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a b s t r a c t

Sparse data is known to pose challenges to cluster analysis, as the similarity between data tends to
be ill-posed in the high-dimensional Hilbert space. Solutions in the literature typically extend either
k-means or spectral clustering with additional steps on representation learning and/or feature weight-
ing. However, adding these usually introduces new parameters and increases computational cost, thus
inevitably lowering the robustness of these algorithms when handling massive ill-represented data.
To alleviate these issues, this paper presents a class of self-organizing neural networks, called the
salience-aware adaptive resonance theory (SA-ART) model. SA-ART extends Fuzzy ART with measures
for cluster-wise salient feature modeling. Specifically, two strategies, i.e. cluster space matching and
salience feature weighting, are incorporated to alleviate the side-effect of noisy features incurred by
high dimensionality. Additionally, cluster weights are bounded by the statistical means and minimums
of the samples therein, making the learning rate also self-adaptable. Notably, SA-ART allows clusters
to have their own sets of self-adaptable parameters. It has the same time complexity of Fuzzy
ART and does not introduce additional hyperparameters that profile cluster properties. Comparative
experiments have been conducted on the ImageNet and BlogCatalog datasets, which are large-scale
and include sparsely-represented data. The results show that, SA-ART achieves 51.8% and 18.2%
improvement over Fuzzy ART, respectively. While both have a similar time cost, SA-ART converges
faster and can reach a better local minimum. In addition, SA-ART consistently outperforms six other
state-of-the-art algorithms in terms of precision and F1 score. More importantly, it is much faster and
exhibits stronger robustness to large and complex data.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering high-dimensional sparse data is commonly required
in real-world big data applications, especially for web data,
such as web photo organization and retrieval based on user-
contributed tags (Meng & Tan, 2012; Meng et al., 2015), social
community detection using user relational networks (Meng &
Tan, 2014), and personalized e-commerce product recommenda-
tion using users’ online behavior and posts (Feng & Qian, 2014;
West, Wesley-Smith, & Bergstrom, 2016). In such studies, a data
object may be represented by a vector of 10k entries of which
only 100 entries have non-zero values. For example, in person-
alized product recommendation, the length of a user’s feature
vector is equal to the number of products in total, while only
the user-purchased entries are non-zero. It poses a great chal-
lenge to clustering algorithms since the ‘‘true’’ similarity is easily

∗ Corresponding author.
E-mail address: lmeng@nus.edu.sg (L. Meng).

buried in the massive number of mismatched noisy features,
resulting in a downgraded clustering performance (Muja & Lowe,
2014; Tomasev, Radovanovic, Mladenic, & Ivanovic, 2014). Fig. 1
presents a real-world example on sparse data clustering, and
this motivates the development of novel clustering algorithms
that can accurately identify the salient features of different data
clusters.

To handle the aforementioned problems in clustering high-
dimensional sparse data, existing methods typically follow three
main directions, including subspace clustering, soft subspace clus-
tering, and co-clustering:

• Subspace clustering is also named ‘‘hard weighting’’ (Jing,
Ng, & Huang, 2007). It identifies a set of subspaces that have
much lower dimensionality but better distinguishing power
for identifying data clusters (Kriegel, Kröger, & Zimek, 2009).
Subsequently, a traditional clustering algorithm is used to
partition data on the new representations. Such subspaces
may be obtained from the original feature space (Agrawal,
Gehrke, Gunopulos, & Raghavan, 2005) or some new spaces

https://doi.org/10.1016/j.neunet.2019.09.014
0893-6080/© 2019 Elsevier Ltd. All rights reserved.
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Fig. 1. Illustration for the challenges in sparse data clustering using data visualization of two classes from the ImageNet dataset. (a) Feature distribution of the first
50 out of 1000 features (for best view). 2D projection of 1000 features of the same data using (b) PCA and (c) t-SNE. It is difficult to find a good partitioning for
the two classes (in red dot and blue triangle) based on pure statistical distributions in the geometrical feature space due to a significant overlap in non-zero entries
(the other 950 dimensions show a similar or even worse situation). Traditional feature dimension reduction techniques, such as a linear mapping with preserved
reconstruction energy (PCA) and a non-linear mapping with preserved local neighboring structures (t-SNE), may not work well. However, the difference in bursting
features makes it possible to distinguish the two classes by exploring the associations between their representative features and distributions. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

derived by estimating data associations in the original space
using local neighboring structures (Li, Liu, Tang, & Lu, 2015),
linear correlations (Elhamifar & Vidal, 2013; Vidal & Favaro,
2014), feature-wise distribution densities (Zhu, Ting, & Car-
man, 2018), and deep representation learning (Zhou, Hou, &
Feng, 2018).

• Soft subspace clustering refers to feature weighting meth-
ods (Jing et al., 2007). It learns to weight the features in
the original space for individual clusters. As a result, more
weights will be given to the salient features of a cluster,
when computing the similarity between a data object and
this cluster. This approach typically incorporates feature
weighting strategies into traditional clustering algorithms,
such as k-means (Chen, Ye, Xu, & Huang, 2012; De Amorim &
Mirkin, 2012; Huang, Ng, Rong, & Li, 2005; Jing et al., 2007),
Fuzzy c-means (Zhou, Chen, Chen, Zhang, & Li, 2016), and
DBSCAN (Bohm, Railing, Kriegel, & Kroger, 2004).

• Co-clustering is also called ‘‘biclustering’’ (Xu & Wunsch II,
2011). It was first introduced to simultaneously cluster the
rows and columns of a matrix. Later, it was used in data min-
ing scenarios for clustering both data and features (Mirkin,
2013). This makes the data in the same cluster share a
set of highly-correlated features. Existing algorithms appli-
cable to sparse data typically extend traditional clustering
algorithms, such as self-organizing neural networks (Xu &
Wunsch II, 2011) and generative mixture models (Salah,
Rogovschi, & Nadif, 2016).

Although the aforementioned clustering algorithms have
shown improved performance for clustering high-dimensional
sparse data, their performance may be downgraded in terms of
speed and robustness, when applied to large-scale data. This is
mainly due to the increased data volume and complexity. The
large volume of data significantly increases their computational
cost on the selection of salient features, i.e. subspaces. While the
increased complexity of data, such as the number and densities of
clusters, may result in the difficulties in hyperparameter settings
or even failures in the assumptions for data distributions in the
original feature space. This raises the need for novel clustering
algorithms that scale well for big data and are able to self-adapt
their hyperparameters to increase model robustness.

To address these issues, this paper presents a salience-aware
adaptive resonance theory (SA-ART) for clustering large-scale
sparse data. It extends from Fuzzy ART (Carpenter, Grossberg, &
Rosen, 1991b), a competitive neural network that has a linear
time complexity, converges fast, and does not need to predefine

the number of clusters. SA-ART inherits these nice properties
and seamlessly integrates three statistical measures into its func-
tions of similarity measure and cluster weight modeling. These
additional measures make it possible for SA-ART to incremen-
tally discover the cluster-wise salient features and self-adapt
the learning rates for cluster weights of individual clusters. No-
tably, by introducing a heuristic method (Meng, Tan, & Wunsch,
2016) to self-adapt the cluster-wise vigilance parameter (the
only parameter in Fuzzy ART defining the threshold for intra-
cluster similarity), SA-ART allows all the important parameters,
including the learning rate and the vigilance parameter, to be
self-adaptable. This alleviates the sensitivity of SA-ART to its
hyperparameters, thus increasing its robustness to large-scale
and complex data.

