
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2020

An exact algorithm for Agile Earth Observation Satellite An exact algorithm for Agile Earth Observation Satellite

Scheduling with time-dependent profits Scheduling with time-dependent profits

Guansheng PENG

Guopeng SONG

Lining XING

Aldy GUNAWAN
Singapore Management University, aldygunawan@smu.edu.sg

Pieter VANSTEENWEGEN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Theory and Algorithms Commons

Citation Citation
PENG, Guansheng; SONG, Guopeng; XING, Lining; GUNAWAN, Aldy; and VANSTEENWEGEN, Pieter. An
exact algorithm for Agile Earth Observation Satellite Scheduling with time-dependent profits. (2020).
Computers and Operations Research. 120, 1-15.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5261

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

An Exact Algorithm for Agile Earth Observation Satellite Scheduling with Time-Dependent Profits

Guansheng Pengab, Guopeng Songac, Lining Xinga, AldyGunawand, PieterVansteenwegenb

a College of Systems Engineering, National University of Defense Technology, Changsha, 410073, China
b KU Leuven Mobility Research Center - CIB, Leuven, 3001, Belgium
c KU Leuven ORSTAT, Leuven, 3001, Belgium
d School of Information Systems, Singapore Management University, Singapore 178902

Published in Computers & Operations Research, August 2020, Volume 120, Article No. 104946
https://doi.org/10.1016/j.cor.2020.104946

Abstract

The scheduling of an Agile Earth Observation Satellite (AEOS) consists of selecting and scheduling a subset of
possible targets for observation in order to maximize the collected profit related to the images while satisfying
its operational constraints. In this problem, a set of candidate targets for observation is given, each with a time-
dependent profit and a visible time window. The exact profit of a target depends on the start time of its
observation, reaching its maximum at the midpoint of its visible time window. This time dependency stems
from the fact that the image quality is determined by the look angle between the satellite and the target to be
observed. We present an exact algorithm for the single-orbit scheduling for an AEOS considering the time-
dependent profits. The algorithm is called Adaptive-directional Dynamic Programming with Decremental State
Space Relaxation (ADP-DSSR). This algorithm is based on the dynamic programming approach for the
Orienteering Problem with Time Windows (OPTW). Several algorithmic improvements are proposed to address
the time-dependent profits. The proposed algorithm is evaluated based on extensive computational tests. The
experimental results show that the algorithmic improvements significantly reduce the required computational
time. The comparison between the proposed exact algorithm and a state-of-the-art heuristic illustrates that our
algorithm can find the optimal solutions for sufficiently large instances within limited computational time. The
results also show that our algorithm is capable of efficiently solving benchmark OPTW instances.

Keywords
Agile satellite scheduling, Time-dependent profits, Dynamic programming, Decremental state space relaxation

1. Introduction

The Agile Earth Observation Satellite (AEOS) belongs to a new generation of imaging platforms to acquire images
of targets on the Earth surface in response to observation requests, playing an increasingly important role in
resource exploration, disaster alerts, climate change analysis, and other applications Liu et al. (2017). The
scheduling of an AEOS corresponds to scheduling a set of weighted observations with the objective of maximizing
the total collected profit associated with each observation, while satisfying the operational constraints.

The AEOS can be mobile on three axes (roll, pitch and yaw), thus allowing maneuverability for image acquisitions
and transitions between every two consecutive observations. The maneuverability of the roll angle allows the
observations of targets located at two sides of the sub-satellite point in a certain range. The mobility of the pitch
angle enables the satellite to observe targets before or after the upright pass (called the “nadir point”), as can be
seen in Figure 1. The agility associates each target with a long time window, called the Visible Time Window
(VTW). Note that observing a target at different moments during its VTW corresponds to different pitch angles,
and observing different targets corresponds to different roll angles. For example, in Figure 1, observation 1 and 2
have different pitch angles towards target 1, and observing target 1 and 2 at their own nadir points corresponds to
different roll angles. For each pair of consecutive observations, a transition time is required to finish the
maneuverability process. The length of the transition time is proportional to the angular changes on the three axes,
and therefore the transition time depends on the start times of these two consecutive observations. The regular
AEOS scheduling consists of the selection and sequencing of possible targets to be observed, satisfying the VTW
constraints and the time-dependent transition time constraints.

https://doi.org/10.1016/j.cor.2020.104946

2 G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946

Fig. 1. An agile satellite images a target at different start times on orbit 1.

In this paper, we consider an additional time-dependency fea-

ture for the AEOS scheduling, which is the time-dependent profits.

It is due to the fact that a satellite image acquired at the nadir

point has a higher image quality than those taken at the side of

the VTW. The time-dependent profits significantly increase the so-

lution space since the exact start time of each observation be-

comes important. This makes the problem much more difficult to

solve. The AEOS scheduling can be classified into two categories:

the single-orbit scheduling and the multiple-orbit scheduling prob-

lems. An orbit is defined as the time interval that the satellite

flies in the sunshine while circling the earth once. Thus, a satel-

lite can orbit the Earth many times during a long-term period

and thereby each target may have multiple VTWs during multi-

ple orbits. Scheduling multiple orbits directly is needed in prac-

tice, but a very complex problem due to the huge solution space.

A simplification can be made by using a two-stage model: firstly,

the targets are allocated to different orbits; secondly, the single-

orbit scheduling is conducted for each orbit. Some previous work

He et al. (2018) ; Xiaolu et al. (2014) proposed to use this two-

stage model in order to address multiple-orbit or multiple satel-

lite scheduling, but none of them can solve the problem exactly or

even provide the optimality gap. In order to obtain optimal solu-

tions (or provide an optimality gap), a branch and price framework

coupled with a column generation technique could be applied, us-

ing a similar idea of the two-stage model. The implementation of

this exact framework requires an efficient and exact algorithm for

solving its pricing subproblem, namely the single-orbit scheduling.

Thus, an exact and efficient method for the single-orbit scheduling

is crucial for multiple-orbit scheduling. Additionally, the algorithm

for the single-orbit scheduling can also be applied in the schedul-

ing with meteorological uncertainty where multiple observations

for each target are allowed Wang et al. (2019) . Given these crucial

methodological and practical values, this work focuses on develop-

ing an efficient and exact algorithm for the single-orbit scheduling.

The main contributions of this paper are threefold: (1) we

present the first exact algorithm for the single-orbit AEOS schedul-

ing with time-dependent profits based on a Dynamic Programming

(DP) approach; (2) several algorithmic improvements for the DP

are proposed to address the time-dependent profits and reduce the

computational time; (3) extensive experimental results prove the

effectiveness of the proposed algorithm, and offer benchmark in-

stances and solutions for future researchers.

The remainder of this paper is structured as follows.

In Section 2 , we provide an extensive literature review.

Section 3 presents the problem description and mathematical

formulation. In Section 4 , a novel labeling algorithm based on

Dynamic Programming (DP) and Decremental State Space Relax-

ation (DSSR) is proposed to tackle this problem. Section 5 gives

the experimental results, and concluding remarks are provided in

Section 6 .

2. Literature Review

Due to the computational difficulty of the AEOS scheduling,

most of the previous works focuses on developing heuristics for

this problem, but very few of them compare the performance

of their algorithms with each other. Differences in physical de-

sign and ability parameters lead to large differences between the

AEOS instances in different countries regarding capability, con-

straints and management. Furthermore, plenty of constraints and

features in the AEOS scheduling make the different models dif-

ficult to compare. For instance, some research may ignore the

time dependency of the transition time by using a fixed length of

time Bianchessi et al. (2007) ; Wang et al. (2011) ; Wei-Cheng Lin

et al. (2003) , and some work uses a so-called semi-agile satel-

lite whose look angles remain fixed during image acquisition

Gabrel et al. (1997) .

A variety of meta-heuristics and heuristics has been pro-

posed for various AEOS scheduling problems. Lemaître et al.

Lemaître et al. (2002) design four heuristic algorithms including

a greedy algorithm, a local search algorithm, a dynamic program-

ming algorithm and a constraint programming approach. Note that

the latter two algorithms only solve a simplified version of the

problem with fixed transition times. Some meta-heuristic meth-

ods are proposed, including tabu search Bianchessi et al. (2007) ;

Cordeau and Laporte (2005) ; Habet et al. (2010) ; Lin et al. (2003) ,

simulated annealing Dilkina and Havens (2005) ; Li et al. (2007) ,

genetic algorithms Li et al. (2007) ; Wolfe and Sorensen (2000) ,

a priority-based constructive algorithm Wang et al. (2011) ;

Wolfe and Sorensen (20 0 0) ; Xu et al. (2016) and an adaptive large

neighborhood search algorithm He et al. (2018) ; Liu et al. (2017) .

Until now, very few exact algorithms have been proposed

in the literature for these kinds of problems. Bianchessi et al.

Bianchessi et al. (2007) present a column generation algorithm

to solve a linear relaxation of the problem and give the upper

bound. However, the authors do not mention how to model the

time-dependent transition time in the pricing problem. Wang et al.

Wang et al. (2011) propose a mixed integer programming (MIP)

model, where each VTW is split into only three fixed observa-

tions with each a specific pitch angle. As a result of this oversim-

plified approximation, the transition times can be pre-computed

and thus the solution space is significantly reduced. This model

is then solved by CPLEX, but only for very small instances. Chen

et al. Chen et al. (2019) build a MIP model for multiple satellite

scheduling. In their model, the transition times are displaced by

their upper bounds, i.e., the maximum possible transition times.

Thus, the time-dependency of transition times is ignored. In this

work, the time-dependent transition times are taken into account

in our proposed exact algorithm.

Moreover, very limited attention has been paid to the AEOS

scheduling with time-dependent profits. The time-dependent prof-

its feature arises from the fact that the profit of an observa-

tion, i.e., the image quality, highly depends on the start time.

Wolfe and Sorensen Wolfe and Sorensen (20 0 0) associate each

G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946 3

VTW with a particular quality function, where the duration of

an observation is not fixed and can influence its profit. Liu et al.

Liu et al. (2017) model the image quality on a ten-level scale

over its VTW. The profit of each observation is fixed but can only

be awarded when it satisfies the minimum quality requirement.

This minimum quality requirement, however, is irrelevant to the

scheduling, since the VTWs can be reduced beforehand to the part

that guarantees enough quality. Peng et al. Peng et al. (2019) model

the time-dependent profits in a form where for each observation,

the maximal profit is collected in the middle of its VTW, and half

of the maximal profit is collected at the edge. They propose an it-

erative local search heuristic coupled with a bidirectional dynamic

programming approach to address the problem. However, since no

exact algorithms have been presented for this problem before, no

guarantee for their solution quality can be provided. In the current

paper we develop an exact optimization technique to find the op-

timal solutions for the scheduling problem with time-dependent

profits. To evaluate the performance, we utilize the same time-

dependent profit model and benchmark instances proposed in

Peng et al. (2019) (the instances are available at https://www.

mech.kuleuven.be/en/cib/op/opmainpage#section-32). It should be

noted that we focus on single-orbit scheduling, while the work in

Peng et al. (2019) addresses multiple orbits.

