Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

9-2016

Towards autonomous behavior learning of non-player characters
in games
Shu FENG

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, OS and Networks Commons, and the
Systems Architecture Commons

Citation

FENG, Shu and TAN, Ah-hwee. Towards autonomous behavior learning of non-player characters in games.
(2016). Expert Systems with Applications. 56, (1), 89-99.
Available at: https://ink.library.smu.edu.sg/sis_research/5247

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5247&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Towards Autonomous Behavior Learning of Non-Player Characters in Games

Shu Fenga’b’*, Ah-Hwee Tan®**

4School of Computer Engineering, Nanyang Technological University, Singapore
bNEC Laboratories Singapore, Singapore

Abstract

Non-Player-Characters (NPCs), as found in computer games, can be modelled as intelligent systems, which serve
to improve the interactivity and playability of the games. Although reinforcement learning (RL) has been a promising
approach to creating the behaviour models of non-player characters (NPC), an initial stage of exploration and low
performance is typically required. On the other hand, imitative learning (IL) is an effective approach to pre-building a
NPC’s behavior model by observing the opponent’s actions, but learning by imitation limits the agent’s performance
to that of its opponents. In view of their complementary strengths, this paper proposes a computational model unifying
the two learning paradigms based on a class of self-organizing neural networks called Fusion Architecture for Learning
and COgnition (FALCON). Specifically, two hybrid learning strategies, known as the Dual-Stage Learning (DSL) and
the Mixed Model Learning (MML), are presented to realize the integration of the two distinct learning paradigms
in one framework. The DSL and MML strategies have been applied to creating autonomous non-player characters
(NPCs) in a first person shooting game named Unreal Tournament. Our experiments show that both DSL and MML
are effective in producing NPCs with faster learning speed and better combat performance comparing with those built
by traditional RL and IL. methods. The proposed hybrid learning strategies thus provide an efficient method to building
intelligent NPC agents in games and pave the way towards building autonomous expert and intelligent systems for
other applications.

Keywords: behavior learning; reinforcement learning; imitative learning; self-organizing neural network; intelligent

agent;

1. Introduction

Intelligent non-player characters (NPCs) in comput-
er games can potentially make the games more chal-
lenging and enjoyable. As such, behavior modeling of
non-player character (NPC) has become an important
component in computer games, especially in first person
shooting games (FPS) (Wang et al., 2009; Wang & Tan,
2015).

In the game environment, each NPC is essentially an
autonomous agent, which is expected to function and
adapt by themselves in a complex and dynamic envi-
ronment. Consequently, a popular approach to develop-
ing intelligent agents is through machine learning algo-
rithms.

In particular, reinforcement learning (RL) is consid-
ered by many to be an appropriate paradigm for an a-
gent to autonomously acquire its action policy through

*Email: feng0027 @e.ntu.edu.sg
“*Email: asahtan@ntu.edu.sg

Preprint submitted to Expert Systems with Applications

interacting with its environment in a dynamic process.
In general, an RL agent makes responses to the envi-
ronment in order to maximize the future expected re-
wards with respect to its goals and motivations. How-
ever, in a first person shooting game, an NPC without
prior knowledge will perform poorly at the initial stage
as they have to spend substantial time in exploring and
learning the environmental information. Playing with
these NPCs certainly takes the fun out of the game.
Moreover, specific types of knowledge may be too com-
plex to learn through reinforcement feedback.

To overcome these drawbacks, a possible remedy is
to pre-insert domain knowledge into the learning a-
gents, in order to increase learning efficacy, shorten
convergence time as well as enhance NPCs’ perfor-
mance. Although there have been extensive works to-
wards improving RL with prior knowledge, the methods
for obtaining and integrating knowledge are still an open
problem. Most of the earlier works complement rein-
forcement learning by direct inserting prior knowledge

February 5, 2016

through either encoding domain knowledge in the learn-
ing architecture (Shapiro et al., 2001; Busoniu et al.,
2010), adding prior knowledge as a rule base Song et al.
(2004), or using an added-on module to provide pri-
or knowledge (Dixon et al., 2000; Moreno et al., 2004).
An obvious drawback of direct insertion is that the prior
knowledge cannot be used in exploitation during learn-
ing and cannot adapt to changes in the environment.

In contrast to reinforcement learning, imitative learn-
ing with explicit supervisory teaching signals is a
promising approach to acquiring complex behavior for
autonomous agents. The knowledge learnt by imita-
tion can be used readily as the agent’s behavior model
(Feng & Tan, 2010). Imitative learning and reinforce-
ment learning can been seen as two complementary
learning paradigms. While the former is effective and
fast in acquiring patterns, it strictly relies on the train-
ing data and typically is not used in real time adapta-
tion. On the other hand, reinforcement learning is good
in learning from experience and adapting to the environ-
ment in real time. However, it is less effective for fast
learning due to the lack of explicit teaching signals. In
view of their complementary strengths, this work aims
to combine the fast learning capability of IL with real-
time adaptive ability of RL for a better performance.

Specifically, this paper presents two hybrid learn-
ing strategies, known as Dual-Stage Learning (DSL)
and Mixed Model Learning (MML) to realize the in-
tegration of the two learning paradigms in one uni-
fied framework based on a class of self-organizing neu-
ral networks, namely Fusion Architecture for Learn-
ing and COgnition (FALCON) (Tan, 2004; Xiao & Tan,
2007). FALCON learns cognitive codes encoding
multi-dimensional mappings simultaneously across the
multi-modal pattern channels. By using competitive
coding as the underlying adaptation principle, FALCON
is capable of supporting multiple learning paradigm-
s, including unsupervised learning, supervised learning
and reinforcement learning (Tan et al., 2007).

The DSL strategy combines imitative learning and
reinforcement learning in two stages. In the imita-
tive learning stage, FALCON learns from opponent be-
haviour patterns to build the initial behaviour model of
an autonomous agent. Subsequently, in the reinforce-
ment learning stage, the agent further adapts in real time
through Q-learning while applying the prior knowledge
for exploitation. Compared with DSL, the MML strate-
gy combines the two learning paradigms tightly into one
model, in which both IL and RL work in an interleaving
manner sharing a common knowledge field.

We have evaluated various learning methods and s-
trategies in a first person shooting game named Unreal

Tournament(UT). Our experiments show that the NPCs
learned with DSL and MML produce a higher level of
performance compared with the traditional RL and IL
methods.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 defines the
problems addressed by this work. Section 4 explains
the issues and challenges. Section 5 and Section 6 in-
troduce the learning model and presents the methods of
DSL and MML. Section 7 reports the learning tasks and
the experiments. Finally, section 8 concludes and dis-
cusses the future work.

2. Related Work

In the past years, NPCs in computer games have de-
veloped significantly in terms of behavior modeling.
This section reviews some of the related work.

For commercial games, the most commonly used
method is via rule based approaches. Ji ef al.(2014) pro-
posed a behavior tree to manage the controlling of be-
haviors. By designing complex intelligent role behav-
iors in logical ways, this method could easily integrate
expert experience into the intelligent system. However,
as it inherited the use of action and condition rules based
on finite state machine, the agent is not able to adapt to
different environment.

Akbar et al.(2015) applied Gaussian distribution with
fuzzy logic to create natural variation actions of each
NPC and select the optimal action. As the fuzzy method
still has to follow logic rules, this method doesn’t help
NPCs to evolve and capture new knowledge.

In view of the limitations of the rule-based approach-
es, learning based techniques have attracted much at-
tention for behavior modeling. David et al.(2014) used
genetic algorithm for evaluation and search mechanism
for decision makings. Stanley et al.(2005) applied evo-
lution algorithm to enable the NPCs evolve behaviors
through interacting with players, thus keeping the game
interesting. Although evolutionary algorithms can im-
prove the performance continuously, the final solution
cannot be guaranteed as the global optimal solution.
Moreover, tuning parameters during learning is time
consuming and not suitable for real-time video games.