Experiments were conducted on two large-scale real-world
datasets, including a subset of ImageNet dataset of 74k im-
ages belonging to 50 classes and the BlogCatalog dataset of
66k blog writers belonging to 147 classes. Experimental results,
including parameter sensitivity analysis, clustering performance
comparison, robustness to noise, and efficiency analysis, showed
superior performance of SA-ART in terms of computational effi-
ciency, intra-cluster purity, and the overall quality of the cluster
structures generated.

2. Related work

This section introduces existing studies on sparse data clus-
tering, which mainly follow three directions, including subspace
clustering, soft subspace clustering, and co-clustering. Each of the
directions, including different types of algorithms, is detailed in
the following sections.

2.1. Subspace clustering

Subspace clustering aims to identify different subspaces, i.e.
features sets, where data of the same category in their subspace
are close to each other, but all are far from those outside the
category. Considering different ways of finding such subspaces,
existing methods can be categorized into four types, as illustrated
below.

2.1.1. Subspace selection in original space
This line of algorithms finds valid subspaces by estimating

the data distributions under the enumerated combinations of
features from the original feature space. Since it is an NP-hard
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problem, approximation strategies are usually adopted to reduce
the computation.

One example (Fern & Brodley, 2003) is to first perform clus-
tering on a set of randomly selected subspaces and then average
the results to determine whether two data objects are in the
same cluster. The famous CLIQUE (Agrawal et al., 2005) combines
grid and density-based clustering. It is based on a theory that
a grid in a k-D space is dense if and only if all of its pro-
jections in the (k − 1)-D are dense. CLIQUE starts from every
single feature to detect dense grids, and it further increases
the dimensions to find the maximum size of a subspace that
makes the grid remain dense. Dimensionality unbiased subspace
clustering (DUSC) (Assent, Krieger, Müller, & Seidl, 2007) extends
traditional density-based clustering with an expected density
estimator to search for subspace clusters. A recently-proposed
algorithm, i.e. Clustering by Shared Subspaces (CSSub) (Zhu et al.,
2018), measures data similarity using the counts of shared sub-
spaces. It first enumerates subspaces to find the core points with
sufficient neighbors in a subspace. Subsequently, the K-medoids
algorithm is used to cluster the core points using the number of
shared subspaces as a similarity measure.

2.1.2. Linear correlation analysis
Besides enumerating subspaces to find qualified data clusters,

an elegant line of approach follows the theory of linear corre-
lation analysis, which assumes that data in the same subspace
should be able to be represented using a linear combination of
all the other data. Sparse subspace clustering (SSC) (Elhamifar
& Vidal, 2013) is a popular example. First, the coefficients of
such linear combinations for each data object are computed,
which estimate the linear correlation between this data object
and the others. Subsequently, these coefficients are used as the
new representations of data, since data in the same subspace
should have similar coefficients. The final clusters are obtained
using spectral clustering algorithms.

This seeding method has several variants with theoretical
analysis (Wang, Wang, & Singh, 2019; Wang & Xu, 2016). It also
leads to a series of algorithms that follow a similar pipeline
but put different constraints on the coefficients, such as the
low-rank property (Vidal & Favaro, 2014), the data correlation
threshold (Heckel & Bölcskei, 2015; Peng, Yi, & Tang, 2015), and
the block diagonal property (Lu, Feng, Lin, Mei, & Yan, 2019).

2.1.3. Deep representation learning
Deep neural networks have shown superior power in rep-

resentation learning, usually called ‘‘deep learning’’, for major
pattern recognition and computer vision tasks under a super-
vised learning paradigm. Recently, two approaches have been
investigated for unsupervised representation learning and clus-
tering, including autoencoder and generative adversarial net-
works (GAN).

Autoencoder (Song, Liu, Huang, Wang, & Tan, 2013) uses an
encoding–decoding framework, where the encoder, typically a
widely-used network such as ResNet, learns to map the input
data to a feature vector and the decoder learns to recover the
input data from this vector. This intermediate feature vector is
therefore deemed to compress the input data with minimum in-
formation loss. However, a simple joint algorithm connecting au-
toencoder with traditional clustering algorithm, such as k-means,
does not consider the sparsity of data. A recent study (Kang
et al., 2018) addresses this problem by introducing an ‘‘inter-
feature graph’’ that reinforces learning from correlated features.
However, building this graph requires domain knowledge. From
another perspective, deep subspace clustering networks (DSC-
Nets) (Ji, Zhang, Li, Salzmann, & Reid, 2017) follows the theory of
linear correlation analysis, as discussed in Section 2.1.2. It takes

advantage of deep learning, rather than matrix factorization, to
learn the feature vector that is ‘‘self-expressive’’, i.e. the feature
vector of a data object can be approximated using a linear com-
bination of those of the other data. Similarly, a spectral clustering
is used to perform clustering on the new representations.

GAN (Goodfellow et al., 2014) uses two networks, i.e. a gen-
erator and a discriminator. Both iteratively regularize the data
distribution in a latent space. The generator maps an input data to
a latent representation while the discriminator classifies whether
this representation follows a specific distribution or not. Ad-
versarial autoencoder (Makhzani, Shlens, Jaitly, Goodfellow, &
Frey, 2016) is the first work that uses an autoencoder with two
GANs for clustering MINIST handwritten digit images. The GANs
condition the encoder output, i.e. a cluster indicator and a style
vector to be in one-hot and Gaussian distributions, respectively.
However, adversarial autoencoder is a general algorithm, and it
does not consider data sparsity. Gaussian mixture GANs (GM-
GANs) (Ben-Yosef & Weinshall, 2018) follows the theory of the
Gaussian mixture model (GMM). It assumes that complex data
can be represented by a mixture of k Gaussian distributions and
uses GANs to condition the latent representations produced by
the encoder to fit GMM. Testing samples are therefore classi-
fied to one of the learned GMM distributions. Deep adversarial
subspace clustering (DASC) (Zhou et al., 2018) follows the ‘‘self-
expression’’ learning and spectral clustering procedures of DSC-
Nets (Ji et al., 2017). Beyond that, a GAN for each cluster is used
to sample fake samples from the learned cluster weights and
optimize the weights until the discriminator cannot distinguish
between the fake samples and the real data in this cluster.

2.2. Soft subspace clustering

Soft subspace clustering (Deng, Choi, Jiang, Wang, & Wang,
2016) focuses on the problem of adaptively evaluating the impor-
tance of features for different clusters to improve the similarity
measures and alleviate the side-effects of ill-posed features.

To this end, different explorations on the metrics for comput-
ing the feature importance scores have been investigated. Among
many, the weighted k-means algorithm has been extensively ex-
plored. One of the earliest studies (Huang et al., 2005) presents a
weighted k-means where the importance of a feature to a cluster
is measured by the intra-cluster sum-of-distance along that fea-
ture. However, a feature is equally weighted in all clusters. There-
fore, an information entropy-based strategy (Jing et al., 2007)
further improves this algorithm by placing a constraint on the
feature weights to avoid the problem of identifying few salient
features for a cluster. Several follow-up studies investigate new
feature distance metrics or constraints, such as using a Minkowski
β-metric (De Amorim & Mirkin, 2012) or a kernel (Wang et al.,
2016) as distance measures; adding between-cluster penalties
(Deng, Choi, Chung, & Wang, 2010); introducing feature group
weights to award data points in the same cluster when sharing
more common features (Chen et al., 2012; Gan & Ng, 2015); and
extensions to the Fuzzy c-means algorithm (Chitsaz & Jahromi,
2016; Zhou et al., 2016), online clustering (Zhu, Cao, Yang, & Lei,
2014), and fuzzy rule generation (Xu et al., 2019).

