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Abstract 

This work is extended from our participation in the Dialogue System Technology Challenge (DSTC7), where we 
participated in the Audio Visual Scene-aware Dialogue System (AVSD) track. The AVSD track evaluates how dialogue 
systems understand video scenes and responds to users about the video visual and audio content. We propose a 
hierarchical attention approach on user queries, video caption, audio and visual features that contribute to improved 
evaluation results. We also apply a nonlinear feature fusion approach to combine the visual and audio features for better 
knowledge representation. Our proposed model shows superior performance in terms of both objective evaluation and 
human rating as compared to the baselines. In this extended work, we also provide a more extensive review of the related 
work, conduct additional experiments with word-level and context-level pretrained embeddings, and investigate different 
qualitative aspects of the generated responses. 
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1. Introduction 

The Dialogue System Technology Challenge (DSTC7) (D’Haro et al., 2020) proposed the Audio Visual Scene-
aware Dialogue System (AVSD) track, which focuses on dialogue systems of multiple modalities. Arising from 
the related tasks in visual Question-Answering (VQA) (Antol, Agrawal, Lu, Mitchell, Batra, Lawrence Zitnick, 
Parikh, 2015, Goyal, Khot, Summers-Stay, Batra, Parikh, 2017), image captioning (Vinyals, Toshev, Bengio, 
Erhan, 2015, Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, Bengio, 2015), video captioning (Hori, Hori, 
Lee, Zhang, Harsham, Hershey, Marks, Sumi, 2017, Li, Yao, Pan, Chao, Mei, 2018), and visual dialogues (Das, 
Kottur, Gupta, Singh, Yadav, Moura, Parikh, Batra, 2017, Das, Kottur, Moura, Lee, Batra, 2017), the AVSD 
track provides an interesting setting for dialogue research. In addition to processing information in traditional 
dialogue research such as dialogue context and user utterances, the dialogue agents in AVSD track are required 
to integrates not only visual features but also audio features from video input. Compared to visual dialogues 
(Das et al., 2017b), the proposed tasks in this track involve more complex features with larger feature space (i.e. 
temporal visual and audio features across multiple video frames). 

Our approach for this track is delineated in this paper. Our two entries to this track are developed upon the 
baseline model (Hori et al., 2018), and exploit a hierarchical attention mechanism on question features, caption 
features, and visual and audio features of the input video. The attention strategies are adopted similarly to 
Anderson et al. (2018), including question-guided attention on caption and video features. In the VQA setting, 
using attention contributes to the increase of accuracy in selecting the correct answers. In the context of AVSD 
track, we aim to explore how this attention mechanism could be utilized in a dialogue setting in combination 
with visual and audio features of input videos to generate natural responses. We also integrate both visual and 
audio features using a nonlinear fusion technique to combine these features for better representations. Our 
proposed approach 
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approach shows superior performance as compared to the baseline model in terms of both automatic metrics and human evalua-
tion. In this work, we also extended our submission to the DSTC7 in 3 areas:

� We include a review of related work in the research domains of dialogues and multiple modalities.
� We conduct additional experiments to examine the model performance with different word-level and context-level pre-
trained embeddings.

� We provide comprehensive qualitative analysis of the generated dialogue responses in several aspects: input video lengths,
question types, and dialogue turn positions.

2. Related work

Dialogue research can be divided into 2 major categories: open-domain dialogues (Shang et al., 2015; Vinyals and Le, 2015; Yao
et al., 2015; Li et al., 2016a; 2016b; Serban et al., 2017; 2016) which are modeled with holistic seq2seq models, and task-oriented dia-
logues (Bordes andWeston, 2016; Fatemi et al., 2016; Henderson et al., 2014; Liu, Lane) which have conventionally been modeled as a
pipeline of components. More recent development includes exploring end-to-end task-orietned architetures such as memory network
(Madotto, Wu, Fung, 2018) and an efficient two-stage CopyNet framework (Lei, Jin, Kan, Ren, He, Yin, 2018). Recent efforts on dialogue
systems also include building conversational agents that can ground their responses on knowledge base such as online encyclopedias
(Dinan et al., 2018), online chat platforms and e-commercial recommendation sites (Ghazvininejad et al., 2018). The dialogue agents
can generate responses that are relevant to the dialogue context as well as exploiting information from the provided knowledge base e.
g. recommend which restaurants are top-rated in a given area. Another extension in dialogue research is multi-turn QA, or Conversa-
tional QA (Zhu et al., 2018). The dialogue agents are typically not tasked to converse in trivial dialogues like open-domain dialogues,
but restricted to a given text source such as a fictional story and Wikipedia page. The dialogue agents in this setting are expected to
answer specific and complex questions from the users about the content of the text source.