On the other hand, many have applied imitative learn-
ing to create NPCs by mimicking the behaviour pattern-
s of human beings in order to achieve the human-like
behaviors (Zanetti & Rhalibi, 2004; Bauckhage et al.,
2003; Feng & Tan, 2010). These imitation based learn-
ing enables fast learning and is capable of acquiring
complex behavior patterns. However, imitative learning

requires specific observations to be available. Further-
more, in real time processing, imitative learning cannot
associate the behaviour with the underlying motivations
or goals.

Besides imitative learning, many have applied rein-
forcement learning (RL) successfully to autonomous N-
PCs for learning strategies and behaviors in a dynamic
environment. Especially in combat scenarios games, R-
L is good at helping NPCs to learn through experience
with the supplement of necessary initial knowledge.
Glavin er al.(2015) applied reinforcement learning to
enable NPCs to get experience from gaming experience,
and improve their fighting skills over time based on the
damage given to opponents. Ponce et al.(2014) applied
MaxQ-Q based reinforcement learning within a hierar-
chical structure to enhance user’s experience. Wang et
al.(2015) utilized reinforcement learning in a first per-
son shooting game to learn behavior strategy and ef-
fectiveness of different weapons. However, using pure
reinforcement learning, an initial stage of exploration
is required and depending on the problem domain, this
process may take a long time.

In view of the above issue, a popular way to ini-
tialize the learning agent is with human knowledge
(Unemi, 2000; Dixon et al., 2000). They improve the
performance of reinforcement learning by introduc-
ing relatively simple human knowledge such as intrin-
sic behaviors to reduce learning time. However, the
prior knowledge is embedded and not represented in
the same form as the learned knowledge. As such,
the knowledge cannot be further modified in real-time
learning. Bayesian based method is another principle
way to incorporate prior knowledge into reinforcement
learning (Ghavamzadeh et al., 2015; Doshi-Velez et al.,
2015; Jonschkowski & Brock, 2014). Here the prior
knowledge mostly refers to probability distributions.
Taken from prior observations, the knowledge helps to
start up the learning as well as to continuously guide de-
cision makings. However, they need to be designed be-
forehand based on the specific problem domains, not to
mention the experience based knowledge may include
objective bias. Kengo et al.(2005) enhanced the rein-
forcement learning agent by applying goal state prior
knowledge to the agent in order to modulate the deci-
sion making by giving priorities to the goal oriented ac-
tions. In the chosen game scenarios, prior knowledge
is designed by the domain expert. Again, once it is ap-
plied, the knowledge fixed and can’t be further adapt-
ed. Framling(2007) introduced a reinforcement learning
model with pre-existing knowledge. A bi-memory sys-
tem including the concepts of short term and long term
memories is proposed to modulate the exploration in s-

tate space in order to make a faster learning. However,
this model is not a universal architecture. Consequent-
ly, specific heuristic rules are still required for proposing
the pre-existing knowledge.

In summary, although there have been efforts to ad-
dress the limitation of reinforcement learning using do-
main knowledge, none of the prior approaches has at-
tempted to combine imitative learning with reinforce-
ment learning. This forms the unique focus of our work.

3. Problem Statement

A learning NPC is essentially an autonomous agen-
t which strives to acquire a desirable behavior model
through its interaction with the environment with re-
spect to its goals. In order to define our problem state-
ment, we review the following definitions as used in the
field of reinforcement learning.
Definition (State Space): State space S of an agent is
a set of states {si, 52, ..., S}, where each state s; repre-
sents a snapshot of the environment in which the agent
resides.
Definition (Action Space): Action space A of an agent
is a set of actions {ay, a, ..., a,,}, where each action in-
dicates an unique response to the environment.
Definition (Reward): Reward r is a real-valued evalua-
tive feedback received by an agent from its environmen-
t.
Definition (Behaviour Model): The behaviour model
F of an agent is a an internal model or function mapping
from the state space S to the action space A of the agent.
More formally, the behaviour model is defined by

F:S— A, ey

where each state s; € S is mapped to an action a; € A.
A behaviour model dictates how the NPC responds to
the situations in its environment. It is thus akin to the
action policy as used in the literature of reinforcement
learning.

There are two distinctive approaches to acquiring a
behaviour model. One is to learn the behaviour func-
tion ¥ directly from a given set of sample pairs (s;, a;),
where a; indicates the action to be taken in state s;. In
the context of first person shooting games, such train-
ing samples can be acquired readily through observing
the behaviour of the agent’s opponents. This paradig-
m of learning from observations is known as imitative
learning (IL).

Definition (Imitative learning): Imitative learning is a
learning process, wherein an agent infers its behaviour
model function from a set of observations, each of

which contains an input state s; € S and an action
a; €A.

The basic assumption of imitative learning is that
each observed behaviour is appropriate for the specif-
ic environment in which the agent resides.

Another approach to building a behaviour model is
through learning a value function, which specifies the
payoff value of performing an action in a given situa-
tion. More formally, the value function is defined by

V:SXA—RE 2)

where each state-action pair (s;, @;) is associated with a
reward value r € R. During decision making, the agent
can then take the action a which has the maximal reward
in a state s. This is known as reinforcement learning
(RL).
Definition (Reinforcement learning): Reinforcement
learning is a learning process, wherein an agent learns
a value function or an action policy and adjusts its be-
haviour patterns so as to maximize the future payoff,
based on the reward signal r; € R when the action a; € A
is performed in the state s; € S.

RL assumes there’s always a best choice of action for
the specific surroundings in which the agent is situated,
among all the possible choices.

4. Issues and Challenges

Imitative learning and reinforcement learning both
learn the associations among the states (S), actions (A),
and values (R) but do so in distinct ways. As imita-
tive learns the mapping (S — A) from existing patterns,
the knowledge acquired is limited by the quality of the
observations available. Reinforcement learning focus-
es on learning action policies and estimating the values
to indicate the goodness of action-state pairs. However,
exploration in the initial stage can be time consuming.
The challenge is how to integrate the two learning meth-
ods into one unified framework, so as to combine their
complementary merits for better performance.

4.1. Unifying Knowledge Representation

The knowledge learned via imitative learning and re-
inforcement learning are distinct in nature. By imita-
tive learning, the knowledge is in the form of a series
of state-action pairs f;(s;, a;) with the logic that when
the state s; is satisfied, the action a; will be taken conse-
quently. On the other hand, the knowledge acquired by
reinforcement learning is a value function, associating
each of the state-action pairs with a reward value. Given
a 3-tuple v;(s;, a;, 1;), the logic states that if an action a;

is taken in state s;, the estimated expected reward value
is given by r;. The challenge is how to derive a unified
knowledge structure which can fuse and represent these
different types of knowledge that can be learned through
either imitative learning and reinforcement learning.

4.2. Unifying decision making

Note that the knowledge learned through imitative
learning is a behaviour function ¥ from input states
to actions. During action selection, given the curren-
t state, an action can be chosen by simply feeding the
input state vector into the behaviour function. On the
other hand, the knowledge acquired by reinforcemen-
t learning is a value function, associating each of the
state-action pairs with a reward value. Given the cur-
rent state, the agent evaluates the value of performing
each possible action and selects the action with the max-
imal reward value. Integrating these two distinct deci-
sion making processes is non-trivial as the knowledge
learned by one method may not perform well with an-
other decision making process. Simply combining the
two types of knowledge may even degrade the overall
performance. Therefore, a key challenge is how to de-
rive an integrated decision making process, so that the
different types of knowledge can be used in an inter-
changeable manner.

