per-
formance [45]–[47]. The MMGCT algorithm extends the
ASGCT algorithm, wherein the main improvements are

Algorithm 2 ACGCT
1: Initialize parameters α, β, ρ, ε,M ,Q, q0,maxiter ;
2: Initialize τij(0) = τ0 for all node pairs;
3: Set iterate index t = 0, current position now = 0;
4: for t = 1 to maxiter do
5: for each ant k = 1 to M do
6: Set demand = demand of nodes;
7: Set capacity vk = Q;
8: while

∑N
j=1 demandj 6= 0 do

9: Put nodes required constraints that demandj > 0
and vk − (cnow,j + cj,0) > 0 into allowedk ;

10: if allowedk is not empty then
11: Compute transition probability according

to (18);
12: Select the next node j according to roulette

wheel selection, then add j into the path;
13: vk = vk − cnow,j; now = j;
14: local update pheromone according to (17);
15: if vk − demandj ≥ cj,0 then
16: demandj = 0; vk = vk − demandj;
17: else
18: demandj = demandj − (vk − cj,0);
19: vk = cj,0;
20: end if
21: else
22: Return to depot 0; Reload set vk = Q;
23: end if
24: end while
25: if ant k has not returned to the depot then
26: Add 0 to the path;
27: end if
28: end for
29: Save the shortest paths of allM ants in this iteration;
30: Update global pheromone according to (15) and (16)

for the global-best solution;
31: t = t + 1;
32: end for
33: Output the shortest paths;

delineated as follows. Firstly, in the setting of MMGCT, only
the best solution in each iteration updates the pheromone
trail according to the global update rule (see (19) and (20)).
Secondly, the pheromone of all edges is initialized to a
maximum value τmax to increase the probability of being
searched in the initial phase. Thirdly, MMGCT restricts the
value range of pheromone of all edges to be within the
[τmin, τmax] interval, i.e., τmin ≤ τij(t) ≤ τmax, ∀i, j, t .
In MMGCT, the pheromone trail update rule is given by:

τij(t + 1) = (1− ρ)τij(t)+1τij(t, t + 1), (19)

1τij(t, t + 1) = z/Costib, (20)

where the superscript ib denotes the best solution in the
current iteration t (iteration-best solution) and Costib denotes
the cost of the iteration-best solution. The definitions of
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1τij(t, t + 1) remain the same as introduced in ASGCT. The
global-best solution is not used inMMGCT as it may limit the
search space and be easier to get trapped into local optimal
solutions.

MMGCT restricts the minimum andmaximum pheromone
trails for all pheromone trails τij(t) according to the following
rules:

τmax = 1/(ρ · Costib), (21)

τmin = τmax · (1−
n
√
Pbest)/((N/2− 1) · n

√
Pbest), (22)

where Pbest is a constant. If Pbest is too small, it may lead to
τmin > τmax. To better regulate the influence of the lower
trail limits, Pbest is set to 0.05 heuristically. The MMGCT
algorithm for SDVRP-GCT is shown in Algorithm 3.

V. EXPERIMENTAL RESULTS
We conduct experiments on fourteen benchmarking instances
obtained from SDVRPLIB,1 four large-scale benchmarking
instances named kelly2 and an own collected real-world
instance to assess the three extended algorithms. The
benchmarking instances are of SDVRP type, which do not
consider goods consumed during transit (see discussions on
Scenario (i) in Section III-B). To extend the benchmarking
instances to SDVRP-GCT type, which is the main focus in
this research, we use a proportion parameter h to regulate the
amount of consumption en route. It is reasonable to assume
that the amount of resources to be consumed en route (i.e.,
consumption during transit) is proportional to the distance
of the route (assuming travel cost is not affected by other
factors).

TABLE 2. Details of fourteen benchmarking instances.

