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A hybrid agent architecture integrating desire, intention and reinforcement learning

Ah-Hwee Tan ⇑, Yew-Soon Ong, Akejariyawong Tapanuj
School of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
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a b s t r a c t

This paper presents a hybrid agent architecture that integrates the behaviours of BDI agents, specifically
desire and intention, with a neural network based reinforcement learner known as Temporal Difference-
Fusion Architecture for Learning and COgNition (TD-FALCON). With the explicit maintenance of goals,
the agent performs reinforcement learning with the awareness of its objectives instead of relying on exter-
nal reinforcement signals. More importantly, the intention module equips the hybrid architecture with
deliberative planning capabilities, enabling the agent to purposefully maintain an agenda of actions to per-
form and reducing the need of constantly sensing the environment. Through reinforcement learning, plans
can also be learned and evaluated without the rigidity of user-defined plans as used in traditional BDI
systems. For intention and reinforcement learning to work cooperatively, two strategies are presented
for combining the intention module and the reactive learning module for decision making in a real time
environment. Our case study based on a minefield navigation domain investigates how the desire and inten-
tion modules may cooperatively enhance the capability of a pure reinforcement learner. The empirical
results show that the hybrid architecture is able to learn plans efficiently and tap both intentional and reac-
tive action execution to yield a robust performance.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Derived from folk psychology, belief, desire, and intention (BDI)
is a popularly used framework for human modelling and logical
reasoning (Bratman, Israel, & Pollack, 1988). BDI systems encode
goal directed behaviours by using plans derived from expert
knowledge about the task domain. An abstract plan consists of
an ordered set of subgoals or actions that an agent may execute
with little sensory feedback from its environment, together with
an overall goal which that plan achieves if execution is completed
successfully. Following a plan also serves to frame and thus con-
strain the subsequent reasoning and actions of agents (Pollack,
1992). The use of plans is thus useful for resource-bounded agents,
which have limited computing power in sensing and/or delibera-
tion. A traditional limitation of BDI architecture, however, is the
lack of learning ability. In most cases, plans and capabilities are
predefined by developers or captured from human experts.

In modern cognitive science, many have held the view that cog-
nition is a process deeply rooted in the body’s interaction with the
world (Anderson, 2003; Brooks, 1999). In other words, autono-
mous systems acquire intelligence through their interaction with
the environment. Often formalized as a Markov Decision Process
(MDP), an autonomous agent performs reinforcement learning

(Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998) through
a sense, act, and learn cycle in the motivation of receiving positive
rewards in the future.

In view of their complementary strengths, there has been great
interest in hybrid architecture that integrates high level symbolic
systems, such as BDI, with low level reinforcement learning algo-
rithms. Some examples of hybrid systems include CLARION (Sun,
2000), BDI with standard Q-learning (Norling, 2004), BDI with deci-
sion tree induction (Guerra-Hernandez, Fallah-Seghrouchni, & Sold-
ano, 2004), and ACT-R with sequence learning (Lebiere & Wallach,
2000). Among these hybrid systems, temporal difference methods,
such as Q-learning, coupled with gradient descent neural network
based function approximators, have been the most effective and
commonly used (Si, Barto, Powell, & Wunsch, 2004; Sun, 2000).
However, gradient descent methods are well known to learn from
the differences between prediction and target patterns by making
small error correction steps iteratively. In addition, there is the issue
of instability as learning of new patterns may erode the previously
learned knowledge. Consequently, the resultant systems may not
be able to learn and operate in real time.

In this paper, we present a hybrid architecture that integrates the
features of BDI, namely desire and intention, and a reinforcement
learning system known as Temporal Difference-Fusion Architecture
for Learning and COgNition (TD-FALCON) (Tan, Lu, & Xiao, 2008; Xiao
& Tan, 2007). TD-FALCON is an extension of a class of self-organizing
neural networks, known as Adaptive Resonance Theory (ART)
(Carpenter & Grossberg, 1987) that integrates temporal difference
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methods (Sutton & Barto, 1998; Watkins & Dayan, 1992) for rein-
forcement learning. By inheriting the ART code stabilizing and dy-
namic network expansion mechanism, FALCON is capable of
learning cognitive nodes encoding multi-dimensional mappings
across multi-modal input patterns, involving states, actions, and re-
wards, in an online and incremental manner.

Using belief–desire–intention as the system’s framework, the
proposed BDI-FALCON architecture extends a low level reactive
reinforcement learner TD-FALCON into a deliberative reasoner.
With the explicit maintenance of the agent’s goals in the desire
module, the agent now performs reinforcement learning with the
awareness of its objectives instead of relying purely on external
reinforcement signals. The desire module also allows the flexibility
of defining and refining the agent’s goals. With the goal attainment
evaluation capability, the agent can compute and generate rein-
forcement signals internally (implicit rewards). The desire module
thus equips the agent with a higher level of self-awareness, in com-
parison with a pure reinforcement learning agent.

Working in parallel with the desire and reactive learning mod-
ules, the intention module equips the hybrid architecture with
deliberative planning capabilities. It enables the agent to focus
on its current course of action by purposefully maintain an agenda
of actions to perform. This is useful in a complex environment
wherein individual reactive responses are not adequate. Perform-
ing with a plan also reduces the need for an agent to repeatedly
sense the environment and may therefore improve efficiency of re-
source-limited agents. In addition, through reinforcement learning,
plans can likewise be learned and evaluated without the rigidity of
user-defined plans as used in traditional BDI systems.

