
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-1997

Inductive neural logic network and the SCM algorithm Inductive neural logic network and the SCM algorithm

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Loo-Nin TEOW

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, OS and Networks Commons, and the

Theory and Algorithms Commons

Citation Citation
TAN, Ah-hwee and TEOW, Loo-Nin. Inductive neural logic network and the SCM algorithm. (1997).
Neurocomputing. 14, (2), 157-176.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5248

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

I

Neurocomputing 14 (1997) 157-176

Inductive neural logic network and the SCM
algorithm

Ah-Hwee Tan * , Loo-Nin Teow

Reai World Computing Partnership (RWCPI, Neuro ISS Laboratory. Institute of Systems Science, National

Uniuersity of Singapore, Heng Mui Keng Terrace, Kent Ridge, Singapore I I9597

Received 2 May 1995; accepted 3 1 January 1996

Abstract

Neural Logic Network (NLN) is a class of neural network models that performs both pattern
processing and logical inferencing. This article presents a procedure for NLN to learn multi-di-
mensional mapping of both binary and analog data. The procedure, known as the Supervised
Clustering and Matching (SCM) algorithm, provides a means of inferring inductive knowledge
from databases. In contrast to gradient descent error correction methods, pattern mapping is
learned by an inductive NLN using fast and incremental clustering of input and output patterns. In
addition, learning/encoding only takes place when both the input and output match criteria are
satisfied in a template matching process. To handle sparse and/or noisy data sets, we also present
a weighted voting scheme whereby distributed cluster activities combine to produce a final output.
The performance of the SCM algorithm, compared with alternative systems, is illustrated on three
benchmark problems: (1) mushroom classification, (2) sonar return signal recognition, and (3)
sunspot time series prediction.

Keywords: Supervised learning; Incremental clustering; Template matching

1. Introduction

Neural Logic Network (NLN) is a class of neural network models that performs both
pattern processing and logical inferencing (19-211. Although defined in terms of nodes
and links, an NLN functions like a logical system. By extending Boolean logic to

3-valued logic and soft logic, including probabilistic logic and fuzzy logic, a neural logic

network is a powerful model for simulating human logical reasoning. As a neural

l Corresponding author. Email: ahhwee@iss.nus.sg.

0925-2312/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved.
PII SO925-2312(96)00032-X

158 A.-H. Tan, L.-N. Teow/Neurocomputin~ 14 (1997J 157-176

network model, a neural logic network performs massively parallel pattern learning and
recognition. A specialized 3-layer architecture enables pattern matching from a set of
input patterns to a set of output patterns. We call Neural Logic Network with such a
architecture and purpose, inductioe Neural Logic Network. Given a consistent mapping

problem such that no single input pattern is associated with two distinct output patterns,
a construction algorithm determines the required network topology to perform the given

mapping [14,21].

Although the construction algorithm proves the existence of an NLN for each and
every consistent mapping problem, it suffers from two limitations. First, as an intermedi-

ate node is assigned to learn the mapping between a pair of input and output patterns,

the network size scales up linearly as the number of pattern pairs increases. Second, the
weight assignment process is based on exact match firing condition. The constructed

network thus cannot tolerate error in the input patterns or perform generalization.
Although algorithms, such as feature enhancement and fine tuning [11,14,16,22], solve

the latter problem to a certain extent, it is unclear how much generalization a network

can obtain by retaining the exact match firing condition during performance.

This article introduces a learning algorithm that incorporates a clustering mechanism
into the construction process. The Supervised Clustering and Matching (SCM) algorithm

[17,18] is adapted from the dynamics of a supervised Adaptive Resonance Theory

(ART) [1,2] model termed Adaptive Resonance Associative Map (ARAM) [151. Instead
of encoding a pair of input and output patterns, each hidden node now encodes a pair of
input and output templates of a cluster of input and output patterns respectively.

Whereas typical clustering systems, such as ART and LVQ [8], perform unsupervised
categorization of input patterns, SCM makes use of a template matching process to

supervise the input clustering. Specifically, learning/encoding only takes place when
both the input and output patterns match well with their respective weight templates,
according to some similarity measures. SCM is similar to another supervised learning

algorithm for NLN, known as the Supervised Incremental Clustering Algorithm (SICA)

[9,10], that is also based on supervised clustering. However, whereas SICA considers
output in the form of labels or classes, SCM represents output in the form of continuous
patterns. This enables inductive NLN to perform a wider range of memory tasks

including both pattern classification and function approximation.
Based on the SCM learning mechanism, a set of system equations is derived for each

sub-class of NLN, namely 3-valued NLN, Boolean NLN, and fuzzy NLN. The SCM
algorithm is evaluated on three well-known benchmark problems obtained from a public
domain machine learning directory [121, namely (1) mushroom classification, (2) sonar

return recognition, and (3) sunspot prediction. The mushroom problem is a pattern

classification problem based on binary attributes. We apply both Boolean NLN and
3-valued NLN to the mushroom problem and find that 3-valued NLN forms a more
compact internal representation. We apply fuzzy NLN to the second and third bench-
mark problems, that are based on real-valued features. Whereas sonar return recognition
is a classification problem, sunspot time series prediction is a function approximation
problem. In all benchmark simulations, the results indicate that besides the advantage of
fast incremental learning, the SCM algorithm performs competently, in terms of network
size and test set generalization, compared with alternative learning systems, including K

A.-H. Tan, L.-N. Teow/Neurvcomputing 14 (1997) 157-176 159

nearest neighbor system, fuzzy ARTh4AP [3], fuzzy AFUM [15], back-propagation
network [24], and threshold Autoregressive model 1231.