In the Vehicle Routing Problem with Time-Dependent Rewards

Yi (2003) and the Orienteering Problem with Time-Dependent Re-

wards Ekic et al. (2009) ; Erkut and Zhang (1996) , the profit of

each vertex monotonously decreases over time, which arises from

some real-life applications. For example, the blood transportation

problem searches the best route to visit blood collection points

while keeping the collected blood as fresh as possible. In this case,

the vertex can be naturally scheduled as early as possible. This

monotonous model also corresponds to a special case of “soft time

windows” where a penalty for a late visit is imposed, and visits

during a certain time window have no impact on the collected

profit. However, our work considers a non-monotonic profit func-

tion according to the practical need for satellite images. To the best

of our knowledge, no exact techniques have been proposed to ad-

dress the time-dependent profits with non-monotonic profit func-

tion.

When the time-dependent profits are not considered, the prob-

lem considered is very similar to that of the Orienteering Prob-

lem with Time Windows (OPTW) Duque et al. (2015) ; Righini and

Salani (2009) , where an observation of a satellite can be regarded

as a visit to a vertex and the transition time corresponds to the

travel time between each pair of vertices. The objective of the

OPTW is to maximize the collected profits associated with the vis-

ited vertices, while satisfying the time window constraints and the

elementary path constraint (i.e., each vertex can be visited at most

once). It can also be formulated as a special case of an Elementary

Shortest Path Problem with Resource Constraints (ESPPRC) where

the travel time is regarded as a resource consumption. The ESPPRC

is a general and fundamental NP-hard network optimization prob-

lem, often encountered as a subproblem of more complicated rout-

ing problems such as the Vehicle Routing Problem (VRP) and the

Team Orienteering Problem (TOP). Several exact techniques have

been proposed to solve these problems to optimality. Given the

similarities between the OPTW and the ESPPRC, we exploit the

same exact methodology as in Righini and Salani (2009) to solve

the AEOS scheduling problem without time-dependent profits. Sev-

eral algorithmic improvements are presented to address the time-

dependent profits, and tested on the AEOS instances developed in

Peng et al. (2019) . Based on the similarities with the OPTW and

given the availability of experimental results for exact techniques

on the OPTW, these instances and results will also be used to eval-

uate the performance of our exact algorithm, when it is applied to

instances without time-dependent profits.

3. Problem description

As the inputs of the scheduling, a set of possible targets T with

each a given geographic position and a maximum profit, based on

requests by different users. A visibility analysis based on the geo-

graphic position and the satellite’s track is pre-processed to gener-

ate a set of VTWs for the possible targets. During each orbit, each

visible target i corresponds to a VTW, denoted by [st i , et i] where

st i and et i are the window start time and the window end time.

The visibility analysis provides for each VTW the required look an-

gles (roll, pitch and yaw angles) for observation per second. The

roll angle describes the rotation of the camera (or the satellite) to-

wards the associated target around the satellite’s centerline while

the pitch angle controls the nose of the satellite to move up or

down, as can be seen in Figure 1 . The yaw angle determines the

circular (clockwise or counter clockwise) movement around the

axis vertical to the Earth surface. The duration of observing tar-

get i is also given by users, denoted by d i . Notations of this study

are summarized in Table 1 .

The objective of this problem is to maximize the total profit

collected by observing a subset of the possible targets. The higher

the image quality, the higher profit the observation has. In prac-

tice, the best image quality is obtained at the nadir point where

the satellite observes a target directly below and its pitch angle

is equal to zero. In general, the image quality is negatively cor-

related to the absolute value of the pitch angle. Figure 2 (a) illus-

trates that the pitch angle nonlinearly decreases over time during

a VTW. Thus, for a complete VTW, the maximum profit of the cor-

responding target is collected at the midpoint and the least profit

is collected at the edge. We use the same profit function as pro-

posed in Peng et al. (2019) . We define a discrete decision vari-

able t i (t i ∈ { st i , st i + 1 , ..., et i }) to represent the start time of target

i . Then the exact profit of a target i scheduled at moment t i is cal-

culated as follows:

p i (t i) = P i · (1 − | π(t i) |
90

) , (1)

where π (t i) is the pitch angle at moment t i , and P i is the maxi-

mal profit of target i that can be collected. Here we assume the

maximal pitch angle of the satellite used is 45 ◦. Figure 2 (b) shows

the ratio of the exact profits over the maximum profit for differ-

ent moments. According to this, observations with the worst image

quality at the edge of the VTW can still have half of the maximal

profit. Note that this accumulated profit function is a non-linear

function and cannot be explicitly expressed since the input data of

the pitch angle is given in a discrete form (per second) and it also

changes nonlinearly, as shown in Figure 2 (a).

This problem mainly considers two specific constraints: first,

each observation of a target should be scheduled during its VTW

(called visible time window constraint); second, for each pair of

consecutive observations, a transition time is required to maneu-

ver the look angle of the camera from the previous observation to

the next observation. However, this transition time cannot be eas-

ily pre-computed, since its duration depends on the total change

of the look angles between these two consecutive observations.

The calculation equation of the transition time is given as follows

Peng et al. (2019) :

trans (�g) =

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

11 . 66 , �g ≤ 10

5 + �g/ v 1 , 10 < �g ≤ 30

10 + �g/ v 2 , 30 < �g ≤ 60

16 + �g/ v 3 , 60 < �g ≤ 90

22 + �g/ v 4 , �g > 90

, (2)

where v 1 , v 2 , v 3 , v 4 are four different angular transition velocities,

which are given as the parameters of the satellite. For the satel-

lite we consider, the angular velocity values are v 1 = 1 . 5 ◦/s, v 2 =

2 ◦/s, v 3 = 2 . 5 ◦/s, v 4 = 3 ◦/s . �g represents the total change of the

https://www.mech.kuleuven.be/en/cib/op/opmainpage#section-32

4 G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946

Table 1
Notations

T set of possible targets
i, j target index, i, j ∈ T ∪ { s, e }, in which s, e are virtual source target and sink target
[st i , et i] visible time window for target i
P i maximum profit of target i
t i start time of the observation for target i , decision variable
p i (t i) exact profit collected at moment t i for target i
d i duration of observing target i
γ , π , ψ roll, pitch and yaw angles
�g total change of the look angles for a transition of the camera
trans (�g) transition time with respect to the total change of the look angles
mintrans ij (t i) minimal transition time between the observations of target i and j while observing target i at moment t i

Fig. 2. The change of pitch angle (a) and the profit function (b) for a VTW.

look angles between two consecutive observations and calculated

by �g = | �γ | + | �π | + | �ψ | , where �γ , �π and �ψ are the

change of the roll angle, the pitch angle and the yaw angle. The

roll angle only depends on the geographical locations of targets

relative to the satellite track and thereby the change of the roll an-

gle between each pair of targets is fixed and can be pre-computed.

The agile satellite used in this study is a semi-agile satellite which

has no mobility on the yaw axes. Thus, the yaw angle is fixed

to zero. As discussed above, the pitch angle nonlinearly decreases

during a VTW (see Figure 2 (a)), which indicates that the transition

time between two consecutive observations depends on their start

times. Peng et al. Peng et al. (2019) illustrate this time-dependency

in detail. They present the “minimal transition time” (denoted by

mintrans ij (t i)) to replace the actual transition time, only depend-

ing on the start time of the previous observation. The minimal

transition time for each pair of VTWs at each possible start time

can be efficiently pre-computed based on a dichotomy algorithm

Peng et al. (2019) . Another issue is that either the transition time

or the minimal transition time follow the First-In-First-Out (FIFO)

principle, regardless their time-dependency. It means that the later

the previous observation takes place, the later the next observation

can start. Furthermore, the triangle inequality is satisfied in this

study, indicating that executing an additional observation between

two observations consumes more transition time in total.

3.1. Assumptions

Since the AEOS scheduling problem has lots of constraints that

could be considered, two assumptions are made to ignore some

non-significant issues:

1) The satellite has sufficient on-board power and memory for

each orbit.

2) The targets considered are all spot targets which can be ob-

served in one pass. This assumes that larger Polygon targets

are transferred into several independent spot targets with

each a duration.

3.2. Integer Linear Programming Model

Considering the time-dependent profits, two decisions should

be made in the model: first, the selection and sequence of the

possible targets; second, the start times of all the scheduled tar-

gets. Since the profit function of each target is given in a discrete

form (per second), we define a binary variable y it (t ∈ { st i , st i +

1 , ..., et i }) to indicate at which moment the observation of target

i starts. When target i is scheduled at moment t , then y it = 1 ;

otherwise, y it = 0 . Thus, the decision variable t i can be written as

t i =
∑ t= et i

t= st i
t · y it with

∑ t= et i
t= st i

y it = 1 . The profit function of target i

can be expressed as
∑ t= et i

t= st i
p it · y it , where parameter p it equals to

p i (t) (t ∈ { st i , st i + 1 , ..., et i }) . In addition, we define another deci-

sion variable x ij which takes the value one when target j is ob-

served immediately after target i and zero otherwise. The integer

linear formulation of the single-orbit AEOS scheduling can be ex-

pressed as follows:

Maximize
∑

i ∈ V

t= et i ∑

t= st i

p it · y it (3)

∑

j∈ V ∪ e
j � = i

x i j =
∑

j∈ V ∪ s
j � = i

x ji =

t= et i ∑

t= st i

y it , ∀ i ∈ V (4)

∑

j∈ V
x s j = 1 (5)

∑

j∈ V
x je = 1 (6)

G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946 5

t= et i ∑

t= st i

t · y it + d i + mintrans i j (

t= et i ∑

t= st i

t · y it)

−
t= et j ∑

t= st j

t · y jt ≤ M(1 − x i j) , ∀ i, j ∈ V (7)

t= et i ∑

t= st i

y it ≤ 1 , ∀ i ∈ V (8)

x i j ∈ { 0 , 1 } , y it ∈ { 0 , 1 } , ∀ i, j ∈ V ∪ { s, e } . (9)

The objective function (3) aims to maximize the total profit of

the scheduled targets. Constraints (4) are the flow balance con-

straints and the elementary path constraints, and build the con-

nection between variable x ij and y it , meaning that once a target is

selected for observation, its start time should be determined. Con-

straints (5) and (6) express that the solution starts from the virtual

source target s and ends at the virtual sink target e . Constraints

(7) and (8) impose the transition time constraints and the visible

time window constraints. Constraints (8) stipulate that at most one

start time should be determined for each target. The domains of

decision variables are defined in constraints (9) .