Besides the k-means embedded algorithms, DBSCAN (Bohm
et al., 2004) has been extended to assign higher weights to the
features that have lower variance. A filtering approach (Boon-
goen, Shang, Iam-On, & Shen, 2011) incorporates a reliability
measure that enumerates the k-nearest neighbors along each
feature for each data point to compute the importance score
of a feature to a potential cluster. This scoring function can be
embedded in k-means, agglomerative hierarchical clustering, and
spectral clustering. An evolutionary algorithm (Xia, Zhuang, &
Yu, 2013) uses a multi-objective evolutionary method with a
projection similarity validity index for subspace discovery.
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2.3. Co-clustering

Co-clustering (Dhillon, 2001) aims to find the data clusters
where samples in the same cluster have a similar distribution
over a subset of features. It works in sparse data clustering by
enforcing the correlation of features in the same cluster.

Among many co-clustering algorithms, two algorithms are po-
tentially applicable for high-dimensional sparse data. Biclustering
ARTMAP (BARTMAP) (Xu & Wunsch II, 2011) extends from Fuzzy
ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds, Rosen, et al.,
1992). It uses two Fuzzy ARTs (Carpenter et al., 1991b), an ARTa
for clustering data and an ARTb for clustering features. Specifi-
cally, BARTMAP follows two criteria to assign a data object to a
cluster: (1) the data object is similar to the generalized distribu-
tion of data, i.e. cluster weights, of the selected cluster (measured
by ARTa) and (2) the data object shares feature distribution in a
subset of features (measured by ARTb). BARTMAP therefore has
a flexibility to control the degree of match at both pattern and
feature levels. Another algorithm (Salah et al., 2016) is a gener-
ative model. It uses a mixture of von Mises–Fisher distributions,
instead of Gaussian distribution, for co-clustering. The proposed
algorithm iteratively clusters data and features, and it can be used
for either hard or soft subspace clustering.

3. Problem statement

Given a dataset I = {x1, . . . , xN}, where xn = [xn,1, . . . , xn,M ]

(xn,M ∈ [0, 1]) is the feature vector of the nth data object, N
is the size of the dataset I, and M is the number of features.
This paper proposes a clustering algorithm that partitions the N
data objects into J clusters, each of which has a weight vector
wj = [wj,1, . . . , wj,M ] to represent the generalized distribution of
the data therein and a salience scoring vector sj = [sj,1, . . . , sj,M ]

to reveal the importance of each feature to this cluster, where
0 < sj,m < 1 and

∑
m sj,m = 1. In the context of sparse data

clustering, there exists a small subset of features p ⊂ {1, . . . ,M}

such that
∑

i∈p |sj,i| ≈ 1 and
∑

i∈p wj,i ≈ |wj|, where wj,i ∈ [0, 1]
and |.| is ℓ1 norm.

This problem is challenging for two reasons:

1. Noisy features: The high dimensionality allows data to
have diverse representations while the sparsity implicitly
increases the impact of each feature when computing data
similarity. Combined, these factors enhance the side-effect
of noisy features that contribute very little to, or even
harm, the representation of data clusters.

2. Complexity in data distribution: The increase in dimen-
sionality may significantly increase the time complexity
of clustering algorithms and break their assumptions on
data distribution in the feature space. These will make the
algorithms not scalable to big data and downgrade their
robustness to hyperparameters.

Existing studies, as introduced in Section 2, typically focus
on learning either data representation or distance metrics. Doing
this usually introduces expensive computations and additional
parameters. This motivates the study in this paper to seek out
a clustering algorithm for sparse data clustering that has a low
time cost and the ability to self-adapt its hyperparameters to fit
data characteristics.

4. Theoretical analysis on Fuzzy ART

This section provides a theoretical analysis on the character-
istics and clustering behaviors of Fuzzy ART, i.e. the base model
of the proposed SA-ART. Following this analysis, the benefits and
potential problems of Fuzzy ART are revealed.

4.1. ART and Fuzzy ART

Adaptive resonance theory (ART) (Carpenter & Grossberg,
1987b, 2017) is both a cognitive and neural theory of how the
brain quickly learns to categorize, recognize, and predict objects
and events in a changing world. It results in a family of unsuper-
vised learning frameworks, such as ART 1 (Carpenter & Grossberg,
1987b), ART 2 (Carpenter & Grossberg, 1987a), ART 2-A (Car-
penter, Grossberg, & Rosen, 1991a), ART 3 (Carpenter & Gross-
berg, 1990), and Fuzzy ART (Carpenter et al., 1991b). These ART-
embodied competitive neural networks usually have a linear time
complexity, converge fast, and do not need to predefine the num-
ber of clusters. Additionally, their variants have shown promising
performance in real-world clustering tasks (Damelin, Gu, Wun-
sch, & Xu, 2015; Meng et al., 2016; Meng, Tan, & Xu, 2014;
da Silva, Elnabarawy, & Wunsch II, 2019; da Silva & Wunsch,
2016).

Fuzzy ART is a popular choice among many other ART vari-
ants for clustering, since it uses fuzzy operators and introduces
a ‘‘complement coding’’ to address the problem of ‘‘category
proliferation’’. This problem is caused by a continuous learning
from noisy/inconsistent features, making a cluster’s weight values
quickly become small and flat. As such, a new cluster must be
generated to represent this cluster. Fuzzy ART performs clustering
in an incremental manner, following the four main steps below:

1. Complement coding: Let I = x denote an input data ob-
ject, where x = [x1, . . . , xM ] and xm ∈ [0, 1]. Complement
coding concatenates x with its complement vector x̄ =

1− x. Therefore, the final input feature vector is I = [x, x̄].
2. Category choice: Given I, this step uses a choice function

to compute an asymmetric similarity score for each cluster
cj. It evaluates to which degree its weight vector wj is a
fuzzy subset of I, defined by

T (cj, I) =
|I ∧ wj|

α + |wj|
, (1)

where α ≈ 0 is a positive value to give priority to the
clusters of dense features, the fuzzy AND operation ∧ is
defined by (p ∧ q)i ≡ min(pi, qi), and the norm |.| is
equivalent to the ℓ1 norm, defined by |p| ≡

∑
i pi.

If no cluster exists, a new cluster c1 with wj = I is created
to encode I. Otherwise, the winner cj∗ is selected, where
j∗ = argmaxj T (cj, I).

3. Template matching: If a winner cj∗ exists, this step uses
a match function to compute an asymmetric match score,
which evaluates to which degree I is a fuzzy subset of cj∗ ,
defined by

M(cj∗ , I) =
|I ∧ wj∗ |

|I|
. (2)

If the match score satisfies a ‘‘vigilance criteria’’ such that
M(cj∗ , I) ≥ ρ, a resonance occurs. This leads to the as-
signment of I to cj∗ . Note that ρ ∈ (0, 1] is ‘‘vigilance
parameter’’, and it constrains the minimum intra-cluster
similarity.
Otherwise, if M(cj∗ , I) < ρ, the category choice step is re-
visited to select a winner from the remaining clusters. If no
winner satisfies the ‘‘vigilance criteria’’, a new clustercJ+1
with wJ+1 = I is created.