Compared with the other hybrid systems, the BDI-FALCON
architecture described in this paper has made a number of new at-
tempts. Firstly, TD-FALCON is a relatively new reinforcement
learning system that has shown superior learning capabilities,
especially in terms of real-time learning efficiency, compared with
gradient descent based reinforcement learning systems (Tan et al.,
2008; Xiao & Tan, 2007).

Secondly, our intention module has made use of a set of plan
learning, selection, and evaluation methods, in the same vein as
those used in TD-FALCON for cognitive node learning and selection.
As a consequence, a plan can be selected for execution even it does
not have an exact match with the current context or goal, as re-
quired by traditional BDI systems.

Thirdly, the BDI-FALCON architecture has incorporated a desire
module that constantly maintains an explicit representation of the
system’s goals. Although its current design is relatively simple, the
desire module fulfils the function of generating internal reinforce-
ment feedback for both plan learning and reactive learning, thus
closing the loop of the processes among the three components
within the agent.

In addition, our work shows that both high level and low level
cognitive functionalities, including desire, intention, and reactive
learning, can all be realized through a unified set of mathematical
models and algorithms. This approach is motivated by our hypoth-
esis that human cognition is an emergent property arising from the
interaction among low level neural circuits and pathways, which
may operate according to a unified set of neural activation and
learning processes (Tan, Carpenter, & Grossberg, 2007).

Last but not the least, we have conducted extensive experi-
ments and analyzed the behaviour of the hybrid architecture with
two plan and action integration strategies, in terms of the plan
adoption ratios and the overall success rates. To investigate the
system behaviour and capabilities, we have chosen a minefield
navigation task, similar to the one developed at the Naval Research
Laboratory (NRL) (Gordan & Subramanian, 1997). The task involves
an autonomous vehicle (AV) learning to navigate through obstacles
to reach a stationary target (goal) within a specified number of

steps. Our experimental results show that hybrid architecture is
able to combine intentional and reactive action execution, leading
to improvement both in terms of task completion performance and
efficiency.

The rest of the paper is organized as follows. Section 2 presents
background and related work. Section 3 presents in details the BDI-
FALCON architecture and its three main components, namely the
desire module, the intention module, and the reactive learning
module. Section 4 reports our case study on the minefield naviga-
tion problem. The final section provides a discussion of results and
highlights more general issues.

2. Related work

Hybrid systems integrating high level capabilities, such as plan-
ning, and low level reactive modules involving learning has been
an active research area. Sun (2000) described a two-level model,
known as CLARION, for learning reactive plans and extracting plans
from reinforcement learners. The first three layers of the bottom
level form a backpropagation network learning and computing
Q-values. The fourth layer (the top level with only one node) deter-
mines probabilistically the action to be performed based on a
Boltzmann distribution. Given a specific problem scenario, plans
can be generated on the spot using a beam search strategy that
chains up actions with optimal Q-values at each step (Sun & Ses-
sions, 2000). The plan extraction process however assumes that
the next state after performing each and every action can always
be determined beforehand. In addition, Sun et al. did not made ex-
plicit connection to the BDI framework, in particular, desire and
intention.

Using a goal-directed (top down) approach, Wallis (2004) dis-
cussed the notion of goal-tagged activities, that achieved planning
by low-level adherence to high-level goals without the need for ex-
plicit symbolic representation. This was achieved by the chaining
of implicitly goal-encoded activities (which are reactive modules
similar to plans in the BDI sense). Similarly, the ACT-R architecture
(Anderson, Bothell, & Byrne, 2004) uses a simple recurrent network
(SRN) for encoding fragments of plans and utilizes the persistence
property of working memory for ‘‘reading out’’ the action se-
quences (Lebiere & Wallach, 2000). As their focus is on achieving
goal-directed plan based behaviour through low level mechanism,
they do not consider the issue of how plans can be learned.

Working from the BDI perspective, Norling (2004) integrated
BDI with a standard table lookup version of Q-learning to learn
reactive rules for path finding in a grid world. As the Q-value table
stores each and every incident as an entry, the system is not able to
scale up to complex and continuous domains. Subagdja and Sonen-
berg (2005) further extended the BDI architecture to incorporate
learning, through the generation and testing of hypothesis for for-
mulating plans. However, the learning is restricted to evaluating
specific types of plans.

With the intention of learning knowledge through interacting
with the environment, Karim, Sonenberg, and Tan (2006) proposed
a hybrid system consisting of a high level BDI system and a low level
reactive FALCON (Tan, 2004) model, in which BDI-styled plans were
learned out of FALCON’s reactive action execution. The Plan Genera-
tion System (PGS) used a strategy to build plans by appending ac-
tions as the system performs. Hybrid architecture was originally
illustrated on a minefield navigation domain and was subsequently
expanded and applied to a multi-agent predator–prey domain (Kar-
im, Subagdja, & Sonenberg, 2006). The approach and architecture
presented in this paper follow those of PGS presented by Karim
and Sonenberg et al. (2006) and Karim et al. (2006). However, we
have designed an entirely different set of algorithms, following the
fuzzy ART operators (Carpenter, Grossberg, & Rosen, 1991), for goal
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matching, plan selection, plan evaluation, and plan learning. These
algorithms enable a plausible plan to be selected for execution even
without an exact match in the state and goal representation. In addi-
tion, we have expanded the analysis significantly by experimenting
with different strategies for integrating the intentional and reactive
learning modules.