4. Adaptive-directional Dynamic Programming with

Decremental State Space Relaxation

When the time-dependent profits are not considered, our prob-

lem can be formulated as the OPTW or the ESPPRC which have

been identified to be NP-hard in the strong sense Dror (1994) .

The time-dependent profits create an additional difficulty since the

start times of observations can also influence the objective value.

Therefore, our AEOS scheduling problem with time-dependent

profits is also strongly NP-hard.

Due to the similarity between our satellite scheduling prob-

lem and the ESPPRC or the OPTW, some existing exact solution

techniques for the ESPPRC and the OPTW can also be applied

to our problem. The most commonly used exact method is Dy-

namic Programming (DP), based on the work by Desrochers et al.

Desrochers et al. (1990) . The DP, using a labeling algorithm, builds

new paths (encoded by “labels”) starting from the virtual source

vertex, by extending paths one-by-one into all feasible directions.

A dominance rule is applied for each pair of labels associated with

the same vertex to fathom unpromising labels that cannot lead to

the optimal solution. The elementary path constraint is imposed

by adding a dummy vertex resource to each vertex which can be

consumed by the visitation of labels. However, the introduction

of dummy vertex resources increases the dimension of the state-

space, which results in the low efficiency of DP.

The DP technique for the OPTW is improved by the work of

Righini and Salani Righini and Salani (2009) . They propose a Bidi-

rectional Dynamic Programming with Decremental State Space Re-

laxation (BDP-DSSR) to tackle the OPTW efficiently. The labels are

extended simultaneously in both the forward and backward direc-

tion, and stopped at the “half-way” of the path. This corresponds

to half of the latest allowed arrival time to the depot. Afterwards,

the forward and backward sub-paths are matched to produce com-

plete paths, guaranteeing their feasibility. To speed up the search,

a so-called Decremental State Space Relaxation (DSSR) technique

is employed to repeatedly solve a relaxation of the OPTW through

DP, ignoring the elementary path constraint. In particular, a “criti-

cal vertex set” is introduced and augmented at each iteration with

the vertices visited more than once in the optimal solution of the

relaxed problem. Multiple visits are forbidden on these critical ver-

tices at the current iteration. The procedure terminates when the

optimal path of the relaxed problem turns out to be elementary.

In this paper, we present an Adaptive-directional Dynamic Pro-

gramming with Decremental State Space Relaxation (ADP-DSSR) al-

gorithm to tackle our satellite scheduling problem, including the

time-dependent profits. The ADP-DSSR algorithm is derived from

the BDP-DSSR, but several improvements are made in order to ad-

dress the time-dependent profits feature and accelerate the search.

The four improvements are partial dominance, merging labels, de-

tour pruning and the adaptive-directional extension. The adaptive-

directional extension means that both the forward and backward

extensions of labels are considered, but the direction processed is

adaptively determined according to the intermediate results.

Hereafter we give the details on the extension rule, the domi-

nance test and the matching procedure. Then, the DSSR technique

is illustrated. Afterward, the four improvements are discussed in

detail.

4.1. Dynamic Programming

The Bidirectional DP algorithm consists of three parts: the def-

inition of states, labels and their extension rules, the dominance

rule and the matching procedure.

4.1.1. States, labels and extension

The single-orbit scheduling problem without time-dependent

profits can be regarded as solving an OPTW in an undirected graph

G = (V, E) with a set of vertices V and a set of edges E , where

each target with its VTW corresponds to a vertex with its time

window and the minimal transition time corresponds to the travel

time. Two virtual targets are introduced as source vertex s and

sink vertex e . Due to the time dependency of the minimal tran-

sition time, the travel time for each pair of vertices depends on

the start time of the previous vertex. This time-dependent travel

time has been defined in a variant of the OPTW, namely the Time-

Dependent Orienteering Problem with Time Windows (TD-OPTW).

However, since the FIFO principle and the triangle inequality are

satisfied for this time-dependency, solving this TD-OPTW is equiv-

alent to solving an OPTW while using the DP method except for

one difference: when extending labels (paths) between the same

pair of vertices with different leaving times, the travel times are

different. To avoid the confusion, we adopt the definitions and con-

cepts of the DP methology for the OPTW in the remainder, which

can be referred in Righini and Salani (2009) .

For each vertex i ∈ V , we associate a group of forward labels

and backward labels. A forward label L represents a path starting

from source vertex s and ending at the current associated vertex.

A backward label represents a path starting from the sink vertex

e and ending at its associated vertex. A forward label can be ex-

pressed as a tuple L = (R L , i, es L , P L (t) , path (L)) where R L represents

a binary vector to indicate which vertices cannot be visited any-

more, i is the associated vertex, es L is the earliest possible start

time of L on vertex i, P L (t) represents its accumulated profit func-

tion, and path (L) is the path corresponding to label L , composed

by a sequence of visited vertices. The backward label has the same

components as the forward one except the earliest start time es L .

It uses ls L to indicate its latest possible start time on its associated

vertex. The DP algorithm extends the forward labels from source

vertex s to its successors and the backward labels from sink vertex

e to its predecessors. In what follows, we explain the components

in the tuple and their updating rules for a forward extension from

label L associated with vertex i to label L ′ associated with vertex j .

Considering the time-dependent profits, for a given path, choos-

ing different start times of the visited vertices may correspond

to different collected profits. Thus, we define a group of states

6 G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946

for each label. Each state represents the path of the associated

label, arriving at a possible start time and collecting a maxi-

mal accumulated profit along the path up to that start time.

A state ω associated with L can be indicated by a tuple ω =

(R ω , i, t(ω) , p ω , path (ω)) where t (ω) represents the start time of

the state, R ω is same to R L and p ω is equal to P L (t (ω)) indicating

the accumulated profit of the state, and path (ω) is the correspond-

ing path. In our algorithm, the states are recorded by a discrete

“accumulated profit function” P L (t), where t ∈ { es L , es L + 1 , ..., et i }
for a forward label and t ∈ { st i , st i + 1 , ..., ls L } for a backward label.

Each state corresponds to a certain data point in the accumulated

profit function. The accumulated profit describes the trade-off be-

tween the collected profits and the consumed time, using a se-

ries of data points (also called “trade-off” curve). A similar appli-

cation of this “trade-off” curve in the DP for the Time-Dependent

Vehicle Routing Problem with Time Windows (TD-VRPTW) is the

ready time function which describes the time consumption of the

associated path with respect to the departure time at the depot

Dabia et al. (2013) .

For a forward extension from label L on vertex i to label L ′ to

vertex j , the accumulated profit function is updated according to

the formula

P L ′ (t j) = max t i { P L (t i) | Ear liestStar tT ime i j (t i) ≤ t j , es L ≤ t i ≤ et i }
+ p j (t j) , (10)

where EarliestStartTime ij (t i) represents the earliest start time on

vertex j when leaving vertex i at moment t i . The calculation of

the earliest start times between each pair of vertices can be pre-

processed, referring to the work by Peng et al. Peng et al. (2019) .

This extension is feasible only if EarliestStartTime ij (es L) ≤ et j .

Then the earliest start time es L ′ of label L ′ is updated to

EarliestStartTime ij (es L). An improved update method of the accumu-

lated profit function is presented by Peng et al. Peng et al. (2019) .

According to this update equation, the accumulated profit function

of a forward label may not be a non-decreasing function. However,

the states with lower profits and more consumed time are dom-

inated by the states of the same label with the higher (or same)

profits and less consumed time. Hence, these dominated states are

replaced by the dominating ones, resulting in a non-decreasing ac-

cumulated profit function. Once a state is chosen for a given label,

the start times of other visited vertices can be easily determined

by applying a backtracking algorithm.

To avoid a cyclic visit, a dummy vertex resource is associated

with each vertex i in the graph: each vertex only has one unit

of the resource and it is consumed when the vertex is visited.

The consumption of the dummy vertex resources is indicated by

a vector S (visitation resources vector) with | V | entries initialized

at 0. Note that S does not keep any information about the order of

the visited vertices. With this definition of vector S , a label cannot

dominate another label if the label has visited more vertices. Feillet

et al. Feillet et al. (2004) present an “unreachable vertex vector” to

replace the visitation vector. Vertices that either has been visited

or cannot be visited due to resource limitations are identified to

be unreachable. In our problem, a vertex j is unreachable from a

label L = (R L , i, es L , P L (t)) when path (L) includes vertex j or when

its time window would be violated by any visit starting from L ,

that is es L + d i + mintrans i j (es L) > et j . If label L cannot reach vertex

j directly, no other paths extended from path (L) can reach vertex j

since the triangle inequality holds for the time-dependent transi-

tion time. We denote the unreachable vertex set by a binary vector

R with | V | entries. The update rule of vector R for a forward exten-

sion from L to L ′ is

R k L ′ =

{
R k L + 1 , k = j

R k L , k � = j
(11)

Afterwards, for each unvisited vertex, we check whether the cur-

rent label can visit that vertex and update the corresponding ele-

ment in vector R L ′ .
The extension rules for backward labels are symmetrical to

what has been presented before. We define the time window

[st bw
i , et bw

i] as the backward time window of vertex i : it is ob-

tained by adding the duration of service d i to the forward time

window [st i , et i]. The backward extension is feasible only if

LatestStartT ime i j (ls L) ≥ st bw
j where ls L is the latest start time of L

and LatestStartTime ij (ls L) calculates the latest start time on vertex j

when leaving vertex i at moment ls L .

To illustrate how the extension rules work, a small example of

the forward extension with 3 vertices and 2 labels is presented

in Figure 3 . The number in the circle is the vertex index and the

number on the line is its travel time. The orange directed lines

represent label L 1 starting from vertex 1 and reaching vertex 3

through vertex 2. The blue directed line represents label L 2 reach-

ing vertex 3 directly from vertex 1. The time windows and the ex-

act profits during the VTWs of these three vertices are shown in

the table (a). The accumulated profit functions of the two labels

are reported in table (b). Each cell in table (b) represents a state

of its corresponding label. When generating label L 2 from vertex

1 to vertex 3, the accumulated profit of label L 2 at t 3 = 5 is cal-

culated by P L 2 (5) = max { p 1 (1) , p 1 (2) } + p 3 (5) = 2 + 3 = 5 , where

L 2 arrives at t 3 = 5 only when it visits vertex 1 with t 1 ≤ 2. Like-

wise, the accumulated profit of label L 2 at t 3 = 7 can be calculated:

P L 2 (7) = max { p 1 (1) , p 1 (2) , p 1 (3) , p 1 (4) } + p 3 (7) = 3 + 1 = 4 . Since

it can be dominated by its previous states, its accumulated profit

is replaced by 5. When we compare label L 1 and L 2 , the states of

these two labels with the same value of start time are compared.