There are a few recent efforts in the NLP domain where multimodal information needs to be incorporated. Major research direc-
tions include image captioning (Vinyals et al., 2015; Xu et al., 2015), video captioning (Hori et al., 2017; Li et al., 2018) and visual ques-
tion-answering (VQA) (Antol et al., 2015; Goyal et al., 2017). The common challenge in multimodal settings is to obtain a model that
can understand both natural language as well as non-text features such as vision and audio from images and videos. Specifically, in
image captioning and video captioning, the dialogue agents are required to output description sentences about the content of an
image or video respectively. Common approaches are to attend and align information from non-text features, e.g. pixels from images
and temporal visual features from videos when decoding caption sentences. Visual QA is an extension from image captioning as more
fine-grained understanding is required to extract the right information to answer questions from the users correctly. Recently, the
proposed movie QA task (Tapaswi et al., 2016) has gained increasing attention. The task is similar to visual QA but the answers are
grounded in movie videos. While VQA or movie QA tasks are related to our work, they are restricted to answering only individual
queries. In AVSD, the dialogue agent is required to learn to process information of multiple modalities through multi-turn dialogues.
We also focus on generating dialogue responses rather than selecting from a set of candidates. This requires the dialogue agents to
model the semantics of the visual and/or audio contents to output appropriate responses.

Another related task is visual dialogues (Das et al., 2017a; 2017b; Kottur et al., 2018). This is similar to VQA but the conversa-
tional agent needs to process dialogue context potentially of multiple turns rather than just a single-turn question and output rel-
evant responses. In this work, we focus on knowledge grounded in videos, which is more complex, considering the temporal
visual and audio features extended across multiple video frames.

3. Approach

This section details several changes we made from the baseline approach (Hori et al., 2018). Given an input video V, its caption
Cv, a dialogue context of ðt�1Þ turns, each including a pair of (question, answer) ðQ1;A1Þ; . . . ; ðQt�1;At�1Þ; and a factual query Qt on
the video content, the goal of AVSD task is to generate an appropriate dialogue response At that is relevant to the context and
addresses the user query correctly. Our model follows the encoder-decoder framework, including 3 major components: (1) RNN
Encoders that encode the dialogue context, the video caption, and the user query into fixed dimensional representations; (2)
Hierarchical Attentions that include self-attention on question features, and question-guided attentions on video features (visual
and audio) as well as on caption features. The final output of attentions are fused to create a joint feature representation of all
input information from multiple modalities; and (3) RNN Decoder that uses the contextual joint features and generates system
responses token-by-token. The overview of the model can be seen in Fig. 1.

We describe the individual components and changes as compared to the baseline (Hori et al., 2018) in the following.

3.1. Encoders

3.1.1. Gated recurrent unit
Instead of using Long short-term memory (LSTM) as the unit module for the recurrent network, we replace LSTM with Gated

Recurrent Unit (GRU) in the encoders (for question and dialogue history). GRUs have shown to achieve superior performance at
affordable computational cost (Cho et al., 2014). We describe here in mathematical details of the GRU for complete notation of
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the proposed model. Given a sequence of input words S, in each encoding step n, the GRU will recurrently process the respective
input sn and the previous hidden state hn�1. For simplicity, we denote sn as both the real word as well as the representation vector
of the word using an embedding matrix or one-hot representation. We denote the embedding dimension as V. The hidden state
hn for each encoding step n is given by:

rn¼sðIrsnþHrhn�1Þ; ð1Þ

un¼sðIusnþHuhn�1Þ; ð2Þ

hn¼ tanh
�
IsnþHðrn ¢hn�1Þ

�
; ð3Þ

hn¼ð1�unÞ ¢hn�1þut ¢hn ð4Þ
where s is the logistic sigmoid, ¢ represents the element-wise scalar product between vectors, I; Iu; Ir 2Rdh�V and
H;Hr ;Hu 2Rdh�dh . The I matrices encode the word sn while the H matrices are used to retain or forget the information in hn�1.
Hence, rn denotes the reset gate, un the update gate, hn the candidate update, and hn the final update.

The reset gate and update gate are computed in parallel. Provided the current word sn, if it is learned to forget information of
the previous sequence hn�1; the elements of rn will be closer to 0. The update gate un judges whether the current word contains
relevant information that should be stored in hn. In the final update, if the elements of un are close to 0, the network keeps the
last recurrent state hn�1. The gating behavior in GRU showed to provide robustness to noise in the source sequence.

At each dialogue turn t, for each question Qt, the question encoder reads the words of the questions sequentially and updates
its hidden state according to:

hqest;n ¼GRUqEncðhqest;n�1; st;nÞ;n¼1; . . . ;Nqes
t ð5Þ

To encode the dialogue history, each question and answer for each dialogue turn 1; . . . ; t�1 is encoded by a separate encoder.

hqat;n¼GRUqaEncðhqat;n�1; st;nÞ;n¼1; . . . ;Nqa
t ð6Þ

A separate GRU takes as input the sequence of past question and answer representations Q1;A1; . . . ;Qt�1;At�1 and computes the
sequence of dialog-turn recurrent states to summarize the dialogue up to turn t into hhist .

hhist ¼GRUhisEncðhhist�1;H
qa
t Þ; t¼1; . . . ; t�1 ð7Þ

Where Hqa
t is the hidden state in the last position of each question or answer as computed in Eq. (6). For all encoders, we initialize

the hidden states to zero.

hqest;0 ¼0 ð8Þ

hqat;0¼0 ð9Þ

hhis0 ¼0 ð10Þ

3.1.2. Caption encoder
Instead of concatenating the video caption as the first turn in the dialogue history like in the baseline (Hori et al., 2018), we

use a separate encoder to encode the video caption. For each dialog, a GRU encoder reads the words of the caption of the respec-
tive video input sequentially and updates its hidden states:

Fig. 1. Overview of the proposed end-to-end multimodal dialogue systems with attention mechanisms on multimodal features and video caption embedding.
The model follows the encoder-decoder framework, including 3 major components: (1) RNN Encoders that encode the dialogue context, the video cap-
tion, and the user query into fixed dimensional representations; (2) Hierarchical Attentions that include self-attention on question features, and ques-
tion-guided attentions on video features as well as on caption features; and (3) RNN Decoder that uses the contextual joint features and generates
system responses token-by-token.