The rest of this article is organized as follows. Section 2 provides an overview of
Neural Logic Network and motivates the SCM learning algorithm. Section 3 presents the

SCM algorithm and the equations for 3-valued NLN and Fuzzy NLN. Section 4
compares the performance of the SCM algorithm with existing learning methods based
on the three benchmark problems. Concluding remarks and future extensions are

discussed in Section 5.

2. Neural logic network

An &rruct neural logic network (NLN) [19,201 . IS a mathematical system denoted

by

where

Jfr is the
8 is the

9 is the
B is the
9’ is the

&v’ is the

set of nodes of directed graphs,
chosen set of links,

chosen set of input nodes,
chosen set of output nodes,

chosen ring,
chosen subset of 9’ whose elements are called the truth values,

is a mapping from 8 to 9 which assigns weights to links,
is the mapping from (X -S> to JZ? which assigns truth values to non-input nodes,

and ST is the mapping from 9 to ti called the threshold function.

By an appropriate choice of the ring structure 9, the truth value domain &‘, and the

threshold function 9, different sub-classes of NLN can be obtained. Three important
subclasses are Boolean NLN, 3-valued NLN, and fuzzy NLN.

One unique feature of NLN is the use of ordered-pair values to represent both

Fig. 1. A single layer 3-valued Neural Logic Network.

160 A.-H. Tan, L.-N. Teow/Neurocomputing I4 (1997) 157-176

positive and negative truth values. Specifically, for 3-valued NLN, we take &‘=
((1 ,O>,(O,l>,(O,O)} as the chosen set of truth values, where (1 ,O) denotes “True”, (0,l)
denotes “False”, and (0,O) denotes “Unknown”. Given a node Q with a set of

incoming links from nodes P,, P,, . . . , P,, let (wj,Wi> be the weight on the edge from P,

to Q and (xi,Xi> be the
computed by

(y,y> =F(t,q,

where the positive truth

t=&.L I’

truth value of pi (Fig. i). The truth value of node Q, (y, j) is

t is given by

(1)

(2)

the negative truth i is given by

t = cwi i; (3)

and the double step function ST: R2 + A is defined by

i

(1,0) if TT 1

.F(t,?) = (0,l) if TI - 1

(070) otherwise,

where the net truth T is computed by

(4)

T=t-t. (5)

3-valued logic is more complicated and potentially more powerful than Boolean
logic. Assuming two 3-valued inputs, there are nine different input combinations and

thus nine output values for each 3-valued logical operator. Since each output can take
one of the three values and a different assignment of values to the nine outputs results in

a distinct operator, there are altogether 19,683 (39) 3-valued logical operators. 3-valued
NLN has very rich logical properties in the sense that each of the 19,683 different
3-valued logical operators can be realized by a single simple 3-valued NLN, by suitable

substitutions of weight values [19]. Some of the more basic operators, such as 3-valued
AND, OR, and XOR, are natural generalizations of their corresponding Boolean
counterparts.

Although NLN has very strong logical properties, in this paper, we shall focus on
another interesting task performed by NLN, i.e., pattern matching and classification. The
cornerstone of the pattern matching properties is an existence theorem stated below.

Theorem (3-valued pattern matching). Let ._w’ = {(l,O),(O, l),(O,O)}. Given a mapping
8: XP +MN, where M and N are positive integers, that matches a set of input patterns

to a set of output patterns, if the mapping is consistent such that no single input pattern

maps to two dijferent output patterns, there exists a j-valued neural logic network which
induces the mapping 8.

A.-H. Tan, L.-N. Teow/Neurocomputing 14 (19971157-176 161

hidden layer

Fig. 2. Using the construction algorithm, each hidden node j in a 34ayer feedforward inductive

Network encodes a pattern pair (A j,Bj).

Neural Logic

The detailed proof of the 3-valued pattern matching theorem has been presented
elsewhere [21]. To make the article self-contained, a summary of the construction

algorithm, which is central to the proof, is presented below.

2.1. Construction algorithm

Given a set of input and output pattern pairs ((A t,B,),(A,,B2), . . . ,(A,,B,)}, the

algorithm constructs a 3-layer feedforward neural logic network that maps each Aj to its
corresponding B ;.

Let M be the dimension of the input patterns A and N be the dimension of the
output patterns B. Construct a 3-layer feedforward network with M nodes in the
input layer, S nodes in the hidden layer, and N nodes in the output layer. Add links

such that the network is fully connected between consecutive layers (Fig. 2).
Let wn denote the weight matrix between the input and hidden layers. Let w b denote

the weight matrix between the hidden and output layers. For each input and output
pair (Aj,Bj), where

Aj= ((a{,ii{),(ai,Z{) ,..., (aA,Zh)) (6)

and

Bj= ((b{,%{),(b;,&) ,..., (b,:&)),

the weight vectors

w; = ((w;,i$),(wp,,r;p,) ,..., (w$,i$%)),

and

(7)

(8)

(9)

162 A.-H. Tan, L.-N. Teow/Neurocomputing 14 (1997) 157-176

associated with the hidden node j are determined by

if(a:,Zi{) = (1,O)

if (a{,Z{) = (0,l) (10)

I(1 1

d+l’d+l 1
if (a;#) = (0,O)

and

L
(1,O) if(b,‘,b/) = (1,O)

(vv~,KJ~) = (- 1,O) if(b/,b/) = (0,l)

(0,O) if (b/,77/) = (O,O),

w

where c = C,<u! + Z!> and d = M - c.
It can be verified that the constructed network maps each and every input pattern Aj

to its corresponding output pattern Bj. When the input pattern Aj of a pattern pair

(Aj,Bj) is presented, only hidden node j will be activated and read out the output
pattern B,. Although the algorithm proves the existence of an NLN to implement any

given mapping defined by a finite set of input output pairs, one hidden node is needed to

encode each pattern pair. In other words, the network size scales up linearly as the
number of examples increases. To solve this problem, we propose to use a clustering or
compression mechanism to reduce the number of hidden nodes for a more compact

internal representation.