4.3. Unifying learning Process

Note that imitative learning relies on a large quanti-
ty of training data labelled with explicit input states and
output actions. The behaviour function inferred by imi-
tative learning can map new inputs to a desired decision.
In contrast, learning by reinforcement feedback focuses
on online performance without presenting explicit su-
pervisory input-output patterns. In addition, reinforce-
ment learning needs to balance between exploration and
exploitation. At the initial stage, exploration is typical-
ly performed to explore the utility of new actions. As
the learning progress, the agent tends to perform ex-
ploitation, by selecting actions with the highest Q-value.
Whereas ultimately exploitation is necessary for maxi-
mizing the rewards, exploration is necessary to search
or discover an optimal solution to the problem. When
an agent is trained by imitative learning followed by re-
inforcement learning, for example, the “prior rules” ac-
quired by imitative learning earlier may tip the balance
between exploration and exploitation in reinforcement
learning. The challenge in unifying learning is how to
derive a unified model that is compatible for differen-
t types of learning methods and is able to find a good
trade-off between exploration and exploitation.

5. The Learning Model

This work proposes an integrated behavior learning
approach based on a class of self-organizing neural net-
works, known as Fusion Architecture for Learning and
COgnition (FALCON) (Tan, 2004; Xiao & Tan, 2007).
FALCON is a three-channel fusion Adaptive Resonance
Theory (ART) network (Tan et al., 2007) that incor-
porates temporal difference methods (Sutton & Barto,
1998; Watkins & Dayan, 1992) into Adaptive Reso-
nance Theory (ART) models (Carpenter & Grossberg,
1987b,a) for reinforcement learning. By inheriting the
ART code stabilizing and dynamic network expansion
mechanism, FALCON is capable of learning cogni-
tive nodes encoding multi-dimensional mappings across
multi-modal input patterns, involving states, actions,
and rewards, in an online and incremental manner.

As FALCON is designed to support a myriad of learn-
ing paradigms, including supervised learning, unsur-
prised learning and reinforcement learning (Tan et al.,
2007), it makes a natural choice for achieving the inte-
grations of imitative learning and reinforcement learn-
ing.

A summary of the FALCON model and the basic
learning and performing algorithms is given below. In
the following section, we shall show how FALCON may
unify the reasoning and the learning processes of imita-
tive learning and reinforcement learning using various
hybrid learning strategies.

As shown in Figure 1, FALCON employs a three-
channel architecture comprising a category field %5 and
three input fields, namely a sensory field F fl for repre-
senting current states, a motor field F i‘z for representing
actions, and a feedback field F' i’3 for representing the re-
ward values. The dynamics of FALCON based on fuzzy
ART operations (Carpenter et al., 1991; Tan, 1997), is

described below.
F,c
/ Cognitive Field /

F,2 F,©®

[55] [T

State(S) Action (A) Reward(R)

Sensory Field Motor Field FeedbackField

Figure 1: The FALCON architecture.

Input vectors: Let S = (sy, s, ..., 5,) denote the s-
tate vector, where s; indicates the sensory input i. Let
A = (ay,a,...,a,) denote the action vector, where a;

indicates a possible action i. Let R = (r,7) denote the
reward vector, where r € [0, 1]and 7 =1 —r.

Activity vectors: Let x* denote the F* activity vec-
tor for k = 1, ..., 3. Let y¢ denote the F’ g activity vector.

Weight vectors: Let we* denote the weight vector as-
sociated with the jth node in F} for learning the input
representation in F j"‘ for k = 1, ..., 3. Initially, F% con-
tains only one uncommitted node, and its weight vectors
contain all 1’s. When an uncommitted node is selected
to learn an association, it becomes committed.

Parameters: The FALCON’s dynamics is deter-
mined by choice parameters a* > 0 for k = 1,...,3;
learning rate parameters BC" € [0,1]fork =1,...,3; con-
tribution parameters ka € [0,1] for k = 1,...,3 where
Z,’le y* = 1; and vigilance parameters p* € [0, 1] for
k=1,..3.

Code activation: A bottom-up propagation process
first takes place in which the activities of the category
nodes in the F7 field are computed. Specifically, given
the activity vectors x°!, x2, and x° (in the input fields
F fl, F fz, and F f3, respectively), for each F' s node j, the
choice function T; is computed as follows:

K |Xck A qu|
c _ ck J

Tj kZ] Y ack + |W5k| ’ (3)

where the fuzzy AND operation A is defined by (p A

q); = min(p;,q;) and the norm | - | is defined by |p| =

>.; pi for vectors p and g. In essence, the choice function

T; computes the similarity of the activity vectors with

their respective weight vectors of the F5 node j with
respect to the norm of individual weight vectors.

Code competition: A code competition process fol-
lows under which the F% node with the highest choice
function value is identified. The winner is indexed at J
where

TS = max{T;' :forall F5 node j}. @)

When a category choice is made at node J, y§ = 1;
and y; = QO for all j # J. This indicates a winner-take-all
strategy.

Template matching: Before node J can be used for
learning, a template matching process checks that the
weight templates of node J are sufficiently close to their
respective activity patterns. Specifically, resonance oc-
curs if for each channel k, the match function mjk of the

chosen node J meets its vigilance criterion
k ck
X AW
ck | J ck
= — >
m T . (&)

Whereas the match function computes the similari-
ty between the input and weight vectors with respect

to the norm of the weight vectors, the match function
computes the similarity with respect to the norm of the
input vectors. The choice and match functions work co-
operatively to achieve stable coding and maximize code
compression.

When resonance occurs, learning ensues, as defined
below. If any of the vigilance constraints is violated,
mismatch reset occurs in which the value of the choice
function 77 is set to 0 for the duration of the input pre-
sentation. With a match tracking process, at the begin-
ning of each input presentation, the vigilance parameter
p¢! equals a baseline vigilance p°!. If a mismatch re-
set occurs, p¢! is increased until it is slightly larger than
the match function mjl. The search process then selects
another F7 node J under the revised vigilance criterion
until a resonance is achieved. This search and test pro-
cess is guaranteed to end as FALCON will either find a
committed node that satisfies the vigilance criterion or
activate an uncommitted node which would definitely
satisfy the criterion due to its initial weight values of all
Ls.

Template learning: Once a node J is selected, for
each channel k, the weight vector wjk is modified by the
following learning rule:

w;k(new) — (l —ﬁCk)Wik(Dld) +ﬁck(xck A w;k(old))' (6)

The learning rule adjusts the weight values towards
the fuzzy AND of their original values and the respec-
tive weight values. The rationale is to learn by encoding
the common attribute values of the input vectors and the
weight vectors. For an uncommitted node J, the learn-
ing rates 8¢ are typically set to 1. For committed nodes,
B can remain as 1 for fast learning or below 1 for slow
learning in a noisy environment.

Code creation: Our implementation of FALCON
maintains ONE uncommitted node the F7 field at any
one time. When an uncommitted node is selecting for
learning, it becomes committed and a new uncommitted
node is added to the F field. FALCON thus expands
its network architecture dynamically in response to the
input patterns.

6. Learning in FALCON

Note that FALCON is designed to learn cogni-
tive nodes encoding multi-dimensional mappings across
multi-modal input patterns, involving states, action-
s, and rewards, in an online and incremental manner.
Specifically, each FALCON cognitive node encodes a
3-tuple knowledge structure F = (w', wi?, w'?) repre-
senting an association among the template state vector

(wS!, the template action vector w¢?) and the template
reward vector w'’.

Using competitive coding as the underlying adapta-
tion principle, FALCON supports a variety of learning
paradigms depending on the operating mode and the ac-
tivity patterns presented across the three pattern chan-
nels. For example, when the state vector S and the ac-
tion vector, representing the state s and the action a re-
spectively, are presented simultaneously in a learning
mode, FALCON will learn a new cognitive node or re-
fine an existing cognitive node to associate the state s
and the action a. However, when the state vector S and
the action vector are presented simultaneously in a pre-
dicting mode, FALCON will read out the reward vector
R, indicating the reward value r of performing the ac-
tion a in the given state s. We present each of these cas-
es, especially for imitative learning and reinforcement
learning, in the subsequent sections.