3. The integrated architecture

Following the belief–desire–intention (BDI) framework, the
proposed BDI-FALCON architecture consists of three main mod-
ules, namely desire, intention, and the reactive learner (Fig. 1).
The low level reactive learning module is a TD-FALCON network
interacting with the environment through the three sensory, mo-
tor, and feedback channels. Based on the goals defined in the desire
module and the sensory inputs received from the environment,
TD-FALCON performs reinforcement learning to acquire a set of ac-
tion and value policies that enables the agent to achieve its goals.

The desire module maintains an explicit representation of the
agent’s goals. Active goals are those that give direction to the
agent’s activities for it to achieve its objectives. The idea of active
goals is similar to that presented in PGS (Karim & Sonenberg
et al., 2006; Karim et al., 2006). By matching the defined goals with
the corresponding sensory attributes, the desire module computes
how well the agent has progressed towards the desired goals. The
degree of goal attainment can then be used as an implicit reward
signal for reinforcement learning in the reactive and intention
modules. The desire module thus renders the hybrid architecture

a higher level of awareness than a pure reinforcement learner that
relies purely on external reward signals.

The intention module maintains the plan repository and sup-
ports the key processes of plan learning, plan selection, plan execu-
tion and plan evaluation. Each plan p in the repository comprises
the start state acting as a context in which the plan is applicable,
the target state of which the plan will lead to, the sequence of ac-
tions to be performed under the plan, and the estimated payoff (or
confidence) of using the plan.

Given a set of active goals and the current sensory inputs as the
context, the plan selection process identifies the most applicable
plan to perform through a code competitive mechanism similar
to that used in FALCON. During plan execution, the action sequence
of the adopted plan is extracted and performed through the motor
channel. Execution of plans thus enables an agent to perform a ser-
ies of actions without the need of going through the typical sense–
act–learn cycle for each action. This could potentially lead to saving
in computation cost and enables the system to be more resilient in
a challenging environment, wherein external signals may not be
available all the time. Through a simple form of reinforcement
learning, the plan evaluation process adjusts the confidence value
of each adopted plan according to the outcome that it leads to.
Plans with low confidence can then be pruned from the repository.

3.1. Reactive learning module

The reactive learning module is a TD-FALCON model, that incor-
porates temporal difference (TD) learning into a self-organizing

Fig. 1. The BDI-FALCON architecture.
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neural model known as Fusion Architecture for Learning and COg-
Nition (FALCON). For completeness, we present a summary of the
FALCON prediction and learning dynamics as well as the overall
TD-FALCON algorithm in the following sections. For a more de-
tailed description of TD-FALCON, please refer to Tan et al. (2008)
and Tan (2007).

3.1.1. FALCON dynamics
FALCON employs a 3-channel architecture (Fig. 2), consisting of

a sensory field Fc1
1 for representing the current state, a motor field

Fc2
1 for representing the available actions, a feedback field Fc3

1 for
representing the reward signals received from the environment,
as well as a cognitive field Fc

2 for encoding the relations among
the activity patterns across the three input channels. The generic
network dynamics of FALCON, based on fuzzy ART operations (Car-
penter et al., 1991), is summarized below.

Input vectors: Let S = (s1,s2, . . . ,sn) denote the state vector,
where si 2 [0,1] indicates the sensory input i. Let
A = (a1,a2, . . . ,am) denote the action vector, where ai 2 [0,1]
indicates a possible action i. Let R ¼ ðr;�rÞ denote the reward
vector, where r 2 [0,1] is the reward signal value and �r (the
complement of r) is given by �r ¼ 1� r. Complement coding
serves to normalize the magnitude of the input vectors and
has been found effective in ART systems in preventing the code
proliferation problem.
Activity vectors: Let xck denote the Fck

1 activity vector for k = 1,
. . . , 3. Let yc denote the Fc

2 activity vector.
Weight vectors: Let wck

j denote the weight vector associated
with the jth node in Fc

2 for learning the input patterns in Fck
1

for k = 1, . . . , 3. Initially, Fc
2 contains only one uncommitted node

and its weight vectors contain all 1’s. When an uncommitted
node is selected to learn an association, it becomes committed.
Parameters: The FALCON’s dynamics is determined by choice
parameters ack > 0 for k = 1, . . . , 3; learning rate parameters
bck 2 [0,1] for k = 1, . . . , 3; contribution parameters cck 2 [0,1]
for k = 1, . . . , 3 where

P3
k¼1cck ¼ 1; and vigilance parameters

qck 2 [0,1] for k = 1, . . . , 3.
Code activation: A bottom-up propagation process first takes
place in which the activities (known as choice function values)
of the cognitive nodes in the Fc

2 field are computed. Specifically,
given the activity vectors xc1, xc2 and xc3 (in the input fields
Fc1

1 ; F
cs
1 and Fc3

1 , respectively), for each Fc
2 node j, the choice func-

tion Tc
j is computed as follows:

Tc
j ¼

X3

k¼1

cck
jxck ^wck

j j
ack þ jwck

j j
; ð1Þ

where the fuzzy AND operation ^ is defined by (p ^ q)i �min(pi,qi),
and the norm j � j is defined by jpj �

P
ipi for vectors p and q. In es-

sence, the choice function Tj computes the similarity of the activity
vectors with their respective weight vectors of the Fc

2 node j with
respect to the norm of individual weight vectors.