3. Learning by supervised clustering and matching

The SCM algorithm replaces the exact match firing condition by a competitive
activation process among hidden nodes. Instead of encoding a pair of input and output
patterns, each hidden node now encodes a pair of input and output templates of a cluster

of input and output patterns respectively. The hidden nodes are thus called the cluster
nodes (Fig. 3). Given a pair of input and output patterns, the algorithm first identifies a
cluster node based on the input pattern. It then checks if the input and output templates

of the cluster node are close enough to the input and output patterns respectively, based

on a similarity measure. If both of the matches satisfy their respective vigilance criteria,

the cluster node learns the given input and output patterns by tuning its template
patterns. Otherwise, the system resets the cluster node and repeats to select another
node. If no existing cluster node satisfies the above condition, a new cluster node is
recruited to encode the given pattern pairs. With a stricter vigilance criterion (that
corresponds to a higher vigilance parameter values), new cluster nodes are more likely
to be created. For most classification applications, a low input vigilance value and a high
output vigilance value provide maximal generalization with a minimal number of cluster

A.-H. Tan, L.-N. Teow/Neurocomputing I4 (1997) 157-176 I63

clusters

Fig. 3. Using the SCM algorithm, each hidden/cluster node j encodes a set of input and output pattern pairs.

A new cluster is created only when a new pattern does not fit into any existing cluster.

nodes. In applications where highly similar input patterns often correspond to distinct
output patterns, a high input vigilance value is needed to restrict the size (generalization

range) of cluster nodes.

In the following sections, we provide the SCM equations of 3-valued NLN and fuzzy
NLN. The equations of Boolean NLN are omitted as they can be derived from that of
3-valued NLN by dropping the negative terms.

3.1. 3-valued neural logic network

Input and output patterns: Let (a,,Zi) denote the i-th attribute value of the input
vector A and let (bk,sL) denote the k-th attribute value of the output vector B.

Truth value vectors: Let

x0= ((xf,ji;),(x;,x;) ,...((x;,:;)) (12)

be the input truth vector, where (xp,Xp> denotes the truth value of the i-th input node.

Let

Y= ((Y,~~,)~(Y,,~,),...,(Y,,~~:,)) (131

be the cluster truth vector, where (yj,Jj> denotes the truth value of the j-th cluster node.
The size of y increases as the system learns novel mappings. Initially, S = 0, i.e., there
is no cluster node. Let

x”=((xp,q,(x;,q (...) (x;,z;)) (14)

be the output truth vector, where <.x~,X~> denotes the truth value of the k-th output node..
Upon input presentation, xa = A. During training, xb = B. During testing, xb is corn-.
puted by the system.

Weight vectors: Each cluster node j is associated with a pair of adaptive input weight
template wr and output weight template wp. For a newly created node j, input weights,
<w;,iC$ = (1/2M,- 1/2M) and output weights (wj,i$) = (0,l).

164 A.-H. Tan. L.-N. Teow/Neurocomputing 14 (1997) 157-176

Parameters: 3-valued NLN dynamics are determined by a choice parameter LY > 0;

learning rates 0, E [0, 11 and &, E [O, 11; and vigilance parameters p, E LO, 11 and

pb E [o, ll.
Cluster selection: Given the input truth vector x“, for each cluster node j, the truth

value (yj, 7,) is computed by

(YjYYj) =F”(tj,fj),
(15)

where the positive truth tj is given by

tj = Gw,;xy,
i

(16)

the negative truth ij is given by

ij = CiG,,l:q, (17)

and the choice threshold function 9 ‘(. , *) is determined by

sc(tj,tj) =
i

(1,O) ifj=JwhereT,>T, fork#J

w-9 otherwise, (18)

where the net truth q is computed by ?; = t, - il.
Prediction match or reset: Prediction is confirmed if the match degrees, ml; and mb,,

meet the vigilance criteria in the input and output layers respectively:

mT=
Ix” A “wjq

L p, and mh, =
Ixb A bW,bl

1x7 lXbl
ZPb, (19)

where the input match operator A a is defined by

(

(190) if xpw/4 > 0

(x” A awJO)i = (O,- 1) if Zyi$; < 0 GO)

(OYO) otherwise,

the output match operator A b is defined by

(x” A bwj)k =
(1,O) if wjk(X: - Zt) + i7Jk > 0

(070) otherwise,
(2’)

and the norm function 1. I is defined by

(22)

The input match operator (A 9 checks if an input attribute value has the same sign as its
corresponding weight value. The total number of input attributes that match (in sign)
with their corresponding weight values is then normalized by the number of non-zero

input attributes to yield the input match degree cm”,). The output match degree (mb,) is
computed in a similar manner based on the output match operator (A b).