Dominance rules are applied for this comparison and will be dis-

cussed in the next subsection. If the rules are satisfied, the dom-

inated states will be discarded and the non-dominated states are

stored. In this example, the numbers in table (b) displayed in bold

correspond to the non-dominated states.

4.1.2. Dominance rules

Dominance tests are performed to reduce the number of states

and labels generated by extending paths to other vertices. It is ex-

ecuted between a newly generated label and each stored label as-

sociated with the same vertex. The labels that cannot lead to the

optimal path will be dominated and removed during the search. In

our case, for a given label, different start times (states) correspond

to different profits. Thus, the dominance test will delete parts of

the accumulated profit function (a group of states) according to

the dominance rules. If all the states of a label are deleted, the

label will be removed from the label list to be extended.

We assume that label L 1 and label L 2 associated with the

same vertex i are compared for dominance testing. Let ω L 1 =

(R L 1 , i, P L 1 (t 1) , t 1) be a state of label L 1 at moment t 1 and ω L 2 =

(R L 2 , i, P L 2 (t 2) , t 2) be a state of label L 2 at moment t 2 . The former

state dominates the latter state only if {
R L 1 ≤ R L 2 ,

P L 1 (t 1) ≥ P L 2 (t 2) ,
t 1 ≤ t 2

(12)

and at least one of the inequalities is strict. Due to the first rule

(called “unreachable vector condition”), this dominance test needs

to enumerate and compare each element of the unreachable vec-

tor R , which consumes a large computational time. An efficient im-

provement is adding a variable q L =
∑ | V |

k =1 R
k
L to record the number

of unreachable vertices. If q L 1 ≥ q L 2 , label L 1 is impossible to dom-

inate label L 2 . Once the dominance test succeeds, the dominated

states are discarded and the corresponding data points in the ac-

cumulated profit function are removed. If there exists some states

surviving the test, the newly generated label will be stored into the

G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946 7

Fig. 3. An illustration for states, labels and their forward extensions.

unextended label list. Meanwhile, the unextended labels associated

with the corresponding vertex will be checked by the new label to

delete their dominated states in the similar way.

4.1.3. Matching procedure

In this procedure, forward and backward labels are matched

together to yield a complete path from vertex 0 to vertex

| V | + 1 . Let L f = (R L f , i, es L f , P L f (t)) be a forward label and L b =

(R L b , i, ls L b , P L b (t)) be a backward label. Both these two labels are

associated with vertex i . The matching operation can be accepted

only if it satisfies the following feasibility conditions: {
R k L f

+ R k L b
≤ 1 , ∀ k ∈ V

es L f + d i ≤ ls L b
(13)

If feasible, the maximal collected profit of the newly matched

path can be calculated by:

P max = max { P L f (t) + P L b (t) − p i (t) , es L f ≤ t ≤ ls L b } (14)

After matching all the forward and backward labels, the opti-

mal solution is the feasible and complete path with the highest

collected profit. This process requires to enumerate all the combi-

nations of the forward and backward labels. Note that if we only

performs the forward (backward) extension, only the sink (source)

vertex needs to be checked for the matching procedure.

4.2. Decremental State Space Relaxation

The Decremental State Space Relaxation (DSSR) is proposed by

Righini and Salani Righini and Salani (20 08, 20 09) , with the idea

of iteratively reducing the relaxation of the state space of the prob-

lem. Boland et al. Boland et al. (2006) present a similar idea, but

refer to it as the State Space Augmenting algorithm. The basic idea

of this technique is to solve a relaxation of the primal problem

with DP where the elementary path constraints are ignored for all

the vertices. Then this relaxation is iteratively tightened by impos-

ing the elementary path constraints on a subset of vertices step by

step. To be specific, we define � as the critical vertex set in which

vertices can be visited at most once and are considered in the un-

reachable vector condition in the DP. � is initialized to be empty,

allowing multiple visits to all the vertices. If the optimal solution

of this relaxation is elementary, then it is also the optimal solu-

tion for the original problem; otherwise, some vertices that appear

more than once in the solution should be inserted into � to re-

duce the relaxation. This procedure is repeated until the obtained

solution is elementary.

Righini and Salani Righini and Salani (2008) present three dif-

ferent strategies of inserting vertices into � and find that there is

no clear dominance between these strategies. Our preliminary ex-

periments found that the MO-ALL strategy, which inserts all the

duplicate vertices appearing in the optimal solution, is most effec-

tive, since it can greatly reduce the number of iterations with only

adding very few “unnecessary” vertices into �. Righini and Salani

also present some initialization heuristics for the critical vertex set

� in order to reduce the number of iterations and the computa-

tional time. However, these heuristics do not perform very well in

our instances, probably because of some special characteristics of

our instances such as the time-dependent transition time and the

highly overlapping time windows. Therefore, we do not use any

initialization heuristic in our algorithm.

4.3. Algorithmic improvements

In this section, we introduce four algorithmic improvements to

accelerate the solution procedure.

4.3.1. Partial Dominance rule

A full and strict dominance rule is introduced in Section 4.2 ,

where the dominance test can be passed only if all the conditions

are satisfied. For instance, when checking if label L 2 is dominated

by label L 1 associated with vertex i , the condition R L 1 ≤ R L 2 should

be reached; otherwise, the states of L 1 can not be dominated even

though the other two conditions are reached. The unreachable vec-

tor is associated with its label and does not depend on the start

times (or the states) of that label. This full dominance rule is com-

monly used in some approaches proposed for variants of rout-

ing problems such as the TD-VRPTW Dabia et al. (2013) and the

Vehicle Routing Problem with Soft Time Windows (TD-VRPSTW)

Liberatore et al. (2011) . However, even if the unreachable vector

condition is not satisfied, some states can still possibly be com-

pared.

Suppose that there are two labels L 1 and L 2 associated with ver-

tex i. L 1 has visited vertex k but L 2 has not, and thus their un-

reachable vectors satisfy R k
L 1

> R k
L 2

. We further assume that for any

m ∈ V \ { k }, R m
L 1

≤ R m
L 2

. When checking if L 2 is dominated by L 1 , the

full dominance test fails because R L 1 ≤ R L 2 is not satisfied. How-

ever, label L 1 and L 2 can still be compared for the states with their

start times satisfying t ≥ UT k
i , where UT k

i corresponds to the earli-

est time when vertex i cannot visit vertex k due to the time win-

dow constraints. With this dominance rule, the points correspond-

ing to the dominated states in the accumulated profit function will

be removed and will not be considered in further steps. We refer

to this dominance rule as the Partial Dominance Rule.

To efficiently implement this idea, we define a vector UT i with

N entries for each vertex i . For any moment t ≥ UT k
i , vertex i can-

not reach vertex k due to the time windows constraints. These vec-

tors can be pre-calculated before running the algorithm in order to

reduce the computational time. In the dominance test of L 2 with

L 1 , we only check the states whose start times are later than mo-

ment ˜ UT (L 1 , L 2) = max { UT k
i | R k

L 1
> R k

L 2
, ∀ k ∈ N} . While R L 1 ≤ R L 2 is

satisfied, ˜ UT (L 1 , L 2) equals to es L 2 , meaning that all the states in

L 2 can be checked by L 1 . By doing so, some states or labels which

8 G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946

cannot lead to an optimal path will be pruned and the total num-

ber of generated labels in DP can be significantly reduced.

4.3.2. Merging Labels

In general, the effectiveness of the DP algorithm heavily de-

pends on the number of states generated. In addition to fathom-

ing labels with the dominance test, another approach to reduce

this number in our algorithm is to merge labels whose unreachable

vectors have the same values. Specifically, we assume that state ω 1
belongs to label L 1 and state ω 2 belongs to label L 2 , and R L 1 = R L 2 .

If ω 1 and ω 2 have the same start time, one of them will be re-

moved due to the dominance test; otherwise, these two states can

be stored in the same label even though they correspond to differ-

ent paths. By grouping all the states from L 1 and L 2 in the same

label (either L 1 or L 2), another label will no longer need to be ex-

tended. This merging process requires to insert all the data points

in the accumulated profit function from one label to the function

in another label. In this way, the total number of the states and la-

bels generated will be significantly reduced. For each combination

of unreachable vector R with respect to a certain vertex, at most

one label is recorded in memory. It should be noted that after us-

ing this procedure, each label may corresponds to multiple labels

since the states of the combined label come from different initial

labels.

When combining the merging operation with the partial domi-

nance rule, we merge label L 2 into label L 1 only if es L 2 ≥ ˜ UT (L 1 , L 2) .

This is because the states of L 2 with t < ˜ UT (L 1 , L 2) cannot be com-

pared, limited by the unreachable vector condition in the dom-

inance rule. The merging operation is processed for each unex-

tended label with the current label after applying the partial dom-

inance test.

4.3.3. Detour pruning strategy

In a recent work Duque et al. (2015) , a pruning strategy is pro-

posed to accelerate the DP in a so-called “pulse algorithm” (simi-

lar to branch-and-bound) for solving the OPTW. The main idea is

that when directly extending a label L from vertex i to j satisfy-

ing es L ≤ st j , if there exists a feasible detour path (L) ∪ { k } ∪ { j } and

its arrival time to vertex j is still less than st j , then this direct ex-

tension to vertex j can be ignored and vertex k is called a detour

vertex for arc (i, j). This is because at least one path to vertex j

can dominate the label directly extended from label L , which is

the path path (L) ∪ { k } ∪ { j }. We first apply this strategy to the label-

ing algorithm with the DSSR technique and illustrate its adaption

on the forward extension in the reminder of this section. Note that

in our problem, this pruning strategy is available only when the

profits collected at different moments for each VTW are all posi-

tive.

To check the feasibility of detours, for each arc (i, j) and for

each detour vertex k , we define the latest start time for a label

L associated with vertex i to reach vertex j through detour ver-

tex k , denoted by LT k
(i, j) . This value can be calculated in the pre-

processing phase in order to avoid duplicate calculations during

the search. Despite the presence of the time-dependent transi-

tion time, the triangle inequality in our problem is still satisfied

Peng et al. (2019) . Hence, if label L starts early than LT k
(i, j) , detour

path (L) ∪ { k } ∪ { j } is feasible. Algorithm 1 demonstrates how to cal-

culate the value LT k
(i, j) for the forward extension.