6.1. Imitative Learning

Imitative learning involves the learning of an action
policy which maps directly from current states to de-
sired actions. This can be realized in FALCON by learn-
ing the observed behavior patterns directly. Figure 2
shows the pattern configuration of FALCON in imitative
learning. Given a pair of state vector S and action vector
A, the activity vectors across the three pattern channel-
sare set as x°' = 8§, x? = A, and x® = R = (1,0).
FALCON then performs the code activation and code
competition processes, according to equations (3) and
(4), to select a category node J in the F¥ field. Once the
template matching condition is satisfied, the category n-
ode J undergoes template learning, wherein it learns the
association between S and A (6).

Note that when the uncommitted node is selected to
encode a novel state-action pair, a new uncommitted n-
ode will be created. As a result, FALCON expands it-
s architecture by learning the association between the
observed states and actions continuously. As shown in
subsequent sections, imitative learning in FALCON can
be performed in a batch mode from behavior pattern-
s recorded over period or in an incremental mode from
behaviour observed in real time. The procedure for im-
itative learning is summarized in Table 1.

For action selection, FALCON receives a state vec-
tor S in performing mode and selects a category node
J in the F73 field which determines the action. Specifi-
cally, the activity vectors x°!, x2, and x* are initialized
by x! = 8, x? = (1,.., 1), and x°* = (1,0). Through
a direct code access procedure (Tan, 2007), FALCON
searches for the cognitive node which matches with the

Table 1: Imitative learning in FALCON network.

RN

Initialize the FALCON network.

Observe the opponent’s state and formulate a state vector S.
Observe the opponent’s action and formulate a action vector A.
Present the state vector S, the action vector A, and

the reward vector R=(1,0) to FALCON for learning:

6. Repeat from Step 2.

F,c
Cognitive Field /

F,o F,2 F,®

[5] [
T I)

Action (A) (1, 0)

State(S)

Figure 2: FALCON in imitative learning.

current state using the code activation and code compe-
tition processes according to equations (3) and (4).

Upon selecting a winning F5 node J, the chosen node
J performs a readout of its weight vector into the action
field F{? such that

XcZ(new) — XcZ(old) A ij‘ (7)

FALCON then examines the output activities of the
action vector x°2 and selects an action a;, which has the
highest activation value

x§? = max{xfz(”ew) :forall F fz node i}. (8)

6.2. Reinforcement learning

Reinforcement learning can be realized in FALCON
through learning the value policy by associating the in-
put activity patterns across the sensory, action and re-
ward fields. Learning from delayed evaluative feed-
back is further enabled by incorporating a Temporal D-
ifference (TD) method to estimate and learn the value
functions of action-state pairs Q(s, a) that indicates the
goodness to take a certain action a in a given state s.

Figure 3 shows the pattern configuration of the TD-
FALCON network model in the reinforcement learning
paradigm. Given the current state s, the FALCON net-
work first chooses an action a to perform by following
an action selection policy. For action selection, the state
vector S, the action vector A = (1,...1) and the reward

vector R = (1,0) are presented to FALCON. The set-
ting of the action and reward vectors serves to select an
action which is expected to lead to the maximal reward
in the given state.

After performing the chosen action, a reward may be
received from the environment and a TD formula is used
to compute a new estimate of the Q value of performing
the chosen action « in the current state s. The new Q val-
ue is then used as the teaching signal for TD-FALCON
to learn the association of the current state s and the cho-
sen action a to the estimated Q value. The procedure for
reinforcement learning in TD-FALCON (Tan, 2007) is
summarized in Table 2.

F,©
Cognitive Field /

F,o F,@ F,©@

[) xS xS
! ! T

State(S) Reward(R)

Action (A)
Figure 3: TD-FALCON in reinforcement learning.

A typical Temporal Difference (TD) equation for it-
erative estimation of value functions Q(s,a) is given by

AQ(S, Cl) = aTDerr (9)

where « € [0, 1] is the learning parameter and T D,,, is a
function of the current Q-value predicted by FALCON
and the Q-value newly computed by the TD formula.

For used with ART-based neural networks, a Bound-
ed Q-learning rule is generally employed, wherein the
temporal error term is computed by

AQ(s,a) = aTDeyy (1 = Q(5,a)). (10)

where TD,,, = r+vymax, Q(s’,a’) — Q(s, a), of which r
is the immediate reward value, y € [0, 1] is the discount
parameter, and max, Q(s’, @) denotes the maximum es-
timated value of the next state s’. It is important to note

Table 2: Reinforcement learning by FALCON with direct code access.

1. Initialize the TD-FALCON network.

2. Sense the environment and formulate a state vector S.

3. Select the action a with the maximal Q(s,a) value by presenting the state vector S, action
vector A=(1,...1) and the reward vector R=(1,0) to TD-FALCON:

4. Perform the action a, and receive a reward r from the environment.

5. Estimate the revised value function Q(s, a) following a Temporal Difference formula such as

AQ(s,a) = aTDgy;.

6. Perform learning in TD-FALCON, by presenting the state vector S, action vector
A=(ay,a, ..., a,), where ar=1 if a; corresponds to the action @, a; = 0
for i # I, and reward vector R=(Q(s, a),1-0(s, a)) to TD-FALCON for learning:

7. Update the current state by s=s’.

8. Repeat from Step 2 until s is a terminal state.

that the Q values involved in estimating max, Q(s’,a’)
are computed by the same FALCON network itself and
not by a separate reinforcement learning system. The
Q-learning update rule is applied to all states that the a-
gent traverses. With value iteration, the value function
0O(s, a) is expected to converge to r + ymax, Q(s’,a’)
over time. By incorporating the scaling term 1-Q (s, @),
the adjustment of Q values will be self-scaling so that
they will not be increased beyond 1. The learning rule
thus provides a smooth normalization of the Q values.
If the reward value r is constrained between O and 1,
we can guarantee that the Q values will remain to be
bounded between 0 and 1.

6.3. Dual-Stage Learning (DSL)

The Dual-Stage Learning (DSL) strategy is pro-
posed for hybrid learning based on TD-FALCON, com-
bining the complementary merits of the two learning
paradigms, namely fast supervised learning ability of
imitative learning and continual real-time adaptation a-
bility of reinforcement learning, in a sequential manner.

Under the DSL strategy, imitative learning, based
on a collection of data samples, is first used to set up
the knowledge structure of the learner. Using the TD-
FALCON’s competitive coding principle, an action pol-
icy is learned in the form of associative pattern chunks
(S, A), and stored in the cognitive field of TD-FALCON.

During reinforcement learning, the associative pat-
tern chunks serve as the base knowledge for immedi-
ate performance and subsequent knowledge refinement.
With a Temporal Difference (TD) learning method, TD-
FALCON refines and expands the existing knowledge
in real-time according to the feedback received from its
interaction with the environment.

The process of the Dual-Stage Learning strategy is
illustrated in Figure 4. During imitative learning, giv-

Imitative Learning
F,° F,°

Reinforcement Learning

® e ® e
P Cognitive Field -> @ @ (ognitive Field
Fo F2 Fe Fe F,2 Fo
S xS x2S xS xa] S x2S s
) T) T) 1
State(S) Action (A) (1, 0) State (S) Action (A) Reward(R)

Figure 4: The Dual-Stage Learning procedure.

en an associative pattern pair, namely the state vec-
tor S and the action vector A, the activity vectors of
TD-FALCON are initiated to x*! = S, x2 = A, and
x3 = R = (g,1 — q), where g € [0, 1] is the default
expected reward of the inserted knowledge. During the
second stage of reinforcement learning, TD-FALCON
learns from a 3-tuple, consisting of the state vector S,
the action vector A, and the reward vector R = (0, 0).
The algorithms of imitative learning and reinforcement
learning follow those presented in Table 1 and Table 2
respectively.

