
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

10-2011 

Cooperative reinforcement learning in topology-based multi-agent Cooperative reinforcement learning in topology-based multi-agent 

systems systems 

Dan XIAO 

Ah-hwee TAN 
Singapore Management University, ahtan@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, Programming Languages and Compilers 

Commons, and the Software Engineering Commons 

Citation Citation 
XIAO, Dan and TAN, Ah-hwee. Cooperative reinforcement learning in topology-based multi-agent systems. 
(2011). Autonomous Agents and Multi-Agent Systems. 26, (1), 86-119. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5242 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Auton Agent Multi-Agent Syst (2013) 26:86–119
DOI 10.1007/s10458-011-9183-4

Cooperative reinforcement learning in topology-based
multi-agent systems

Dan Xiao · Ah-Hwee Tan

Published online: 7 October 2011
© The Author(s) 2011

Abstract Topology-based multi-agent systems (TMAS), wherein agents interact with one
another according to their spatial relationship in a network, are well suited for problems with
topological constraints. In a TMAS system, however, each agent may have a different state
space, which can be rather large. Consequently, traditional approaches to multi-agent coop-
erative learning may not be able to scale up with the complexity of the network topology.
In this paper, we propose a cooperative learning strategy, under which autonomous agents
are assembled in a binary tree formation (BTF). By constraining the interaction between
agents, we effectively unify the state space of individual agents and enable policy sharing
across agents. Our complexity analysis indicates that multi-agent systems with the BTF have
a much smaller state space and a higher level of flexibility, compared with the general form
of n-ary (n > 2) tree formation. We have applied the proposed cooperative learning strategy
to a class of reinforcement learning agents known as temporal difference-fusion architecture
for learning and cognition (TD-FALCON). Comparative experiments based on a generic net-
work routing problem, which is a typical TMAS domain, show that the TD-FALCON BTF
teams outperform alternative methods, including TD-FALCON teams in single agent and
n-ary tree formation, a Q-learning method based on the table lookup mechanism, as well as
a classical linear programming algorithm. Our study further shows that TD-FALCON BTF
can adapt and function well under various scales of network complexity and traffic volume
in TMAS domains.

Keywords Topology-based multi-agent systems · Cooperative learning ·
Reinforcement learning · Binary tree formation · Policy sharing
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1 Introduction

Traditional multi-agent systems [1,2] assume that all agents can interact freely with each other
and do not consider specific relations among the agents. In this paper, we study a class of
topology-based multi-agent systems (TMAS), wherein each individual agent interacts only
with its neighbors according to their spatial relationship. Though specialized in structure,
TMAS systems are well suited for a wide range of problems with topological constraints,
such as distributed vehicle monitoring [3,4], network management and routing [5,6], and
electricity distribution management (EDM) [7,8].

Typically, a TMAS domain involves transmitting (or distributing) a number of objects
from one or multiple point(s) (starting point) to another one or multiple point(s) (destina-
tion) through a set of networked intermediate nodes (routing nodes). A direct solution to
the TMAS system is the so called single agent strategy, which employs one autonomous
agent for each routing node. Each agent learns an optimal policy through the sensory and
reinforcement feedback from their neighbors and the environment. However, in a TMAS
system, cooperative reinforcement learning (RL) may pose many challenges. First of all, the
agents have to handle the added spatial constraints. Having topological relationship with a
varying number of neighbors, each agent has to deal with a different state space. In addition,
as the number of agents increases, the agents have to adapt to the increasing complexity of
the spatial relationship.

In this paper, we propose a binary tree formation (BTF) strategy, under which a team of
agents, organized in BTF, is deployed for each routing node. As each agent now interacts
with its neighboring agents in a fixed (binary) topology, the state space does not increase with
the complexity of the network topology in a TMAS domain. The uniform state space repre-
sentation also enables the agents to perform knowledge sharing, thus boosting the learning
and operational efficiency.

To illustrate the BTF strategy, we adopt a self-organizing neural model called tempo-
ral difference-fusion architecture for learning and cognition (TD-FALCON) [9,10] as the
RL agent. FALCON is a 3-channel fusion adaptive resonance theory (fusion ART) [11,12]
architecture that learns action and value policies using RL across the sensory, action and
feedback channels. By incorporating temporal difference (TD) methods to handle delayed
evaluative rewards, the TD-FALCON model has shown to exhibit competitive learning capa-
bilities, compared with gradient descent based RL systems [13–15]. Based on TD-FALCON,
we propose the TD-FALCON BTF system, in which a number of TD-FALCON agents are
grouped into a BTF, for cooperative learning in a TMAS domain.

In the most general case, TD-FALCON agents can be deployed at each routing node in an
n-ary (n > 2) tree formation. The TD-FALCON n-ary tree structure has the same feature of
topological symmetry as TD-FALCON BTF, but may have the disadvantages of increasing
the size of the state and action spaces significantly. In addition, it may lack the flexibility of
the BTF in handling a varying type of the network topology.

We have conducted comparative experiments to evaluate the performance of the TD-FAL-
CON BTF algorithm on a standard network routing (NR) problem, which is a typical TMAS
domain. Comparing with the TD-FALCON teams using the single agent and n-ary (n > 2)

tree formations, a Q-learning algorithm based on the table lookup mechanism, as well as a
classical linear programming algorithm, TD-FALCON BTF exhibits superior performance
in terms of the success rate, the number of hops, the number of cognitive nodes learned, and
the running time. In addition, we present a detailed study, to investigate the scalability of the
TD-FALCON BTF system under a varying level of network complexity and traffic volume.
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Fig. 1 A TMAS domain

The rest of the paper is organized as follows. Section 2 describes the TMAS problems
and the related work. Section 3 introduces the TD-FALCON-based single agent approach.
Section 4 presents the TD-FALCON BTF strategy and makes comparison with the TD-FAL-
CON n-ary tree formation. Section 5 reports the experiments and results in the NR problem.
Section 6 concludes and highlights the future work.

2 The TMAS problem domain

In this section, we first present the TMAS problem in a general form. Following that, examples
and related works of TMAS are reviewed.

2.1 Problem definition

As shown in Fig. 1, in a TMAS task, a number of objects need to be sent from the p (p > 0)
starting points S = {S1, S2, . . . , Sp} to the q (q > 0) destinations D = {D1, D2, . . . , Dq},
through a network composed of n (n > 0) one-way connected transshipment nodes T =
{T1, T2, . . . , Tn}, within a given period. Mathematically, a TMAS system can be formalized
as a weakly connected, oriented, acyclic and simple graph G = (V, A), where V denotes the
set of all nodes and A denotes the set of all arcs. The nodes in the graph G include all the
starting points, the destinations and the transshipment nodes in the TMAS system, so that
V = S ∪ D ∪ T . An arc e = (x, y) refers to a one-way transfer path from node x to node y;
y is called the head and x is called the tail of the arc e; y is named as a successor of x and
x is named as a predecessor of y. We define a node R as a routing node if deg+(R) > 1.1

A routing node needs to route and send an object among a few alternative transfer paths.

1 In a directed graph, for a node v, the number of head endpoints adjacent to v is called the indegree of the
node v, denoted deg−(v); the number of tail endpoints adjacent to v is called the outdegree of the node v,
denoted deg+(v).
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Fig. 2 A network routing domain

Capacities and transfer speeds among transshipment nodes can be different. Each trans-
shipment node is equipped with a queue of specific size to store the received objects. A traffic
jam may occur if too many objects are queued in a transshipment node. A hop is a routing
cycle in which an object is transferred between two nodes, and different transshipment nodes
can transfer objects concurrently within a hop. A TMAS task is deemed as a success if
all objects can be transferred to the destination(s) within the specified number of hops. The
TMAS system will also try to finish transferring those objects as soon as possible. If any
traffic jam occurs or time is up, the TMAS task is deemed as a f ailure.

2.2 Examples of TMAS problems

TMAS is applicable to many problem domains in real world. We review below some well-
known multi-agent problems, namely the NR problem [16,17], the EDM [7,8] system, the
multi-machine scheduling [18] and the robot soccer game [19,20]. Other problems, of which
TMAS is applicable, include air traffic control [21], distributed vehicle monitoring [3,4],
distributed medical care [22], meeting scheduling [23,24], and supply chain management
[25], as reviewed in the related work section.