H. Le et al. / Computer Speech & Language 63 (2020) 101095 3



hcapt;n ¼GRUcapEncðhcapt;n�1; st;nÞ;n¼1; . . . ;Ncap
t ð11Þ

We also initialize the hidden state hcapt;0 ¼0.

3.2. Hierarchical attention

3.2.1. Question self-attention
We adde a self-attention mechanism in question encoder. Specifically, in each dialogue turn, the model attends over all posi-

tions in the question sequence, each represented by the question encoder hidden state hqes
n ðn¼1; . . . ;NqesÞ. The set of all question

hidden states hqes are passed through two convolutional layers with kernel size 1 and ReLU and softmax activation. The result
scalar attention aqes

n is associated with the position nth in the question.

aqes¼softmax
�
Conv

�
ReLU

�
ConvðhqesÞ

���
ð12Þ

bhqes¼
XNqes

n¼1
aqes
n hqesn ð13Þ

The question hidden states are weighted by the softmax result and sum to obtain a single vector bhqes
representing the attended

question features q.

3.2.2. Question-to-multimodal attention
We extend the baseline multimodal attention (Hori et al., 2018) by implementing a question-guided attention mechanism

commonly used in many VQA models (Teney et al., 2017; Anderson et al., 2018). The attention mechanism is used to direct the
model to specific input feature sequences in each modality k (input sequence xk¼xk1; . . . ; xkL for k¼1; . . . ;K). The number of
modalities is denoted by K and the number of feature sequences is L. First, both question features q and modality feature xkl are
passed through separate linear layers with ReLU activation to project them to the same dimensional space Dk. For each modality k
¼1; . . . ;K and l¼1; :; L:

~qk¼ReLUðWkqqþbkqÞ ð14Þ

~xkl¼ReLUðWkxxklþbkxÞ ð15Þ
where Wkq 2RDk�dq ; and Wkx 2RDk�dk . The question features is then expanded to have the same sequential dimension L as the
modality feature, resulting in ~q exp

k 2RL�Dk (the expansion is done by repeatedly stacking ~qk for L times). We then use Hadamard
product to create a feature vector fk to jointly combine question and modality features. The vector is then passed through two
convolutional layers with kernel size 1 and ReLU and softmax activation to obtain a scalar attention weight akl associated with
input sequence xkl.

fk¼~xk ¢ ~qexpk ð16Þ

ak¼softmax
�
Conv

�
ReLU

�
ConvðfkÞ

���
ð17Þ

bxk¼XL
l¼1

aklxkl ð18Þ

The attention weights are normalized over all input sequence with the softmax function. The input features are then weighted by
the normalized values and sum to obtain a single vector bxk representing the attended features of the input video for a modality k.

After obtaining the attended modality features for all modalities, we combine these features by first passing each of them to a
linear layer with weight normalization (Salimans and Kingma, 2016) followed by ReLU. All modalities are projected to the same
dimensional space D. Then we use Hadamard product to combine the features from different modalities. Intuitively, we use
Hadamard product to map all representations into a common feature space. The result is a single vector bz representing the joint
modality features of the input video. We show in our experiments that using Hadamard product is better than simply concatenat-
ing all representations (as used in the baselines), resulting in superior performance and better quality system responses.

~zk¼ReLU
�
weightNormðWkzbxkþbkzÞ

�
ð19Þ

~z¼
YK

~zk ð20Þ
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3.2.3. Question-to-caption attention
We also use a question-guided attention on the caption sequence. Here the attention attends to information from different

positions in the caption, representing by hidden states obtained from the caption encoder (hcap1 ; . . . ; hcapNcap ). First, both question fea-
tures q and caption hidden state hcap

n are passed through separate linear layers with ReLU activation to project them to the same
dimensional space Dcap. The question features is then expanded to have the same sequential dimension Ncap as the caption fea-
tures ~q exp

cap 2RNcap�Dcap
and we then use Hadamard product to create a vector for question-caption features fcap. The rest of the

attention is similar to our Question-to-Multimodal Attention described above.