Code competition: A code competition process follows under
which the Fc

2 node with the highest choice function value is
identified. The winner is indexed at J where

Tc
J ¼maxfTc

j : for all Fc
2 node jg: ð2Þ

When a category choice is made at node J; yc
J ¼ 1; and yc

j ¼ 0 for
all j – J. This indicates a winner-take-all strategy.
Template matching: Before code J can be used for learning, a
template matching process checks that the weight templates
of code J are sufficiently close to their respective activity pat-
terns. Specifically, resonance occurs if for each channel k, the
match function mck

J of the chosen code J meets its vigilance
criterion:

mck
J ¼

jxck ^wck
J j

jxckj P qck: ð3Þ

The match function computes the similarity of the activity and
weight vectors with respect to the norm of the activity vectors. To-
gether, the choice and match functions work co-operatively to
achieve stable coding and maximize code compression.
When resonance occurs, learning ensues, as defined below. If any of
the vigilance constraints is violated, mismatch reset occurs in which
the value of the choice function Tc

J is set to 0 for the duration of the
input presentation. The search process then selects another Fc

2 node
J until a resonance is achieved. This search and test process is guar-
anteed to end as FALCON will either find a committed node that sat-
isfies the vigilance criterion or activate an uncommitted node which
would definitely satisfy the criterion due to its initial weight values
of 1s.

Template learning: Once a node J is selected, for each channel
k, the weight vector wck

J is modified by the following learning
rule:

wckðnewÞ
J ¼ ð1� bckÞwckðoldÞ

J þ bckðxck ^wckðoldÞ
J Þ: ð4Þ

The learning rule adjusts the weight values towards the fuzzy AND
of their original values and the respective weight values. The ratio-
nale is to learn by encoding the common attribute values of the in-
put vectors and the weight vectors. For an uncommitted node J, the
learning rates bck are typically set to 1. For committed nodes, bck can
remain as 1 for fast learning or below 1 for slow learning in a noisy
environment. When an uncommitted node is selecting for learning,
it becomes committed and a new uncommitted node is added to the
Fc

2 field. FALCON thus expands its network architecture dynamically
in response to the input patterns.

3.1.2. TD-FALCON algorithm
TD-FALCON (Tan & Xiao, 2005; Tan et al., 2008; Xiao & Tan,

2007) incorporates Temporal Difference (TD) methods to estimate
and learn value functions of action-state pairs Q(s,a) that indicates
the goodness for a learning system to take a certain action a in a
given state s. Such value functions are then used in the action
selection mechanism, also known as the policy, to select an action
with the maximal payoff. The TD-FALCON model used in this study
employs a direct code access procedure (Tan, 2007) as shown in
Table 1. Given the current state s, TD-FALCON first decides be-
tween exploration and exploitation by following an action selec-
tion policy. For exploration, a random action is picked. For
exploitation, TD-FALCON searches for an optimal action through
a direct code access procedure. Upon receiving a feedback from
the environment after performing the action, a TD formula is used
to compute a new estimate of the Q value of performing the chosen
action in the current state. The new Q value is then used as the
teaching signal for TD-FALCON to learn the association of the cur-
rent state and the chosen action to the estimated Q value.Fig. 2. The FALCON architecture.
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3.2. The desire module

The desire module maintains and manages the agent’s goals. It
also handles the function of goal attainment evaluation. The
dynamics of the desire module is summarized as follows.

Goal target vectors: Assuming that there is a total of M goals in
the system, let G ¼ fwg1;wg2; . . . ;wgMg denote the set of the
goal target vectors, where wgj indicates the target state vector
of the jth goal and its element wgj

i 2 ½0;1� indicates the target
value of the attribute i. When a new agent is created, its
designer needs to specific the goal target vectors to reflect the
goals of the agents appropriately.
Goal state vector: Let xg ¼ xg

1; x
g
2; . . . ; xg

N

� �
denote the goal state

vector, where xg
i 2 ½0;1� indicates the current value of a goal-

related state attribute i. The goal state vector is typically a part
of or can be derived from the state vector S.
Goal attainment function: After sensing the environment and
extracting the goal state vector xg from the state vector S, the
goal attainment function Ag computes the match value between
the goal state vector xg and the goal target vectors wg, with
respect to the norm of each individual goal target vector. Specif-
ically, given the current goal state vector xg, the overall goal
attainment can be calculated as

Ag ¼
YM
j¼1

jxg ^wgjj
jwgjj ; ð5Þ

where the fuzzy AND operation ^ is defined by (p ^ q)i �min(pi,qi)
and the norm j � j is defined by jpj �

P
ipi for vectors p and q. The

goal attainment value can then used as the internal reward signal
(r) to the reactive module for reinforcement learning and to the
intention module for plan evaluation.

3.3. The intention module

The intention module maintains a repository of plans. Each plan
pj in the repository is represented by the quad-tuple
hwps

j ;w
pg
j ; a

p
j ; c

p
j i, where.

� wps
j represents the start state acting as a context in which the

plan p is applicable,
� wpg

j represents the target state of which the plan will lead to,
� ap

j ¼ ða1; a2; . . . ; anÞ denotes the sequence of actions to be per-
formed under the plan, and
� cp

j 2 ½0;1� denotes an estimated payoff (or confidence) of using
the plan.

The key processes in the intention module include plan learn-
ing, plan selection, plan execution and plan evaluation, described
as follows.