A typical TMAS domain is the NR problem. The task of the NR system is to transfer a
given number of packets from a starting point to a chosen destination through a distributive
network composed of a number of routers, as shown in Fig. 2. We can see that the network
connections among those routers correspond directly to their spatial relationships.

The EDM problem is to transport and distribute a certain amount of electric power from
one or multiple power stations to a number of residences through networked transformers.
An example of the EDM problem is shown in Fig. 3. It can be noticed that the spatial rela-
tionships between an electric generator and a transformer, between two transformers, as well
as between a transformer and a residence are implemented by those high tension power lines
laid between them.

As shown in Fig. 4, the multi-machine scheduling (MMS) problem involves a number
of machines performing a task collectively to manufacture a product out of various raw
materials. The manufacturing process of each product is composed of r production steps,
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Fig. 3 An EDM system

Fig. 4 A multi-machine scheduling system

where step i must be fulfilled before step i + 1 can start for all i ∈ [1, r − 1]. In each step
Mi (1 ≤ i ≤ r), there are mi machines in service. If a product process is proceeding at the
machine Mi, j of the step i (1 ≤ i ≤ r − 1 and 1 ≤ j ≤ mi ), the system must decide which
machine the raw material should be forwarded to at the next step. As a result, the machine
Mi, j and each machine Mi+1,k (1 ≤ k ≤ mi+1) form a strong spatial relationship.

A more atypical example of the TMAS domain is the robot soccer problem. In a robot
soccer game, an episode of an attacking task from a soccer team requires the passing of the
ball from the goalkeeper to a forward, through the lines of the defenders and the midfielders,
as shown in Fig. 5. Though the player positions are not fixed, a soccer team typically plays
according to a specific formation. The passing paths of the ball thus constitute the spatial
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Fig. 5 An robot soccer game

relationships between the goalkeeper and defenders, defenders and midfielders, as well as
midfielders and forwards. As these spatial relationships are generally stable during a match,
the robot soccer game can be represented as a form of TMAS domain.

2.3 Related work

Operations research (OR) methods, in particular linear programming (LP), have been used
extensively in many TMAS domains. For example, Vannelli [26] proposes a solution using
the Interior Point Method, in which an LP projection process starts with a point known as
the initial guess inside the n-dimensional linearly constrained space and constructs ellipsoids
inside this feasible region, for solving a very large scale integrated circuit layout problem,
i.e., the global routing problem. Roling and Visser [27] propose a mixed-integer linear pro-
gramming [28], where only some of the unknown variables in LP equations are required
to be integers (see Sect. 5.3 for the details), to implement a surface traffic automation sys-
tem helping controllers to better coordinate surface traffic movements related to arrival and
departure traffic in an airport. LeBlanc et al. [29] develop a spreadsheet linear-programming
model for planning shipments of finished goods between vendors, manufacturing plants,
warehouses, and customers to minimize overall cost for Nu-kote International, which is
the largest independent manufacturer and distributor of aftermarket imaging supplies for
home and office printing devices. The graphical method [30,31] has been widely used to
solve the linear programming problem involving two variables x and y. There are usu-
ally two major steps in the graphical method: (a) Determine the solution space that defines
the feasible solution; (b) Determine the optimal solution from the feasible region. Gen-
erally, the linear programming methods have shown the best possible usage of available
productive resources and improvement in the quality of decision-making. However, the LP
methods have two prominent disadvantages: (1) They may produce non-optimal solutions,
because some variables are ignored; and (2) The graphical method of LP is restricted to two
variables.

Heuristic methods have been found effective in some TMAS cases. Szozda et al. [32] use
heuristic methods of forecasting in the planning and forecasting area of supply chain activity.
Zhu et al. [33] explore various third generation heuristic methods, such as Interchange,
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Simulated Annealing, and Tabu Search to solve the vehicle routing problem with time
windows, wherein the objective is to serve a number of customers within predefined time
windows at minimum cost, without violating the capacity and total trip time constraints for
each vehicle. Sun et al. [34] present a heuristic algorithm, based on the consideration of road
conditions and special direction roads (one-way street, ban of turn in crossing, etc.), appro-
priate for vehicle routing problem with multiple destinations. Although heuristic methods
may be effective in some ad-hoc cases, there is no way to prove the optimality of a heuristic
algorithm. It may be correct, but may not be guaranteed to produce an optimal solution [35].
Heuristic methods are typically used when there is no known method to find an optimal
solution or under the given constraints (of time, space etc.), because many of them are based
on experiences, intuitive judgments or common sense [36].

More sophisticated optimization techniques based on Markov decision processes (MDPs)
and partially observable MDPs (POMDPs) can be extended to uncertain environments. Rath-
nasabapathy and Gmytrasiewicz [37] use POMDPs as a basic framework to formalize NR as
a multi-agent decision problem. Schurr [38] presents a personal assistant meeting scheduling
domain using POMDPs, where the location of a meeting, number of attendees etc. would
be a part of the state. Han [39] proposes the localized adaptive QoS routing scheme using
POMDPs. However, those optimization techniques cannot scale well to complex TMAS
environments.

Consequently, the use of genetic algorithms has been proposed to address the shortcom-
ing of the POMDP approaches in TMAS. Munetomo et al. [40] propose an adaptive routing
algorithm using genetic operators to realize an intelligent routing which directly observes
communication latency of the routes. Lesser et al. [3] use a genetic algorithm to implement
a novel generic architecture for the distributed vehicle monitoring model. Hu and Paolo
[41] apply genetic algorithms to tackle the aircraft arrival sequencing and scheduling issue,
which is a major issue in the daily air traffic control operations. However, those generic
algorithms cannot overcome the drawback of slow convergence [42], as they do not exploit
local information [43], which is useful to the convergence.

Reinforcement learning techniques based on the single agent model have also been pro-
posed. Littman and Boyan [44] provide a self-adjusting algorithm for packet routing, in
which a RL module is embedded into each node of a switching network. Baek et al. [45]
propose an adaptive inventory control model for a supply chain consisting of one supplier
and multiple retailers with non-stationary customer demands. They use a RL technique,
namely action-reward based learning, to enable the control parameter to adaptively change
as customer demand pattern changes. Adaptive agents in the distributed vehicle monitoring
testbed set by Wan and Braspenning [46] use the theory of RL to find an optimal strategy by
performing trials. However, as Leopold et al. [47] point out, the traditional RL techniques
have two drawbacks: (1) the training process of an agent takes a lot of time, because it has to
go through many rounds of trial-and-error methods and the agent typically has to learn from
scratch; and (2) the traditional RL approaches are weak at the generalization of experiences,
and thus the agents may fail to act appropriately in unfamiliar environments. Additionally,
the state-of-the-art RL methods have been found to perform poorly in large scale complex
environments [48,49].

3 Single TD-FALCON approach

In view of the limitations of the existing RL methods, we have proposed to use a self-orga-
nizing neural model as the learning agents in our system. By inheriting the dynamics of the
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Fig. 6 The FALCON architecture

ART network, TD-FALCON is able to perform the online and incremental RL in a real-time
environment. In addition, with the cooperative strategies resulting in reduced state space and
high scalability, TD-FALCON systems have been shown to perform well in many multi-agent
environments, with a varying level of complexity [13–15,50].

A straightforward solution to the TMAS problem is to deploy one RL agent for each
routing node. This approach can be easily implemented and is commonly adopted [5,51,52].
However, as discussed earlier, since each agent has a different state space, scalability may
become an issue. For the purpose of completeness and comparison, we describe the single
agent approach based on the TD-FALCON algorithm in this section.

3.1 FALCON architecture

FALCON is an extension of self-organizing neural networks called ART networks [11,12]
for learning multi-modal pattern mappings across multiple input channels. Through a unique
code stabilizing and dynamic network expansion mechanism, ART models are capable of
learning that will do multi-dimensional mappings of input patterns in an online and incre-
mental manner. They are thus suitable mechanisms for autonomous systems to learn value
functions.