fcap¼~h
cap
n ¢ ~qexpcap ð21Þ

acap¼softmax
�
Conv

�
ReLU

�
ConvðfcapÞ

���
ð22Þ

bhcap¼
XNcap

n¼1
acap
n hcapn ð23Þ

3.3. Decoder

To generate each system response, each dialogue history H, question Q, and video V are paired with a sequence of output
words to predict a target sequence T. A GRU decoder is used to define a distribution over output words. For each decoding stepm:

hresm ¼GRUresDecðhresm�1; ½ym�1; g�Þ ð24Þ

g¼bhqes � ~z� hhisT � bhcap ð25Þ
where g is the concatenation of question encoding, audio-visual fusioned encoding, dialogue history encoding up to the last dia-
logue turn T, and caption encoding. The decoder sequentially predicts each token using softmax function:

pðTjH;Q ;VÞ¼
YM
m¼1

exp
�
f ðhresm�1; eym Þ

�
P

y0exp
�
f ðhresm�1; ey0 Þ

� ð26Þ

where eym is the output word embedding, hresm�1 is the output hidden vector of the decoder at decoding step m�1; and f is the acti-
vation function between hresm�1 and eym .

The question, dialogue history, and video caption encoders and the response decoder use different GRUs with separate param-
eters to capture different semantic composition. We use a beam search technique with beam size 5 in the decoder.

4. Experiments

We use the standard objective function log-likelihood of the target sequence T given the dialogue history H, question Q, and
video V, which at decoding time provides the statistical decision problem:

bT ¼ argmaxT logpðTjH;Q ;VÞ ð27Þ
For each encoder and decoder, we use an independent single forward GRU layer. The number of hidden units is set to 512 for

all the encoders and decoder. We also separate the parameters of the word embedding for the question, dialogue history, caption
encoders, and response decoder. We chose to initialize all word embeddings with 200-dimensional Glove embedding (Penning-
ton et al., 2014) pretrained onWikipedia and Gigaword.1 The large size of the training dataset helps to bootstrap the embeddings
to contain more meaningful semantic information in each word. We trained each model up to 15 epochs with a decaying learning
rate schedule. The learning rate is initialized to 0.001. We used the ADAM optimizer (Kingma and Ba, 2014) to train the model.
The batch size is set to 64 during training. For each training, we selected the best model with the lowest perplexity on the official
validation dataset.

4.1. Data

Table 1 summarizes the data provided for the DSTC7 ASVD track. Each dialogue consists of 10 questions about a given video
and corresponding 10 responses. Each dialogue was yielded by two Amazon Mechanical Turk (AMT) workers. One of the workers
played the role of an answerer who already watched the entire video while the other did not. Each answerer had to answer the
other worker’s questions based on the previous dialogue history and the input video (including audio and visual features and/or
video caption). For each dialogue in the test set, we generated a response corresponding to the position of the UNDISCLOSED

1 https://nlp.stanford.edu/projects/glove/
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token i.e. 1710 responses in total. We used the official training dataset to train our system and the official validation dataset to
validate and select the best models. We did not merge validation data to the official training data so that we can compare the
results to the baselines (Hori et al., 2018). In addition to the official test data, we also reported experiments with the prototype
test data. The prototype test data includes the full set of ground-truth responses and allows us to comprehensively test our mod-
els for ablation analysis. The official test data does not include ground-truth responses and all results on this data are received
from the competition organizers. We also utilized pretrained audio and visual feature extractors. Particularly, we used the
I3D_rgb and I3D_flow features from the “Mixed_5c” layer of the I3D network (Carreira and Zisserman, 2017) for visual features
and Audio Set VGGish (Hershey et al., 2017) for audio features.

4.2. Results

We evaluated our submissions and the baselines using corpus-level metrics, including BLEU (Papineni et al., 2002), CIDEr
(Vedantam et al., 2015), ROUGE-L (Lin, 2004), and METEOR (Banerjee and Lavie, 2005). Results for these metrics were provided
by the DSTC organizers. We submitted two systems, representing the two settings: Video+Text and Text Only. For Video+Text set-
ting, in addition to the dialogue data, we use the I3D_rgb features and VGGish features for visual and audio features. In this set-
ting, we did not submit the system that also uses video caption data as we did not find significant improvement during
validation. For Text Only setting, we used the dialogue data as well as the video caption to train our model. We did not use the
video summary data. We compared these systems to the baseline (Hori et al., 2018).

The objective and subjective evaluation results are shown in Table 2. The ground truth responses from the official test data
were also evaluated by human judges and the results were provided by the organizers. All of our submissions show improvement
over the baselines in terms of BLEU, CIDEr, METEOR, and ROUGE-L. Among our systems’ results, the Video+Text system performs
better than the Text Only system in terms of BLEU scores, with an exception for BLEU-1 where Text Only system is slightly better
than Video+Text system. The Text Only system outperforms the Video+Text system in terms of METEOR, ROUGE-L, and CIDEr. As
ROUGE-L is a recall oriented metric designed for summarization and METEOR is a translation metric, they may not be ideal to
evaluate the performance of dialogue response generation. This might explain the inconsistency between these metrics and
BLEU scores when we compare Video+Text and Text Only system results. The difference between Video+Text and Text Only results
is also not significant. As we expect the information conveyed from video visual and audio features is more than video caption
alone, the performance of Video+Text could be further improved. For human evaluation, the results are consistent with objective
scores in which our proposed Text Only model outperforms the baseline. However, there is still some difference in human rating
(0.858 absolute score) between our generated responses and the official test responses.