Note that, in the DSL strategy, action policies can be
seen as transferring from an imitative learner to an re-
inforcement learner as prior knowledge. If there are N
association pairs learned in the imitative learning stage,
the N pairs will be transferred totally into the second
learning stage as pre-existing codes (C;, Cz,C3,...Cy)
in the cognitive field F5. In the most general case, the
cognitive codes C,(n = 1,..., N) can be initialized with
different expected reward values Q,(s,a) = ¢,,(n =
1, ..., N), which indicates that the estimated goodness to
take the action a in the given state s.

Different from pure reinforcement learning, where-
in an agent starts learning by exploring random actions,
the prior knowledge transferred enables an agent to start

exploitation with the pre-existing codes in F5. When
a cognitive code Cj is selected for learning, its weight
vector WLCkI is updated by the equation (6) and the cor-
responding state-action value ¢; will be estimated again
and revised by equation (10).

Lemma: Following the DSL strategy, a given set of
pre-existing codes (Cy,Cy,...,Cy) learned via imita-
tive learning is only usable for exploitation in reinforce-
ment learning if their corresponding expected reward
values Q, (s, a) satisfies the reward vigilance criterion,
ie g, >p3 forn=1,...,N.

Proof: Suppose there is a cognitive node J with an
initialized reward value of Q,(s,a) < p°3. When a cat-
egory choice is made at code J, the vigilance criterion
will be violated because

XC3 A Wc3
me = L T g <o (11)
where x* = (1,0)’, and W = (¢;,1 — ¢,)’. This causes
the code J to be rejected for prediction.

Therefore, in the second stage of reinforcement learn-
ing, for the learning agent to perform by doing exploita-
tion with the pre-existing codes (Cy,C3,C3,...Cy) in-
stead of random choices, the following condition should
be satisfied: the reward vigilance parameter p°> must be
lower than the minimum value of all the initialized prior
reward values:

min{Qu(s,a) = g,} = p© (n=1,2,..,N). (12)

6.4. Mixed model learning

The Mixed Model Learning (MML) strategy inte-
grates imitative learning and reinforcement learning in a
single knowledge framework in an interleaving manner.
The process of ML is illustrated in Figure 5. Note that
TD-FALCON comprises a cognitive field F3 and three
input fields: a sensory field F' f‘ for representing curren-
t states, a motor field F ’1"2 for representing actions, and
a feedback field F f3 for representing the reward values.
Using the Mixed Model Learning method, the three in-
put fields obtain their state, action and reward patterns
based on the behaviour of the agent and its opponents.

Specifically, a set of three input patterns are used for
imitative learning, namely S°, A°, and R®, representing
the opponent’s state, action, and feedback from the en-
vironment respectively. Another set of three input pat-
terns are dedicated to reinforcement learning, namely S,
A, and R, representing the agent’s current state, action,
and reward received from the environment respectively.

Note that the six input patterns are not to be active at
the same time as TD-FALCON alternates between the

two learning methods. As summarised in Table 3, TD-
FALCON first decides between the imitative learning
mode and the reinforcement learning mode and then ac-
tivates the learning of the corresponding input patterns.

Whereas reinforcement learning is performance regu-
larly upon receiving the reward signals, imitative learn-
ing is done selectively in a strategic manner. Specifical-
ly, when a negative reward is received, imitative learn-
ing is carried out following reinforcement learning. The
rationale is that in a two-player zero sum game, a play-
er’s penalty will typically be the outcome of a right ac-
tion taken by its opponent.

For imitative learning, TD-FALCON senses the op-
ponent’s state s and action a°, represented as state vec-
tor S® and action vector A° respectively. The activity
vectors of the three input fields are subsequently set as
x = 8° x? = A° and x? = R® = (¢,1 — g). For
reinforcement learning, TD-FALCON follows the typi-
cally procedure of setting the activity vectors as x°! = S,
x2=A,andx® =R = (0, 0).

F,e
Cognitive Field

c 3
Fy Fy

S S)
T)

State Action Reward
(SorsS°) (AorA°) (R)or(1, 0)

Figure 5: The Mixed Model Learning strategy.

7. Benchmark Evaluation

7.1. The Unreal Tournament Environment

Unreal Tournament (UT) is a first person shooting
game featuring close combat fighting between non-
player characters and human players in a virtual envi-
ronment. Figure 6 provides a snapshot of the game en-
vironment taken from the view of a human player. The
armed soldiers running and shooting in the environment
are non-player characters, called Bots. The gun shown
at the lower right hand corner is controlled by the hu-
man player. In our experiments, we use a "Deathmatch”
mode, in which every Bot must fight with any other
player in order to survive and win. UT does not mere-
ly offer an environment for gaming. More importantly,
it also provides a platform for building and evaluating
autonomous agents. Specifically, an Integrated Devel-
opment Environment (IDE), called Pogamut (Pogamut,
2016), is available to developers for building agents for

Table 3: The Mixed Model Learning Method.

Initialize the TD-FALCON network.

S

Sense the environment and formulate a state representation s.

Obtain the opponent’s state and formulate a state representation s°.
Observe the action a’ taken by the opponent.
Choose the action a with the maximal Q(s,a) value by presenting the corresponding state vector S,

action vector A=(1,...1) and the reward vector R=(1,0) to TD-FALCON.

N

Observe the next state s’.

Perform the action a, and receive a reward r from the environment.

8. Estimate the revised value function Q(s, a) following a Temporal Difference formula such as

AQ(S’ a) = aTD,.

9. Perform learning in TD-FALCON, by presenting the state vector S, action vector A=(ay, a2, ..., a),
where aj=1 if a; corresponds to the action a, a; = 0 for i # I, and reward vector
R=(0(s, a),1-Q(s, a)) to TD-FALCON for learning.

10. When a negative reward is received, perform imitative learning by presenting the state vector S°,
the action vector A° = (a;,ay, ..., a,), where a;=1 if a; corresponds to the action a° and a; = 0
for i # I, and the reward vector R® = (g, 1 — ¢) to TD-FALCON for learning.

11. Update the current state by s=s’.

12. Repeat from Step 2 until s is a terminal state.

the UT environment. This means the developers can
implement their own agents (or Bots) using any specific
algorithm and run them in UT.

Figure 6: Unreal Tournament 2004 game environment.

Figure 7 (adapted from (Pogamut, 2016)) shows the
interface between Pogamut and the Unreal game serv-
er. Pogamut runs as a plug-in for the NetBeans Ja-
va development environment. It communicates with
the UT2004 game through Gamebots 2004 (GB2004),
which is a built-in server inside UT2004 for exporting
information from the game to the agent and vice ver-
sa. Pogamut also has a built-in parser module, which is
used for translating messages into Java objects and vice
versa.

7.2. Behavior learning tasks

There are in total eight types of behaviors designed
for the agent (as shown in Table 4). Upon receiving
the information from the environment, the agent is de-
signed to make responses by choosing one of the eight

10

; | |
Tareal

T e = ——

F' 2004 l%'
I—I

1 LocalParcer | «>_T «» =1 DE | =

= = 5

Agent Workstation

Figure 7: The interface between Pogamut and the Unreal Tournament
2004 (adapted from (Pogamut, 2016)).

behaviors based on ten state attributes (shown in Ta-
ble 5). The behavior learning task in our experiment
platform is to learn from the performance of a sample a-
gent, called Hunter, which has the same types of behav-
iors and attributes as our agent, and exhibits a full range
of combat competency based on its rule-based knowl-
edge. There are altogether eight main rules captured in
the Hunter’s behavior mechanism based on these state
attributes. They are summarized in Table 6.

7.2.1. Imitative learning from sample bot

For imitative learning, the empirical training data is
obtained from the sample bots available. When play-
ing the UT game, the states and behavior patterns of
the Hunter Bot are recorded as training data for off-line
learning or sensed by agent in real time during on-line
learning. Each training example consists of a vector
of the state attribute values as well as the chosen be-

Table 4: The eight behaviors of the Hunter Bot.