A.-H. Tan, L.-N. Teow/Neurocomputing I4 (1997) 157-176 165

When both vigilance criteria are satisfied, learning ensues, as defined below. If any of
the vigilance constraints is violated, mismatch reset occurs in which node J is shut
down for the duration of the input presentation. The search process repeats to select
another a new index J until a prediction match is achieved. If no such node exists, a

new node J is created.
Learning: Once the search ends, the input weight vector w_j’ is updated according to

the equation

(1 - P,) (w;, ,Wl,)fo’d) + P
(x~ ,, aW;W),

a (Y + JxU A ow;(o’d)l
(23)

and the output weight vector wJ” is updated according to the equation

(4kFk)(“ew)= (1 -~h)(~~~,W~~)‘o’d’+~h(~~-~~)(~h~ ‘w;(“~))~. (24)

For an input attribute i that has a positive or negative truth value in the truth value

vector x0, the input weight learning equation increases the corresponding weight value

in (w/“i,W,4). For all other weight values, the learning equation reduces them towards

zeroes. The output weight learning modifies only the positive weight values. The
. .

equation Increases w!~ towards 1 if the output attribute k has a positive truth value,

decreases w$~ towards - 1 if the output attribute k has a negative truth value, and
towards zero otherwise. For efficient coding of noisy input sets, it is useful to set

p, = P,, = 1 when J is a newly created node, and then take /3, < 1 and P,, < 1 after
that. Fast learning corresponds to setting p, = P,, = 1 for all existing cluster nodes.

Output prediction: During testing, given the cluster truth vector y, the output truth

vector xh is determined by

(25)

where the double step threshold function 9 is as defined in Eq. (4).
Match tracking: Match tracking rule as used in the ARTMAP search and prediction

process [3] is useful in minimizing the number of nodes in the cluster layer. At the start
of each input presentation, the vigilance parameter p, equals a baseline vigilance p,. If

a reset due to a mismatch in the output layer occurs in the cluster layer, p, is increased
until it is slightly larger than the match degree m;. The search process then selects
another cluster node J under the revised vigilance criterion.

3.2. Fuzzy NLN

Fuzzy NLN extends the ordered-pairs of 0 and 1 in 3-valued NLN to ordered-pairs of
real numbers between 0 and 1. Formally, the truth value domain JV of fuzzy NLN is

defined by

~={(x,x):xE[0,l],xE[0,1],x+x=l}. (2Cl)

The SCM algorithm for fuzzy NLN follows closely to that of 3-valued NLN, but
introduces a vector normalization step for cluster selection and match computation. The

detailed algorithm is presented below.

166 A.-H. Tan, L.-N. Teow/Neurocomputing 14 (1997) 157-176

tnput and output patterns: Let (~,,a;) denote the i-th attribute value of the input
vector A and let (b,,b,) denote the k-th attribute value of the output vector B.

Truth value vectors: Let

x0= ((x;,ji-;),(x;,q ,..., (xg;)) (27)

be the input truth vector, where (xp,Zy) denotes the truth value of the i-th input node.

Let

Y= ((Y,,Y,),(Y2~j;2)‘...~(YS’YS)) (28)

be the cluster truth vector, where f y,, j,> denotes the truth value of the j-th cluster node.

The size of y increases as the system learns novel mappings. Initially, S = 0. Let

x”=((x:,ip),(x;,i;) ,..., (x;e.Eh)) (29)

be the output truth vector, where (xf, 2,“) denotes the truth value of the k-th output node.

Upon input presentation, xa = A. During training, xh = B. During testing, xh is com-

puted by the system.
Weight vectors: Each cluster node j is associated with a pair of adaptive input weight

template wj” and output weight template wp.
Parameters: Fuzzy NLN dynamics are determined by learning rates p, E [O,ll and

p,, E [O,l]; and vigilance parameters p, E [O,ll and &, E [O,ll.
Cluster selection: Given the input truth vector x“, for each cluster node j, the truth

value (y,, j;,) is computed by

(y,,j;i) = Y(tj,tj).

where the positive truth fj is given by

(30)

the negative truth jj is given by

and the choice threshold function Yc(. , . > is determined by

Few,) =
Cl,01 if j = J where TJ > Tk for k # J

(00) otherwise,

where the net truth Tj is computed by

(31)

(32)

(33)

T, = tj - iI . (34)

A.-H. Tan. L.-N. Teow/Neurocomputing 14 (1997) 157-176 167

Prediction match or reset: Prediction is confirmed if the match degrees, m‘j and rn:,
meet the vigilance criteria in the input and output layers respectively:

mT=
c;(w;;xy - ic;,x;)

2 p, and mb, =
c;(w;,x; - iq, Jip)

IWflZI+% lWJhlZIXhlZ >Ph? (35)

where the L2-norm function I * 12 is defined by

lPl2 =
i

C(P,’ +Z).
i

Learning then ensues, as defined below. If any of the vigilance constraints is violated,

mismatch reset occurs in which node J is shut down for the duration of the input
presentation. The search process repeats to select another new index J until a prediction

match is achieved. If no such node exists, a new node J is created.
Learning: Once the search ends, the input weight vector wJ” is updated according to

the equation

(w;; ,iF;i)(“ew) = (1 -P.)(WY,,~~i)(o’d)+P,(Xf,-XY)

and the output weight vector wj is updated according to the equation

(37)

(38)

Roughly speaking, the two learning equations adjust the weight vectors WY and wj

towards the truth value vectors x”/ and -x$ respectively. For efficient coding of noisy
input sets, it is useful to set /I, = Pb = 1 when J is a newly created node, and then take
p, < 1 and Pb < 1 after that. The fast learning option is not advisable for fuzzy NLN.