For RL, FALCON makes use of a 3-channel architecture (Fig. 6), consisting of a sensory
field Fc1

1 for representing the current state, an action field Fc2
1 for representing the available

actions, a reward field Fc3
1 for representing the values of the feedback received from the envi-

ronment, and a cognitive field Fc
2 . In response to a continual stream of incoming patterns,

FALCON learns cognitive nodes, each encodes a relation across the pattern in the three input
channels. We describe how FALCON can be used to predict and learn value functions for
RL below.
Input vectors Let S = (s1, s2, . . . , sn) denote the state vector, where si indicates the sensory
input i . Let A = (a1, a2, . . . , am) denote the action vector, where ai indicates a possible
action i . Let R = (r, r̄) denote the reward vector, where r ∈ [0, 1] and r̄ (the complement
of r) is given by r̄ = 1−r . Complement coding serves to normalize the magnitude of the input
vectors and has been found effective in ART systems in preventing the code proliferation
problem [53].
Activity vectors Let xck denote the Fck

1 activity vector for k = 1 to 3. Let yc denote the Fc
2

activity vector.
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Weight vectors Let wck
j denote the weight vector (also known as weight template or template

vector) associated with the j th node in Fc
2 for learning the input patterns in Fck

1 . Initially, all
Fc

2 nodes are uncommitted and the weight vectors contain all 1’s.
Parameters The FALCON’s dynamics is determined by choice parameters αck > 0 for k = 1
to 3; learning rate parameters βck ∈ [0, 1] for k = 1 to 3; contribution parameters γ ck ∈ [0, 1]
for k = 1 to 3, where

∑3
k=1 γ ck = 1; and vigilance parameters ρck ∈ [0, 1] for k = 1 to 3.

The dynamics of FALCON for predicting and learning value functions, based on fuzzy
ART operations [54], is described in Sects. 3.1.1 and 3.1.2 respectively.

3.1.1 Predicting

In the predicting mode, FALCON receives input values in one or more fields and predicts the
values for the remaining fields. Upon input presentation, the input fields receiving values are
initialized to their respective input vectors. Input fields not receiving values are initialized to
N, where Ni = 1 for all i . For predicting value functions, only the state and action vectors
are presented to FALCON. Therefore, xc1 = S, xc2 = A, and xc3 = N.

The predicting process of FALCON consists of three key steps, namely code activation,
code competition, and activity readout, described as follows.
Code activation A bottom-up propagation process first takes place in which the activities
(known as choice function values) of the cognitive nodes in the Fc

2 field are computed. Given
the activity vectors xc1, . . . , xc3, the choice function T c

j of each Fc
2 node j is computed as

follows:

T c
j =

3∑

k=1

γ ck
|xck ∧ wck

j |
αck + |wck

j | , (1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡ min(pi , qi ), and the norm |.| is
defined by |p| ≡ ∑

i pi , for vectors p and q.
Code competition A code competition process follows under which the Fc

2 node with the
highest choice function value is identified. The system is said to make a choice when at most
one Fc

2 node can become active after code competition. The winner is indexed at J where

T c
J = max

{
T c

j : for all Fc
2 node j

}
. (2)

When a category choice is made at node J , yc
J = 1, and yc

j = 0 for all j �= J . This indicates
a winner-take-all strategy.
Activity readout The chosen Fc

2 node J performs a readout of its weight vectors to the input
fields Fck

1 as

xck(new) = xck(old) ∧ wck
J . (3)

Finally, the reward vector R associated with the input state vector S and the action vector A
is given by R = xc3.

3.1.2 Learning

For learning value functions, the state, action, and reward vectors are presented simulta-
neously to FALCON. Therefore, xc1 = S, xc2 = A, and xc3 = R. Under the learning mode,
FALCON performs code activation and code competition (as described in Sect. 3.1.1) to
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select a winner J based on the activity vectors xc1, xc2, and xc3. To complete the learning
process, template matching and template learning are performed as described below.
Template matching Before code J can be used for learning, a template matching process
checks whether the weight templates of code J are sufficiently close to their respective input
patterns. Specifically, a resonance occurs if for each channel k, the match function mck

J of
the chosen code J meets its vigilance criterion:

mck
J =

∣
∣xck ∧ wck

J

∣
∣

|xck | ≥ ρck . (4)

When a resonance occurs, the template learning ensues, as defined below. If any of the vigi-
lance constraints (Eq. 4) is violated, mismatch reset occurs in which the value of the choice
function T c

J is reset to -1 during the input presentation. The search process then continues to
select another Fc

2 node J until a resonance is achieved.
Template learning Once a node J is selected for firing, for each channel k, the weight vector
wck

J is modified by the following learning rule:

wck(new)
J =

(
1 − βck

)
wck(old)

J + βck
(

xck ∧ wck(old)
J

)
. (5)

For an uncommitted node J , the learning rate βck is typically set to 1. For committed nodes,
βck can remain as 1 for fast learning or below 1 for slow learning in a noisy environment.
Node creation Our implementation of FALCON always maintains ONE uncommitted node
in the Fc

2 field. When the uncommitted node is selected for learning, it becomes committed
and a new uncommitted node is added to the Fc

2 field. FALCON thus expands its network
architecture dynamically in response to the input patterns.

3.2 TD-FALCON

For learning from delayed evaluative feedback, FALCON was extended to temporal differ-
ence-FALCON (TD-FALCON) [10,55], that incorporates temporal difference learning rules
for estimating future cumulative reward values. As summarized in Table 1, TD-FALCON
operates in a general sense-act-learn cycle. Given the current state s and a set of available
actions A, the FALCON network is used to predict the value of performing each available
action. The value functions are then processed by an action selection strategy (also known
as policy) to select an action. Upon receiving a feedback (if any) from the environment after
performing the action, a TD formula is used to estimate the value of the next state. The value
is then used as the teaching signal for FALCON to learn the association from the current state
and the chosen action to the estimated value. Due to the space constraints, the key steps of
the TD-FALCON algorithm are briefly described in the following sections. Please refer to
[14] for the detailed description and algorithm.

3.2.1 Value prediction

Given the current state s, the FALCON network is used to predict the value of performing
each available action a in the action set A based on the corresponding state vector S and
action vector A. Upon input presentation, the FALCON activity vectors are initialized as
xc1 = S = (s1, s2, . . . , sn) where si ∈ [0, 1] indicates the value of sensory input i , xc2 =
A = (a1, a2, . . . , an) where aI = 1 if aI corresponds to the action a and ai = 0 for i �= I ,
and xc3 = (1, 1).
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Table 1 Generic dynamics of TD-FALCON

1. Initialize the FALCON network

2. Given the current state s, for each available action a in the action set A, predict the value of the action
Q(s, a) by presenting the corresponding state and action vectors S and A to FALCON

3. Based on the value functions computed, select an action a from A following an action selection policy

4. Perform the action a, observe the next state s′, and receive a reward r (if any) from the environment

5. Estimate the value function Q(s, a) following a TD formula given by �Q(s, a) = αTDerr

6. Present the corresponding state, action, and reward (Q-value) vectors (S, A, and R) to FALCON for
learning

7. Update the current state by s= s′
8. Repeat from Step 2 until s is a terminal state

With the activity vector values, the system performs code activation and code competition
as described in Sect. 3.1.1. Upon selecting a winning Fc

2 node J , the chosen node J performs
a readout of its weight vector to the reward field Fc3

1 such that

xc3 = xc3(old) ∧ wc3
J . (6)

Note that the constraint of
∑

i xc3
i = 1 may not hold here after learning, even with comple-

mented coded input patterns. The Q-value of performing the action a in the state s is then
given by

Q(s, a) = xc3
1∑

i xc3
i

. (7)

If node J is uncommitted, xc3 = (1, 1) and thus the predicted Q-value is 0.5.