4. Prototype learning: A resonance incurs the update of
cluster weights wj∗ of cj∗ via a learning function, defined by

ŵj∗ = β(I ∧ wj∗ ) + (1 − β)wj∗ , (3)

where β ∈ (0, 1] is the learning parameter.
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Fig. 2. Illustration of the clustering behavior of Fuzzy ART in 2D space under learning rate β = 1 and vigilance parameter ρ = 0.8. (a) The first complement coded
input pattern I1 = [0.5, 0.6, 0.5, 0.4] leads to the creation of the first cluster c1 with w1 = I1 . Denoting w1 = [a, 1− b] such that a = [0.5, 0.6] and b = [0.5, 0.6], it
is observed that the rectangle formed by w1 is a single point overlapped with I1 . Its vigilance region (VR) in dashed lines is a 90-degree clock-wise rotated square
centered at I1 . (b) Encoding I2 = [0.6, 0.5, 0.4, 0.5] results in w2 = [0.5, 0.5, 0.4, 0.4] represented by a rectangle with a bottom-left vertex a = [0.5, 0.5] and a
top-right vertex b = [0.6, 0.6]. The corresponding VR becomes an octagon centered at w2 and shrinks significantly. (c) After encoding I3 = [0.45, 0.45, 0.55, 0.55],
it was observed that the rectangle w3 = [0.45, 0.45, 0.4, 0.4] expands towards I3 while the VR shrinks.

4.2. Geometric properties of Fuzzy ART

As observed from the key functions of Fuzzy ART in the above
section, Fuzzy ART uses the choice function in Eq. (1) to select
the best-matching cluster cj∗ that shares the key feature distri-
bution with I. Subsequently, the match function in Eq. (2) limits
the intra-cluster similarity of cj∗ using the vigilance parameter
ρ. The learning function in Eq. (3) monotonously decreases the
cluster weights, so the features with inconsistent values will be
suppressed.

It is important to consider how Fuzzy ART behaves in the
feature space and how complement coding works to prevent
‘‘category proliferation’’. As demonstrated in the Fuzzy ART pa-
per (Carpenter et al., 1991b), by denoting the feature and com-
plement parts of wj using a and b̄ = 1 − b, respectively, wj can
be represented by a hyper-rectangle with size R ⩽ M(1 − ρ),
as shown in Fig. 2(b) and (c). Through a geometrical analysis of
Fuzzy ART’s behaviors in the feature space (Meng et al., 2016), it
is further demonstrated that the match function in Eq. (2) with
the vigilance parameter ρ form a hyper-octagon. It, referred to as
‘‘vigilance region’’ (VR), is centered at the cluster weight hyper-
rectangle wj. More importantly, it has been demonstrated that
the behavior that causes Fuzzy ART to form clusters is the key
to resolving ‘‘cluster proliferation’’.

As observed in Fig. 2(a), a newly created cluster has a big
VR, so that any incoming data object falling in this region will
be accepted. A cluster with multiple data objects will have its
weight vector wj represented in a hyper-rectangle, and there will
be a significant shrinking in the VR, as shown in see Fig. 2(b).
The hyper-rectangle will further expand until it and the VR are
similar in size (see Fig. 2(c)). Note that the learning rate β ∈ (0, 1]
controls the degree that the hyper-rectangle wj expands towards
the input data object I. Besides, data objects falling in the hyper-
rectangle will have the match score M(cj∗ , I) = 1. Encoding them
will incur no expansion of the hyper-rectangle wj.

4.3. Characteristics of Fuzzy ART in clustering

The clustering behavior illustrated in Fig. 2 reveals several
distinct characteristics of Fuzzy ART:

1. Lazy cluster centers: The geometric location of a clus-
ter, i.e. the weight rectangle wj, is largely determined by
the first data object, and the size of wj is determined by
the vigilance parameter ρ, which controls the intra-cluster
similarity.

2. Learning stability: The learning function in Eq. (3) de-
creases the weights of clusters wj in every resonance.
Therefore, non-salient features should have low weight
values. In the feature space, learning corresponds to the
expansion of cluster hyper-rectangles as shown in Fig. 2,
and a cluster will stop learning when its hyper-rectangle
reaches the maximum size. This learning strategy ensures
Fuzzy ART, equipped with a suitable ρ, will stably discover
representative distributions of data clusters in the feature
space.

3. Clustering by creating hyper-octagons: With the property
of lazy cluster centers, Fuzzy ART creates hyper-octagons
to cover the regions in the feature space where data ob-
jects lie. This is different from the typical way of exist-
ing clustering algorithms where the clusters are of open
regions.

4. Low intra-cluster scatters: The above properties of the
close-form hyper-octagons make it possible for Fuzzy ART
to generate dense clusters when using a high value of ρ to
control the minimum intra-cluster similarity.

5. Fast converging: Since Fuzzy ART creates hyper-octagons
to fill the entire feature space, it may obtain reasonable
results even in the first epoch. The following epochs will
improve the cluster assignment of data caused by the ran-
domness in data orders. This will refine the distributions of
the hyper-octagons in the feature space and generate a few
new clusters to fill the blank spaces caused by the shrinking
of hyper-octagons.

6. Denoising: Fuzzy ART allows new clusters to be used
for encoding the data that are sparsely distributed in the
feature space. This protects the dense clusters against the
ill-generalization of cluster weights caused by noises. More-
over, it handles the intra-class diversity where data of
the same category but diversely distributed in the nearby
feature spaces will be encoded using multiple clusters.

4.4. Problems of Fuzzy ART in clustering

While Fuzzy ART exhibits positive properties in data clus-
tering, there are some potential problems that may result in a
downgraded performance, as observed from Fig. 2:

1. Inconsistent VR: Fig. 2(a) shows that the VR of a new
cluster covers a large region (36%) of the entire feature
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space even under ρ = 0.8. This raises a risk of clustering
a dissimilar data object on the edge of a VR, resulting
in a long-and-narrow hyper-rectangle as cluster weights
wj across the feature space. While using a high vigilance
value, such as ρ = 0.9, will result in an over-generation
of clusters, since the VR of a cluster shrinks significantly
after encoding the second data object, as shown in Fig. 2(b).
Therefore, it is important to have a self-adaptation mecha-
nism that can adaptively tune the vigilance parameter ρ

to generate the hyper-octagons of VRs that fit the data
distributions better.

2. Over-split in data clusters: The properties of lazy clus-
ter centers and rapidly-shrinking VRs introduce a problem
where, given a group of randomly presented data, the
hyper-octagon of a cluster may converge to one direction
and require the creation of a new cluster to fill the empty
space. Things become worse if the input data always falls
just outside of the VR of a cluster.

3. Noise sensitivity: Since Fuzzy ART’s learning function
monotonously decreases cluster weights, a newly-
generated cluster is vulnerable to cluster weight erosion by
the wrongly-assigned data objects. That is, by continuously
learning from the data objects that have low values in the
salient features for this cluster, the distribution of cluster
weights may quickly become flat and cannot match the
feature distributions of any categories any longer.

5. Salience-aware adaptive resonance theory for sparse data
clustering

This section presents the salience-aware adaptive resonance
theory (SA-ART), which aims to address the aforementioned prob-
lems of Fuzzy ART and make it conducive to scalable and robust
sparse data clustering.