Plan learning: A plan is created each time a successful
sequence of actions is discovered. A buffer is used to record
the start state and the sequence of actions carried out during
the trial. At the end of a successful trial, a new plan pJ is learned,
such that the start state, the goal state and the action sequence
are recorded into the corresponding components, namely
wps

J ;w
pg
J and ap

J , of the newly created plan, respectively. The con-
fidence value cp

J of the new plan is initialized to a default value.
Input vectors: Let xs denote the current state vector and xg

indicate the current goal state vector consisting of goal-related
attributes.
Plan selection: The plan selection process follows the code
selection strategy as used in the family of fusion ART models
(Tan, 1995; Tan & Pan, 2005; Tan et al., 2007; Tan et al.,
2008), wherein the choice function values of the state and goal
fields are combined using a linear summation operator.1 Specif-
ically, given the state vector xs and the goal state vector xg, for
each plan j in the plan repository, a similarity-based choice func-
tion value (yj) is calculated by

yj ¼
jwps

j ^ xsj
jwps

j j
þ
jwpg

j ^ xg j
jwpg

j j
; ð6Þ

where jpj �
Pn

i¼1pi and (p ^ q)i = min(pi,qi).
Upon computing the choice function value of each plan, a com-
petition process selects the plan pJ with the maximum choice va-
lue as the winner. If there are more than one plans with the same
maximum value, the winner plan is the one with the highest
confidence.
Plan matching: Before the winning plan pJ can be adopted, a
matching process takes place to ensure that the selected plan
is a good match. The plan matching process computes the
match value with respect to the current system states xs by

mp
J ¼
jwps

J ^ xsj
jxsj þ

jwpg
J ^ xg j
jxg j : ð7Þ

If the match value falls below the value of the vigilance parameter
qp, a mismatch reset occurs and the system returns to the normal
sense-act-learn cycle to identify a suitable action for that particular
circumstance. Otherwise, the system adopts the selected plan and
interprets it for execution. The plan vigilance qp is thus an impor-
tant parameter which influences the likelihood for a plan to be se-
lected for execution.

Plan execution: Plan execution reads out an action at a time
from the sequence of actions ap

J encoded in the adopted plan
pJ and executes it through the action field of FALCON.

Table 1
TD-FALCON algorithm with direct code access.

1. Initialize the FALCON network
2. Sense the environment and formulate a state representation s
3. Following an action selection policy, choose between exploration and exploitation

If exploring, take a random action.
If exploiting, identify the action a with the maximal Q (s,a) value by presenting the state vector S, the action vector A=(1,. . . 1), and the reward vector R=(1,0) to
FALCON

4. Perform the action a, observe the next state s0 , and receive a reward r (if any) from the environment
5. Estimate the revised value function Q(s,a) following a Temporal Difference (TD) formula DQ(s,a) = aTDerr(1 � Q(s,a)), where TDerr = r + cmaxa0Q(s0 ,a0) � Q(s,a), of

which r is the immediate reward value, c 2 [0,1] is the discount parameter, and maxa0Qðs0; a0Þ denotes the maximum estimated value of the next state s0

6. Present the state, action, and reward (Q-value) vectors (S, A, and R) to FALCON for learning.
7. Update the current state by s = s0

8. Repeat from Step 2 until s is a terminal state

1 We had also experimented with a product operator and found no significant
differences in terms of performance.
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Plan evaluation: When an adopted plan leads to a outcome
with a positive reward value, the confidence of the plan is
increased by a small value dp. On the other hand, if the adopted
plan leads to a negative outcome, the confidence is decreased
accordingly by dp. Specifically, the confidence of plan Jðcp

J Þ is
updated by

cp
J ¼

minð1; cp
J þ dpÞ if reward ¼ 1;

maxð0; cp
J � dpÞ if reward ¼ 0;

(

where dp 2 [0,1] is the reinforcement rate for plan confidence.
When the confidence value of a plan drops below a certain
threshold, the plan is removed from the repository.

3.4. Integrating plan and reactive execution

With the presence of both plan and reactive execution capabil-
ities, a strategy is needed for combining the plan execution of the
intention module and the reactive responses of the reactive learner
module. We experiment with two strategies, namely the ‘‘follow-
through strategy’’ and the ‘‘re-evaluation strategy’’ as follows.

Follow-through strategy: Table 2 shows the system dynamics
with the follow-through strategy. After a plan is selected for
execution, the action sequence of the plan is executed from
the beginning to the end. In other words, the agent follows
the entire sequence of actions before it performs sensing again.
An agent using the follow-through strategy is called a bold
agent by Kinny and Georgeff (1991), that never reconsiders its
options during the execution of a plan. This is in contrast to a
cautious agent that reconsiders every new options in every step.
Although it incurs the minimal reasoning cost, the follow-
through strategy may not be applicable in a dynamically chang-
ing environment.
Re-evaluation strategy: To strike a balance between a bold
agent and a cautious agent, a re-evaluation strategy is devel-
oped which has a moderated degree of commitment to plans.
This strategy is similar to the follow-through strategy, except
that an extra sensing is performed half-way through the execu-
tion of the plan. In other words, the agent performs another
round of sensing after executing the first half of the actions
specified in the selected plan. This is to enable the agent to eval-
uate the applicability of the current plan by comparing the next
action (as specified by the action sequence) with the action
selected by FALCON’s direct access method. The adopted plan

continues if the next action of the plan coincides with the action
selected by the reactive module.
The overall behaviour of the agent is similar for the two plan
adoption strategies. In contrast to the traditional sense–act–
learn cycle, the agent now performs a sensing and follows
either a plan selected from the intention module or an action
selected by the direct code access procedure of the FALCON
module. The preference of following a plan over executing an
action selected by the low level FALCON is consistent with the
behaviour of the subsumption architecture (Brooks, 1999),
wherein the outputs of high level modules subsume those of
low level modules. After performing a plan or an action through
the motor channel, evaluation and learning proceed within the
module used in selecting the plan or action.