3.2.2 Action selection policy

Action selection policy refers to the strategy used to pick an action from the set of the avail-
able actions for an agent to take in a given state. It is the policy referred to in step 3 of
the TD-FALCON algorithm described in Table 1. The simplest action selection policy is to
pick the action with the highest value predicted by the TD-FALCON network. However, a
key requirement of RL agents is to explore the environment. If an agent keeps selecting the
action that it believes to be optimal, it will not be able to explore and discover better alterna-
tive actions. There is thus a fundamental tradeoff between exploitation, i.e., sticking to the
actions believed to be the best, and exploration, i.e., trying out other seemingly inferior and
less familiar actions. The ε-greedy policy, designed to achieve a balance between exploration
and exploitation, is presented below.

The ε-greedy policy selects the action with the highest value with a probability of 1 − ε,
where ε is a constant between 0 and 1, and takes a random action, with probability ε [56]. In
other words, the policy will pick the action with the highest value with a total probability of
1 − ε + ε

|A(s)| and any other action with a probability of ε
|A(s)| , where A(s) denotes the set of

the available actions in a state s and |A(s)| denotes the number of the available actions.
With a fixed ε value, the agent will always explore the environment with a fixed level

of randomness. In practice, it may be beneficial to have a higher ε value to encourage the
exploration of paths in the initial stage and a lower ε value to optimize the performance by
exploiting familiar paths in the later stage. A decaying ε-greedy policy is thus proposed to
gradually reduce the value of ε linearly over time. The decaying rate is typically inversely
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proportional to the complexity of the environment as a more complex environment with a
larger input and action space will take a longer time to explore.

3.2.3 Value function estimation

One key component of TD-FALCON is the iterative estimation of the value function Q(s, a)

using a temporal difference equation �Q(s, a) = αT Derr , where α ∈ [0, 1
2 ] is the learning

parameter and T Derr is a function of the current Q-value predicted by FALCON and the
Q-value newly computed by the TD formula. Using the Q-learning rule, the temporal error
term is computed by

T Derr = r + γ maxa′ Q(s′, a′) − Q(s, a), (8)

where r is the immediate reward value, γ ∈ [0, 1] is the discount parameter, and
maxa′ Q(s′, a′) denotes the maximum estimated value of the next state s′.

In general, there is no restriction to the value of reward r and thus the value function
Q(s, a). However, in TD-FALCON and many other pattern associators, it is commonly
assumed that all input values are bounded between 0 and 1. A simple solution to this problem
is to apply a threshold function to the Q-values such that

Q(s, a) =
⎧
⎨

⎩

1 if Q(s, a) > 1
0 if Q(s, a) < 0
Q(s, a) otherwise

(9)

The threshold function, though simple, provides a sufficiently good solution if the reward
value r itself is bounded within a range, say between 0 and 1.

Instead of using the threshold function, Q-values can be normalized by incorporating
appropriate scaling terms into the Q-learning updating equation directly. The bounded
Q-Learning rule [10] is given by

�Q(s, a) = αT Derr (1 − Q (s, a)) . (10)

By introducing the scaling term 1 − Q (s, a), the adjustment of Q-values will be self-
scaled so that they will not increase beyond 1. The learning rule thus provides a smooth
normalization of the Q-values. If the reward value r is constrained between 0 and 1, we can
guarantee that the Q-values will be bounded between 0 and 1 [10].

From Eq. 8, the Q-value will increase with the reward r . As a result, the favorable actions
can cause Q-values to converge to 1, and on the contrary, the unfavorable actions can make
Q-values converge to 0. The Q-values can provide useful information to differentiate favor-
able and unfavorable actions.

3.3 Sensory representation and reward schema

In a TMAS environment, a TD-FALCON agent installed at a routing node receives sensory
inputs from all of its successor transshipment nodes. The sensory inputs include the transfer
speed, the queue volume, and the number of queued objects of each successor, as described
below.

Transfer speed is defined as the number of objects transferred at each hop. For the purpose
of input normalization, we set a limit on the maximum transfer speed to be one object per
hop. Mathematically, the sensory input for the transfer speed is denoted as St = 1

T , where T
is the number of hops required to transfer an object.
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Queue volume is defined as the number of objects that a transshipment node can queue.
For input normalization, we use the proportion of the queue volume C with respect to the
maximum queue volume Cmax as a state input. For example, if a transshipment node has a
queue volume of 8 and the maximum queue volume across all transshipment nodes is 10, the
relevant sensory input should be 0.8. We denote the sensory input for the queue volume as
Sc = C

Cmax
.

The number of queued objects counts the number of objects that are queued at the succes-
sor. For normalization, we use the reciprocal of the number of the queued objects as a state
input. Mathematically, the sensory input is denoted as Sq = 1

1+P , where P is the number
of queued objects. For example, if there are four objects queued in a transshipment node,
the relevant sensory input is 0.2. This parameter is to be used in conjunction with the queue
volume to reflect the current status of each successor.

In summary, the sensory inputs that the routing node receives from a successor can be
denoted as

S = (St , Sc, Sq). (11)

Assume that a routing node R has m successors, known as T S0, T S1, …, T Sm−1, then
the action space of the routing node can be denoted as

A = {a0, a1, . . . , am−1}, (12)

where aI = 1 if aI corresponds to the action of transferring an object to T SI and ai = 0 for
i �= I .

In the discretized form, the size of state space received from a successor is N = |T | · |C | ·
|P|. If a routing node R has m successors, the overall size of the state space of R is

N m . (13)

A scalability problem occurs as the overall size of the state space of R increases with m
exponentially.

As mentioned earlier, a major problem of the single TD-FALCON approach to the TMAS
problem is the different state spaces required across the various routing nodes. Assume that
a routing node RG has g successors and another routing node RH has h successors. On the
condition of g �= h, the TD-FALCON agents installed in the routing nodes RG and RH

typically have a different architecture and thus knowledge sharing is impossible. As a result,
the number of cognitive nodes may increase significantly.

4 TD-FALCON binary tree formation strategy

Based on the TD-FALCON model, we propose the use of TD-FALCON teams with the binary
tree formation (TD-FALCON BTF) strategy. Instead of using a single TD-FALCON agent,
we equip a routing node with a number of TD-FALCON agents, which are assembled in a
BTF. For example, if the routing node R is to route and send objects to its eight successor
transshipment nodes (numbered from T S0 to T S7), we can build a three-level TD-FALCON
BTF to receive and process sensory inputs, as shown in Fig. 7.

The working mechanism of a n-level (n ≥ 1) TD-FALCON BTF is described in Tables 2
and 3. For the ease of description, we include the successor transshipment nodes as the leaf
nodes of the binary tree. In the BTF, the root node is in Level 0, the next level consisting
of its two child nodes is Level 1, and finally the level of the leaf nodes (or the successor
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Fig. 7 A TD-FALCON binary tree formation with eight successor transshipment nodes

Table 2 The operational cycle of a branch-node agent Agentp,q in TD-FALCON BTF

1. Agentp,q (0 < p < n − 1, 0 ≤ q < 2p) receives state inputs Sp,q = (Sp+1,2q , Sp+1,2q+1)

from its two child nodes Agentp+1,2q and Agentp+1,2q+1
2. Based on the state vector Sp,q and the action vector A p,q = {ap+1,2q , ap+1,2q+1}, where

ap+1,i (2q ≤ i ≤ 2q + 1) is the action of sending an object to the successor recommended
from Agentp+1,i , Agentp,q selects an action ap+1, j (2q ≤ j ≤ 2q + 1)

3. Agentp,q forwards the state inputs Sp+1, j from Agentp+1, j , to its parent node Agentp−1,q/2

4. Upon receiving a reward r from its parent Agentp−1,q/2

– Agentp,q performs the learning process by using the state vector S, the action ap+1, j , and the reward r

– Agentp,q transfers the reward r to Agentp+1, j

transshipment nodes) is Level n-1. We denote a TD-FALCON agent as Agentp,q , where p
(0 ≤ p ≤ n −2) is the level of the TD-FALCON agent in the binary tree, and q (0 ≤ q < 2p)
is the ordinal of the TD-FALCON agent in Level p.

We give an example based on Fig. 7 to demonstrate the TD-FALCON BTF working
mechanism as follows.