Output prediction: During testing, given the cluster truth vector y, the output truth
vector xh is determined by

where the slope threshold function .Y-” is defined by

i

(1 yo> ift-t2 1

YS(tj) = (0,l) ift-t< -1 (40)

(t,l - t) otherwise.

Distributed prediction: In NLN systems using the choice threshold function (33) in
the cluster layer, only the cluster node J that receives maximal input T, predicts output.

Another strategy is to use the choice rule during the initial period of supervised learning.

However, during performance, a less extreme contrast enhanced cluster vector y is used
in computing the output vector x’. Two algorithms that approximate contrast enhance-

ment by competitive networks [7] are studied below.

168 A.-H. Tan, L.-N. Teow/~eurocomprtting 14 (1997) 157-176

Power rule: The power rule, as used in the ART-EMAP system [4,5], raises the input
T, of the j-th cluster node to a power p and normalizes the total activity:

(y,,y,) “?qtj,i,) = (VP i I c,(q)” TO . (41)

The power rule converges toward the choice rule as p becomes large.
K-max rule: In the spirit of the K nearest neighbor (KNN) system, the K-max rule

picks the set of K out of the C cluster nodes with the largest input q for prediction. The

cluster layer truth values < yj, y,> are then:

ifjE @
otherwise,

(42)

where @ is the set of K clusters with the largest T/ values. The K-max rule with K = C
is equivalent to the power rule with p = 1.

4. Comparative experiments

4.1. Mushroom classification

The mushroom classification problem is to determine whether a mushroom is edible
or poisonous based on its observable features. The mushroom database [13] consists of

8124 instances, each of which is characterized by 22 nominal features. There are 3916
poisonous mushrooms, constituting 48.2% of the total population.

On this problem, Fu [25] used 1000 inputs to train a back-propagation network

containing 127 input nodes, 63 hidden nodes, 2 output nodes, and 8 127 connections. The
network classified the 1000 training cases with 100% accuracy and a disjointed test set

of 1000 cases with 99.0% accuracy.
In NLN simulations, the 22 nominal features are converted into 126 binary attributes.

Both Boolean NLN and 3-valued NLN are trained using the SCM algorithm with the

following parameter values: (Y = 0.001, /3, = P,, = 1, p, = 0, and pb = 1. The simula-
tion results averaged over 20 runs are summarized in Table 1.

Table 1

Boolean and 3-valued NLN performance on the mushroom data compared with that of back-propagation

network

Model Train/test No. epochs No. nodes Test accuracy (%)

Back-propagation lOOO/lOOO O(100) 63 99.0
Boolean NLN 1000/7124 3.2 16.6 99.7

3-valued NLN 1000/7124 2.3 4.9 99.7
3-valued NLN 2000/6124 2.4 5.6 99.9
3-valued NLN 3000/5124 2.4 5.7 100.0

A.-H. Tan, L.-N. Teow/Neurocomputing 14 (1997) 157-176 169

After training on 1000 examples, Boolean NLN creates an average of 16.6 nodes and
obtains 99.7% test accuracy on the remaining cases. When 3-valued NLN is trained with
1000 cases, an average of only 5.8 nodes are created, compared with the 63 hidden
nodes of back-propagation network and 16.6 nodes of Boolean NLN. An accuracy of
99.7%, equivalent to that of Boolean NLN, is also obtained on the remaining 7124

cases. When a 3-valued NLN is given 2000 training cases, it creates roughly one more

cluster node and pushes the test accuracy to 99.9%. Given 3000 or more cases, the

number of clusters stabilizes at around 5.7 and the test accuracy converges at 100%.
We also trained 3-valued NLN using the construction algorithm (Section 2). The

network with 1000 hidden nodes classifies the 1000 training pattern perfectly, but, due

to the strict firing condition, is not able to generalize to a single test pattern. Even after
applying feature enhancement and fine tuning [11,141, the best test accuracy is merely
47.3%, much lower than that obtained by back-propagation network or by SCM. The

experiment confirms that although the construction method serves to prove the existence

of an NLN to learn any arbitrary mapping, it does not produce a network that

generalizes well to novel patterns. The SCM algorithm, on the other hand, produces a
much superior generalization performance with a small number of hidden nodes.

4.2. Sonar signal recognition

The sonar return data set [6] contains 208 instances with 60 real-valued features, of

which 97 instances are returns from roughly cylindrical rocks and 111 instances are
returns from metal cylinders. This is a relatively difficult domain as the number of

training examples is small and the data contain noises. In Gorman and Sejnowski’s
aspect angle dependent experiments, the data set was divided into a 10Celement training
set and a 104-element test set, with balanced representation in each aspect angle. After
learning the training set, perceptron classifies only 73% of the test set patterns correctly

(Table 2). Back-propagation network with 12 hidden nodes obtains a test set accuracy of
90.4%. Increasing the number of hidden nodes to 24, however, degrades the perfor-

mance.