4.3. Ablation analysis

Tables 3 and 4 show the results of our proposed models trained on the official training data and evaluated on the prototype
test data. The evaluation metrics include BLEU, METEOR, ROUGE-L, and CIDEr. The evaluation codes were provided by the orga-
nizer and based on MS COCO caption generation task.2 Here we analyze how changes in different components of the network
architectures and input components (Video, Text) affect the model performance. Model #1 is essentially the baseline model (Hori
et al., 2017). As we change from LSTM to GRU (Model #2) in all encoders and decoder, we do not observe much changes in terms
of evaluation metrics. However, as GRU is more computationally efficient, we apply GRU in all the models. As we adopt Ques-
tion-to-Multimodal Attention (Model #3), the performance increases slightly across all the metrics except for BLEU1. When we

Table 1
DSTC7 Video scene-aware dialogue dataset.

Official training Official validation Official test Prototype test

# of Dialogues 7659 1787 1710 733
# of Turns 76,590 17,870 6745 7330
# of Words 1,450,754 339,006 110,252 138,790

Table 2
Objective and subjective evaluation results on official test data. The highest value in each metric is highlighted in bold.

Model Video Text BLEU-4 METEOR ROUGE_L CIDEr Rating

Baseline I3D_rgb_flow Dialogue 0.305 0.217 0.481 0.733 N/A
Baseline I3D_rgb_flow+VGGish Dialogue 0.309 0.215 0.487 0.746 2.848
Ours I3D_rgb+VGGish Dialogue 0.315 0.239 0.509 0.848 -
Ours None Dialogue+Caption 0.310 0.242 0.515 0.856 3.080
Official Test N/A N/A N/A N/A N/A N/A 3.938

2 https://github.com/tylin/coco-caption
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combine Question-to-Multimodal Attention with Non-linear Multimodal Feature Fusioning (Model #4), the results increase sig-
nificantly in terms of BLEU scores. However, as we add I3D_flow features of the input video (Model #5), the performance deterio-
rates. We speculate that our Multimodal Feature Fusioning method is not suitable to combine more than two types of features.
Therefore, adding a third feature such as I3D_flow affects the results. When we add caption features and/or question-guided
attention mechanism, the model performance clearly improves (Model #6 and #7). We also experiment with Caption-to-Multi-
modal Attention by replacing q in Eq. (14) to bhcap

(Model #8). However, the results are worse than using the proposed Question-
to-Multimodal Attention. Without using pretrained word embedding, the best performance is achieved when using both video
caption input and question-guided attention on the caption features.

When using pretrained Glove embedding, we observe increased results with 200-dimensional embedding (Model #10). With
100-dimensional Glove embedding (Model #9), the model is not as good as one without pretrained embedding (Model #4). This
could be caused by the 100-dimensional embedding space not being able to capture comprehensive semantic meaning in the
training corpus. Similarly to (Model #5), we do not see improvement when adding I3D_flow into the input video features (Model
#11). Surprisingly, as we add caption features with question-guided attention (Model #12), the performance is not as good as the
case without caption features (Model #10), except for BLEU1. Among the Video+Text setting models, Model #10 shows the best
performance and is used as our submission to the DSTC7 for the Video+Text setting. We also experiment with only input text
without the input video (Model #14, #15, and #16). As we use pretrained 200-dimensional Glove embedding (Model #15), we
achieve the best performance and use this model as our submission for the Text Only setting.

Table 3
We tested variants of our proposed approach with different combinations of input data (Video, Text) and model architectures.

Model# Video Text RNN cap-att mm-att mm-fusion word-emb

1 I3D_rgb+VGGish Dialogue LSTM - Baseline Baseline No
2 I3D_rgb+VGGish Dialogue GRU - Baseline Baseline No
3 I3D_rgb+VGGish Dialogue GRU - QuesProj+Conv Baseline No
4 I3D_rgb+VGGish Dialogue GRU - QuesProj+Conv FC+HdmProd No
5 I3D_rgb_flow+VGGish Dialogue GRU - QuesProj+Conv FC+HdmProd No
6 I3D_rgb+VGGish Dialog+Caption GRU - QuesProj+Conv FC+HdmProd No
7 I3D_rgb+VGGish Dialog+Caption GRU QuesProj+Conv QuesProj+Conv FC+HdmProd No
8 I3D_rgb+VGGish Dialog+Caption GRU QuesProj+Conv CapProj+Conv FC+HdmProd No
9 I3D_rgb+VGGish Dialogue GRU - QuesProj+Conv FC+HdmProd Glove100
10 I3D_rgb+VGGish Dialogue GRU - QuesProj+Conv FC+HdmProd Glove200
11 I3D_rgb_flow+VGGish Dialogue GRU - QuesProj+Conv FC+HdmProd Glove200
12 I3D_rgb+VGGish Dialogue+Caption GRU QuesProj+Conv QuesProj+Conv FC+HdmProd Glove200
13 I3D_rgb+VGGish Dialogue+Caption GRU QuesProj+Conv QuesProj+Conv FC+HdmProd Glove300
14 - Dialogue+Caption GRU QuesProj+Conv - - No
15 - Dialogue+Caption GRU QuesProj+Conv - - Glove200
16 - Dialogue+Caption GRU QuesProj+Conv - - Glove300

Table 4
Automatic evaluation metrics on different variants of our proposed approach. The
models are evaluated on the prototype test data. The best value in each metric is
highlighted in bold.