In Algorithm 1 , LatestStartTime jk (st j) calculates the latest start

time of vertex k if vertex j is visited at its window start time st j
(see the preprocessing procedure in Peng et al. (2019)). Since our

algorithm considers two directions of extending labels, the detour

pruning can also be used in the backward extension. In this case, a

variable ET k
(i, j) is defined to record the earliest start time of vertex

Algorithm 1 Pre-calculation of detours in the forward extension

for all i ∈ V do

for all j ∈ V do

for all k ∈ V \{ s, e } do

LT k
(i, j) ← ∞ ;

if LatestStartT ime jk (st j) ≥ st k then

t temp = LatestStartT ime jk (st j) ;

if LatestStartT ime ki (t temp) ≥ st i then

LT k
(i, j) ← LatestStartT ime ki (t temp) ;

end if

end if

end for

end for

end for

i to reach vertex j through the detour vertex k . The calculation of

ET k
(i, j) is symmetrical to LT k

(i, j) .

In the pulse algorithm from Duque et al. (2015) , every time an

unvisited vertex is added to the current path, other unvisited ver-

tices will be checked for the detour pruning. This process requires

to traverse all the unvisited vertices until a feasible detour vertex is

found. It is worth mentioning that compared with the pulse algo-

rithm, the labeling algorithm usually visits vertices (or arcs) much

more times, which implies that the adaption of the detour prun-

ing in our algorithm may consume large computational time. We

improve this pruning strategy by ordering the detour vertices k for

each arc (i, j) in the forward extension by non-increasing LT k
(i, j) .

This ordering operation can also be pre-processed. The algorithm

only needs to check the feasibility of the first detour in the or-

dered list for each pruning. If the first detour vertex k 1 satisfies

es L ≤ LT
k 1
(i, j) , then the states of label L with their start times smaller

than LT
k 1
(i, j) can be pruned. Otherwise, no states can be pruned by

any other detour vertices, since vertex k 1 has the largest value

of LT
k 1
(i, j) . Obviously, this process performs more efficiently than

traversing all the detour vertices until a feasible one is found, as

presented in Duque et al. (2015) .

Another adaption of this pruning strategy is to combine it with

the DSSR technique. Since the DSSR allows multiple visits for any

vertices not belonging to �, any vertex k ∈ V \ ({ i, j } ∪ �) can be

checked as a detour vertex for arc (i, j) no matter it has been vis-

ited or not. It is important to note that if detour vertex k is a criti-

cal vertex, vertex k cannot be checked even though it has not been

visited, due to the time-dependent profits feature. The following

proposition supports this conclusion.

Proposition 4.1. When extending a label L from i to j with the time-

dependent profits considered, for any detour vertex k, the detour prun-

ing can be successfully applied to the extension only if vertex k is not

a critical vertex (called “non-critical condition”) and satisfies the fea-

sibility condition, i.e., es L ≤ LT k
(i, j) .

Proof. In Figure 4 , given a critical vertex set �, let path ∗ be the

optimal path (solid lines) at the current DSSR iteration, consist-

ing of a sequence of states (blue rectangle), each indicating a vis-

ited vertex at its corresponding moment. Suppose path ∗ contains

a sub-path (ω 0
i − ω 0

j − ω 0
k) where i, j and k are three visited ver-

tices. First, we assume that vertex k is a critical vertex and satis-

fies t(ω 0
i) ≤ LT k

(i, j) , where t(ω 0
i) represents the start time of state

ω 0
i . If the extension of ω 0

i from vertex i to j is pruned by de-

tour path (ω 0
i) ∪ { k } ∪ { j} , then it is impossible to obtain sub-path

(ω 0
i − ω 0

j − ω 0
k) , as well as the optimal path path ∗. Second, we

assume that vertex k is not a critical vertex. If t(ω 0
i) ≤ LT k

(i, j) is

G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946 9

Fig. 4. An example of incorrect detour pruning.

satisfied, there must exists another sub-path (ω 0
i − ω 1

k − ω 0
j − ω 0

k)

dominating sub-path (ω 0
i − ω 0

j − ω 0
k) , where t(ω 1

k) < t(ω 0
k) . Then,

a new path which has a higher profit than path ∗ can be obtained

by replacing sub-path (ω 0
i − ω 0

j − ω 0
k) by (ω 0

i − ω 1
k − ω 0

j − ω 0
k) in

path ∗. This is a contradiction to the hypothesis of the optimal path

and thus the vertex k should not satisfy the feasibility condition.

Thus, the detour pruning can work only if the non-critical and the

feasibility conditions are satisfied simultaneously �

In Figure 4 , if the non-critical and the feasibility conditions are

satisfied, and sub-path (ω 0
i − ω 1

k − ω 0
j − ω 0

k) appears in the opti-

mal path at the current iteration, vertex k will become a criti-

cal vertex at the next iteration. It is noteworthy that if the time-

dependent profits are not taken into account, this non-critical con-

dition can be omitted. This is because, in Figure 4 , any paths ex-

tended from (ω 0
i − ω 0

j) can be dominated by the paths extended

from sub-path (ω 0
i − ω 1

k − ω 0
j) , since these two sub-paths have the

same collected profit, and the visits starting from ω 0
j to any other

vertices always arrives earlier than those starting from ω 0
k , due to

the triangle inequality considered in this work.

Algorithm 2 shows how we apply the detour pruning strategy

Algorithm 2 DetourPruning (L, j)

for all k ∈ V do

if k ∈ � then

continue;

end if

if es L ≤ LT k
(i, j) then

return LT k
(i, j) ;

else

break;

end if

end for

return et i ;

with the DSSR technique when extending label L associated with

vertex i and vertex j to be extended. We check the feasiblity of

the first vertex not belonging to � in the ordered detour list. If it

is feasible, the algorithm will return LT (i,j) and only the states that

start later than LT (i,j) need to be extended to vertex j . Otherwise,

the window end time of vertex i will be returned, meaning that

all states should be considered in the extension. If all the states

start earlier than LT (i,j) , the extension from label L to vertex j will

be discarded.

4.3.4. Adaptive-directional extension

Previous studies have shown that the Bidirectional DP algo-

rithm with an effective bounding criterion is usually superior to

its mono-directional counterpart. This is because in general, the

Fig. 5. An example instance showing the total number of labels generated versus
the stop times at different iterations of DSSR.

number of labels generated grows exponentially with the num-

ber of arcs visited, which intuitively implies that exploiting two

smaller sets of space states is faster than exploiting a large set

of the whole space states. Tilk et al. Tilk et al. (2017) claim that

the bidirectional search works particularly well if the sizes of the

forward and backward labels are similar. In order to balance the

forward and backward workload, they present a dynamic half-way

point as the stop time of the forward and backward extensions.

However, our experimental results show that the bidirectional la-

beling usually spends more time than the mono-directional ones

for our problem, as can be seen in Figure 5 . This figure shows how

the total number of labels (sum of forward and backward ones)

changes with the stop time varied from zero to 20 �T for a certain

instance, where 20 �T equals to the maximum window end time

among all the vertices. If the stop time is set to zero or 20 �T ,

a mono-directional labeling is applied; otherwise, a bidirectional

search is performed. The different colored curves account for the

fluctuation at different iterations of the DSSR. Clearly, the bidirec-

tional labeling creates more labels than the forward or backward

one, possibly due to the unavoidable duplication of paths in the bi-

directional search. The ‘trade-off” curve, i.e., the accumulated profit

function, which requires to keep a large number of non-dominated

states for both directions of labels within their time windows, may

account for the duplication. A similar conclusion can be found in

Desaulniers et al. (2016) . Another experiment (not shown here)

demonstrates that the duplication also becomes worse when the

length of the time windows or the degree of overlap increases.

Other interesting preliminary results of this example show that

the forward labeling runs faster than the backward labeling, and

the difference becomes much larger when the number of DSSR it-

erations increases. The reason can be twofold: firstly, the asymmet-

ric instances data, e.g., time windows being unevenly spread, give

rise to the unbalanced forward and backward extensions; secondly,

the presence of critical vertices dramatically increases the number

of non-dominated labels, which exacerbates the imbalance. The re-

sults reveal a regularity that if most of the critical vertices are dis-

tributed closely to the source vertex and greatly overlap with each

other, the number of non-dominated labels increases rapidly when

extending labels from the part of critical vertices to other vertices.

From our analysis, a mono-directional labeling algorithm is

preferable for our problem. However, it is unclear which direction

of the labeling extension is the most efficient. This can be strongly

instance-dependent. One possible approach is to determine the di-

10 G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946

rection according to the distribution structure of the time windows

and the current states of the critical vertex set for each iteration.

Hereby we present an Adaptive-directional Dynamic Programming

(ADP) algorithm to address this imbalance issue. Algorithm 3 ex-

Algorithm 3 GetExtensionDirection (�)

if � = ∅ then

return Bidirection ;

end if

ET Amount ← 0 , LT Amount ← 0 ;

for all k ∈ � do

for all i ∈ V do

E T Amount ← E T Amount + max { min { et i , et k } − st i , 0 } ;
LT Amount ← LT Amount + max { et i − max { st i , st k } , 0 } ;

end for

end for

if ET Amount ≤ LT Amount then

return Backward;

else

return F orward;

end if

plains how we determine the efficient direction, given a group of

vertices and a critical vertex set �.

In Algorithm 3 , ETAmount counts, for all the time windows, the

amount of time before the start time of each critical vertex at the

current iteration. Likewise, LTAmount counts the amount of time

which starts later than the end time of each critical vertex. Af-

terwards, these two statistics are compared in order to determine

which direction will be used at that iteration. The setting of the al-

gorithm is based on the idea that the labeling extension between

the critical vertices may produce many non-dominated labels, and

the more vertices that can be extended by these labels, the more

the total number of labels at the end. At the first iteration when

no critical vertices exist, a bidirectional extension is performed.

4.4. Adaptive-directional dynamic programming with decremental

state space relaxation

Algorithm 4 outlines the framework of our ADP-DSSR algorithm.

Algorithm 4 Adaptive-directional DP with DSSR.

� ← ∅ ;

while true do

Direction ← GetExtensionDirection (�) ;

if Direction = F orward then

S ∗ ← F orwardDP () ;

else if Direction = Backward then

S ∗ ← BackwardDP () ;

else

S f ← F orwardDP () ;

S b ← BackwardDP () ;

S ∗ ← Matching(S f , S b) ;

end if

if S ∗ is non-elementary then

� ← � ∪ �new ;

else

The optimal solution S ∗ is obtained;

Return;

end if

end while

At first, the critical vertex set � is initialized to be empty. Then,

the algorithm enters a WHILE loop and its condition equals to true.

At each iteration, a GetExtensionDirection (�) procedure is executed

to determine which direction should be used to extend labels with

respect to the current critical vertex set �. If � is empty, the bidi-

rectional DP is performed and a matching procedure is required to

connect the forward labels S f and the backward labels S b ; other-

wise, a forward or a backward extension is processed. Afterwards,

the solution S ∗ with the highest collected profit among all the gen-

erated paths is obtained. If S ∗ is non-elementary, the set of du-

plicate vertices �new is added into �, and the algorithm goes to

the next iteration. Otherwise, S ∗ is the optimal elementary solu-

tion and the algorithm terminates.