4. Case study on minefield navigation

The minefield navigation task (Fig. 3) requires an autonomous
vehicle (AV) starting at a randomly chosen position in the field to
navigate through the minefield to a randomly selected target posi-
tion in a specified time frame without hitting a mine. A trial ends
when the system reaches the target (success), hits a mine (failure),
or runs out of time.

Minefield navigation and mine avoidance is a non-trivial task.
As the configuration of the minefield is generated randomly and
changes over trials, the system needs to learn strategies that can
be carried over across experiments. In addition, the system has a
rather coarse sensory capability with a 180 degree forward view
based on five sonar sensors. For each direction i, the sonar signal
is measured by si ¼ 1

di
, where di is the distance to an obstacle (that

can be a mine or the boundary of the minefield) in the i direction.
Other input attributes of the sensory (state) vector include the
range and the bearing of the target from the current position. In
each step, the system can choose one out of the five possible ac-
tions, namely MoveLeft, MoveFrontLeft, MoveFront, MoveFront-
Right, and MoveRight.

Although the minefield navigation task seems similar to the
obstacle avoidance task in grid world, which is typically used in
evaluating AI and reinforcement learning systems, we note that
the minefield navigation domain is different from the grid world
in important aspects. Firstly, whereas the configuration of the gird
world is typically fixed within an experiment, the minefield config-
uration is generated randomly for each learning trials in the exper-
iment and thus an agent needs to learn and bring over knowledge

Table 2
Dynamics of the BDI-FALCON agent with the follow-through strategy.

1. Initialize the agent’s system state
2. Obtain the current state by sensing the environment
3. Record the current state as the start state. Initialize the action memory array to NULL
4. Execute a plan or an action.

4.1. Plan Execution: If a qualified plan is found, the start state and the action memory are cleared and the action sequence encoded by the selected plan is adopted
for execution
4.1.1. When the action sequence is completed, the agent senses the environment and computes the goal attainment function for plan evaluation
4.1.2 If end of trial and a positive outcome is reached, the confidence of the adopted plan is increased
4.1.3. If end of trial and a negative outcome is received, the confidence of the adopted plan is decreased accordingly. A plan that has a lower confidence value

than the threshold is removed from the repository
4.1.4. If not end of trial, go to step 2

4.2. Reactive Action Execution: If no plan is found, FALCON is used to select an action
4.2.1. Append the selected action into the action memory and perform the selected action
4.2.2. After performing the action, compute the goal attainment function for FALCON to perform reactive learning
4.2.3. If end of trial and a goal state is reached, perform plan learning by recording the start state, goal state, and action memory into a new plan and add it

into the repository
4.2.4. If not end of trial, obtain the current state by sensing the environment. Go back to step 4
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that is applicable in a new minefield configuration. Secondly, in the
minefield domain, the agent neither represents nor possesses the
knowledge of its position in terms of x and y coordinates. Instead,
it relies on a rather coarse sensing capability based on five sonar
sensors in five directions to determine its immediate environment.
This is a more realistic setting for real world embodiment. Thirdly,
the agent here is not provided with any knowledge or plans, but is
tasked to learn the knowledge through reinforcement signals re-
ceived. Due to the limited sensory capability, the domain, though
seemingly simple, is not easy to learn. Our prior experiments have
shown that alternative gradient-descent based reinforcement
learning systems took more than 30,000 trials to attain reasonable
performance (Tan et al., 2008).

4.1. Goal representation and matching

In contrast to traditional reinforcement learning agents which
have no explicit representation of goals, the BDI-FALCON architec-
ture provides an explicit implementation of goals and goal attain-
ment evaluation. For the minefield problem, we define two main
goals as follows.

� Goal 1: Agent reaches the target.
� Goal 2: Agent maintains its life value at the maximum.

Based on the two goals defined, the goal target vectors should
consist of two key attributes, namely distance indicating the
remaining distance towards the target and life indicating the en-
ergy level of the agent. A goal target vector can thus be defined as

wgj ¼ hD;D; L; Li;

where D and L are the normalized values of the remaining distance
and the life value, with D and L as their complements, respectively.

For goal 1, the corresponding goal target vector will have a va-
lue of 0 for the first element, indicating that the desired remaining
distance to the target is zero. The second element, as the comple-
ment of the first value, is set to 1. The rest of the elements not rel-
evant to the goal are set to 0. Similarly for goal 2, the goal target
vector assigns a value of 1 for the third element, indicating a max-
imum life value. The other elements are set to 0. The two goal tar-
get vectors are thus given by

wg1 ¼ ð0:0;1:0;0:0;0:0Þ and

wg2 ¼ ð0:0;0:0;1:0;0:0Þ:
ð8Þ

In each reaction cycle, the states of the goal attributes can be
obtained as follows. The distance to the target can be retrieved
through the sensory input signals supplied by the maze. The life
value is initialized to the user defined value and decremented by
a certain value each time the agent runs into a mine. The raw val-
ues of distance and life are then normalized to the range of [0,1]
before assigning to the goal state vector.

Fig. 3. The minefield navigation simulator.
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Fig. 4. The performance of the normal agents (NA) and the super agents (SA) in
terms of success rates, hit-mine rates and out-of-time rates.