SA-ART follows the soft subspace clustering approach to model
the importance of features for individual clusters. However, in-
stead of using randomly initialized scores that are optimized to
minimize clustering errors, this paper uses three simple statistical
measures, i.e. frequency, mean, and variance, to estimate the
importance and distributions of features for each cluster. Using
these measures will incrementally reveal the frequent features
that have high and stable values in clusters, i.e. salient features.

New functions for category choice, template matching, and
prototype learning are developed, so that SA-ART can seam-
lessly incorporate the aforementioned cluster-wise feature statis-
tics into the same procedures of Fuzzy ART while keeping the
same linear time complexity O(n). To summarize, SA-ART in-
troduces the following new strategies to enhance learning from
sparse data:

1. Similarity measure in shared cluster space: Instead of
using the entire feature vector for similarity measure (see
Eqs. (1) and (2)), SA-ART uses only the shared features
between I and the wj∗ ’s salient features. As illustrated in
Section 4.3, the hyper-octagon, i.e. VR, of a cluster is around
the first data point it encoded. Therefore, this strategy
allows SA-ART to gather the data with a similar distribu-
tion with cluster weights. It also avoids considering noisy
features in the similarity measure process.

2. Learning rate self-adaptation: SA-ART adopts a new learn-
ing strategy that allows the features of each cluster to have
their own learning rates in the prototype learning step
(see Eq. (3)). It is also based on the cluster-wise feature
statistics, which depresses learning from anomaly values
that do not follow the features’ Gaussian likelihoods.

3. Cluster weight recovery: To alleviate the possible erosion
of cluster weights, SA-ART allows an increase in weight
values. However, this recovery is also achieved in the pro-
totype learning stage. Besides, the recovered values are
bounded by the feature statistics.

These strategies on cluster-wise salient feature modeling en-
able SA-ART to stably learn the patterns of data clusters involving
frequent noisy features. Additionally, SA-ART incorporates the
activation maximization rule (AMR) (Meng et al., 2016) to make
the vigilance parameter ρ self-adaptable. In this way, SA-ART
not only inherits the advantages of Fuzzy ART, but also has all
important hyperparameters self-adaptable.

The following sections will introduce the proposed statistical
measures for feature salience estimation and learning rate self-
adaptation, illustrate the new similarity measure and learning
functions of SA-ART with theoretical proofs, brief AMR for the
self-adaptation of the vigilance parameter ρ, present the entire
SA-ART algorithm, and analyze its time complexity.

5.1. Statistical measures for feature salience estimation and distri-
bution modeling

SA-ART uses three statistical measures, including frequency
fj,m, mean µj,m, and variance σ 2

j,m, to profile a feature wj,m of
a cluster cj. The sections below present how these measures
are used to evaluate the importance of features and guide the
prototype learning step.

5.1.1. Feature salience estimation
Given a cluster cj with its weight vector wj = [wj,1, . . . , wj,2M ]

and the profile of each feature wj,m, including frequency fj,m,
mean µj,m, and variance σ 2

j,m, the importance of a feature wj,m

is computed by using a salience score, defined by

sj,m =

{
0, if fj,m = 0,
λ · fj,m + (1 − λ) · e−σj,m , otherwise,

(4)

where λ ∈ [0, 1] balances the salience estimation between
frequency and stability.

It is observed that sj,m ∈ [0, 1], given that fj,m ∈ [0, 1] and
σj,m ∈ (0, 1]. sj,m = 1 only when fj,m = 1 and σj,m = 0, indicating
that wj,m is of the highest importance if all data objects xn in cj
share a single value of wj,m. Therefore, a newly-created cluster cj
will have sj,m = 1 for all the non-zero entries wj,m > 0. After a
series of resonances, the features that do not frequently appear
or have diverse values will have lower scores.

5.1.2. Learning rate self-adaptation
Given the input data In = [xn, 1 − xn] = [xn,1, . . . , xn,2M ],

upon the notations used in Section 5.1.1, θj,m is introduced as
the learning rate that determines how much the corresponding
weight value of wj,m moves towards the newly-encoded data
object In, defined by

θj,m =

⎧⎪⎪⎨⎪⎪⎩
e
−

9·(xn,m−µj,m)2

2·min(µj,m+0.01,1−µj,m)2 , if σ 2
j,m = 0,

e
−

(xn,m−µj,m)2

2·σ2
j,m , otherwise.

(5)

As observed, θj,m ∈ (0, 1] takes advantage of the Gaussian likeli-
hood function. It essentially measures to which degree the input
feature value xn,m matches with the value distribution of wj,m.
This strategy allows the value of wj,m to be not far from its
statistical mean value µj,m. In this way, Eq. (5) prevents unstable
learning from the xn,m of too high or low values, compared to µj,m.
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Note that for features with zero variance, the value of
min(µj,m+0.01,1−µj,m)2

9 is used. This is based on the notion that given
a Gaussian distribution function f (x|µ, σ 2), 99.7% of the values
are located in the range of [µ − 3σ , µ + 3σ ]. Viewing that
wj,m ∈ [0, 1], the aforementioned value is obtained according to
µj,m −3σj,m ≥ 0 and µj,m +3σj,m ≤ 1. Besides, µj,m +0.01 is used
to avoid the case when µj,m = 0.

5.2. Modified Fuzzy ART functions with feature salience measures

This section illustrates the proposed similarity measure and
learning functions of SA-ART that integrate the three statisti-
cal feature salience measures into the three main functions of
fuzzy ART, i.e. category choice, template matching, and prototype
learning.

5.2.1. Category choice with cluster space matching
Given a complement-coded input data object In = [xn, 1− xn]

where xn = [xn,1, . . . , xn,M ] ∈ I = {xn|Nn=1} and xn,m ∈ [0, 1],
and a cluster cj ∈ C = {cj|

J
j=1} with its weight vector wj =

[wj,1, . . . , wj,2M ] ∈ W = {wj|
J
j=1} and salience scoring vector

sj = [sj,1, . . . , sj,2M ] where sj ∈ S = {sj|
J
j=1}, the function for

category choice is defined by:

T (cj, In) =

{
0, if p = ∅,
|up◦sp|

α+|wj◦s|
, otherwise,

(6)

where α = 0.01 is used by default for the same purpose as
in Eq. (1). u = In ∧ wj = [u1, . . . , u2M ]. p = {i|wj,i > 0} includes
the indexes of the non-zero entries of wj. sj,m ∈ sp is defined
in Eq. (4) and the cluster index ‘‘j’’ is omitted for simplicity. ‘‘◦’’
is the element-wise product, and |.| is defined in Eq. (1).

Compared to the original choice function as defined by Eq. (1),
the key differences include (1) all feature values are weighted
and (2) only the intersection of salient features is considered
for similarity measure. This new function operates under the
assumption that even in high noise circumstances, data objects
of the same class should have more shared features where the
salient features are hidden. Its properties for robust similarity
measure are proven below.

Property 1. The category choice function T (cj, In) selects the cluster
cj, where the salient feature distribution best matches with the input
pattern In.