5. Computational results

In this section, the performance of the proposed algorithm will

be discussed. We are the first to solve the AEOS scheduling prob-

lem to optimality, hence, no existing algorithm or known optimal

solutions can be compared with. Therefore, we design three ex-

periments to evaluate the performance: the first experiment eval-

uates the four algorithmic improvements by comparing different

settings where these improvements are included or not; secondly,

we compare the performance of our ADP-DSSR algorithm with

the performance of a state-of-the-art heuristic Peng et al. (2019) ;

lastly, our algorithm is tested on OPTW benchmark instances, and

compared with two reference exact algorithms in the literature

Duque et al. (2015) ; Righini and Salani (2009) when the time-

dependent profits are not taken into account. We coded our algo-

rithm in C#, using Visual Studio 2010, and performed our experi-

ments on a laptop with a 2.5 GHz Intel Core i5-7300HQ and 8 GB

RAM.

5.1. Evaluating the four algorithmic improvements

We test our ADP-DSSR algorithm on the Chinese instances pro-

posed by Liu et al. Liu et al. (2017) . Targets for observation are ran-

domly generated with a uniform distribution in the Chinese area

(3 ◦N-53 ◦N and 74 ◦E-133 ◦E). A visibility analysis is processed to

generate the visible time windows and the look angles per sec-

ond for each target. The time step is defined to evenly discretize

the time windows in order to simplify the calculation. The maxi-

mum profit and the service time of each target are uniformly gen-

erated respectively from [1,10] and [15,30] in seconds. The schedul-

ing horizon is 24 hours, meaning that the satellite can pass by a

certain target multiple times during different orbits. Thus, for an

instance with a given number of targets (called “multi-orbit in-

stance”), the scheduling horizon is divided in multiple orbits, each

called a ”single-orbit instance”. Our algorithm is designed to solve

these single-orbit instances. Each single-orbit instance has a spe-

cific number of targets to be scheduled. The larger the number of

targets in a single-orbit instance, the higher overlap between their

VTWs. The time-dependent profits of each target are distributed

in its visible time window following the model proposed by Peng

et al. Peng et al. (2019) and explained in Section 3 . More details on

the test instances and the satellite parameters can be found in the

paper of Liu et al. Liu et al. (2017) . The instances are available at

https://www.mech.kuleuven.be/en/cib/op#section-32 .

To evaluate the performance of our ADP-DSSR algorithm, two

comparative experiments are carried out. The first experiment

compares the proposed algorithm with three variants to investi-

gate the impact of the proposed algorithmic improvements. These

variants are generated by respectively removing the partial domi-

nance rule, the merging process of labels and the detour pruning

strategy. The comparative results for the multi-orbit instances from

30 0 to 60 0 targets with the time step equals to five seconds are

presented in Table 2 . Each row presents the average results over

https://www.mech.kuleuven.be/en/cib/op#section-32

G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946 11

Table 2
Comparative results of the algorithms without the proposed improvements.

Instance Name VTWs ADP-DSSR No Partial Dominance No Merging Labels No Detour Pruning

CPU time(s) CPU time(s) T dif CPU time(s) T dif CPU time(s) T dif

300_A 65.38 1.98 2.89 -0.60 13.35 -4.97 2.56 -0.47
400_A 89.50 1.52 2.62 -0.88 11.95 -7.63 2.36 -0.41
500_A 115.00 2.33 3.39 -0.58 21.55 -8.42 3.58 -0.39
600_A 137.38 2.83 5.36 -0.72 30.35 -10.78 4.24 -0.37
Average -0.70 -7.87 -0.41

eight single-orbit instances from one multi-orbit instance. The in-

dividual results, for each single-orbit instance are available here:

https://www.mech.kuleuven.be/en/cib/op#section-32 . The column

VTWs represents the average number of targets visible during a

single orbit. The CPU time (in seconds) of each algorithm is shown,

followed by the difference ratio compared with the complete ADP-

DSSR algorithm. This ratio is calculated by:

T di f =
t ime prop − t ime v ar

time prop
, (15)

where time prop represents the CPU time of the proposed ADP-DSSR

algorithm and time var is the CPU time of the corresponding vari-

ant of the algorithm. The negative value of this ratio means the

proposed algorithm is faster, while the positive value means the

variant algorithm is faster.

The results show that the complete version of the proposed al-

gorithm is the fastest among these algorithms for all the instances,

implying that these three improvements presented are all very ef-

fective. The most crucial improvement is the merging of the la-

bels, which reduces the computational time almost eight times on

average. The reason is that considering a trade-off curve, the la-

beling algorithm usually generates a large number of labels that

are mergeable but cannot dominate each other since the states

of these labels have different start times. Compared with the full

dominance rule, our proposed partial dominance rule considerably

speeds up the search, because there exists a large number of un-

promising states which can be detected and removed by the partial

dominance test. Even though the detour pruning is originally de-

veloped as a component of the pulse algorithm, the results prove

that it can still work very well when adapting it in the labeling

algorithm by sorting the detour vertices.

In the second experiment, we compare the DP algorithms with

different directions: the proposed adaptive-directional DP, the for-

ward DP, the backward DP and the bidirectional DP where its stop

time equals half of the scheduling horizon. All algorithms consider

the DSSR technique and the three improvements mentioned above.

As can be seen in Table 2 , most of the instances presented there

can be solved within three seconds by our algorithm. To obtain a

clear difference for different directions, we use instances with a

higher density of targets generated in only a quarter part of China

(28 ◦N-53 ◦N and 103 ◦E-133 ◦E). Furthermore, the time step is set

to one second. Table 3 reports the results on the high-density in-

stances with 500 and 600 targets. Each row presents the CPU time

for each single-orbit instance. The single-orbit instance name is de-

noted by “| V | _ | K| ”, where | V | is the number of targets in the corre-

sponding multi-orbit instance and | K | is the number of VTWs dur-

ing that orbit.

As discussed in Section 4.3.4 , the bidirectional DP performs

worst in this comparison due to the presence of a large number

of duplicated paths produced. The results show a large difference

between the forward DP and the backward DP in terms of the

CPU time for some instances. For example, the backward DP can

solve the instance “500_117” in 22.31 seconds but the forward one

needs 279.09 seconds, while solving the instance “600_62” with

the backward DP takes 232.80 seconds but the forward DP only

takes 18.03 seconds. This implies that choosing a wrong direction

for the extension may lead to a very high computational time.

Moreover, from the comparative results, there is no clear domi-

nance between these two approaches, and thus the efficient direc-

tion depends on the instance tested. We observe that the computa-

tional time of our adaptive-directional DP is typically not less than

but close to the best of the forward DP and the backward DP for

most of the instances. Specifically, the forward DP is on average

45% slower than our algorithm for the 500-target instances and

56% slower for the 600-target instances. Similarly, for the back-

ward DP, the number reaches 32% for the 500-target instances

and 58% for the 600-target instances. In a few cases, the adaptive-

directional DP performs worse than both the forward and back-

ward DP (instance “50 0_391”, “60 0_71” and “60 0_144”), but the

differences are rather limited. From these comparison, it is clear

that the adaptive-directional DP can be regarded as a conservative

but efficient choice to run the DP approach for our problem. It cer-

tainly avoids the very long computation times that sometimes ap-

pear with the forward and backward DP. We further compare the

results of our algorithm with the best and worst CPU time among

the forward and backward DP for each individual instance. The av-

erage results (not displayed in Table 3) show that our algorithm

is only 15% slower than when the best direction would be known

beforehand for each individual instance, but it is 120% faster than

when we select the opposite direction.

5.2. Comparison with a state-of-the-art heuristic

In previous studies, only one heuristic approach has been pro-

posed to tackle the AEOS scheduling with time-dependent profits,

called the Bidirectional Dynamic Programming based Iterated Lo-

cal Search (BDP-ILS) algorithm Peng et al. (2019) . We compare the

performance of our exact approach with the performance of this

heuristic in terms of the solution quality and the CPU time. Note

that the BDP-ILS is originally developed to solve multiple-orbit in-

stances, but we apply this algorithm here on single-orbit instances.

The single-orbit instances used in this comparison are based on

multiple-orbit instances with 30 0, 40 0, 50 0 and 600 targets. For

each multi-orbit instance, the four single-orbit instances with the

most visible targets are solved. The results are reported in Table 4 .

The time step is set to five seconds. We keep the best settings of

the parameters for the heuristic in Peng et al. (2019) , i.e., the re-

move ratio is 0.1 and the iteration number is 200. The last column

presents the gap between the best known solution of the heuris-

tic and the optimal value obtained by our algorithm. A detailed

solution for each instance is available here: https://www.mech.

kuleuven.be/en/cib/op#section-32 . Both these two algorithms are

run on the same computer as mentioned before.

From Table 4 , we can observe that our exact algorithm is al-

most as fast as the state-of-the-art heuristic for most of the in-

stances, while this heuristic only obtains the optimal solution of

one instance (instance “300_102”). For some instances, our exact

algorithm is even slightly faster than the heuristic. For instances

“30 0_10 0”, “40 0_156” and “50 0_186” and “60 0_209”, our exact al-

gorithm has a shorter computational time than the heuristic while

https://www.mech.kuleuven.be/en/cib/op#section-32
https://www.mech.kuleuven.be/en/cib/op#section-32

12 G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946

Table 3
Comparative results of different direction of labeling extension.

Instance Name Adaptive-directional DP Forward DP Backward DP Bidirectional DP

CPU time(s) CPU time(s) T dif CPU time(s) T dif CPU time(s) T dif

500_38 2.17 7.39 -2.41 1.76 0.19 3.18 -0.47
500_391 149.35 135.02 0.10 139.04 0.07 243.32 -0.63
500_60 64.66 13.96 0.78 163.98 -1.54 49.73 0.23
500_117 25.62 279.09 -9.89 22.31 0.13 440.84 -16.21
500_385 133.50 108.46 0.19 168.63 -0.26 261.29 -0.96
Average 75.06 108.79 -0.45 99.14 -0.32 199.67 -1.66
600_71 12.18 10.76 0.12 5.67 0.53 12.65 -0.04
600_476 686.17 1464.24 -1.13 709.65 -0.03 2244.74 -2.27
600_62 29.33 18.03 0.39 232.80 -6.94 139.44 -3.75
600_144 141.15 57.35 0.59 136.50 0.03 208.94 -0.48
600_441 251.82 193.06 0.23 682.44 -1.71 968.23 -2.85
Average 224.13 348.69 -0.56 353.41 -0.58 714.80 -2.19

Table 4
Comparative results of the proposed exact algorithm with a state-of-the-art heuristic.