No. Behaviors Description
Al ChangeT oBetterWeapon Switch to a better weapon
Ay Engage Shoot the enemy
Az StopS hooting Stop shooting.
Ay RespondT oHit Turn around, try to find the enemy
As Pursue Pursue the enemy spotted
Ag Walk Walk and check walking path
A7 Grabltem Grab the most suitable item
Ag GetMedicalKit Pick up medical kit
Table 5: The state attributes of the Hunter Bot.
No. State attributes Type Description
Aty S eeAnyEnemy Boolean See enemy?
Atty HasBetterWeapon Boolean Has a better weapon?
Attz HasAnyLoadedWeapon Boolean Has weapon loaded?
Atty IsS hooting Boolean Is shooting?
Atts IsBeingDamaged Boolean Is being shot?
Attg LastEnemy Boolean | Has enemy target to pursue?
Atty IsColliding Boolean Collide with wall?
Atty | SeeAnyReachableltemAndWantlt | Boolean See any wanted item?
Attg AgentHealth [0,1] Agent’s health level
Attyg CanRunAlongMedK it Boolean | Medical kit can be obtained?
Table 6: The hard-coded rules of the Hunter Bot in UT2004.
No. IF (Condition) THEN (Behavior)
1 S eeAnyEnemy AND HasBetterWeapon ChangeT oBetterWeapon
2 S eeAnyEnemy AND HasAnyLoadedWeapon Engage
3 IsS hooting StopS hooting
4 IsBeingDamaged RespondT oHit
5 LastEnemy AND HasAnyLoadedWeapon Pursue
6 IsColliding Walk
7 S eeAnyReachableltemAndWantIt Grabltem
8 AgentHealthisLow AND CanRunAlongMedKit GetMedicalKit

11

haviour (action). The collected data are then used to
train the TD-FALCON network using the supervised
learning paradigm. As such, the agent created by im-
itative learning is expected to exhibit similar behavior
patterns and produce comparable level of fighting com-
petency as the Hunter Bot.

7.2.2. Dual-Stage Learning

With Dual Stage Learning, the Bot created by imi-
tative learning is capable of continuously fighting with
Hunter Bot and adapt to the environment using rein-
forcement learning. The DSL Bot uses the same be-
haviors and state attributes as shown in Table 4 and Ta-
ble 5 respectively. At the beginning, the Bot performs
with only prior knowledge learned by imitative learn-
ing. Later on, incorporating with Q-learning method,
the Bot is expected to validate and refine the existing
knowledge as well as obtain new knowledge. In Unreal
Tournament, the DSL Bot is expected to show an en-
hanced level of fighting competency over its opponent.

7.2.3. Mixed Model Learning

When playing against the Hunter Bot, the Bot created
by MML is designed to adapt to the dynamic environ-
ment with reinforcement learning as well as to imitate
its opponent’s behavior patterns in real time. With the
same behaviors and state attributes as shown in Table 4
and Table 5 respectively, the MML Bot is also expected
to show a higher level of fighting competency than its
opponent.

7.3. Learning models in comparison

We conducted a series of experiments in the Unre-
al Tournament game environment to examine the per-
formance of the non-player characters (Bots) created by
various learning methods, namely imitative learning, re-
inforcement learning, dual stage learning, mixed model
learning, and standard Q-learning. The learning con-
figuration of each learning model is presented in detail-
s below. Under the Deathmatch scenario, each of the
learning Bots enters into a series of one-on-one battles
with the Hunter Bot. When a Bot kills its opponent, one
point is awarded. The battle repeats until any one of the
Bots reaches a maximum score of 25.

7.3.1. FALCON Bot by Imitative learning

FALCON Bot created using imitative learning (IL)
is called FALCON-IL Bot. The FALCON-IL Bot is
trained using 8000 training samples data recorded from
the Hunter Bot. We then examine if FALCON-IL Bot
could learn the behavior patterns and play against the
sample Hunter Bot.

12

FALCON-IL Bot adopts the parameter setting as fol-
lows: choice parameters a¢! = a®? = o = 0.1; learn-
ing rate parameters 5¢' = g2 = g3 = 1 for fast learning;
and contribution parameters y! = 1 and y2 = y*3 = 0.
As in supervised learning, TD-FALCON selects a cate-
gory node based on the input activities in the input state
field. The vigilance parameters are set to p°! = p2 = 1
and p = 0 for a strict match criterion in the state and
action fields and a zero-match requirement in the reward
field.

7.3.2. FALCON Bot by Online Imitative learning

FALCON Bot created using online imitative learn-
ing (OIL) is called FALCON-OIL Bot. In the experi-
ments conducted in Unreal Tournament, FALCON-OIL
Bot will be trained in real time by sensing the samples
data from its opponent, the Hunter Bot. FALCON-OIL
Bot adopts the same setting of choice parameters, learn-
ing rate parameters, contribution parameters, vigilance
parameters, and learning rate @ and discount factor y
for the Temporal Difference rule as that of FALCON-
IL Bot. (For details of FALCON-IL Bot and FALCON-
OIL Bot, please refer to our previous work (Feng & Tan,
2010).)

7.3.3. FALCON Bot by reinforcement learning

FALCON Bot using reinforcement learning only is
called FALCON-RL Bot. To examine whether rein-
forcement learning is effective to enhance the behavior
learning, a series of experiments are conducted in Un-
real Tournament to examine how the FALCON-IL Bot
performs when it plays against the Hunter Bot.

Under the pure reinforcement learning mode, we
adopt the parameter setting as follows: choice param-
eters o' = o2 = o = 0.1; learning rate param-
eters B! = B2 = 0.5 and B2 = 0.3 to achieve a
moderate learning speed; and contribution parameter-
s ¥ = ! = 0.3 and y3 = 0.4. During reinforce-
ment learning, a slower learning rate could produce a
smaller set of better quality category nodes in FALCON
network and lead to better predictive performance, al-
though a lower learning rate may slow down the learn-
ing process. The vigilance parameter p! is set to 0.8
for a better match criterion, p°? is set to 0 and p is
set to 0.3 for a marginal level of match criterion on the
reward space so as to encourage the generation of cat-
egory nodes. In learning value function with Temporal
Difference rule, the learning rate « is fixed at 0.7 and
the discount factor vy is set to 0.9.

7.3.4. FALCON Bot by dual stage learning

FALCON Bot learned using the DSL strategy is
called FALCON-DSL Bot. In the imitative learn-
ing stage, FALCON-DSL Bot adopts the same pa-
rameter setting as that of the FALCON-IL Bot. For
the reinforcement learning stage, FALCON-DSL Bot
adopts the same setting of choice parameters, learning
rate parameters, and contribution parameters as that of
FALCON-RL Bot.

The vigilance parameters p! is set to 0.9 which is
slightly higher than that of FALCON-RL Bot for a bet-
ter match criterion, p? is set to 0 and p°> to 0.3 for
a marginal level of match criterion. For the Tempo-
ral Difference rule, FALCON-DSL Bot also adopts the
same learning rate @ and discount factor y as that of
FALCON-RL Bot.

For knowledge transferred from imitative learning,
each of the embedded cognitive codes C; is initialized
with a reward value ¢; for j = 1,...,N. At the begin-
ning of learning, we assume the embedded codes have a
standard reward value of 0.75, to assume them reason-
ably good rules.

7.3.5. FALCON Bot by Mixed Model Learning

FALCON Bot learned with the MML strategy is
called FALCON-MML Bot. When imitative learning
is activated, the same parameter setting as that of the
FALCON-IL Bot is applied.

When the reinforcement learning mode is activated,
FALCON-MML Bot adopts the same setting of choice
parameters, learning rate parameters, and contribution
parameters as that of FALCON-RL Bot.

For the vigilance parameters, p¢! is set to 0.9 which
is slightly higher than that of FALCON-RL Bot for a
better match criterion, p? is set to 0 and p* to 0.3 for
a marginal level of match criterion. For the Tempo-
ral Difference rule, FALCON-DSL Bot also adopts the
same learning rate @ and discount factor y as those of
FALCON-RL Bot.