Proof. As observed from Eq. (6), T (cj, In) measures to which
degree wj is a fuzzy subset of In in the weighted shared space.
Therefore, T (cj, In) = 1 only in the condition where In has
higher values than wj in terms of all the features of wj that have
non-zero values. When the shared features are less than the non-
zero features of cj, T (cj, In) < 1 consistently holds. The salience
scoring vector sj further gives priority to the cluster where the
distribution of salient features is better matched. □

Property 2. The category choice function T (cj, In) essentially
computes the similarity between In and wj in the entire feature
space.

Proof. Let t be the indexes for the zero entries of u. Since ut = 0,
the following may be easily attained:

|up ◦ sp|
|wj ◦ s|

=

∑
i∈p uisi∑

m wj,msm
+ 0,

=

∑
i∈p uisi∑

m wj,msm
+

∑
i∈t uisi∑

m wj,msm
,

=

∑
m umsm∑

m wj,msm
,

=
|u ◦ s|
|wj ◦ s|

. (7)

Note that since the non-zero entry of cj is known a priori, this
property eliminates substantial computation when the dimen-
sionality is high. □

5.2.2. Template matching with a weighted intra-cluster similarity
measure

As demonstrated in Properties 1 and 2, the new category
choice function in Eq. (6), selects the cluster cj∗ where the salient
feature distribution of wj∗ is best satisfied by In. Using the same
notations, template matching in a similar way evaluates to which
degree In is similar to wj∗ , defined by

M(cj∗ , In) =
|up ◦ sp|
|In ◦ s|

≥ ρ. (8)

M(cj∗ , In) measures to which degree In is a fuzzy subset of wj∗ in
the weighted feature space. Note that p = ∅ is not considered
here since this situation will be filtered in the category choice
step. Property 3 demonstrates that a combination of the two
asymmetric similarity measures T (cj, In) and M(cj, In) will form
a symmetric similarity evaluation between wj and In.

Property 3. The combination of T (cj, In) and M(cj, In) symmetri-
cally evaluates the similarity between wj and In considering both the
distribution of shared features and the match of salient features.

Proof. As demonstrated by a prior study (Meng et al., 2014)
(see Property 1 under Section 5.2 for details), a combination
of T (cj, In) and M(cj, In) will assign In to the cluster with the
closest matching in feature distribution. Beyond this conclusion,
the similarity measure using shared features is considered under
two settings p = q and p < q, where q = {i|wj,i > 0} is the
indexes of the non-zero entries of wj:

1. When p = q: Two extreme cases (1) up = wp and (2)
up = Ip are considered (‘‘j’’ in Ij is omitted for simplicity):

• In Case (1): T (cj, In) = 1 and M(cj, In) =

∑
i∈p uisi∑

m In,msm
<

1. This indicates that cj is given priority in category
choice for In, since for ∀i ∈ p, there is wj,i ≤ xn,i.
However, a resonance occurs only whenM(cj, In) ≥ ρ,
thus limiting its lower bound.

• In Case (2): T (cj, In) =

∑
i∈p uisi∑

m wj,msm
< 1 and M(cj, In) =

1. It indicates that for ∀i ∈ p, there is wj,i ≥ xn,i,
therefore cj definitely passes the vigilance criteria.
However, priority is given to the clusters with lower
weight values.
One concern regarding this case is the unlimited up-
per bound, which may incur a mismatch in the early
clustering stage when p includes a set of noisy fea-
tures. However, Section 5.2.3 will demonstrate that
the side-effect of such wrong categorization in pro-
totype learning can be minimized using the proposed
learning function.

2. When p < q: Beyond the analysis under the setting p = q,
the denominators of T (cj, In) and M(cj, In) will further pe-
nalize for missing salient features. Therefore, higher scores
will be given to the cluster cj that shares more shared
salient features with In. □
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5.2.3. Prototype learning with noise depression and salience recov-
ery

When the input pattern In passes the vigilance criteria, i.e.
Eq. (8), of the selected cluster cj, prototype learning is triggered to
update the weight vector wj of cluster cj. Following the notations
defined in Section 5.1.2 and denoting vj = [min(x1, µ1), . . . ,
min(x2M , µ2M )], the learning function is defined by

ŵ = vj ◦ θj + wj ◦ (1 − θj). (9)

where θj = [θj,1, . . . , θj,2M ] includes the learning rates for each
feature wj,m, computed using Eq. (5). The following properties
demonstrate this learning function’s ability in modeling the pat-
tern distribution of sparse data.

Property 4. The proposed prototype learning function, i.e. Eq. (9),
stably updates the weight values of wj, which are bounded by the
statistical means and the lowest values.

Proof. Eq. (9) illustrates that for ∀m, wj,m moves towards
min(xn,m, µj,m), of which the degree depends on θj,m. Therefore,
if xn,m ≫ µj,m, wj,m moves towards µj,m with a small increase;
similarly, wj,m moves towards xn,m with a small decrease if xn,m ≪

wj,m. As such, Eq. (9) achieves stable learning and sets the upper
and lower bounds to weight values wj,m. □

Property 5. The prototype learning function, i.e. Eq. (9), can identify
and depresses noisy feature values.

Proof. Noisy features for a cluster are defined as those that are
less likely to have non-zero or stable values. Considering a noisy
feature wj,m, it is likely to have a small mean value µj,m and a
large variance σ 2

j,m. During the learning process, as demonstrated
in Property 4, Eq. (9) will gradually decrease the upper bound for
wj,m, i.e. µj,m, and the large σ 2

j,m facilitates a rapid decrease in wj,m
to its lower bound. □

Property 6. The prototype learning function, i.e. Eq. (9), can recover
salient features during iterative learning.

Proof. The intra-class diversity leads to the situation that the
data objects of the same category follow a general feature distri-
bution, but have low or even zero values for some salient features.
Considering wj,m = 0 a salient feature of cj and xn,m > 0 the
feature of a correctly-assigned data object In in cj, Eq. (5) ensures
that θj,m > 0 so that ŵj,m > 0. As such, the values of salient
features of a cluster can gradually be recovered to their true
distributions. □

5.3. Activation maximization rule for vigilance adaptation

SA-ART incorporates the activation maximization rule (AMR)
(Meng et al., 2016) to allow each cluster to have a self-adaptable
vigilance parameter ρ. AMR comes from a simple observation that
a cluster with a small value of ρ happens to incur continuous
resonances. While that of a large value is likely to cause a reset
even it is selected as the winner. Therefore, AMR is triggered
after each resonance or reset to restrain the continuous activation
of the same cluster and promote the activation of clusters that
usually incur resets, as defined by

ρ̂j∗ =

{
(1 + δ)ρj∗ , if resonance occurs,
(1 − δ)ρj∗ , if reset occurs.

(10)

Although simple and heuristic, AMR is favored by its light-
weight computation (only two lines 18 and 30 in Algorithm 1),
and it has shown promising performance in alleviating ART’s

Algorithm 1 Salience Aware Adaptive Resonance Theory
Input: Input data I = {I1, ..., IN }, model parameters ρ0, λ, α = 0.01,

and δ = 0.1, the maximum iteration tmax or the terminating
threshold ε.

1: repeat
2: Set n = 1.
3: repeat
4: If the cluster set C = ∅:
5: Create a cluster c1 with w1 = In.
6: Set c1’s mean µ1, variance σ2

1, and frequency f.
7: Compute s1 using Equation (4).
8: Set ρ1 = ρ0
9: Set n = n + 1.