Instance Name Exact algorithm (ADP-DSSR) Heuristic (BDP-ILS) Gap (%)

Optimal value CPU time(s) Best solution value CPU time(s)

300_100 157.47 0.91 151.75 1.32 3.63
300_102 179.18 2.47 179.18 1.52 0.00
300_106 165.59 1.83 165.39 1.36 0.12
300_120 181.53 1.79 177.92 1.56 1.99
400_136 193.81 3.19 188.79 2.27 2.59
400_143 198.95 1.59 193.27 2.68 2.85
400_152 195.98 2.48 195.07 2.52 0.46
400_156 194.01 1.46 185.28 2.97 4.50
500_183 206.22 4.54 201.87 3.85 2.11
500_186 191.97 2.66 184.50 4.13 3.89
500_191 220.61 4.00 219.05 4.29 0.71
500_197 224.34 4.51 222.20 4.36 0.95
600_209 217.64 1.42 209.24 4.35 3.86
600_222 227.24 4.12 222.64 4.54 2.02
600_229 227.63 5.57 223.76 5.88 1.70
600_236 213.83 8.55 210.42 5.80 1.59

the gaps of these instances exceed 3%. It is also noteworthy that

for the multi-orbit instance with 600 targets, our algorithm only

consumes less than 10 seconds for each single orbit, which proves

the high performance of the developed algorithm on large-scale in-

stances.

This state-of-the-art heuristic has been compared with using

the CPLEX solver directly on the mathematical formulation, for

small instances in Peng et al. (2019) . The results show that the

heuristic clearly outperforms CPLEX, with high-quality results and

much smaller computation times. Since our exact algorithm out-

performs this heuristic, we do not include a comparison with the

CPLEX solver in this work.

5.3. Results for OPTW

For the OPTW, there are two existing exact algorithms in

the state of the art: the Bidirectional DP with DSSR (BDP-

DSSR) Righini and Salani (2009) and the pulse algorithm

Duque et al. (2015) . These two algorithms are tested on two classes

of instances derived from the well-known Solomon’s data-set of

VRPTW instances Solomon (1987) and from the Cordeau et al.

Cordeau et al. (1997) for the Multi-Depot Periodic Vehicle Rout-

ing Problem (MDPVRP). Solomon’s instances contains 29 instances

with 100 vertices classified into three categories: the R-instances

where vertices are randomly located, the C-instances where ver-

tices are clustered and the RC-instances where some vertices are

located randomly and others are clustered. The number of vertices

in Cordeau’s instances varies from 48 to 288 vertices. These in-

stances are considered to be harder than those of Solomon due to

their larger time windows. These two sets of instances are avail-

able at https://www.mech.kuleuven.be/en/cib/op .

For these instances without time-dependent profits, the

adaptive-directional extension and the merging process is no

longer efficient. Thus, we use the same BDP-DSSR framework as in

Righini and Salani (2009) while still maintaining the detour prun-

ing strategy. Besides, at each iteration of DSSR, we delete the non-

dominated labels which visit the current critical vertices more than

once but preserve the rest of the non-dominated labels to the next

iteration. These preserved labels can be used to dominate inferior

labels in the next run of the DP and thereby reduce the num-

ber of unpromising labels generated. To avoid confusion, we call

our algorithm for the OPTW the “improved BDP-DSSR” and the al-

gorithm in Righini and Salani (2009) is called the “original BDP-

DSSR”. To ensure fair comparisons due to different experimental

environments, a LINPACK benchmark is used to scale the compu-

tational time of the pulse algorithm to compare with the original

BDP-DSSR Duque et al. (2015) . However, we found that the coef-

ficients used to scale the time of our hardware towards the ones

used for the original BDP-DSSR and the pulse algorithm are incon-

sistent with the coefficient of 4.3 used to compare these two refer-

ence algorithms in Duque et al. (2015) , probably due to the parallel

search used in the pulse algorithm. To avoid the inconsistency, we

keep the comparative results in Duque et al. (2015) but we rerun

the code of the pulse algorithm provided by the authors. After that,

https://www.mech.kuleuven.be/en/cib/op

G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946 13

Table 5
Computational times (in seconds) of the proposed algorithms and the state-of-the-art for the OPTW over Solomon’s
instances.

Instance Optimal value Improved BDP-DSSR Original BDP-DSSR T dif (Original) Pulse T dif (Pulse)
(s) (s) (-) (s) (-)

C101 320 0.00 0.06 -49.85 0.00 -2.39
C102 360 0.48 3.81 -6.90 0.54 -0.12
C103 400 60.28 1081.04 -16.93 8.94 0.85
C104 420 44.31 1856.39 -40.89 8.94 0.80
C105 340 0.33 0.12 0.63 0.07 0.79
C106 340 0.18 0.14 0.22 0.07 0.61
C107 370 0.12 0.2 -0.68 0.07 0.41
C108 370 0.74 1.43 -0.94 0.14 0.81
C109 380 1.88 10.57 -4.64 0.34 0.82
R101 198 0.05 0.03 0.39 0.07 -0.43
R102 286 9.61 233.2 -23.26 7.51 0.22
R103 293 130.21 5498.81 -41.23 31.29 0.76
R104 303 1826.33 > 7200 -2.94 80.04 0.96
R105 247 0.44 0.23 0.48 0.07 0.84
R106 293 14.93 334.49 -21.41 12.66 0.15
R107 299 150.12 2979.94 -18.85 35.49 0.76
R108 308 547.00 > 7200 -12.16 75.64 0.86
R109 277 2.15 3.09 -0.44 0.2 0.91
R110 284 3.47 30.83 -7.89 0.75 0.78
R111 297 46.62 1408.8 -29.22 14.56 0.69
R112 298 87.44 2508.17 -27.68 9.41 0.89
RC101 219 0.05 0.23 -3.37 0.07 -0.33
RC102 266 0.57 6.11 -9.74 0.13 0.77
RC103 266 6.50 88.12 -12.56 0.47 0.93
RC104 301 5.47 264.84 -47.38 1.56 0.72
RC105 244 0.64 2.86 -3.48 0.07 0.89
RC106 252 1.08 2.08 -0.92 0.13 0.88
RC107 277 3.18 49.19 -14.48 0.41 0.87
RC108 298 2.39 68.95 -27.85 0.81 0.66
Average -14.62 0.53

Table 6
Computational times (in seconds) of the proposed algorithms and the state-of-the-art for the OPTW over Cordeau’s
instances.

Instance Optimal value Improved BDP-DSSR Original BDP-DSSR T dif (Original) Pulse T dif (Pulse)
(s) (s) (-) (s) (-)

pr01_48 308 0.17 1.19 -6.09 0.14 0.17
pr02_96 404 3.46 37.52 -9.85 1.22 0.65
pr03_144 394 7.63 151.73 -18.89 2.30 0.70
pr04_192 489 24.68 648.82 -25.29 4.06 0.84
pr05_240 595 128.00 6815.82 -52.25 36.57 0.71
pr06_288 591 171.02 > 7200 -41.10 78.23 0.54
pr07_72 298 0.42 3.65 -7.77 0.27 0.35
pr08_144 463 6.65 90.71 -12.63 1.69 0.75
pr09_216 493 127.39 3270.88 -24.68 81.01 0.36
pr10_288 594 106.88 > 7200 -66.37 64.26 0.40
Average -26.49 0.55

we scale the computational time of our algorithm according to the

ratio of the results obtained by running the pulse algorithm in a

different hardware environment.

Table 5 and 6 report on the experimental comparison between

the original BDP-DSSR, our improved BDP-DSSR and the pulse al-

gorithm. The first two columns report the instance name and the

optimal value; column 3 presents the scaled computational time

of the improved BDP-DSSR; column 4 and column 6 respectively

show the (scaled) CPU times of the original BDP-DSSR and the

pulse algorithm in seconds as reported in Duque et al. (2015) , fol-

lowed by their difference ratios of the computational time com-

pared with the improved BDP-DSSR. The average value of these ra-

tios are given at the end of the table.

Results in Table 5 and 6 show that our improved BDP-DSSR

outperforms the original BDP-DSSR while the pulse algorithm is

still the fastest algorithm. For Solomon’s instances, the difference

ratio between our algorithm and the orginal algorithm is -14.62.

The results on Cordeau’s instances exhibit a larger difference with

a difference ratio of -26.49. These numbers show that compared

with the original BDP-DSSR, our algorithm can solve the OPTW in-

stances more efficiently, despite that the pulse algorithm still per-

forms the best among these algorithms. It should be noted that the

main purpose of this comparison is not to compete with the pulse

algorithm in terms of the computational time, but rather to show

that our algorithm has sufficient capability to also solve the OPTW,

without time-dependent profits, in an efficient way. On the other

hand, the pulse algorithm cannot be easily applied for the time-

dependent case. For instance, the pulse algorithm uses a so-called

“soft dominance test”. It swaps two chosen visited vertices (except

the source vertex and the last visited vertex) in a path, and the

path is dominated and discarded if after the swapping operation a

new path with less consumed time is found. The test is available

only when swapping the visited vertices will not change the total

profits. However, when time-dependent profits would be consid-

14 G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946

ered, the ordering of the visited vertices will greatly influence the

total profit.

6. Conclusions

In this paper, we have presented an exact optimization algo-

rithm for the single-orbit scheduling problem of an Agile Earth Ob-

servation Satellite (AEOS) considering time-dependent profits. The

algorithm is developed based on the bidirectional dynamic pro-

gramming with decremental state space relaxation which is origi-

nally designed for the ESPPRC or the OPTW. To address the time-

dependent profits feature, a “trade-off” curve, namely the accumu-

lated profit function, is associated with each path to be extended.

We have described the corresponding dominance rule, the decre-

mental state space relaxation and other algorithmic details. In ad-

dition, we have proposed four algorithmic improvements to speed

up the algorithm, including the partial dominance rule, the pro-

cess of the merging labels, the detour pruning strategy and the

adaptive-direction extension. The experimental results of our real-

world instances prove that each improvement can effectively re-

duce the computational time for our instances. Furthermore, we

compared the performance of our exact algorithm and a state-of-

the-art heuristic. The results showed that the computation times of

these two algorithms are similar while the heuristic algorithm fails

to find the optimal solutions for most of the instances. Since there

is no previous work solving the AEOS scheduling problem to opti-

mality, we also tested our algorithm on the OPTW instances with-

out considering the time-dependent profits and compared it with

two algorithms in the state of the art. Our algorithm performs bet-

ter than the original BDP-DSSR algorithm but slightly worse than

the state-of-the-art pulse algorithm. However, we conclude that

our algorithm is capable of solving the OPTW efficiently and we

argue that the pulse algorithm cannot be easily adapted for ad-

dressing time-dependent profits due to its algorithmic mechanism.