1. Agent2,0, Agent2,1, Agent2,2 and Agent2,3 select the successor T S1, T S3, T S5 and T S6

respectively.
2. Subsequently, in Level 1, Agent1,0 and Agent1,1 take the action a2,1 and a2,2 respectively,

which means that T S3 and T S5 are recommended to Agent0,0.
3. Agent0,0 takes the action a1,1, sends an object to the successor T S5 and receives a

reward r.
4. Based on the state inputs from T S3 and T S5, the action a1,1, as well as the reward r ,

Agent0,0 performs the learning process, and transfers the reward r to Agent1,1.
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Table 3 The operational cycle of the root-node agent Agent0,0 in TD-FALCON BTF

1. Agent0,0 receives state inputs S0,0 = (S1,0, S1,1) from its two child nodes Agent1,0 and Agent1,1

2. Based on the state inputs received and the action space A0,0 = {a1,0, a1,1}, where a1,i (0 ≤ i ≤ 1) is
the action of sending an object to the successor recommended from Agent1,i , Agent0,0 selects an action
a1, j (0 ≤ j ≤ 1)

3. After sending the object to T Sk (0 ≤ k < 2n−1), which is the recommended successor from Agent1, j ,
Agent0,0 receives a reward r from the environment

4. Agent0,0 transfers the reward r to Agent1, j

5. Agent0,0 performs learning by using the state vector S, the action a1, j , and the reward r

5. Based on the state inputs from T S5 and T S6, the action a2,2, as well as the reward r ,
Agent1,1 performs the learning process, and transfers the reward r to Agent2,2.

6. Based on the state inputs from T S4 and T S5, the action a3,5, as well as the reward r ,
Agent2,2 performs the learning process.

Since all TD-FALCON agents (including those deployed at different routing nodes) have
the same structures in the state and action spaces, their knowledge can be shared in the
sense that a single set of cognitive nodes can be learned and used by the various agents con-
currently. In our simulation system, all the transshipment nodes are simulated by software
running on the same computer. Thus knowledge sharing among them can be implemented
easily by using the static variable mechanism in Object Oriented programming languages.
However, in a physical NR environment, wherein the transshipment nodes are separate enti-
ties, knowledge sharing across different transshipment nodes may not be trivial and some
form of communications will be required. For example, a “data center” may need to be estab-
lished to communicate with the transshipment nodes and store the cognitive nodes that are
shared by all agents.

4.1 Reward scheme of TD-FALCON BTF

We adopt a hybrid reward scheme [1] in the TD-FALCON BTF algorithm. For the local
rewards, we use the expected transfer time (ETT) of an object as a measure, which is the
number of hops that an object is expected to be transferred out from a transshipment node.
Suppose that an object has been transferred from a routing node R to a successor T S j ,
which has a transfer speed of 1

T . T Sj has the queue volume C and now there are P objects
in queue. Then there are two possible situations: (1) if P < C , T Sj is not jammed, the
ETT of T Sj is given by ET Tj = T (P + 1); (2) if P ≥ C , the T Sj node is jammed
and the task is considered as a failure. Consequently, the ETT of T S j should be assigned
with a huge number, such as 999. The rationale of using ETT as the local reward is that
an object should be transferred to a successor transshipment node with the highest transfer
speed.

As for the global rewards, we use the overall queued objects (OQO) to indicate the total
number of objects queued in all transshipment nodes. Assume that there are altogether n
transshipment nodes, where the mth transshipment node is marked as T Sm (0 ≤ m ≤ n − 1)
and the number of objects queued in T Sm is marked as Qm . The OQO of the entire TMAS
system can then be computed as O QO = ∑n−1

m=0 Qm . Using OQO as the global reward is to
transfer an object to a successor transshipment node with the lightest load.
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Combining the local and global rewards, we are able to get a hybrid reward below for the
routing node R after it sends an object to the successor T S j :

R = 1

ETT j (1 + OQO)
. (14)

Using the hybrid reward, a routing node makes a balance between the requirement of send-
ing objects in a short time and the minimization of traffic jam in the entire TMAS domain,
by distributing objects evenly among the successors.

4.2 Complexity analysis of TD-FALCON BTF

Given a routing node R with m successors, the number of TD-FALCON agents required to
construct a binary tree for R is

S = m − 1. (15)

It is noticed that all TD-FALCON agents in a BTF have a uniform state space (N 2), action
space (two choices) and reward scheme. They are thus fully symmetrical in terms of both
architecture and learning algorithms. Adopting the policy sharing method proposed by Tan
[57], all those TD-FALCON agents in the binary tree are able to share the same set of cogni-
tive nodes. Furthermore, the same set of cognitive nodes can also be shared by TD-FALCON
agents from binary trees installed in other routing nodes, because all of them have the same
TD-FALCON network configuration.

Although there is a certain delay in making a routing decision when sensory inputs are
transmitted across different levels in a binary tree, the overall delay time is limited, because
there are only log2 m levels in a m-node binary tree. The routing selection process can be
conducted concurrently by multiple TD-FALCON agents in the same level of a binary tree,
and so there is no delay within the level. Since the learning process can be performed con-
currently among TD-FALCON agents from various levels of a binary tree, the time cost of
the learning process in a TD-FALCON BTF is in the same order as the single agent strategy,
as long as there are enough processors (CPUs) operating in parallel.

4.3 Comparison with TD-FALCON n-ary tree formation

In the most general case, it is possible to assemble a number of TD-FALCON agents as an
n-ary tree (where n > 2) for a routing node. Having a topological symmetry, an n-ary tree
can also implement the policy sharing mechanism among all TD-FALCON agents. Therefore
the estimated number of the cognitive nodes is in the same order as that of the TD-FALCON
BTF.

Lemma An n-ary tree structure (n ≤ m) installed in a routing node with m successors is
composed of m−1

n−1 TD-FALCON agents, fewer than the number of agents needed in a BTF.

Proof Assume that a routing node R has m successors. It can be known that there are logn m
levels of nodes in the tree in total. We assign U = logn m, and then the total number of nodes
in the n-ary tree is

S = 1 + n + n2 + · · · + nU−1 = nU − 1

n − 1
= m − 1

n − 1
. (16)

If we take n = 2, the total number of nodes is m − 1. This reduces to Eq. 15. 
�

123



102 Auton Agent Multi-Agent Syst (2013) 26:86–119

Agent  3,0 

R  0 , 0  tnegA

TS 8

TS 7

TS 6

TS 5

TS 4

TS 3

TS 2

TS 1

TS 0

SuccessorsLevel 3Level 2

Agent  3,1 

Agent  3,2 

Agent  3,3 

Agent  2,0 

Agent  2,1 

Agent  1,0 

Level 1Level 0

Fig. 8 A TD-FALCON binary tree formation for a routing node with nine successors

Equation 16 highlights a trend that with the growth of n, the number of TD-FAL-
CON nodes in an n-ary tree is decreased in an inversely proportional manner, mean-
ing that an n-ary tree TD-FALCON structure has the cost of O

( 1
n

)
in the number of

nodes.
In addition to having fewer TD-FALCON agents in construction, an n-ary tree structure

shows another advantage of having the delay time (logn(m)) in a routing node’s performing
process less than a BTF (log2(m)). Nevertheless, such an advantage can be minimized if
there are enough CPUs/cores operating in parallel.

An n-ary tree structure has two disadvantages. Firstly, if the number (m) of successors of a
routing node is not in the power of n, it is difficult to build a symmetrical n-ary tree structure.
For example, if n = 4 and m = 9, establishing a standard 4-ary tree with topological sym-
metry is a tough task. In that case, we have to maintain the symmetry of the tree structure by
adding some special “dummy” TD-FALCON agents, which have all the inputs and outputs
as 0. However, using the fabricated values generated from those “dummy” TD-FALCON
agents would degrade the performance of such a system, because those “dummy” values
constitute to “noises” in the sensory inputs and may interfere with other critical input values.
On the contrary, a binary tree can keep the topological symmetry in a routing node with any
number of successors. For example, we can still build a binary tree for a routing node with
nine successors, as shown in Fig. 8.