10: Return
11: For ∀cj ∈ C = {cj|

J
j=1}:

12: Compute T (cj, In) using Equation (6).
13: repeat
14: Pick the winner cj∗ = argmaxcj∈C T (cj, In).
15: Compute M(cj∗ , In) using Equation (8).
16: If M(cj∗ , In) < ρj∗ :
17: Set T (cj∗ , In) = −1.
18: Set ρj∗ = (1 − δ)ρj∗ .
19: until M(cj∗ , In) ≥ ρj∗ , or for ∀cj ∈ C, M(cj, In) < ρj.

20: If for ∀cj ∈ C, T (cj, In) = −1:
21: Create a new cluster cJ+1 with wJ+1 = In.
22: Set its feature means µ1, variances σ2

1, and frequencies f.
23: Compute sJ+1 using Equation (4).
24: Set ρJ+1 = ρ0.
25: Else:
26: Update wj∗ using Equation (9).
27: Update fj∗ using Equation (11).
28: Update µj∗ and σ2

j∗ using Equations (12) and (14).
29: Compute sj∗ using Equation (4).
30: Set ρj∗ = (1 + δ)ρj∗ .
31: Set n = n + 1.
32: until n > N .
33: until t = tmax, or |D(ŵ) − D(w)|1< ε.

Output: Data clusters {cj}
J
j=1, cluster weight vectors {wj|

J
j=1}

sensitivity to a fixed ρ (Meng et al., 2016). When ρ is small,
AMR can generate more clusters, rather than a few big clusters of
mixed data objects from many categories; when ρ is large, AMR
can significantly reduce the number of small clusters generated
and achieve a better performance.

5.4. Summary of SA-ART algorithm

The pseudo code of SA-ART is given in Algorithm 1. SA-ART
requires four hyper-parameters as model input:

1. Vigilance parameter ρ as defined in Eqs. (8) and (10),
2. Choice parameter α as defined in Eq. (6),
3. Balancing parameter λ as defined in Eq. (4),
4. Restraint parameter δ as defined in Eq. (10).

Note that α = 0.01 is used by default. δ = 0.1 is consistently
used for AMR. Moreover, the experiments reveal that SA-ART
usually achieves the best performance with λ = 0.9, and a similar
performance is typically achieved when λ ∈ [0.6, 0.9].

Based on the above observations, SA-ART only requires the
initial value of the vigilance parameter ρ0 to be tuned to constrain
the intra-cluster similarity. A ρ0 that is too small results in the
generation of a few clusters with flat feature distributions; while
one that is too large results in the excessive splitting of data
groups. AMR helps in both cases by self-adapting the vigilance
values of all clusters during the clustering process.
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Fig. 3. The (a) sparsity and (b) noise levels of ImageNet and BlogCatalog datasets.

Lines 3–32 in the pseudo code illustrate the main steps of
SA-ART for one input data In. It is notable that since SA-ART per-
forms clustering in an incremental manner, given an input data
object I and a cluster cj, the Welford’s online algorithm (Welford,
1962) was used to update the feature mean vector µ and variance
vector σ2, which can effectively prevent computing loss. The
incremental update equations for the feature frequency f, µ, and
σ2 (the cluster index j is omitted for simplicity) are defined by

f̂i =

⎧⎨⎩ L
L+1 fi, if xi = 0,
L

L+1 fi +
1

L+1 , otherwise,
(11)

µ̂ = µ + (I − µ)(L + 1)−1, (12)

Ẑ = Z + (I − µ) ◦ (I − µ̂), (13)

σ̂
2

= ẐL−1, (14)

where fi is the frequency of the ith feature of the cluster weight
wj, xi is the value of the ith feature of the input data object I, L+1
is the cluster size after data assignment. Notably, when L = 1,
Eq. (11) still holds; Z = 0 given Z =

∑
I∈c(I − µ) ◦ (I − µ).

SA-ART iteratively performs data clustering in an incremental
manner. In addition to conventional Fuzzy ART, it computes the
cluster-wise feature statistics to effectively model the cluster-
wise pattern distributions and simultaneously discover the salient
features therein. The clustering process stops when it reaches
a maximum number of iterations or when one more iteration
incurs with no significant changes in the overall intra-cluster
distance, defined by

D(W) =

∑
c∈C

∑
I,µ∈c

|(I − µ) ◦ (I − µ)|. (15)

5.5. Time complexity analysis

SA-ART incurs computations mainly in the process of category
choice, template matching, prototype learning, and the update
of cluster-level feature statistics and salience scoring vectors. As
shown in Eq. (6), the computational cost of the category choice
function T (cj, In) for all clusters has a time complexity of O(MJ),
where J is the number of current clusters and 2M is the number
of features of In. Template match using Eq. (8) mainly operates
on the feature vectors wj and In, of which the time complexity
is O(M). Similarly, the update of cluster weight vectors using
Eqs. (5) and (9) also has a time complexity of O(M). The time
complexity for computing vectors µ, σ2, Z, f, and s, using Eqs. (4)
and ((12)–(14)), is O(M). Therefore, given a dataset of N objects,

the overall time complexity of SA-ART with t epochs is O(tNMJ)
at the worst case. However, since SA-ART usually converges in
t < 20 and J is gradually increased, it is typically faster than
conventional clustering algorithms of a linear time complexity,
such as k-means.

6. Experiments

This section presents the experimental analysis of SA-ART
on two real-world datasets, i.e. the ImageNet and BlogCatalog
datasets. Experiments were conducted in terms of five aspects,
including parameter sensitivity analysis, ablation study, cluster-
ing performance comparison, sensitivity to data complexity, and
time cost comparison.

6.1. Datasets

To evaluate the performance of SA-ART on clustering large-
scale high-dimensional data, experiments were conducted on the
following two datasets:

• ImageNet dataset: It is renowned for computer vision chal-
lenges, having over 1m images of 1000 categories for large-
scale visual recognition tasks (Russakovsky et al., 2015).
These images are collected from web search engines and
social platforms, such as Google search and Flickr. This study
used images from the first 50 categories,1 which are repre-
sented in bag-of-words (BOW) SIFT features and normalized
using min−−max normalization. In total, 74,506 images are
used, each of which is represented with a 1000-D feature
vector.

• BlogCatalog dataset: It includes the blogs and friendship
network of 88k online users, originally created for detecting
the overlapping social user groups (Wang, Tang, Gao, & Liu,
2010). We use the cleaned dataset from our prior work on
social community detection (Meng & Tan, 2014). It includes
17,824 words extracted from the blogs of 66,418 users in
147 social groups. Each user is represented using a 17,824-D
multi-hot feature vector.

Fig. 3 generally reveals the sparsity and noise levels of the
two datasets. Fig. 3(a) illustrates the number of data objects in
terms of the percentage of non-zero entries. The numbers are
divided into ten bins, e.g. bin value 0.2 in x − axis indicates
having the percentage value ∈ [0.2, 0.3). As observed, the data

1 Image features are available at http://image-net.org/download-features.

http://image-net.org/download-features
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Fig. 4. The influence of parameters (a) λ and (b) ρ on the performance of SA-ART on ImageNet and BlogCatalog datasets.

objects in both datasets have zero values in at least 50% of the
features. Most of the ImageNet data have only 30% non-zero
features while that of the BlogCatalog dataset is just 10%. Fig. 3(b)
shows the percentages of the potential salient features for each
category. Such salient features are the high-frequency features
identified using the Otsu’s method (Sezgin & Sankur, 2004). For
the ImageNet dataset, it was observed that, on average, around
45% of the features frequently appear in a category, i.e. only 15%
of the total features are potentially useful for modeling cluster
pattern. The BlogCatalog dataset has a higher level of proportion,
i.e. around 55% on average, but with a large variance. This statis-
tical information shows the sufficient sparsity and noise levels of
the experimental data.