The sonar return data set has also been used to evaluate other learning systems,
including K nearest neighbor (KNN), fuzzy ARTMAP, and fuzzy ARAM [15]. The

KNN system that stores all training patterns, performs best with K = 1, producing a test

Table 2

Fuzzy NLN performance on the sonar return data comparing with alternative learning systems

Model No. epochs No. nodes Test accuracy (%) -

Perceptron 300 0 73.1

Back-propagation 300 12 90.4

Back-propagation 300 24 89.2

KNN 1 104 91.6

Fuzzy ARTMAP 8-34 22-42 91.6

Fuzzy ARAM 2 68-72 92.9

Fuzzy NLN 4.3 55.3 92.4
Fuzzy NLN (power = 200) 4.3 55.3 93.2

170 A.-H. Tan. L.-N. Teow/Neurocomputing 14 (1997) 157-176

set performance of 91.6%. This is slightly better than the test accuracy of back-propa-
gation network. Fuzzy ARAM with ARTMAP configuration produces the same level of
accuracy as KNN with only 22 to 42 category nodes. The number of learning iterations

ranges from 8 to 34, about ten times less than that of back-propagation networks. Fuzzy
ARAM with fast learning and high vigilance converges in merely two iterations. Also, a

better prediction rate is obtained at 92.9%.
Fuzzy NLN experiments are conducted with the following parameter values: /?, =

0.15, Ph = 1 .O, p, = 0.9, and p,, = 1 .O. The fuzzy NLN performance, averaged over 10
runs, is also summarized in Table 2. Fuzzy NLN takes an average of 4.3 iterations to

learn the training set. The test accuracy of fuzzy NLN is slightly lower than that of fuzzy
ARAM, but so is the number of hidden nodes (clusters). Experiments are also conducted

using the power rule with p = 50,100,150, . . . in a step size of 50. The test accuracy

peaks at 93.2% with p = 200 and converges towards the performance of choice (92.4%)
as p becomes larger.

4.3. Sunspots prediction

The sunspots series consists of yearly averages of sunspots starting from the year

1700 to the year 1979. The sunspot prediction problem is a typical time series prediction
problem, in which we want to predict the sunspots number for the following year, based

on a forecast window consisting of consecutive sunspots data in the past few years.
In the following sections, we shall first define the performance measures that we used

to evaluate a time series predictor and the encoding schemes used in our simulations.
We then report our simulation results and compare them with two existing time series

predictors.

4.3.1. Performance measures
Given a time series data, we extract examples, each consisting of a window of m

consecutive values followed by a target value. The last value in the forecast window,
preceding the target value, is also called the current value. The aim of a time series

predictor is to make its predicted value as close as possible to the target value, based on
the forecast window.

Let c,, tj, and pi denote the current, target, and predicted values of an example e,

respectively. Also, let c,, t,, and p, denote the mean of the current, target, and
predicted values averaged over all examples, respectively. We compute the following

indices to evaluate the performance of a time series predictor.
Mean squared error, given by

(43)
is the classical cost function for regression systems, divided by the number of patterns in
the data set (S), so as to make it independent of the size of the data set.

Normalized mean squared error, given by

(44)

A.-H. Tan, L.-N. Teow/Neurocompuring 14 (19971 157-176 171

indicates the closeness of the prediction to the target. By virtue of the normalization, it is
independent of both the size and the dynamic range of the data set.

Correlation coefficient, given by

cc= c,(t,-tm)(Pj-Pm)

cj(t,-tm)2cj(Pj-Pm)2

+Ll], (45)

measures how well the predicted values correlates with the target values. It roughly
corresponds to the converse of the Normalized Mean Squared Error.

Lag coefficient, given by

LC=
w,-cJ(P,-Pm)

c~(c,-cm)2cj(P~-Pm)2

E [-IJ], (4b)

measures the extent to which the prediction lags behind the target value by computing

its correlation with the current value.

Information coefficient, given by

Ic= c,(h-fj)2 ,. d c(c,-tj)2 - ’ (47)

measures the performance with respect to a trivial predictor that uses the current value
as the prediction. An information coefficient of 1 means that the performance is only as

good as that of the trivial predictor; a value of less than I, on the other hand, means that

it is better.
Trend prediction accuracy (Trend) gives the percentage of rise and fall of the

predicted values that match with those of the target values. In other words, it measures

how well the prediction follows the trend of the actual series.

4.3.2, Encoding schemes

Given an example e, consisting of a forecast window { u,,u~, . . ,u,} and a target

value u, + , , three possible input configurations are listed below.
Absolute encoding (A) uses the actual values in the forecast window. The input

vector a is given by

a=(o,,u,,...,u,). (48)
DifSerence encoding (D) uses the consecutive differences between adjacent value:<.

The input vector a is given by

a=(~,-u,,u,-u, ,..., u,--urn_,). (49)
Reference encoding (R) takes the difference between each forecast window value and

the current value (0,). The input vector a is given by

a=(~,-u,,u,-U, ,..., u m -u,_,). (50)

172 A.-H. Tan, L.-N. Teow/Neurocomputing 14 (1997) 157-176

For the case of predicting a single output value, reference encoding is equivalent to
difference encoding. The two possible output configurations are listed below.

Absolute encoding (A) uses the actual target value. The output vector b is given by

Difference encoding (D) uses the difference between the target value and the current
value. The output vector b is given by

b= (urn+1 -%). (52)
Hence, there are a total of six possible encoding schemes, each of which is a different

combination of input-output configurations. All input and output values are normalized

to the interval [O,l].

4.3.3. Simulations and results
In the previous experiments [23,24], yearly sunspots data from 1700 through 1920

were used for training and the data from 1921 through 1979 were used for evaluation of
the prediction. In addition, the prediction set was split into two parts, 1921-1955 (for

validation) and 1956-1979 (for testing). In order to compare with previous results, we
fix the forecast window size at 12 and use the same training set. Since SCM does not
need validation, we use the entire prediction set for testing.