The properties of the fourteen selected SDVRPLIB
benchmarking instances are shown in Table 2. Their names

1URL: http://www.uv.es/belengue/sdvrp.html
2URL: http://www.bernabe.dorronsoro.es/vrp/

Algorithm 3MMGCT
1: Initialize parameters α, β, ρ,M , z,Q, q0,maxiter ;
2: Initialize τij(0) = τmax for all node pairs;
3: Set iterate index t = 0, current position now = 0;
4: for t = 1 to maxiter do
5: for each ant k = 1 to M do
6: Set demand = demand of nodes;
7: Set capacity vk = Q;
8: while

∑N
j=1 demandj 6= 0 do

9: Put nodes required constraints that demandj > 0
and vk − (cnow,j + cj,0) > 0 into allowedk ;

10: if allowedk is not empty then
11: Compute transition probability according

to (18);
12: Select the next node j according to roulette

wheel selection, then add j into the path;
13: vk = vk − cnow,j; now = j;
14: if vk − demandj ≥ cj,0 then
15: demandj = 0; vk = vk − demandj;
16: else
17: demandj = demandj − (vk − cj,0);
18: vk = cj,0;
19: end if
20: else
21: Return to depot 0; Reload set vk = Q;
22: end if
23: end while
24: if ant k has not returned to the depot then
25: Add 0 to the path;
26: end if
27: end for
28: Save the shortest paths of allM ants in this iteration;
29: Update pheromone according to (19) and (20) for the

iteration-best solution;
30: Compute τmax and τmin according to (21) and (22);
31: if τij(t) < τmin(t) then
32: τij(t) = τmin(t);
33: else if τij(t) > τmax(t) then
34: τij(t) = τmax(t);
35: end if
36: t = t + 1;
37: end for
38: Output the shortest paths;

follow the same convention that the number appended
to S refers to the number of customers and the number
appended to D refers to the level of customer demand
(the higher the number is, the more amount of demands
the customers require). For example, the S51D1 instance’s
name suggests that there are 51 customers in this instance
and their amount of demands is the lowest among all
instances involving 51 customers. As shown in Table 2,
the customer demands in S51D1 range from 1% to 10% of the
vehicle’s capacity. The kelly datasets comprise 20 large-scale
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TABLE 3. Experimental results of three extended ACO algorithms on fourteen benchmarking SDVRP instances.

instances. We choose the first four large-scale single-depot
instances for experiments in this paper. The real-world
instance is taken from Question F of the 2015 National
Mathematical Modeling Competition held in China. Details
of the kelly datasets and the real-world instance are given in
Section V-C and Section V-D, respectively. All our proposed
algorithms were implemented using Matlab 2016a and all
experiments were conducted on the same personal computer
equipped with an Intel I5-4460 @ 3.2 GHz CPU and 16GB
RAM.

A. EXTENDED ACO ALGORITHMS FOR SDVRP
We first directly assess the effectiveness of the three extended
ACO algorithms on the fourteen benchmarking SDVRP
instances adopted from SDVRPLIB. Specifically, for this set
of SDVRP instances, we set h = 0 (i.e., no goods consumed
during transit) and compare the results with the optimal
values [48] (reported by the dataset contributors, see Table 3).
We followed the specified settings in the dataset, namely the
depot in each instance is set to Node #1 and the capacity of
vehiclesQ is set to 160. The average and best of experimental
results are shown in Table 3.

As shown in Table 3, although most route lengths obtained
by the three extended algorithms are larger than the respective
optimal values, ACGCT obtains the best results on S51D4,
S51D5 and MMGCT obtains the best results on S51D2,
S51D4, S51D5, S76D2 and S76D4. To further quantify the
performance difference between our proposed algorithms
and the optimal values, we devise the following equation to
measure the relative difference:

gap =
Len− Optimal_value

Optimal_value
. (23)

The average gaps of ASGCT, ACGCT and MMGCT
are computed as 4.91%, 3.24% and 0.96%, respectively.
Although our proposed three algorithms do not all reach or
surpass the optimal values, the experimental results obtained
by our proposed algorithms are close to the optimal values.
In particular, MMGCT obtains better results for five out of
fourteen instances and the average gap ofMMGCT is as small
as 0.96%. The relatively small gap suggests that the extended
algorithms are capable of finding competitive solutions
or only a bit inferior to the optimal values, while being
able to solve the challenging and practical SDVRP-GCT
instances. In the following subsection, we further assess their
performance on SDVRP-GCT instances.