Model# BLEU METEOR ROUGE-L CIDEr

B-1 B-2 B-3 B-4

1 0.272 0.176 0.120 0.086 0.122 0.298 0.842
2 0.266 0.174 0.120 0.086 0.121 0.299 0.843
3 0.269 0.175 0.121 0.087 0.123 0.301 0.851
4 0.291 0.186 0.126 0.090 0.127 0.301 0.824
5 0.284 0.183 0.125 0.090 0.123 0.296 0.802
6 0.294 0.192 0.130 0.094 0.124 0.300 0.865
7 0.304 0.198 0.137 0.100 0.131 0.312 0.891
8 0.298 0.194 0.135 0.097 0.129 0.309 0.867
9 0.276 0.181 0.125 0.091 0.124 0.304 0.870
10 0.307 0.204 0.144 0.106 0.136 0.320 0.995
11 0.303 0.201 0.141 0.103 0.133 0.317 0.962
12 0.314 0.204 0.142 0.102 0.136 0.317 0.940
13 0.307 0.202 0.142 0.103 0.134 0.316 0.935
14 0.293 0.194 0.136 0.100 0.130 0.313 0.933
15 0.312 0.203 0.141 0.102 0.135 0.316 0.931
16 0.304 0.197 0.139 0.101 0.133 0.314 0.930
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4.4. Impact of pretrained embedding

In this section, we examine the impacts of pretrained embedding on model performance. The models are initialized with pre-
trained embedding to encode the sequences and the embedding weights are either finetuned or fixed during training time. We
investigated the model performance when using only the video features (visual and audio) without the input video caption (Row
9 and 10 in Table 3 and 4). We consider the following pretrained word embedding models: Word2Vec3 (Mikolov et al., 2013),
Glove4 (Pennington et al., 2014), and FastText5 (Mikolov et al., 2018). For these pretrained embeddings, we initialize the embed-
dings with the pretrained weights and finetune the weights with dialogue data. We also experiment with contextual embedding
models, including Elmo6 (Peters et al., 2018), BERT (Devlin et al., 2018), GPT (Radford et al., 2018), and GPT27 (Radford et al.,
2019). In each experiment, the contextual embedding is combined by using element sum to combine with the token-level
embeddings. The token-level embeddings are learned from scratch in all experiments with pretrained contextual embedding.
We experiment with either fixing the contextual embedding weights or finetune the weights with dialogue data.

As can be seen in Table 5, compared to not using any pretrained embedding, applying the pretrained word or contextual
embeddings generally helps to improve the performance in most of the metrics, except for cases in BLEU1 and BLEU2. For word
embedding, we observe the best performance is obtained when using 200-dimension Glove embedding (Pennington et al.,
2014). When using the contextual embedding (either fixed or finetuned during training), the best performance is obtained when
using 1024-dimensional Elmo embedding (Peters et al., 2018). Interestingly, we noted that the performance improvement with
pretrained contextual embeddings is less than the cases with pretrained word embeddings. This could be explained by two rea-
sons: (1) The dataset used for pretraining the embedding and the datasets used for learning dialogue models might have different
distributions as the dialogue data is more of casual or spoken language while the pretrained data is typically composed of written
language text. This difference could impact the contribution of the pretrained embedding in dialogue models and the impact is
higher with context-based representations than token-based representations. (2) The contribution of contextual embeddings
might also be limited by the multi-turn structure of dialogues as the embeddings are generally pretrained and tested on non-dia-
logue tasks such as language modeling, question-answering, machine translation, and text tagging (Peters et al., 2018; Devlin
et al., 2018; Radford et al., 2018; 2019). In dialogues, each dialogue turn is usually shorter (of one-sentence length) than the input

Table 5
Automatic evaluation metrics on the full models with finetuned or fixed pretrained embeddings. The models are
evaluated on the prototype test data. For a pretrained embedding, the embedding dimension is indicated after
the underscore. For FastText (Mikolov et al., 2018), the embedding weights are pretrained on Common Crawl
(CC) (600B tokens) or Wikipedia, UMBC webbase corpus and statmt.org news dataset (Wiki) (16B tokens). The
best value in each metric is highlighted in bold.