A.-H. Tan et al. / Expert Systems with Applications 38 (2011) 8477–8487 8483



With the goal state vector and the goal target vectors, the de-
gree of goal attainment can be computed using the goal attainment
function (Eq. (5)). This function calculates the matching value of
the current goal state with the goal target vector of each goal
and returns the overall goal attainment as the product of the indi-
vidual match values of all the active goals.

Based on the above goals, we experimented with two sets of
agents with different surviving capability. The first type of normal
agents has a fragile life. Each time it runs into a mine, it gets blown
up and the life value drops immediately to zero. The second type of
super agents has a higher tolerance. Each time it hits a mine, the
life value is reduced by 50%. Thus the agent gets a second chance
after hitting a mine.

Referring to Fig. 4, we can see that there are significant perfor-
mance differences between the two classes of agents. The normal
agents produce performance at a level which is consistent with
our prior experiments with FALCON models learned using external
reinforcement signals (Tan, 2007). Our experiments thus verify
that using the desire module, the agents can generate reinforce-
ment signals internally according to how they are affected by the
environment and are capable of learning effectively based on these
internally generated reward signals.

On the other hand, the super agents require a significantly
smaller number of trials to achieve 90% success rate and achieve
a high success rate of 98% at 3000th trial. The results are intuitive
as the super agents still have a second chance of success after hit-
ting a mine. More importantly, we note that the life value of a
super agent drops to 0.5 instead of 0 upon hitting a mine and this
causes its goal attainment function to be computed differently
compared to that of a normal agent. Despite this, our experimental
results of normal and super agents show that we are able to build
various agents with different levels of capabilities and behaviour
using the same set of goal encoding scheme and goal attainment
function as defined in the desire module.

4.2. Plan learning and adoption

We set out to study how plans are learnt and used in the mine-
field navigation task. To this end, we experiment with various val-
ues of the plan vigilance parameter qp and evaluate the system in
terms of success rates and the number of plans created and
adopted. The experimental results are obtained by averaging over
five sets of 3000-trial runs with the plan vigilance value varying
from 0.5 to 1.0.

As shown in Fig. 5, the success rates of BDI-FALCON generally
drop as the plan vigilance decreases. With a plan vigilance of 0.8
and above, the system performance is roughly comparable to that
of the original TD-FALCON system. However, much poorer success
rates are observed with a plan vigilance value of 0.7 and below.

As presented in the previous section, a normal agent using TD-
FALCON (with no plans) achieves a success rate of 91.2% after 3000
trials. Referring to the detailed performance of BDI-FALCON
(Fig. 6), we note that BDI-FALCON with a plan vigilance of 1 achieve
a better success rate of 93% after 3000 trials. Although we expect
the system performance to drop with the plan vigilance value de-
creases, BDI-FALCON with a plan vigilance of 0.8, still achieves a
success rates of 91.2%, the same as that of TD-FALCON. These re-
sults are encouraging considering that prior experiments on the
same minefield domain using the PGS system (Karim & Sonenberg
et al., 2006) actually found a slight degradation in performance,
comparing with the original reactive FALCON system. Specifically,
the PGS system (Karim & Sonenberg et al., 2006) reported a
89.4% success rate using FALCON and 88.6% using their BDI-FAL-
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Fig. 5. The success rates of BDI-FALCON over 3000 trials using different plan
vigilance values.
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Fig. 6. The overall performance of BDI-FALCON at 3000 trials using different plan
vigilance values.
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Fig. 7. Number and percentage of plans learned and adopted.
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CON hybrid after 1000 trials. As another point of comparison, BDI-
FALCON achieves success rates of 90.6% and 90.2% with plan vigi-
lance values of 0.8 and 1.0, respectively, comparing with a success
rate of 90.6 by TD-FALCON, recorded after the first 1000 trials. The
results thus indicate that the fuzzy match-based plan selection and
learning algorithms as used in the current system enables rules to
be learned and used more effectively, comparing with a conven-
tional BDI plan selection and execution module.

In Fig. 7, we note that the number of plans adopted is inversely
proportional to the plan vigilance value. This is expected as the
plan vigilance parameter determines the level of similarity a se-
lected plan needs to be applicable. A higher vigilance would mean
a lower chance for the plan to be adopted. On the other hand, the
size of the plan repository is proportional to the plan vigilance
parameter value. This is also not surprising as a high vigilance va-
lue will cause more existing plans to be rejected, raising the chance
of creating new plans.

Note that it is not our objective to seek specific parameter val-
ues for producing optimal performance. Instead, we prefer that the
system is able to produce robust performance over a wide range of
parameter settings. Based on our experimental results, a plan vig-
ilance value of 0.8 appears to produce a balanced set of results as it
yields a comparable performance with the original system in terms
of success rates and at the same time, provides a reasonable level
(around 10% to 15%) of plan adoption. The vigilance level is thus

used in the subsequent experiments as reported in the next
sections.

4.3. Plan analysis

Besides the overall success rates, we are interested in how the
adopted plans have actually contributed to the outcomes. In
Fig. 8, we compare the percentages of successful and failure trials,
in which plans are used, for the follow-through and re-evaluation
strategies. The objective is to examine the quality of plans, in terms
of the outcomes following their use. As a relatively small number
of plans are invoked over the 3000 trials, the results are averaged
at 500-trial interval across ten simulation runs.