The second disadvantage of an n-ary tree is the significant increment in state and action
spaces. The number of actions that a TD-FALCON agent can select increases from 2 in a
binary tree to n in an n-ary tree, so the increment in the action space is linear. According to
Eq. 13, the state space exponentially increases from N 2 in a binary tree to N n in an n-ary
tree.

Considering a routing node with m successors, the time and space complexities of TD-
FALCON teams in single agent, BTF, and n-ary tree formation are summarized in Table 4.
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Table 4 Comparing the time and space complexities of TD-FALCON teams in single agent, binary tree
formation, and n-ary tree formation

Complexity Binary tree n-ary tree Single TD-FALCON

Number of cognitive nodes O(D2) O(Dn) O(Dm )

Delay time O(log2(m)) O(logn(m)) O(1)

Size of state space O(D2) O(Dn) O(Dm )

Size of action space O(1) O(n) O(m)

Fig. 9 Samples of network layout used in the experiments

D represents the dimension of the state vector received from one successor. m is the average
number of successor transshipment nodes of a routing node.

5 Experimental results

In this section, we perform a series of experiments in a generic NR task to compare the perfor-
mance of TD-FALCON teams in various configurations, with the performance of a Q-learn-
ing method based on the table lookup mechanism and that of a classical linear programming
(LP) method. We also report experiments, where the scalability of the TD-FALCON BTF
algorithm is tested in various network and traffic conditions.

5.1 Comparing TD-FALCON teams in various formations

In this group of experiments, we compare the performance of TD-FALCON teams in the
single agent, binary tree, trinary tree, and 5-ary tree formations, in transferring 50 packets
over a network of 20 transshipment nodes. The transfer speed of the transshipment nodes
varies among 0.2, 0.333 and 0.5 packets per hop. We experiment with various configurations
of the 20 transshipment nodes, of which some sample configurations are shown in Fig. 9.

All TD-FALCON agents employ the bounded Q-learning (Eq. 10) and the following
parameter values: learning rate α = 0.5, discount factor γ = 0.95, and initial Q-values are
set to 0. For action selection, the decaying ε-greedy policy is used with ε initialized to 0.6
and decaying linearly at a rate of 0.0004.

Figure 10 shows the success rate of TD-FALCON teams in the single agent, binary tree,
trinary tree, and 5-ary tree formations, averaged at 100-trial intervals across 2,000 trials, in
the NR domain. It can be seen that all the teams can eventually achieve 100% success rate.
However, among all of them, the team in the BTF has the highest convergence rate, due to
the policy sharing mechanism used by the TD-FALCON BTF algorithm. The BTF team can
achieve more than 90% success rate after 1,300 trials. On the other hand, the single TD-FAL-
CON team has the lowest convergence rate, not achieving more than 90% success rate until
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Fig. 10 Success rate of various TD-FALCON-based strategies

about 1,800 trials. Since the agents cannot share cognitive nodes and some of them may need
to handle a large state space, the slow convergence of the single agent team is unavoidable.

Figure 11 shows the number of hops incurred by TD-FALCON teams in the single agent,
binary tree, trinary tree, and 5-ary tree formations, averaged at 100-trial intervals across 2,000
trials on the NR task. The single TD-FALCON team notably needs more hops than those
tree structure teams to transfer the 50 packets, because any effective method of transferring
objects cannot be shared across the routing nodes in the network environment in time. In
contrast, a routing node equipped with a TD-FALCON binary tree group is able to transfer
an object to the right successor transshipment node within a short time, due to the faster
learning of the optimal path by the TD-FALCON BTF team. Therefore, the TD-FALCON
BTF team and the trinary tree TD-FALCON team have the least number of hops. After 2,000
trials, both of the teams take, on average, about 53 hops to fulfill a task, in contrast to 54.7
hops from the single TD-FALCON team.

Figure 12 shows the number of cognitive nodes created by TD-FALCON teams in the
single agent, binary tree, trinary tree, and 5-ary tree formations, averaged at 100-trial inter-
vals across 2,000 trials on the NR task. We can notice that the number of cognitive nodes
increases with n, the number of subnodes of a TD-FALCON n-ary tree. For example, the
TD-FALCON 5-ary tree team on the average produces about 476 cognitive nodes after 2,000
trials, nearly 10 times (one order of magnitude) more than 48.3 cognitive nodes generated
from the TD-FALCON BTF team. The reason behind the phenomenon is that a TD-FALCON
n-ary tree may face an exponentially increasing state space, as indicated in Table 4. It can
also be noticed that the single TD-FALCON team generates much more cognitive nodes than
the TD-FALCON tree teams, because some routing nodes face a large number of successors.
After 2,000 trials, the single TD-FALCON team produces about 6,611 cognitive nodes on
average, over 130 times (two orders of magnitude) more than the TD-FALCON BTF team.

Figure 13 demonstrates the running time (s) in completing a routing task per trial of
TD-FALCON teams in the single agent and various tree formations. We compute the aver-
age running time per trial after every 100 trials over the entire simulation of 2000 trials. The

123



Auton Agent Multi-Agent Syst (2013) 26:86–119 105

N
um

be
r 

of
 H

op
s

50

51

52

53

54

55

56

57

58

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Trials

binary tree TDFALCON 3-ary tree TDFALCON

5-ary tree TDFALCON single TDFALCON
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Fig. 12 Number of cognitive nodes created by various TD-FALCON based strategies

running time is based on the platform of Pentium(R) 4 CPU 2.80 GHz with 1.99 GB of RAM.
We can notice an obvious trend of all tree structure teams that the running time increases with
the growth of cognitive nodes, as the system has to spend more time in searching through the
full set of cognitive nodes to select an action. The other noticeable trend is that a TD-FALCON
n-ary tree system runs slower with the growth of n, because of the exponentially increasing
state space. For example, after 2,000 trials, the TD-FALCON 5-ary tree team spends about
7.59 s in running one trial, almost twelve times (one order of magnitude) slower than the
TD-FALCON BTF team, which uses only 0.612 s for one trial. It can be noticed that the
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Fig. 13 Running time (s) of various TD-FALCON-based strategies

single TD-FALCON team spends tremendously more time than the TD-FALCON teams
with tree formations. The reason is that the single agent team has much more cognitive nodes
to go through in each cycle of performing and learning. After 2,000 trials, the single TD-
FALCON team needs to take more than 98 s to run one trial, about 160 times (two orders of
magnitude) slower than the TD-FALCON BTF team.

5.2 Comparing TD-FALCON with Q-learning

In this group of experiments, we compare the performance between the TD-FALCON method
and the original Q-Learning method based on the table lookup mechanism [58,59]. For
efficiency consideration, our implementation of Q-learning creates the entries in the table
dynamically one at a time, only when a new Q-tuple is to be learned. The Q-value table
thus expands dynamically during the learning process. Both TD-FALCON and Q-learning
systems use the BTF, with the configuration of 50 packets and 20 transshipment nodes.

Figure 14 shows the success rate of the TD-FALCON team and the Q-learning team,
averaged at 100-trial intervals across 2,000 trials, in the NR domain. It can be seen that both
of the teams can eventually achieve 100% success rate. However, the TD-FALCON team
can significantly outperform the Q-learning team from the very beginning and over most
part of the learning period. For example, after 500 trials, the TD-FALCON team can gain
33% success rate, but the Q-learning team can only get 14% success rate, and after 1,000
trials, the TD-FALCON and the Q-learning teams can obtain 58.0% and 46.6% success rate
respectively. In addition, it is also noticeable that the TD-FALCON team converges faster
than the Q-learning team. After about 1,300 trials, the TD-FALCON team can gain more than
90% success rate. In contrast, the Q-learning team fails to achieve the same level of success
rate until 1,500 trials. The poorer performance and the slower convergence of the Q-learning
team are due to the mechanism that it has to learn a large lookup table, causing a scalability
problem.
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Fig. 14 Success rate of the TD-FALCON and the Q-learning teams

Figure 15 shows the number of hops taken by the TD-FALCON team and the Q-learning
team, averaged at 100-trial intervals across 2,000 trials. It can be noticed that at the initial
stages, the Q-learning team prominently needs more hops to fulfil a NR task. For example,
after 200 trials, the Q-learning team takes 75.2 hops on average to complete a NR task,
significantly outnumbering the 55.9 hops incurred by the TD-FALCON team. Subsequently,
the performance figures of the two teams are approaching, for the number of hops used by
the Q-learning team decreases more rapidly over time. However, even at the final stages, the
Q-learning team still requires more hops than the TD-FALCON team. After 2,000 trials, the
average numbers of hops used by the Q-learning and the TD-FALCON teams are 57.7 and
52.9 respectively. This trend highlights the slower convergence of the Q-learning algorithm,
because it has a larger table to set up and maintain.