B. EXTENDED ACO ALGORITHMS FOR SDVRP-GCT
In order to transform the fourteen SDVRPLIB benchmarking
SDVRP instances (see Section V-A) to SDVRP-GCT ones,
we first investigate how the parameter value of h affects the
results of the three extended ACO algorithms. Specifically,
we set h = 0, 0.1, 0.3 and 0.5 in each set of experiments
and show the best results obtained from 20 respective trials
in Figure 3. Note that for h = 0, we adopt the results reported
in Section V-A. As expected, with the increasing value of h,
whichmeans the vehicles consumemore goods during transit,
longer total travel costs are required.

To further assess the performance of the three extended
ACO algorithms, we fix h as 0.1. Table 4 shows the results
of the three algorithms being applied to solve the fourteen
benchmarking instances after they have been transformed to
SDVRP-GCT ones. The numbers highlighted in bold show
the shortest route length obtained from 20 independent runs
using the corresponding algorithms for each instance.Wefirst
analyze in terms of the shortest route length. It is clearly

110344 VOLUME 8, 2020



W. Yang et al.: Goods Consumed During Transit in SDVRPs: Modeling and Solution

FIGURE 3. Performance on the shortest route length among of 20 trials based on different values of h.

TABLE 4. Experimental results of the three extended ACO algorithms on fourteen transformed SDVRP-GCT instances.

shown in Table 4 that the results of ACGCT andMMGCT are
always better than those of ASGCTwhile ASGCT uses lesser
amount of time in most cases. Furthermore, we may observe
that MMGCT performs better than ACGCT on S51D1,
S51D2, S76D1, S76D2, S101D1 and S101D2 with lower
demand. However, ACGCT performs better thanMMGCT on
cases with higher demand, such as S51D3, S51D5, S76D4,
S101D3. The averaged route length follows a similar pattern
as observed in the shortest route length.

To further investigate the difference in performance among
the three algorithms, we provide relevant visualizations in
the form of boxplot. The boxplots show the distribution of
experimental results on each instance. Figures 4a and 4b
show the distribution of route length obtained by the three
extended ACO algorithms on instances with lower demand,
while Figures 4c and 4d show the distribution of those with
higher demand. Boxplot is useful in determining where the

majority of the experimental results lie. As shown in Figure 4,
the route length obtained by ASGCT is obviously larger
than that obtained by ACGCT and MMGCT, indicating
that ACGCT and MMGCT always perform better than
ASGCT in all the fourteen instances. In order to further
analyze the difference in performance, we use single factor
ANOVA to obtain the corresponding p-value, as shown
in Table 5. The observations from both Figure 4 and Table 5
are consistent that for instances S76D1, S101D1, S51D2,
S51D3, S76D3 and S101D3, the performance of ACGCT and
MMGCT has no significant difference. For other instances
with lower demand namely S51D1, S76D2 and S101D2,
the location of MMGCT’s boxplots are obviously lower
than those of ACGCT. Moreover, the p-values between
ACGCT and MMGCT are less than 0.05, i.e., MMGCT
performs significantly better than ACGCT. Among the five
remaining instances with higher demand, ACGCT performs
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FIGURE 4. The boxplots of experimental results on fourteen transformed SDVRP-GCT instances. Note that for better visualization, the y-axis of each
subfigure takes different value range.

TABLE 5. The p-value of ACGCT vs MMGCT on fourteen transformed SDVRP-GCT instances.

significantly better than MMGCT on three of them, namely
S51D5, S51D6 and S76D4, because the boxplots formed by
ACGCT are obviously downwardly skewed than those of
MMGCT in these three instances with the p-values less than
0.05. Thus, ACGCT is shown to perform better thanMMGCT
on instances with higher demand.

In summary, we may draw a conclusion that ACGCT
and MMGCT outperform ASGCT but ASGCT uses lesser
amount of computational time. MMGCT is shown to be more
suitable to solve instances with lower demand and ACGCT is
shown to be slightly suitable thanMMGCT for instances with
higher demand.