Further research could focus on the AEOS scheduling problem

with multiple orbits. This rather interesting extension of the prob-

lem allows optimizing the schedule on multiple orbits, satisfying

the practical needs. A column generation technique can be utilized

to solve this problem while its pricing problem can be regarded

as the single-orbit scheduling problem and this can be solved ef-

ficiently by our ADP-DSSR problem. To the best of our knowledge,

this problem has not yet been addressed with an exact solution

technique. In addition to the time-dependent profits, the time-

dependent energy resource can also be considered in the model

since the transition of look angles requires the consumption of the

on-board energy. In this case, the trade-off between the resources

and profits should be made and the design of the exact solution

will become more complicated.

CRediT authorship contribution statement

Guansheng Peng: Conceptualization, Writing - original draft,

Data curation, Visualization. Guopeng Song: Writing - review &

editing, Visualization. Lining Xing: Conceptualization, Supervision,

Visualization. Aldy Gunawan: Writing - review & editing, Visual-

ization. Pieter Vansteenwegen: Conceptualization, Writing - origi-

nal draft, Supervision, Visualization.

Acknowledgment

This work was supported by the National Natural Sci-

ence Foundation of China (No. 61873328 , 61525304 , 71801218 ,

71501180 , U1501254 and 61773120) and China Scholarship Coun-

cil (201703170228). It is also supported by the Foundation for the

Author of National Excellent Doctoral Dissertation of China (2014-

92), and the Innovation Team of Guangdong Provincial Department

of Education (2018KCXTD031). The authors thank Professor Andrés

L. Medaglia for sharing the code of the pulse algorithm, and two

anonymous referees for their valuable suggestions and corrections.

References

Bianchessi, N. , Cordeau, J.-F. , Desrosiers, J. , Laporte, G. , Raymond, V. , 2007. A heuris-
tic for the multi-satellite, multi-orbit and multi-user management of earth ob-
servation satellites. European Journal of Operational Research 177 (2), 750–762 .

Boland, N. , Dethridge, J. , Dumitrescu, I. , 2006. Accelerated label setting algorithms
for the elementary resource constrained shortest path problem. Operations Re-
search Letters 34 (1), 58–68 .

Chen, X. , Reinelt, G. , Dai, G. , Spitz, A. , 2019. A mixed integer linear programming
model for multi-satellite scheduling. European Journal of Operational Research
275 (2), 694–707 .

Cordeau, J.-F. , Gendreau, M. , Laporte, G. , 1997. A tabu search heuristic for periodic
and multi-depot vehicle routing problems. Networks 30 (2), 105–119 .

Cordeau, J.-F. , Laporte, G. , 2005. Maximizing the value of an earth observation satel-
lite orbit. Journal of the Operational Research Society 56 (8), 962–968 .

Dabia, S. , Ropke, S. , Van Woensel, T. , de Kok, T. , 2013. Branch and price for the
time-dependent vehicle routing problem with time windows. Transportation
Science 47 (3), 380–396 .

Desaulniers, G. , Errico, F. , Irnich, S. , Schneider, M. , 2016. Exact algorithms for elec-
tric vehicle-routing problems with time windows. Operations Research 64 (6),
1388–1405 .

Desrochers, M. , Desrosiers, J. , Solomon, M.M. , 1990. A new optimization algorithm
for the vehicle routing problem with time windows. Operations Research 40,
342–354 .

Dilkina, B. , Havens, B. , 2005. Agile Satellite Scheduling via Permutation Search with
Constraint Propagation. Technical Report. Actenum Corporation .

Dror, M. , 1994. Note on the complexity of the shortest path models for column gen-
eration in VRPTW. Operations Research 42 (5), 977–978 .

Duque, D. , Lozano, L. , Medaglia, A.L. , 2015. Solving the orienteering problem with
time windows via the pulse framework. Computers & Operations Research 54,
168–176 .

Ekic, A. , Keskinocak, P. , Koenig, S. , 2009. Multi-robot routing with linear decreas-
ing rewards over time. In: 2009 IEEE International Conference on Robotics and
Automation, pp. 958–963 . Kobe

Erkut, E. , Zhang, J. , 1996. The maximum collection problem with time-dependent
rewards. Naval Research Logistics 43 (5), 749–763 .

Feillet, D. , Dejax, P. , Gendreau, M. , Gueguen, C. , 2004. An exact algorithm for the el-
ementary shortest path problem with resource constraints: Application to some
vehicle routing problems. Networks 44 (3), 216–229 .

Gabrel, V. , Moulet, A. , Murat, C. , Paschos, V.T. , 1997. A new single model and derived
algorithms for the satellite shot planning problem using graph theory concepts.
Annals of Operations Research 69, 115–134 .

Habet, D. , Vasquez, M. , Vimont, Y. , 2010. Bounding the optimum for the problem of
scheduling the photographs of an agile earth observing satellite. Computational
Optimization and Applications 47 (2), 307–333 .

He, L. , Liu, X. , Laporte, G. , Chen, Y. , Chen, Y. , 2018. An improved adaptive large neigh-
borhood search algorithm for multiple agile satellites scheduling. Computers &
Operations Research 100, 12–25 .

Lemaître, M. , Verfaillie, G. , Jouhaud, F. , Lachiver, J.-M. , Bataille, N. , 2002. Selecting
and scheduling observations of agile satellites. Aerospace Science and Technol-
ogy 6 (5), 367–381 .

Li, Y. , Xu, M. , Wang, R. , 2007. Scheduling observations of agile satellites with com-
bined genetic algorithm. In: Third International Conference on Natural Compu-
tation (ICNC 2007), 3, pp. 29–33 . Haikou

Liberatore, F. , Righini, G. , Salani, M. , 2011. A column generation algorithm for the
vehicle routing problem with soft time windows. 4OR 9, 49–82 .

Lin, W.-C. , Liu, C.-Y. , Liao, D.-Y. , Lee, Y.-Y. , 2003. Daily imaging scheduling of an earth
observation satellite. IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans 35, 213–223 .

Liu, X. , Laporte, G. , Chen, Y. , He, R. , 2017. An adaptive large neighborhood search
metaheuristic for agile satellite scheduling with time-dependent transition time.
Computers & Operations Research 86, 41–53 .

Peng, G. , Dewil, R. , Verbeeck, C. , Gunawan, A. , Xing, L. , Vansteenwegen, P. , 2019.
Agile earth observation satellite scheduling: An orienteering problem with
time-dependent profits and travel times. Computers & Operations Research 111,
84–98 .

Righini, G. , Salani, M. , 2008. New dynamic programming algorithms for the resource
constrained elementary shortest path problem. Networks 51 (3), 155–170 .

Righini, G. , Salani, M. , 2009. Decremental state space relaxation strategies and ini-
tialization heuristics for solving the orienteering problem with time windows
with dynamic programming. Computers & Operations Research 36, 1191–1203 .

Solomon, M.M. , 1987. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research 35 (2), 254–265 .

Tilk, C. , Rothenbcher, A.-K. , Gschwind, T. , Irnich, S. , 2017. Asymmetry matters: Dy-
namic half-way points in bidirectional labeling for solving shortest path prob-
lems with resource constraints faster. European Journal of Operational Research
261 (2), 530–539 .

Wang, J. , Demeulemeester, E. , Hu, X. , Qiu, D. , Liu, J. , 2019. Exact and heuristic
scheduling algorithms for multiple earth observation satellites under uncertain-
ties of clouds. IEEE Systems Journal 13 (3), 3556–3567 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0001
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0001
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0001
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0001
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0001
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0001
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0002
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0002
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0002
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0002
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0003
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0003
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0003
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0003
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0003
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0004
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0004
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0004
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0004
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0005
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0005
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0005
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0006
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0006
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0006
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0006
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0006
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0007
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0007
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0007
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0007
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0007
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0008
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0008
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0008
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0008
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0009
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0009
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0009
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0010
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0010
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0011
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0011
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0011
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0011
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0012
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0012
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0012
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0012
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0012
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0013
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0013
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0013
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0014
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0014
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0014
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0014
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0014
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0015
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0015
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0015
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0015
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0015
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0016
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0016
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0016
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0016
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0017
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0018
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0018
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0018
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0018
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0018
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0018
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0019
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0019
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0019
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0019
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0019
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0020
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0020
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0020
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0020
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0021
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0021
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0021
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0021
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0021
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0022
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0022
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0022
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0022
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0022
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0023
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0024
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0024
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0024
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0025
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0025
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0025
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0026
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0026
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0027
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0027
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0027
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0027
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0027
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0028
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0028
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0028
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0028
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0028
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0028

G. Peng, G. Song and L. Xing et al. / Computers and Operations Research 120 (2020) 104946 15

Wang, P. , Reinelt, G. , Gao, P. , Tan, Y. , 2011. A model, a heuristic and a decision sup-
port system to solve the scheduling problem of an earth observing satellite con-
stellation. Computers & Industrial Engineering 61 (2), 322–335 .

Wei-Cheng Lin , Chung-Yang Liu , Da-Yin Liao , Yung-Yao Lee , 2003. Daily imaging
scheduling of an earth observation satellite. In: SMC’03 Conference Proceed-
ings. 2003 IEEE International Conference on Systems, Man and Cybernetics.
Conference Theme - System Security and Assurance (Cat. No.03CH37483), 2,
pp. 1886–1891vol.2 .

Wolfe, W.J. , Sorensen, S.E. , 20 0 0. Three scheduling algorithms applied to the Earth
observing systems domain. Management Science 46 (1), 148–166 .

Xiaolu, L. , Baocun, B. , Yingwu, C. , Feng, Y. , 2014. Multi satellites scheduling algo-
rithm based on task merging mechanism. Applied Mathematics and Computa-
tion 230, 687–700 .

Xu, R. , Chen, H. , Liang, X. , Wang, H. , 2016. Priority-based constructive algorithms for
scheduling agile earth observation satellites with total priority maximization.
Expert Systems with Applications 51, 195–206 .

Yi, J. , 2003. Vehicle routing with time windows and time-dependent rewards: A
problem from the american red cross. Manufacturing & Service Operations Man-
agement 5 (1), 74–77 .

http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0029
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0029
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0029
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0029
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0029
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0030
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0030
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0030
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0030
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0030
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0031
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0031
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0031
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0032
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0032
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0032
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0032
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0032
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0033
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0033
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0033
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0033
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0033
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0034
http://refhub.elsevier.com/S0305-0548(20)30063-0/sbref0034

	An exact algorithm for Agile Earth Observation Satellite Scheduling with time-dependent profits
	Citation

	tmp.1596092299.pdf.aXWk3