Figure 16 highlights the number of cognitive nodes and Q-tuples created by the TD-FAL-
CON and the Q-learning teams respectively, averaged at 100-trial intervals across 2,000 trials
on the NR task. From their performance curves, it can be noticed that both of the teams have
their number of cognitive nodes or Q-tuples increased rapidly at the very beginning. This
trend should be attributed to more exploration activities during the early stages of the NR task.
However, after around 900 trials, the curves of both teams go flat. In addition, we can witness
that as Q-learning creates one Q-tuple for each distinct state-action pair, the Q-learning team
produces significantly more Q-tuples. At the end of 2,000 trials, the Q-learning team creates
376.8 Q-tuples, nearly 8 times more than the cognitive nodes created by the TD-FALCON
team.

Figure 17 indicates the running time (s) per trial of the TD-FALCON and the Q-learning
teams, averaged at 100-trial intervals across 2,000 trials. The running time is obtained based
on the platform of Pentium(R) 4 CPU 2.80 GHz with 1.99 GB of RAM. It can be witnessed
that both teams incur a longer running time, due to the increasing number of cognitive nodes
or Q-tuples to go through in the performing and learning processes. However, the Q-learning
team obviously requires much more time in running the trials than the TD-FALCON team,
due to the long search time required in a much larger Q-value table. At the end of 2,000 trials,
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Fig. 15 Number of hops taken by the TD-FALCON and the Q-learning teams
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Fig. 16 Number of cognitive nodes and Q-tuples created by the TD-FALCON and the Q-learning teams
respectively

the Q-learning team on average spends 92.4 s in running a trial, about 158 times (two orders
of magnitude) slower than the TD-FALCON team.

5.3 Comparative experiments between TD-FALCON BTF and linear programming

In this group of the experiments, we compare the performance between the TD-FALCON
BTF team and a linear programming (LP) method, under the same configuration of 50 packets
and 20 transshipment nodes.
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Fig. 17 Running time (s) of the TD-FALCON and the Q-learning teams

In the LP method, we install each routing node in the NR domain with a revised simplex
algorithm [60,61], in which the matrix form in the formulation of Eqs. 17 and 18 is used at
each iteration of the simplex algorithm.

minimize cT x (17)

subject to Ax ≤ b, x ≥ 0 (18)

From the perspective of a routing node, we define the NR problem as a linear program as
follows. Assume that a routing node R needs to dispatch n (n > 0) packets to m (m > 0) suc-
cessors, marked as T S1, T S2, . . . , T Sm , and the successor T Sp (1 ≤ p ≤ m) has the queue
volume C p , the transfer speed Tp and the number of queued packets Q p . Assume that the
routing node R will dispatch x1, x2, . . . , xm packets to the successor T S1, T S2, . . . , T Sm

respectively, and there is
∑m

p=1 x p = n. We define expected clearance time (ECT) of a
successor T Sp (1 ≤ p ≤ m) as

ECTp = x p + Q p

Tp
= x p

Tp
+ Q p

Tp
. (19)

Comparing with the definition of ETT in Sect. 4.1, the ECT is actually the ETT of multiple
(x p) objects in the transshipment node T Sp .

The average ECT (AECT) of the m successors of the routing node R is defined as

AECT =
∑m

p=1 ECTp

m
=

m∑

p=1

x p

Tpm
+

m∑

p=1

Q p

Tpm
. (20)

In the standard form of a linear programming problem, the NR problem of the routing node
R can be described as
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Fig. 18 Success rates of TD-FALCON BTF and LP teams

minimize
m∑

p=1

x p

Tpm
+

m∑

p=1

Q p

Tpm
(21)

subject to x p + Q p ≤ C p (1 ≤ p ≤ m) (22)

x p ≥ 0 (1 ≤ p ≤ m). (23)

Taking

c =

⎡

⎢
⎢
⎢
⎣

1
T1m

1
T2m
· · ·

1
Tm m

⎤

⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎣

x1

x2

· · ·
xm

⎤

⎥
⎥
⎦ , A =

⎡

⎢
⎢
⎣

1
1

· · ·
1

⎤

⎥
⎥
⎦ , and b =

⎡

⎢
⎢
⎣

C1 − Q1

C2 − Q2

· · ·
Cm − Qm

⎤

⎥
⎥
⎦

we can get the matrix form of the linear programming problem as Eqs. 17 and 18.
Note that it is hard to implement the global reward mechanism for the LP team, because

each LP agent is installed locally on a routing node. As the functionality of the LP agent can
only cover the successors of the routing node, it does not have the capacity to cope with the
global information within its own standard input representation. If we were to use a global LP
agent to collect and process all data from the entire system, this configuration would become
a complex single agent problem instead of a multi-agent system.

Figure 18 shows the success rate of the TD-FALCON BTF and the LP teams, averaged at
100-trial intervals across 2,000 trials, in the NR system. It is obvious that the TD-FALCON
BTF team can learn much faster than the LP team. Initially, the LP team has around 70%
success rate, while the TD-FALCON BTF team has only 12% success rate. However, after
2,000 trials, the TD-FALCON BTF team can achieve 100% success rate, while the LP team
does not show further improvement. The reason is that the LP algorithm does not have an
effective learning mechanism, as the TD-FALCON BTF team can provide.

Figure 19 shows the number of hops taken by the TD-FALCON BTF and the LP teams,
averaged at 100-trial intervals across 2,000 trials, in the NR domain. It is witnessed that
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Fig. 19 Number of hops taken by the TD-FALCON BTF and the LP teams

the number of hops required by the TD-FALCON BTF team decreases gradually over the
trials, but the curve of the LP team is basically flat with some fluctuations. This means that
the TD-FALCON BTF team is able to improve the efficiency over time, but the LP team
can hardly perform any learning at all. Compared with the LP team, the TD-FALCON BTF
team takes fewer hops to fulfil the task. After 2,000 trials, the average number of hops of the
TD-FALCON BTF team is 52.9, in contrast to 60.8 hops of the LP team.

Figure 20 shows the running time (s) per trial of the TD-FALCON and the LP teams, aver-
aged at 100-trial intervals across 2,000 trials. The reported results are based on the platform of
Pentium(R) 4 CPU 2.80 GHz with 1.99 GB of RAM. We can see that the TD-FALCON BTF
team has nearly linear increment in running time, whereas the LP team spends significantly
less time in running and its performance curve is basically flat with some fluctuations. The
main reason behind the trend is that the LP team does not learn whereas TD-FALCON has to
incur additional time in checking through the cognitive nodes during the learning process. At
the end of 2,000 trials, the TD-FALCON BTF team on average spends 0.61188 s in running
a trial, whereas the LP team spends only 0.18813 s.

5.4 Performance of TD-FALCON BTF with a varying number of packets

In this group of the experiments, we compare the performance of the TD-FALCON BTF
team in a network composed of 20 transshipment nodes, with 50, 80 and 100 packets to
transfer respectively. The purpose of this group of experiments is to test the scalability of a
TD-FALCON BTF team in transferring an increasing number of packets.

In Fig. 21, we compare the success rate of a TD-FALCON BTF team in transferring 50,
80 and 100 packets, averaged at 100-trial intervals across 2,000 trials. It is witnessed that
the TD-FALCON BTF team can eventually converge, regardless of the number of packets
being transferred. However, it is noticed that the convergence becomes a bit slower with the
increase in the number of packets, because the system may have more cases to learn with
the increase in the number of packets. The TD-FALCON BTF team achieves more than 90%
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Fig. 20 Running time (s) of the TD-FALCON BTF and the LP teams
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Fig. 21 Success rate of the TD-FALCON BTF team under various problem configurations

success rate within 1,300, 1,400, and 1,500 trials, for the tasks of transferring 50, 80, and
100 packets respectively.