Pretrained Emb. BLEU METEOR ROUGE-L CIDEr

B-1 B-2 B-3 B-4

None 0.291 0.186 0.126 0.090 0.127 0.301 0.824
Word Embedding (Finetuned)
Word2vec_300 (Mikolov et al., 2013) 0.284 0.188 0.133 0.098 0.128 0.315 0.956
Glove_50 (Pennington et al., 2014) 0.277 0.181 0.127 0.094 0.124 0.309 0.902
Glove_100 (Pennington et al., 2014) 0.276 0.181 0.125 0.091 0.124 0.304 0.870
Glove_200 (Pennington et al., 2014) 0.307 0.204 0.144 0.106 0.136 0.320 0.995
FT_300(CC) (Mikolov et al., 2018) 0.289 0.192 0.137 0.102 0.130 0.317 0.989
FT_300(Wiki) (Mikolov et al., 2018) 0.284 0.188 0.133 0.099 0.127 0.315 0.957
Contextual Embedding (Fixed)
Elmo_1024 (Peters et al., 2018) 0.286 0.190 0.136 0.101 0.130 0.317 0.986
Elmo_2048 (Peters et al., 2018) 0.273 0.182 0.130 0.097 0.126 0.311 0.971
BERT_768 (Devlin et al., 2018) 0.273 0.180 0.127 0.094 0.123 0.305 0.912
BERT_1024 (Devlin et al., 2018) 0.278 0.182 0.129 0.095 0.124 0.306 0.910
GPT (Radford et al., 2018) 0.286 0.185 0.127 0.090 0.126 0.308 0.852
GPT2 (Radford et al., 2019) 0.279 0.182 0.127 0.093 0.123 0.301 0.870
Contextual Embedding (Finetuned)
Elmo_1024 (Peters et al., 2018) 0.284 0.189 0.135 0.100 0.129 0.316 0.989
Elmo_2048 (Peters et al., 2018) 0.273 0.181 0.130 0.097 0.127 0.312 0.985
BERT_768 (Devlin et al., 2018) 0.278 0.185 0.131 0.097 0.126 0.310 0.961
BERT_1024 (Devlin et al., 2018) 0.277 0.182 0.129 0.095 0.125 0.308 0.933
GPT (Radford et al., 2018) 0.275 0.183 0.129 0.095 0.126 0.312 0.939
GPT2 (Radford et al., 2019) 0.280 0.186 0.132 0.098 0.128 0.312 0.971

3 https://code.google.com/archive/p/word2vec/
4 https://nlp.stanford.edu/projects/glove/
5 https://fasttext.cc/docs/en/english-vectors.html
6 https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
7 https://github.com/huggingface/pytorch-pretrained-BERT
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sequences in previous tasks. Dialogue turns are also structured as two-way or interactive communication rather than as continual
paragraphs or documents in other tasks. Therefore, to apply pretrained context-level embedding into dialogues, other network
approaches such as concatenating all dialogue turns into a single sequence (Wolf et al., 2019) might exploit more benefit of the
pretrained embedding than the current hierarchical network structure.

5. Qualitative analysis

In this section, we analyze the model performance in several qualitative aspects. We examine our model with the highest
BLEU-4 score in the official test result (See Table 2). All the results in this section are based on the generated responses in the pro-
totype test set.

5.1. Video length

First we investigate whether the length of input video affects the model performance. As can be seen in Fig. 2 and Table 6, the
performance generally decreases as the length of input video increases, except for slight surge of performance for video ranges
(25.67, 29.97] and (31.12, 32.58]. There is a sharp decrease in performance at the video range (32.58, 35.01]. We speculate that
the drop in performance could be caused by data bias as the testing population for this video range is quite small (See Table 6).
The best performance is obtained at the shortest range of video lengths i.e. less than or equal to 17.79(s), except for CIDEr metric,
which has the best value at video range (25.67, 29.97].
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Fig. 2. Plots of relationship between the length of input video and automatic metrics. The ranges of video length are selected based on intervals between 100/8
percentiles e.g. less than 12:5th percentile, from 12:5th to 25th precentile, and so on. (a, b] denotes a range of values more than a and less than or equal to b.

Table 6
Automatic metrics by video length. (a, b] denotes a range of values more than a and
less than or equal to b. The best value in each metric is highlighted in bold.

Video Length (s) # Dials # Turns BLEU4 METEOR ROUGE-L CIDEr

(0, 17.79] 95 950 0.121 0.147 0.333 1.118
(17.79, 25.67] 93 930 0.113 0.140 0.327 1.040
(25.67, 29.97] 100 1000 0.118 0.139 0.331 1.130
(29.97, 30.58] 100 1000 0.106 0.135 0.325 1.061
(30.58, 31.12] 91 910 0.104 0.134 0.319 1.030
(31.12, 32.58] 92 920 0.106 0.139 0.328 1.039
(32.58, 35.01] 76 760 0.083 0.119 0.286 0.793
(35.01, 72.04] 86 860 0.093 0.127 0.305 0.936
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5.2. Question type

In Table 7, we examine the quality of the generated responses At by the types of questions in user query Qt. The question type
in each user query is identified by a simple word matching technique (case insensitive). The model performs better for how
many, who, and yes/no types of questions in user query. In contrast, the model performance is lower for which, what, why, and
when types of questions. However, We also note that the distribution of question types in the test data is quite imbalanced. For
example, yes/no questions account for more than 70% of the test samples while how many questions only represent about 3%. The
model performance is less representative in certain minor question types such as which, who, when, and why. While the model
performs relatively well overall, it fails at some question types that require more complex reasoning and understanding of the
input videos, such as how and why questions.

We also observe that the generated responses have a large proportion of negative answers i.e. answers that response “no” to
yes/no questions. This might be due to the high frequency of negative responses in the training corpus. We also noticed our mod-
els tend to generate a universal answer such as “yes that is all happening in the video” to questions such as “is that all happened
in the video?”. This type of question might require further cross-references to reason over the dialogue history.