Fuzzy NLN simulations are conducted using the following parameter values: p, = 0.0,
ph = 0.9, and E = 0.01. We conduct experiments using the K-max rule in which K is
varied from 1 to 5, and find that the best performance is obtained when K = 2. For each

encoding scheme, different learning rates /3, and /I,, from {0.1,0.2, . . . ,0.5} are tried and
the best performance is picked from these trials. The simulation results are summarized

in Table 3, where the best entry for each performance measure (column) is highlighted
with boldface.

Fuzzy NLN gives the best overall performance when the actual forecast window
values are used to approximate the difference between the current and forecast values
(i.e., configuration AD). In general, using the difference between the current and
forecast values as the network output to compute the forecast prediction (i.e., output
configuration D) gives better performance than using the actual forecast value. Fig. 4
shows the fuzzy NLN predictions against the actual sunspots series.

Table 3
Performance of fuzzy NLN, in terms of six performance measures, using various input-output contigurations

Encoding scheme Performance measures

Input output No. nodes MSE NMSE CC LC IC Trend (W)

A A 38 0.022 0.334 0.860 0.442 0.912 89.8

D A 24 0.023 0.349 0.873 0.366 0.93 1 86.4
R A 26 0.028 0.425 0.820 0.419 1.028 89.8
A D 39 0.011 0.165 0.914 0.526 0.640 96.6
D D 44 0.013 0.199 0.897 0.552 0.703 93.2
R D 28 0.014 0.210 0.892 0.564 0.721 91.5

A.-H. Tan, L.-N. Teow/Neurocomputing 14 (1997) 157-176 173

Table 4

Performance comparison of fuzzy NLN with the back-propagation network and the threshold autoregressive

model. in terms of normalized mean sauare error. on the sunsoot data

Model Training (1700- 1920) Validation (1921-1955) Testing (1956-1979) -

Back-propagation 0.082 0.086 0.35

TAR 0.097 0.097 0.28

FUZZY NLN (AD) 0.179 0.140 0.2 I

0.90
t

0.8” -.

0.7” -

0.60 -

clsa -

0.40 -

0.3” -

0.m -

0.10 -

0.00 - ’ ’
-i-_-1_--_ I year.,&3

1.7” 1.75 1.80 1.m 1.90 1.95

Fig. 4. Fuzzy NLN sunspot prediction against the actual series. Data from 1700 to 1920 are used for training

and data from 1921 to 1979 are used for testing.

Experiments on the sunspots data have been conducted using the back-propagation
network [24] and the threshold autoregressive (TAR) model 1231, which both refer to

normalized mean squared error as auerage relative uariance. Table 4 compares fuzzy
NLN with these two models based on this measure. For proper comparison, we only
look at the results for the test set (1956-1979), since the performance for the validation

set (1921-1955) has been optimized during training in both the back-propagation
network and the threshold autoregressive (TAR) model.

5. Conclusions and extensions

We have presented a Supervised Clustering and Matching (SCM) algorithm for
Neural Logic Network to perform inductive learning and pattern matching. By adopting

a match-based clustering approach to perform supervised learning, several desired
features are achieved. The most notable advantage over gradient descent algorithms is
speed. Using the SCM algorithm, the network weights typically converge in a few

174 A.-H. Tun. L.-N. Teow/NeumcomputinR 14 (1997) 157-176

antecedents
clusters/rules

consequents

Fig. 5. Rules in an inductive NLN. Each cluster node j corresponds to a rule that maps a prototype feature

vector w;’ (antecedents) to a prediction vector wjb (consequents).

iterations. Although the system allows incremental learning, the network size, in terms

of the number of hidden (cluster) nodes, is manageable. In certain problems, such as

mushroom classification, the cluster based learning approach even leads to more
compressed internal representation. In terms of predictive performance, the SCM

algorithm also compares favorably with alternative learning systems, including K nearest
neighbor, fuzzy ARTMAP, fuzzy ARAM, back-propagation network, and threshold
autoregressive model.

While it is difficult to explain for specific applications why SCM performs better than

the gradient descent error back-propagation (BP) algorithms, it is important to note that

SCM adopts an approach fundamentally different from BP to learning pattern mappings.
Whereas BP classifies patterns by separating them using hyperplanes, SCM classifies

patterns by grouping them into clusters. Whereas BP learns when an error arises, SCM
learns when a match occurs. Depending on the pattern distribution and the number of the

training patterns available, one algorithm could generalize better than the other one.
Another important advantage of the inductive NLN architecture is the ease of

interpreting the learned knowledge. In an inductive NLN network, each node in the

cluster layer encodes a pair of input and output template patterns. Learned weight
vectors, one for each cluster node, thus correspond to a set of rules that link antecedents
to consequents (Fig. 5). This type of knowledge structure allows the translation of the

network architecture to a set of symbolic rules that can be interpreted easily 151. In
addition, symbolic rules can be inserted into an inductive NLN before learning and
refined using the SCM learning algorithm. This gives rise to an integrated system that

processes both inductive and deductive knowledge.

Acknowledgements

The authors gratefully acknowledge all members of the RWCP Neuro ISS laboratory,
especially Hoon-Heng Teh, Ho-Chung Lui, Liya Ding, and Joo-Hwee Lim for many
stimulating ideas and discussions. The authors also thank the two anonymous reviewers
for many useful comments and suggestions to a previous version of this manuscript.