7.3.6. Bot by Standard Q-learning

For the purpose of comparison, a Bot created by s-
tandard Q-learning (called QL Bot) is also realized in
Unreal Tournament. QL Bot works by learning the val-
ue function for each chosen action in a given state. We
conduct a series of experiments to examine how QL
Bot performs when it plays against the Hunter Bot. For
learning value function using Temporal Difference rule,
the learning rate @ was fixed at 0.7 and the discount fac-
tor y was set to 0.9.

13

7.4. Results

Figure 8 summarizes the performance of the various
Bots in terms of score differences when they play a-
gainst the Hunter Bot. The game score differences are
calculated by averaging across ten sets of 20 continuous
runs. As shown in Figure 8, FALCON-IL Bot is able
to achieve a similar level of fighting competency as the
Hunter Bot. This shows that FALCON-IL Bot is able to
learn the behavior patterns from the sample Bot rather
well.

On the other hand, FALCON-RL Bot begins with a
low level of competency but it is able to acquire the right
behavior strategy gradually and defeats the Hunter Bot
consistently. In contrast, FALCON-DSL begins with a
comparable level of fighting competency with its oppo-
nent (Hunter Bot) and continuously improves its perfor-
mance over runs. The game score difference obtained
by FALCON-DSL Bot converges quickly to a decent
level above that of FALCON-RL.

The experiment results thus demonstrate that the D-
SL strategy is effective in enhancing the learning ability
of the Bot in terms of faster learning speed and con-
vergence. As a baseline comparison, the performance
of QL Bot is visually lower than those of the FALCON
Bots.

In the second set of the experiments, we compare the
performance of several other Bots, including FALCON-
OIL Bot, FALCON-MML Bot, and FALCON-RL Bot.
Compared with the Bots evaluated in the first set of
experiments, these Bots make use of online real-time
learning, doing away with the need to do offline im-
itative learning before hand. Specifically, imitative
learning is done completely in an online fashion for
FALCON-OIL Bot, and interleaved with reinforcement
learning for FALCON-MML Bot. Figure 9 summarizes
the performance of the three Bots in terms of score d-
ifference playing against Hunter. As before, the game
score differences are calculated by averaging across ten
sets of 20 continuous runs.

From Figure 9, it can be seen that demonstrates the
FALCON-OIL Bot can learn the behavior patterns very
quickly, and have a similar fighting competency as that
of Hunter Bot. Comparing with Figure 8, we see that
the FALCON-OIL Bot’s performance is as good as the
FALCON-IL Bot. This result also shows that the on-
line imitative learning is capable of learning behavior
patterns fast and accurately.

More importantly, Figure 9 also shows that
FALCON-MML Bot produces an significantly higher
level of fighting competency than its opponent. As
FALCON-MML Bot provides fast learning speed and

quick convergence in real time, this result also shows
that MML is a powerful strategy to integrate online im-
itative learning and reinforcement learning. Moreover,
the performance of FALCON-MML Bot is also compa-
rably better than that of FALCON-RL Bot, showing an
improvement in learning speed and convergence. The
details of performance of the six learning strategies are
summarized in Table 7.

For evaluating learning efficiency, Table § illustrates
the number of codes created in the cognitive fields by
the six learning methods respectively. We can observe
that the number of codes by pure reinforcement learn-
ing, standard Q-learning, and MML are about the same
and shows a similar rising trend. DSL also has a simi-
lar rising trend whereas starting with a relatively small
number of codes because the prior knowledge learned
by imitative learning could produce compression and
generalization. In comparison, the number of codes
generated by OIL strategy is much smaller and is almost
the same as that of OL strategy. It is notable that the
number of codes in DSL remains in a reasonable region
although there is prior knowledge encoded beforehand.

Number of runs

s M E I
o "
7 (R RS e = o N
M » / L]
&
2 5 u # o _ o i
2 o P e ” —=— FALCON-DSL
g . .
£, P = —+—FALCON-RL
5 - .
g . —a— FALCON-IL
u - =
a1 S t,krﬁ—rﬁ‘* A _e-aleot
Y ek
& kK
1 £ 29745 678 910111213141516.17.18 1320
*

Figure 8: The score difference between the learning Bots and Hunter
Bot.

Number of runs

.-
- 4:1’ .-]

5 - _
° vai Y o
g £
S s 4
2 7
$) /‘ —=— FALCON-MML
° 3 w 7 —a—FALCON-RL
& Ve / FALCON-OIL
o 1 A -

A e S 3 W

@ s —— A&

1 (12974 5 6 7 8 9510111213 141516 17181920

Figure 9: The score difference between the learning Bots and Hunter
Bots.

14

8. Conclusion

This paper has presented a computational model uni-
fying two popular learning paradigms, namely imitative
learning and reinforcement learning, based on a class of
self-organizing neural networks called Fusion Architec-
ture for Learning and COgnition (FALCON). Address-
ing the knowledge integration issue, the computational
model is capable of unifying states and actions spaces
and transferring knowledge seamlessly across different
learning paradigms. This enables the learning agent to
perform continuous knowledge exploitation, while it en-
hances the reinforcement learning with complementary
knowledge. Specifically, two hybrid learning strategies,
known as Dual-Stage Learning (DSL) and the Mixed
Model Learning (MML), are proposed to realize the in-
tegration of the two different learning paradigms within
one designed framework. DSL and MML have been
used to create non-player characters (NPCs) in a first
person shooting game named Unreal Tournament. A se-
ries of experiments shows that both DSL. and MML are
effective in enhancing the learning ability of NPCs in
terms of faster learning speed and accelerating conver-
gence. Most notably, the NPCs built by DSL and MML
produce better combat performance comparing with N-
PCs using the pure reinforcement learning and the pure
imitative learning methods. The proposed hybrid learn-
ing strategies thus provide an efficient method to build-
ing intelligent NPC agents in games and pave the way
towards building autonomous expert and intelligent sys-
tems for other applications.

Although integration of different learning paradigm-
s appears to be straightforward in our work, note that
our integration strategies rely very much on the self-
organizing neural network model employed, namely
FALCON. As such our work does not provide a general
solution for integration of different learning paradigms
using any learning algorithm or model.

In terms of algorithm design and experimentation,
our main performance metric so far is just the com-
bat performance of the NPC. Moreover, for solving
the exploitation-exploration dilemma, we only consider
simple direct rewards, such as those given when dam-
aging opponents and collecting weapon. Other more
sophisticated aspects of NPCs in first-person shooting
scenarios, such as goals, memories, and humanity fac-
tors, so far haven’t been explored.

Moving forward, for the purpose of creating intelli-
gent, believable and attractive NPC agents, we still have
to enhance the capabilities of the agents by integrat-
ing other high level cognitive factors and human fac-
tors. For example, we shall investigate the use of a goal

Table 7: The score difference between our Bots and the enemy Bot during learning

Learning Bots score difference | score difference | score difference
after 5 runs after 10 runs after 20 runs
FALCON-IL Bot 0.10 + 3.68 049 +4.24 1.19 + 3.86
FALCON-OIL Bot 0.22 +4.18 045 +5.12 1.01 £2.30
FALCON-RL Bot 1.14 + 3.52 7.04 +3.11 8.30 £ 4.16
QL Bot 2.50 £5.34 2.90 +3.34 6.60 = 5.41
FALCON-DSL Bot 7.28 +1.96 7.72 £4.23 8.72 + 4.66
FALCON-MML Bot 7.25 + 3.64 7.10 + 4.36 7.68 +4.62

Table 8: The number of cognitive codes created in learning

Learning Bots No. of codes
after 5 runs

FALCON-IL Bot 36.00 +£2.12
FALCON-OIL Bot 35.00 +1.73
FALCON-RL Bot 72.00 + 5.95
QL Bot 85.00 + 5.77
FALCON-DSL Bot | 50.00 + 0.50
FALCON-MML Bot | 70.00 + 3.82

No. of codes No. of codes
after 10 runs after 20 runs
40.00 +£2.82 | 42.00 + 1.41
39.00 + 2.51 43.00 + 2.64
89.00 £4.60 | 111.00 + 6.10
93.00 £2.14 | 113.00 +4.34
72.00 £2.49 | 112.00 +2.51
88.00 £5.19 | 103.00 +5.70

maintenance module, which may help to manage the
exploitation-exploration dilemma and predict the out-
come of actions. On the other hand, we shall extend
our model to be capable of human-like behavior by in-
corporating personalities and motivations into agents.
Last but not least, it is important to augment the cog-
nitive functions of the agents with affective capabilities,
so that the NPCs may display different emotions based
on the outcomes (success or failure) of its actions. In
addition, it will be interesting to study how the emotion
of NPCs may influence their learning experience and fu-
ture actions. By integrating personal as well as affective
attributes, the behaviors of NPC are expected to be more
realistic and believable. These, we reckon, will greatly
enhance the playability of the computer games.