5.3. Turn position

Lastly, we examine whether the turn position of generated responses affects the performance in Fig. 3 and Table 8. As
expected, we observe that the model achieves the best performance at the 1st turn and then reduces at later positions in the

Table 7
Automatic metrics by question type in user query Qt. The question type of each user
query is identified by simple word matching (case insensitive). The best value in
each metric is highlighted in bold.

Question Types # Dials # Turns BLEU4 METEOR ROUGE-L CIDEr

which 9 9 0.000 0.119 0.303 0.709
what 622 1490 0.053 0.101 0.252 0.534
who 10 10 0.234 0.276 0.602 1.486
when 17 18 0.062 0.113 0.329 0.951
where 106 119 0.097 0.131 0.331 0.945
why 27 34 0.025 0.071 0.178 0.230
how 240 279 0.099 0.137 0.302 0.812
howmany 212 225 0.263 0.298 0.539 2.020
yes/no 733 5146 0.116 0.142 0.332 1.074

Fig. 3. plots of relationship between the turn position and automatic metrics.
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dialogue. However, the trend of performance is not consistent throughout turn positions. For example, there are increases of per-
formance observed at 5th;6th;9th; and 10th turn positions. We speculate that in addition to the turn position in the dialogue,
other factors also affect the quality of the responses such as input video length and question type in user query. These factors
might have more significant impacts on the quality of the responses than the turn positions and hence, result in an inconsistent
trend of performance across turns. Still, considering the performance in the 1st turn as the upper bound, we aim to improve the
models by reducing the gaps to this bound in 2nd and later turn positions.

5.4. Sample dialogue

We investigate one sample dialogue and compare the responses between our model and the baseline model as well as the ref-
erence responses in Table 9 (sample picture frames of the input video can be seen in Fig. 4). In terms of correctness, our responses
express the answers better than the baseline responses in A1, A3, and A5. This indicates that our model can capture the video fea-
tures, either visual feature (e.g. action “drinking”, number of people) or audio feature (action “talking”) better than the baseline
approach. For Q2, both the baseline model and our model can express the correct answers. However, the baseline answer is pre-
ferred as its response is more concise than our response. For Q4, both baseline response and our response do not match the refer-
ence response. However, our response is better in this context as “standing in front of the refrigerator” is more appropriate than
“eating a sandwich” action for this particular dialogue context.

Table 8
Automatic metrics by turn position of generated responses.
The best value in each metric is highlighted in bold.

Turn Position BLEU4 METEOR ROUGE-L CIDEr

1st 0.186 0.210 0.425 1.624
2nd 0.120 0.151 0.349 1.111
3rd 0.096 0.131 0.319 0.918
4th 0.079 0.119 0.288 0.772
5th 0.096 0.120 0.299 0.919
6th 0.093 0.123 0.299 0.915
7th 0.085 0.123 0.305 0.904
8th 0.098 0.127 0.301 0.966
9th 0.099 0.131 0.308 0.992
10th 0.106 0.131 0.311 1.027

Table 9
A sample dialogue for an input video with responses generated by the best baseline model Abaseline, our best
Video+Textmodel Aours, and the reference response Aref from the prototype test dataset.

Video Caption “A person is working on their laptop, another person come in carrying a bag of groceries.
they set the groceries down and start cooking.”

Q1 how many people in the video?
Aref
1 there are two person in video

Abaseline
1 there are one person in the video

Aours
1 there are two people in the video

Q2 what gender are they?
Aref
2 there are both males in video

Abaseline
2 they are both men in the video

Aours
2 one is a male and the other is a male

Q3 are they talking in the video?
Aref
3 no, both are not talks to each other

Abaseline
3 yes they are talking in the video

Aours
3 no one is talking in the video

Q4 what is the second person doing?
Aref
4 second person bring a vegetable bag come to kitchen room

Abaseline
4 he is eating a sandwich

Aours
4 the person is standing in front of the refrigerator

Q5 are they drinking something in the video?
Aref
5 no, they are both not a drink

Abaseline
5 no, he is eating a sandwich

Aours
5 no, they are not drinking anything in the video
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6. Discussion

DSTC7 AVSD Track proposes an interesting and challenging problem to investigate multimodal dialogue systems in a video-
oriented rather than a visually-grounded setting (Das et al., 2017b; 2017a). It presents a framework to explore how the state-of-
the-art feature extraction models such as VGGish and I3D can be used to extract the visual and audio features and be combined
into a dialogue setting. We found that techniques used in visual QA models (Anderson et al., 2018; Teney et al., 2017) could be
adapted into this setting to improve the model performance. We hope to explore in this multimodal dialogue setting further in
the future with larger-scale datasets and in other variations of dialogue systems e.g. open-domain dialogues and task-oriented
dialogues. Besides bootstrapping with pretrained word embeddings, we could also pretrain parts of the model on a larger dia-
logue corpus that covers similar topics and types of questions. An example corpus is the Movie QA dataset (Tapaswi et al., 2016)
constructed to query about movie contents.
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