A.-H. Tan, L.-N. Teow/Neurocomputing 14 (1997) 157-176 I75

References

[I] G.A. Carpenter and S. Grossberg, A massively parallel architecture for a self-organizing neural pattern

recognition machine, Computer Vision, Graphics, and Image Processing 37 (1987) 54- 115.

[2] G.A. Carpenter and S. Grossberg, ART 2: Self-organization of stable category recognition codes for

analog input patterns, Applied Optics 26 (1987) 4919-4930.

[3] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. Rosen, Fuzzy ARTMAP: A neural

network architecture for incremental supervised learning of analo g multidimensional maps, IEE’E

Transactions on Neural Networks 3 (1992) 698-7 13.
[4] G.A. Carpenter and W.D. Ross, ART-EMAP: A neural network architecture for object recognition by

evidence accumulation network, Proc. World Congress an Neural Networks, Portland, OR (199.3)

649-656.
[5] G.A. Carpenter and A.H. Tan, Rule extraction: From neural architecture to symbolic representation,

Connection Science 7 (1995) 3-27.

[6] R.P. Gorman and T.J. Sejnowski, Analysis of hidden units in a layered network trained to classify sonar

targets, Neural Networks 1 (1988) 75-89.

[7] S. Grossberg, Contour enhancement, short term memory, and constancies in reverberating neural

networks, Studies in Applied Mathematics 52 (1973) 217-257.
[S] T. Kohonen, Self-organization and Associatiue Memory (Springer-Verlag, 1988).

[9] J.H. Lim, Incremental case-based pattern classifier, Proc. International Conference on Artificial Neunal
Networks (Amsterdam, 1993).

[IO] J.H. Lim and H.H. Teh, Complex neural logic networks and handwriting character recognition, Technical

Report, Real World Computing Partnership, 1995.

[l l] B.T. Low, H.C. Lui, A.H. Tan, and H.H. Teh, Connectionist expert system with adaptive learning

capability, IEEE Transactions on Knowledge and Data Engineering 3(2) (199 I) 200-207.

[12] P.M. Murphy and D.W. Aha, UC1 repository of machine learning databases [machine-readable data

repository, University of California, Department of Information and Computer Science, Irvine, CA, 1992.

[131 J.S. Schlimmer, Concept acquisition through representational adjustment, Ph.D. Thesis, Department of

Information and Computer Science, University of California, Irvine, 1987.

[14] A.H. Tan, A neural logic environment for expert systems, Master Thesis, Department of Information

Systems and Computer Science, National University of Singapore, 1991.

[15] A.H. Tan, Adaptive resonance associative map, Neural Networks 8(3) (1995) 437-446.

[16] A.H. Tan and H.H. Teh, Connectionist expert systems: An inductive cum deductive approach, Informa
rian Technology 3(l) (1989) 63-72.

[17] A.H. Tan and L.N. Teow, Neural logic networks for pattern recognition, time series prediction, and

knowledge integration, Proc. Real World Computing ‘95 Joint Symposium, Tokyo (1995) 67-68.
[181 A.H. Tan and L.N. Teow, Learning by supervised clustering and matching, Proc. I995 IEEE Interncr-

tional Conference on Neural Networks, Vol I (Perth, 1995) 242-246.

[191 H.H. Teh, A new class of neural networks called neural logic networks: First technical report, Technical

Report TR-93004, Real World Computing Partnership, 1993.

[20] H.H. Teh, A new class of neural networks called neural logic networks: Second technical report,

Technical Report TR-94013, Real World Computing Partnership, 1994.

[21] H.H. Teh, Neural Logic Networks (World Scientific Publishing Company, 1995).

[22] H.H. Teh and A.H. Tan, Connectionist expert systems: A neural logic models’ approach, Proc.
Inter-faculty Seminar on Neuronet Computing (National University of Singapore, 1989) 16-32.

[23] H. Tong and K.S. Lim, Threshold autoregression, limit cycles and cyclical data, J.R. Star. Sot. B 42
(1980) 245.

[24] A.S. Weigend, B.A. Huberman, and D.E. Rumelhart, Predicting the future: A connectionist approach,

International Journal of Neural Systems l(3) (1990) 193-209.

[25] L.M. Fu, A neural network model for learning rule-based systems, Proc. Inr. Joinr Canf on Neural
Networks, Vol. 1 (Baltimore, 1992) 343-348.

176 A.-H. Tan, L.-N. Teow/Neurocomputing 14 (1997) 157-176

Ah-Hwee Tan is an associate researcher at the Institute of Systems Science. He
received his Ph.D. degree in Cognitive and Neural Systems from Boston University
in 1994. Prior to that. he obtained his B.Sc. (Hans) in 1989 and M.Sc. in 1991. both
in Computer and Information Science from the National University of Singapore. He
has published over 25 technical papers related to neural networks and knowledge
based systems. His current research interests include integration of neural network
and symbolic knowledge processing, cognitive modeling, agent architecture, compu-
tational learning theory, pattern recognition, and associative memory. He is a
member of the International Neural Network Society (INNS) and the Singapore
Computer Society.

Loo-Nin Teow received his B.Sc. degree in Computer and Information Science in
1992 and his post-graduate diploma in Computing Technology in 199.5, both from
the National Univ&sity of Singapore. He i6 presently a soKware engineer at the
Institute of Systems Science. His research interests include neural networks, fuzzy
logic, hybrid systems, and character recognition.

	Inductive neural logic network and the SCM algorithm
	Citation

	PII: S0925-2312(96)00032-X