Akbar, M. A., Praponco, W., Hariadi, M., Mardi, S. et al. (2015). Mul-
ti behavior npc coordination using fuzzy coordinator and gaussian
distribution. In Intelligent Technology and Its Applications (ISITI-
A), 2015 International Seminar on (pp. 17-22). IEEE.

Bauckhage, C., Thurau, C., & Sagerer, G. (2003). Learning human-
like opponent behavior for interactive computer games. In Lecture
notes in computer science (pp. 148-155).

Busoniu, L., Schutter, B. D., Babuska, R., & Ernst, D. (2010). Us-
ing prior knowledge to accelerate online least-squares policy iter-
ation. In Automation Quality and Testing Robotics (AQTR), 2010
IEEE International Conference on (pp. 1-6). Cluj-Napoca, Roma-
nia volume 1.

Carpenter, G. A., & Grossberg, S. (1987a). ART 2: Self-organization
of stable category recognition codes for analog input patterns. Ap-
plied Optics, 26, 4919-4930.

Carpenter, G. A., & Grossberg, S. (1987b). A massively parallel ar-
chitecture for a self-organizing neural pattern recognition machine.
Computer Vision, Graphics, and Image Processing, 37, 54—115.

15

Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991). Fuzzy ART:
Fast stable learning and categorization of analog patterns by an
adaptive resonance system. Neural Networks, 4, 759-771.

David, O. E., van den Herik, H. J., Koppel, M., & Netanyahu, N. S.
(2014). Genetic algorithms for evolving computer chess programs.
Evolutionary Computation, IEEE Transactions on, 18, 779-789.

Dixon, K., Malak, R., & Khosla, P. (2000). Incorporating prior knowl-
edge and previously learned information into reinforcement learn-
ing agents. Technical report, Institute for Complex Engineered Sys-
tems, Carnegie Mellon University, .

Doshi-Velez, F., Pfau, D., Wood, F., & Roy, N. (2015). Bayesian non-
parametric methods for partially-observable reinforcement learn-
ing. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 37,394-407.

Feng, S., & Tan, A.-H. (2010). Self-organizing neural networks for
behavior modeling in games. In proceedings, International Joint
Conference on Neural Networks (pp. 3649-3656). Barcelona, S-
pain.

Framling, K. (2007). Guiding exploration by pre-existing knowledge
without modifying reward. Neural Networks, 20, 736-747.

Ghavamzadeh, M., Mannor, S., Pineau, J., & Tamar, A. (2015).
Bayesian reinforcement learning: A survey. Foundations and
Trends® in Machine Learning, 8, 359-483.

Glavin, F. G., & Madden, M. G. (2015). Learning to shoot in first per-
son shooter games by stabilizing actions and clustering rewards for
reinforcement learning. In Computational Intelligence and Games
(CIG), 2015 IEEE Conference on (pp. 344-351). IEEE.

Ji, L., & Ma, J. (2014). Behavior tree for complex computer game ai
behavior. Simulation and Modelling Methodologies, Technologies
and Applications, 60, 201.

Jonschkowski, R., & Brock, O. (2014). State representation learning
in robotics: Using prior knowledge about physical interaction. In
Robotics: Science and Systems (RSS).

Kengo, K., Takahiro, K., & Hiroyuki, N. (2005). Reinforcement learn-
ing agents with primary knowledge designed by analytic hierarchy
process. In SAC ’05: Proceedings of the 2005 ACM symposium on
Applied computing (pp. 14-21).

Moreno, D. L., Regueiro, C. V., Iglesias, R., & Barro, S. (2004). Us-
ing prior knowledge to improve reinforcement learning in mobile
robotics. In Proc. Towards Autonomous Robotics Systems. Univ. of
Essex, UK.

Pogamut (2016). Retrived from
http://artemis.ms.mff.cuni.ca/pogamut/, .

Ponce, H., & Padilla, R. (2014). A hierarchical reinforcement learn-
ing based artificial intelligence for non-player characters in video
games. In Nature-Inspired Computation and Machine Learning
(pp. 172-183). Springer.

Shapiro, D., Langley, P., & Shachter, R. (2001). Using background
knowledge to speed reinforcement learning in physical agents. In
the 5th International Conference on Autonomous Agents. (pp. 254—
261). Montreal, Quebec, Canada.

Song, M., Gu, G., & Zhang, R. (2004). Behavior control of multi-
robot using the prior- knowledge based reinforcement learning. In
the 5m World Congress on Intelligent Control and Automation (pp.
5027-5030). Hangzhou, China volume 6.

Stanley, K. O., Bryant, B. D., & Miikkulainen, R. (2005). Real-time
neuroevolution in the nero video game. Evolutionary Computation,
IEEE Transactions on, 9, 653-668.

Sutton, R., & Barto, A. (1998). Reinforcement Learning: An Intro-
duction. Cambridge, MA: MIT Press.

Tan, A.-H. (1997). Cascade ARTMAP: Integrating neural computa-
tion and symbolic knowledge processing. [EEE Transaction on
Neural Networks, 8, 237-250.

Tan, A.-H. (2004). FALCON: A fusion architecture for learning, cog-
nition, and navigation. In Proceedings, International Joint Confer-
ence on Neural Networks (pp. 3297-3302).

Tan, A.-H. (2007). Direct code access in self-organizing neural archi-
tectures for reinforcement learning. In Proceedings, International
Joint Conference on Artificial Intelligence (IJCAI0O7), Hyderabad,
India (pp. 1071-1076).

Tan, A.-H., Carpenter, G. A., & Grossberg, S. (2007). Intelligence
through interaction: Towards a unified theory for learning. Lecture
Notes in Computer Science, 4491, 1098-1107.

Unemi, T. (2000). Scaling up reinforcement learning with human
knowledge as an intrinsic behavior. In Scaling up reinforcement
learning with human knowledge as an intrinsic behavior (pp. 511-
518).

Wang, D., Subagdja, B., Tan, A.-H., & Ng, G. W. (2009). Creating
human-like autonomous players in real-time first person shooter
computer games. In Proceedings of Twenty-First Annual Confer-
ence on Innovative Applications of Artificial Intelligence (pp. 14—
16). Pasadena,California.

Wang, D., & Tan, A.-H. (2015). Creating autonomous adaptive agents
in a real-time first-person shooter computer game. Computational
Intelligence and Al in Games, IEEE Transactions on, 7, 123—138.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8,
279-292.

Xiao, D., & Tan, A.-H. (2007). Self-organizing neural architectures
and cooperative learning in multi-agent environment. /EEE Trans-
actions on Systems, Man, and Cybernetics - Part B, 37, 1567—
1580.

Zanetti, S., & Rhalibi, A. E. (2004). Machine learning techniques
for FPS in Q3. In 2004 International Conference on Advances in
Computer Entertainment Technology (pp. 239-244).

16

	Towards autonomous behavior learning of non-player characters in games
	Citation

	tmp.1595528507.pdf.gcqRv