C. EXTENDED ACO ALGORITHMS FOR LARGE-SCALE
INSTANCES
In this subsection, we further assess the extended algorithms’
capability of solving large-scale SDVRP-GCT instances.
Specifically, we select four large-scale instances from the
VRP web. Out of the 20 instances given in this kelly datasets,
we select the first four instances as they involve single
depot, which is consistent with our problem statement. The
characteristics of the selected instances are shown in Table 6.
The scale of these large-scale instances ranges from 240 to
480 number of customers and each instance has different
vehicle capacity. The average of customer demand is 20 and
the standard deviation is 10, which means the customer
demand in each instance is relatively small. The customers’
location distribution is depot-centered and spreads outward
akin to a magnetic field. Firstly, we evaluate the performance
of the extended ACO algorithms on these four large-scale

TABLE 6. Characteristics of the four selected large-scale benchmarking
instances.

SDVRP benchmarking instances. The comparison between
the optimal values provided alongside the dataset and the
shortest route length and the average route length obtained
by the extended algorithms among 20 trials is shown
in Table 7. The relative performance difference gap is
computed according to (23) that the average gap of ASGCT,
ACGCT and MMGCT are computed as 2.93%, 1.68%
and 0.41%, respectively. The results obtained by the three
extended algorithms all surpass the optimal value on kelly03.
In addition, the result obtained by MMGCT on kelly04 also
surpasses the optimal value. Such improved performance
suggests that our extended ACO algorithms can well handle
large-scale SDVRP instances with improved performance.

Secondly, we further assess the performance of the three
extended algorithms on these four large-scale SDVRP-GCT
instances. Similar to Section V-B, we set h to 0.1 to transform
the SDVRP benchmarking instances into SDVRP-GCT ones
and the experimental parameters remain as the same as the
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TABLE 7. Experimental results of the three extended ACO algorithms on four large-scale SDVRP instances.

TABLE 8. Experimental results of the three extended ACO algorithms on four large-scale SDVRP-GCT instances.

previous settings. We conducted 20 independent trials on
each instance and presented the results in Table 8. In terms
of computational time, we can see that ASGCT runs faster
than both ACGCT and MMGCT. In terms of the shortest
route length and average route length, the results obtained
by ACGCT and MMGCT are always shorter than ASGCT.
Furthermore, the results obtained by MMGCT are better
than ACGCT in most cases, except in kelly01, where the
shortest and average route length obtained by ACGCT is
slightly shorter than that of MMGCT. The experimental
results suggest that for large-scale SDVRP-GCT instances,
MMGCT generally performs better than ACGCT.

D. EXTENDED ACO ALGORITHMS FOR REAL-WORLD
INSTANCE
In this subsection, we present how we evaluate the proposed
algorithms on a real-world instance, which we name it
‘‘Travel in China with time limits’’. This instance can be
described as follows: a traveller who lives in Xi’an, the capital
city of Shaanxi Province, the geographically central part
of China and also the depot of the SDVRP-GCT, plans
to visit all 5A-graded (the highest grade given in China)
tourism attractions across the whole country only by driving
a car. Although we select Xi’an as the only depot in this
paper, the instance can be varied easily by selecting other
cities as the depot. It is noted that when selecting a city
as the depot, we assume that the travel time required for
the city (depot) is zero. In this instance, the traveler has
only a limited time period of fifteen days for each travel
(assuming each vacation has the same maximum duration),
which is equivalent to the capacity Q of vehicles in SDVRP-
GCT, to carry out his travel plan. In this real-world instance,
customer demand is the time required to visit each city and
route consumption is the time required to drive to the next

city. The traveller only has four vacations dedicated to such
travels each year. By the end of each travel, the traveller has
to come back to Xi’an (depot) for work. The objective of
this instance is to figure out the best solution for travelling
across all tourism attractions using the least amount of time.
To model this instance, we obtained the distance information
between provincial capitals and the number of days of
staying in each 5A-graded tourism attraction from Question
F of the 2015 National Mathematical Modeling Competition
held in China.3 According to the description in Question
F, driving time does not exceed eight hours per day, and
the average speed of driving on the highway is 90 km/h.
We can approximate the time consumed en route (rounded to
half-day granularity) according to the distance information
between provincial capitals (distance information is taken
from Appendix 3 of Question F). Subsequently, the travel
time within each province (may have multiple 5A-graded
attractions) is computed as the total travelling time spent
on the road from the provincial capital to all the scenic
spots plus the time of staying in each attraction (suggested
time of stay is taken from Appendix 1 of Question F). The
computed travel time required in each province is listed
in Table 9.