At a micro-level, within the set of those plans that lead to suc-
cessful trials, we identify how many of them directly lead to the
target and how many only contribute partially to the succeeded
path. The types of contribution are categorized into four main cat-
egories as follows.

1. Plans that directly lead to the target.
2. Plans that contribute partially to the successful path.
3. Plans that lead to hit-mine failure.
4. Plans that lead to timeout failure.

As the number of plans adopted in the two strategies are
roughly the same, we can use the percentage to compare the plan
contribution in the following experiment. Referring to Fig. 9, with-
in the set of adopted plans, the two strategies have very similar
percentage of plans that directly lead to the target but the re-eval-
uation strategy has a noticeable higher percentage for those plans
with partial contribution towards the target. Correspondingly,
among the adopted plans, the re-evaluation strategy has a lower
percentage of time-out and hit-mine failures. Therefore, the suc-
cess rates using the re-evaluation strategy are generally better
than those using the follow-through strategy. The results are not
surprising as the follow-through strategy, which is rather simplis-
tic, is unlikely to work well in a complex and dynamics environ-
ment. On the other hand, re-evaluation is considered as more
robust than follow-through, as it enables the agent to reassess
the applicability of its currently executing plan and to generate a
more accurate response to the situation, at a small cost of addi-
tional sensing.
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Fig. 8. The success and failure rates of the plans as used in the follow-through (FT)
and re-evaluation (RE) strategies.
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4.4. Plan efficiency

An important motivation of using plans is the reduction in the
frequency of periodic sensing as in the sense-act-learn cycles. In
this section, we compare the efficiency of the two strategies in
terms of the number of sensing they make. For the follow-through
strategy, there is one sensing at the beginning of the plan selection
process. The sensory inputs are used to choose the most suitable
plan for the particular situation represented by those signals. After
that, there is no more sensing during plan execution until all ac-
tions in the plan have been performed. For the re-evaluation strat-
egy, one sensing at the beginning of the plan selection process is
needed in the same way as the first strategy. In addition, another
sensing is required half-way through the plan’s execution.

Fig. 10 shows the number of sensing needed by each strategy with
a plan vigilance of 0.8. It can be observed that, for both strategies, the
percentage of reduction in sensing is approximately 10% of the total
number of sensing, with the total number of sensing at the 3000th
trial by the re-evaluation strategy (800) slightly less than that of
the follow-through strategy (850). This result is interesting as we
would expect the re-evaluation strategy (which introduces an extra
sensing per plan) to incur more number of sensing than the follow-
through strategy. However, as the quality of the solution by the re-
evaluation strategy is generally better than that of the follow-
through strategy, the numbers of steps and sensing are correspond-
ingly lower than those of the follow-through strategy.

5. Conclusion

The BDI-FALCON hybrid architecture is an integration of BDI
and TD-FALCON for their complementary strengths of desire,
intention and reinforcement learning. By adopting the same com-
puting principles in the desire, intention and reactive learning
modules, we aim to offer a consistent treatment to the design of
the integrated architecture.

The desire module maintains an explicit representation of an
agent’s goals, raising its self-awareness of the underlying reasons
of its actions. Having an explicit desire module, in addition, pro-
vides the flexibility to define and refine goals, and therefore makes
the system more dynamic and adaptive. Furthermore, with the or-
ganized set of goals and goal attainment evaluation methods, the
agent can supply itself with the reinforcement signals generated
internally. Our minefield navigation experiments have demon-
strated the plausibility of defining agents with different levels of
capability and behaviours.

The intention module equips the system with a deliberative
planning capability. It provides an alternative approach enabling
the system to function in a more hostile and dynamic environment,
wherein the purely reactive sense-act-learn cycles are not always
adequate. Following plans reduces the need for periodic sensing
and therefore improves efficiency. We have experimented with

two plan execution strategies, of which the re-evaluation strategy
seems to yield better results in terms of a higher positive contribu-
tion among the adopted plans and a better overall success rate.

Moving forward, there remain many challenges in the intention
module, especially on the aspects of plan utilization and manage-
ment. Currently, our plans are stored in a simple one-dimensional
symbolic structure. As the plan database grows, more computation
cost will be incurred in the plan selection process. Advanced data
structures, such as trees or massively parallel neural networks,
may be used to enhance the efficiency in storing and searching
plans. But before plans can be efficiently organized, the plan repre-
sentation may need to be revised. In the current implementation, a
plan corresponds to a path towards the target. Learning of exact
paths however limits the plan’s applicability to very specific situa-
tions. Acquiring abstract plan representation through techniques,
such as sequence learning (Sun & Giles, 2000), is thus an important
research direction. Generalizing a plan into a higher level of
abstraction will also make the plans more versatile in handling a
wider variety of circumstances and keep the size of the plan repos-
itory small.

For the desire module, a more sophisticated goal representation
will certainly enhance the agent’s performance in complex prob-
lem solving. Specifically, goal-subgoal hierarchy is one important
feature that is missing from our current implementation. By the
ability of decomposing a complex goal into simpler subgoals, the
latter can be achieved one at a time, laying the path towards the
achievement of the primary goal. The concept of goal decomposi-
tion will enable the desire module to be more adaptive, in the same
manner as the reactive and intention modules, by allowing goals to
be created, manipulated and evaluated dynamically.

The last and not the least, we aim to expand our experimental
study from the current minefield navigation domain into a publicly
available benchmark problem. It is our intention that, through the
common platform, we will be able to evaluate the proposed hybrid
agent architecture with other conventional BDI systems side-by-
side in a case study framework.
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