In Fig. 22, we compare the number of hops taken by the TD-FALCON BTF team in
transferring 50, 80 and 100 packets, averaged at 100-trial intervals across 2,000 trials. It is
obvious that the number of hops increases proportionally with the number of the packets to
be transferred. After 2,000 trials, the average numbers of hops required to transfer 50, 80,
and 100 packets are 52.9, 82.5, and 102.6 respectively. It can also be noticed that the number
of hops decreases over trials, due to the effect of learning, though at a slow pace.
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Fig. 23 Number of cognitive nodes created by the TD-FALCON BTF team under various problem configu-
rations

In Fig. 23, we compare the number of cognitive nodes created by the TD-FALCON BTF
team in transferring 50, 80 and 100 packets, averaged at 100-trial intervals across 2,000 trials.
It is noticed that the number of cognitive nodes increases when more packets are transferred,
due to the increasing number of cases to be learned, but the increase is limited. After 2,000
trials, the numbers of cognitive nodes developed for transferring 50, 80 and 100 packets are
on average 48.3, 54.3 and 57.5 respectively.
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Fig. 24 Running time of the TD-FALCON BTF team under various problem configurations

In Fig. 24, we compare the running time (s) of the TD-FALCON BTF team in transfer-
ring 50, 80 and 100 packets, across 2,000 trials. It is obvious that the TD-FALCON BTF
system has to run for a longer time as the number of packets to be transferred increases,
due to the corresponding increase in the number of cognitive nodes. After 2,000 trials, the
running times per trial of transferring 50, 80 and 100 packets are 0.612s, 1.050s and 1.332s
respectively.

5.5 Performance of TD-FALCON BTF with a varying number of transshipment nodes

In this section, we compare the performance of a TD-FALCON BTF team in transferring 50
packets over NR networks composed of 20, 30 and 50 transshipment nodes. The purpose of
the experiments is to test the scalability of the TD-FALCON BTF algorithm in response to
an increasing number of transshipment nodes in the routing network.

Referring again to Fig. 21, we compare the success rate of the TD-FALCON BTF team
in transferring 50 packets over NR networks with 20, 30 and 50 transshipment nodes respec-
tively. It is noticed that the TD-FALCON BTF system can eventually achieve high success
rate in NR networks with a varying number of transshipment nodes. This indicates that the
TD-FALCON BTF algorithm can adapt to complex network environments, because of its
capacity to convert multiple input sources into a uniform two-source state input. After about
1,400 trials, the TD-FALCON BTF team can achieve more than 90% success rate in various
network environments.

Also in Fig. 22, we compare the number of hops taken by the TD-FALCON BTF team in
transferring 50 packets over NR networks with 20, 30 and 50 transshipment nodes respec-
tively. It is evident that the number of hops increases with the growth of the number of the
transshipment nodes in the NR networks. The reason behind the trend is that there are more
chances for an object to detour with the increase in the complexity of the network topology.
After 2,000 trials, the numbers of hops in NR networks with 20, 30 and 50 transshipment
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nodes are about 52.9, 54.1 and 57.1 respectively. We can notice that the number of hops is
declined gradually through trials in each NR network, due to the learning effect.

Again in Fig. 23, we compare the number of cognitive nodes created by the TD-FALCON
BTF team in transferring 50 packets over NR networks with 20, 30 and 50 transshipment
nodes respectively. It is noticed that cognitive nodes increase with the growth of trans-
shipment nodes, due to the increasing number of possible paths for an object to go, but
the increment is limited. After 2,000 trials, the numbers of cognitive nodes developed for
NR networks with 20, 30 and 50 transshipment nodes are on average 48.3, 58.0 and 66.4
respectively.

Also in Fig. 24, we compare the running time (s) of the TD-FALCON BTF team in trans-
ferring 50 packets over NR networks with 20, 30 and 50 transshipment nodes respectively.
The running times of the TD-FALCON BTF team under 20, 30 and 50 transshipment nodes
are 0.612s, 1.177s and 2.306s per trial respectively after 2,000 trials. It is noticed that a
TD-FALCON BTF system spends less time in running in a NR network structure with fewer
transshipment nodes. This is not surprising as there are fewer situations to deal with if the
network structure is simpler.

6 Conclusion

In this paper, we have proposed the TD-FALCON in binary tree formation (TD-FALCON
BTF) strategy by grouping a number of TD-FALCON agents in a BTF. Making use of the
topological symmetry of individual nodes in a binary tree, we enable all TD-FALCON agents
across the entire system to share the same set of cognitive nodes, increasing the convergence
rate of all agents. The BTF can effectively convert a multi-source state inputs to a two-source
problem, guaranteeing a constant number of state input vectors. Complexity analysis indi-
cates that the TD-FALCON BTF can produce much smaller state and action spaces than
other n-ary (n > 2) tree structures as well as the single TD-FALCON strategy. Moreover,
the TD-FALCON BTF algorithm shows a high level flexibility in face of a varying number
of input sources.

Comparative experiments demonstrate that the TD-FALCON BTF team can produce bet-
ter performance than the Q-learning team based on the table lookup mechanism, the single
TD-FALCON team and other n-ary (n > 2) teams, in terms of success rate, number of
hops, number of cognitive nodes and running time. The experimental results show that the
TD-FALCON BTF team outperforms the given approach using linear programming in terms
of success rate and number of hops, but with a longer running time. From experiments, we
can find that a TD-FALCON BTF team is able to keep a high level performance under various
scales of NR environments.

It is interesting to note that the use of BTF is not restricted to the TD-FALCON net-
work. Other RL methods, such as those based on gradient descent neural networks, can also
adopt the knowledge sharing mechanism, as long as they have a uniform internal knowledge
structure across all agents in a multi-agent system. For instance, if the multi-layer network
equipped in each agent has the same number of inputs and outputs, the same number of layers
as well as the same number of nodes in each layer, the networks installed are fully symmet-
rical, and thus the knowledge sharing mechanism can also be implemented. As a result, the
BTF algorithms can be used in any multi-agent system where each agent is equipped with
an identical RL network.

Nevertheless, we still prefer TD-FALCON to other RL networks, in combination with the
BTF algorithm. Specifically, the learning process of a TD-FALCON agent can be accelerated
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significantly by using the knowledge sharing mechanism of the BTF algorithm, as the
TD-FALCON model can perform online and incremental learning in a real-time environ-
ment. In contrast, in gradient descent based RL methods, the learning of new patterns may
erode the previously learned knowledge. Additionally, the iterative learning which is required
by the gradient descent algorithms may not be suitable in a BTF architecture because each
agent may encounter very different scenarios across the episodes.

This paper has focused on the use of TD-FALCON BTF to the TMAS domains. If
TD-FALCON BTF were to be used in more general multi-agent domains, it could still
potentially help to improve the system performance through its policy sharing mechanism as
well as the flexibility in dealing with multi-source state inputs. The main difficulty of using
the TD-FALCON BTF algorithm in a more general multi-agent domain however is that the
topological relationships among agents may be changing all the time. Hence we may not be
able to set up a stable tree structure formation for each agent. To resolve this problem, we
will have to consider the feasibility of using a dynamic TD-FALCON BTF structure for each
moving agent.

In addition, our research is still restricted to homogeneous domains, where all agents
are symmetrical in terms of functionalities and roles. However, there is a wider range of
heterogeneous multi-agent domains. For example, a soccer game can also be regarded as a
heterogeneous game, where the goal keeper and other players have different functionalities
and roles. A network system can also be a heterogeneous environment, because routers,
bridges and switches have quite different functionalities: whereas bridges and switches are
used for transferring data packets, routers not only transfer data, but also sort the data frames
and control the data flow. In a heterogeneous domain, we may still use the TD-FALCON
BTF algorithm to unify and reduce the state space. However, how to apply the policy sharing
mechanism across agents with different roles will be a great challenge.
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