The best solutions obtained by the three algorithms are
shown in Table 10. As shown, MMGCT performs better than
the other two algorithms. In the best solution obtained by
MMGCT, the traveller needs to carry out 25 trips to cover
all the attractions, i.e., he needs six and a quarter years’ time
(assuming four travels per year) to travel to all the most
attractive sceneries in China.

To further delve into the experimental results, we provide
visualizations of optimal travel routes obtained by the
three algorithms in the same region of China denoted as

3URL: https://www.shumo.com/home/html/3168.html
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FIGURE 5. Visualization of travel routes. (a) Travel routes in Region A obtained by ASGCT. (b) Travel routes in Region A obtained by ACGCT.
(c) Travel routes in Region A obtained by MMGCT. (d) Best travel routes with time limits in China obtained by MMGCT. Note that the number
alongside the routes denotes the number of days required to drive en route, the number in the circle denotes the number of days required to
visit the province, the number in the box denotes the province ID, and the same color route represents a trip.

Region A in Figure 5, wherein province IDs are 26, 27,
28, 29 and 30, respectively. The province with ID 27 refers
to Shaanxi Province (capital city Xi’an is the depot),
while the travel time required for other provinces is shown
in Table 9. The travel routes in Region A obtained by
the three algorithms are shown in Figures 5a, 5b and
5c, respectively. The travel routes obtained by ASGCT
are: 27→30→29→28→27, 27→26→28→27; the travel
routes obtained by ACGCT are: 27→30→28→29→27,
27→29→26→27; the travel routes obtained by MMGCT
are: 27→28→30→27, 27→29→26→27. The travel routes
obtained by the three algorithms show that they all need
two trips to visit these provinces. The total number of days

required to visit within these provinces (excluding time spent
between provinces) are 1 + 7.5 + 1.5 + 2.5 = 12.5. If we
useR[Algorithm] to denote the total route consumption obtained
by the corresponding algorithm, the total number of days
required to traverse through Region A are given as follows:

RASGCT = 1.5+ 1+ 0.5+ 1.5+ 5+ 4+ 1.5 = 15
RACGCT = 1.5+ 1+ 0.5+ 1.5+ 1.5+ 3.5+ 5 = 14.5
RMMGCT = 1.5+ 1+ 1.5+ 1.5+ 3.5+ 5 = 14

It can be seen that the travel time obtained by MMGCT
in Region A is the shortest, ACGCT comes in the second
and ASGCT requires the longest time. In general, MMGCT
obtains more optimized travel plans in other regions as well.
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TABLE 9. Travel time computed for each province.

TABLE 10. Results of travel in China with time limits instance.

The best travel routes with time limits in China obtained by
MMGCT are shown in Figure 5d.

VI. CONCLUSION
In this paper, we formulate the under-investigated split
delivery vehicle routing problem with goods consumed
during transit (SDVRP-GCT). Furthermore, we extended
three ant colony algorithms, namely ASGCT, ACGCT
and MMGCT, to solve SDVRP-GCT. For performance
evaluations, we apply the proposed algorithms on eighteen
widely adopted SDVRP instances with their respective
variations to SDVRP-GCT and a real-world SDVRP-GCT
instance. By analyzing the experimental results of the three
extended algorithms on different instances, we found that
these three algorithms are suitable to solve a large variety of
the SDVRP-GCT instances. Specifically, although ASGCT
requires lesser computational time, its performance is always
worse than the other two. ACGCT may performs slightly
better than MMGCT for instances with higher demand and
MMGCT not only has superior performance over ACGCT
for instances with lower demand, but also performs better
than ACGCT in large-scale instances. To the best of our
knowledge, this research is the first attempt to solve the
SDVRP-GCT problem, which provides baseline solutions
and lays the groundwork for future more in-depth research.
Going forward, we plan to conduct further research from the
following two aspects: 1) using other heuristic algorithms,
such as Genetic Algorithm, combined with ACO algorithms
to improve the solution of SDVRP-GCT, and 2) devising
more algorithms based exact algorithms, such as branch-
and-price algorithm, to solve SDVRP-GCT problem.
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