6.2. Performance measures

The performance of all the clustering algorithms was evalu-
ated using three commonly-used metrics (Xu & Wunsch, 2008),
including the weighted average precision P =

∑
c

Lc∑
c Lc

pc , the
weighted average recall R =

∑
c

Lc∑
c Lc

rc , and the weighted aver-

age F1 score F =
∑

c
Lc∑
c Lc

2pc rc
pc+rc

, where Lc is the size of cluster

c , and pc , rc are the precision and recall of c , respectively. Specifi-
cally, pc =

Lc,t
Lc

and rc =
Lc,t∑
c Lc,t

, where t is the true class of cluster

c determined by the majority of samples in c , and Lc,t is the num-
ber of samples of class t in c . To alleviate the initialization factor,
the performance of SA-ART and the algorithms in comparison was
an average of five runs on either randomly shuffled data or the
initial cluster seeds.

6.3. Parameter sensitivity evaluation

This section provides the analysis on the sensitivity of SA-
ART to the input parameters, i.e. λ and ρ, which control the
cluster-level feature salience weighting and intra-cluster sim-
ilarity, respectively. To this end, Fig. 4 reports the clustering
performance of SA-ART with varied values of λ and ρ in 20
iterations on the two datasets.

Fig. 4(a) illustrates the performance of SA-ART with the best
setting of ρ, i.e. ρ = 0.7 and 0.75 for ImageNet and BlogCatalog
datasets, respectively. As observed, the consistent flat curves
show that SA-ART is generally robust to λ. Referring to Eq. (4),
the curves indicate that ‘‘frequency as salient feature’’ is much
more discriminative than ‘‘stability in feature value’’. Besides, in-
troducing a minor consideration of the latter improves the overall

salient feature estimation. By setting λ = 0.9, the performance
curves of varied ρ values were obtained, as shown in Fig. 4(b). It
was observed that, for both datasets, the increase in the value of
ρ leads to the increase of P and the decrease of R; F reaches the
largest value at the elbow where P increases sharply. Notably, SA-
ART keeps improving P with respect to the increase in the value
(up to 0.99) of ρ. This demonstrates the effectiveness of using
a vigilance parameter to constrain the minimum intra-cluster
similarity. It enables SA-ART, when equipped with a large value of
ρ, to handle the diversity and noise of sparse data. However, it is
at the cost of the generalization power, i.e. the over-generation of
small clusters. This is reflected from the sharp decrease of F after
reaching its maximum. In contrast, a lower ρ helps build a more
compact cluster network, but it may easily suffer from noise.

6.4. Ablation study

SA-ART incorporates several strategies to improve Fuzzy ART’s
performance on sparse data, including (1) salient feature weight-
ing (SFW), (2) similarity measure with shared feature matching
(SFM), (3) learning rate self-adaptation (LRS), and (4) activation
maximization rule (AMR). This section evaluates the effects of
individual strategies on the clustering performance of SA-ART.

With β = 0.6 and ρ = 0.6, the clustering results produced
by different combinations of Fuzzy ART, i.e. the base model, and
the aforementioned strategies are investigated. The quality of the
generated cluster structure is evaluated using average precision,
the number of clusters, and the average intra-cluster distance
(computed using the averaged ℓ2 norm) between the original
input data x and the weight hyper-rectangle a and b, as shown in
Fig. 2. Precision and the intra-cluster distance reflect the quality
of individual clusters with and without category labels, respec-
tively. Therefore, the intra-cluster distance essentially measures
how well SA-ART can identify all dense regions in the feature
space. The number of clusters indicates both the cluster structure
complexity and the recall aspects.

As reported in Table 1, using SFW leads to a significantly im-
provement over Fuzzy ART with higher precision, fewer clusters,
and more compact clusters. Both LRS and AMR also can enhance
the performance of Fuzzy ART, demonstrating the effectiveness
of the two self-adaptation methods for the learning rate β and
the vigilance parameter ρ. Solely SFM does not work well due to
the possible inclusion of noisy features. However, using both LRS
and SFM boosts the performance thanks to a better modeling of
cluster weights. Integrating all the three strategies proposed in
this paper makes Fuzzy ART achieve an absolute increase of 10%
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Table 1
Ablation study on the clustering performance of SA-ART in terms of weighted
average precision (P), number of clusters (#cluster), and intra-cluster distance
(Dist), on the ImageNet dataset with different combinations of strategies:
(1) salient feature weighting (SFW), (2) similarity measure with shared feature
matching (SFM), (3) learning rate self-adaptation (LRS), and (4) activation
maximization rule (AMR).
Algorithms P #cluster Dist

Base (Fuzzy ART) 0.291 363 3.58
Base + SFW 0.368 325 3.24
Base + SFM 0.284 370 3.71
Base + LRS 0.322 351 3.44
Base + AMR 0.306 334 3.51

Base + SFM + LRS 0.343 349 3.36
Base + SFM + LRS + SFW 0.403 314 3.25
All (SA-ART) 0.418 273 3.16

in average precision. By further incorporating AMR, SA-ART can
self-adapt all the important model parameters, and it is also able
to use fewer clusters to better partition data clusters.

6.5. Clustering performance comparison

6.5.1. Overview of algorithms in comparison
The performance of SA-ART is compared with Fuzzy ART and

the six state-of-the-art clustering algorithms that are applicable
to large-scale sparse data, including:

• Sparse subspace clustering (SSC) (Elhamifar & Vidal, 2013):
Since SSC is a two-step algorithm, we use the authors’ Mat-
lab code2 to compute the new embedding vectors of data,
and use the Python package ‘‘sklearn.cluster. SpectralClus-
tering’’ for the latter step of spectral clustering. It is for a fair
comparison with TRR and DSC-Nets, in terms of clustering
performance and time cost. In experiments, we manually
tuned the number of clusters J , and the subspaces’ number
n and dimensionality d.

• Thresholding ridge regression (TRR) (Peng et al., 2015):
TRR is a variant of SSC. For the same reason, we also use
the authors’ Matlab code3 to compute the new embedding
vectors of data, and use the Python package ‘‘sklearn.cluster.
SpectralClustering’’ for spectral clustering. In experiments,
the number of clusters J and the balancing parameter λTRR
were manually tuned.

• Entropy weighting k-means (EWKM) (Jing et al., 2007):
EWKM was implemented in python 3.6. In experiments, the
number of clusters J and the entropy weighting parameter
γ were manually tuned.

• Feature grouping k-means (FGKM) (Chen et al., 2012):
FGKM was implemented in python 3.6. In experiments,
the number of clusters J , the group weighting parame-
ter λFGKM , and the feature weighting parameter η were
manually tuned.

• Biclustering ARTMAP (BARTMAP) (Xu & Wunsch II, 2011):
BARTMAP was implemented in python 3.6. In experiments,
the threshold for gene cluster matching η, the learning rates
βa and βb and the vigilance parameters ρa and ρb for ARTa
and ARTb, respectively, were manually tuned.

• Deep Subspace Clustering Networks (DSC-Nets) (Ji et al.,
2017): The autoencoder framework was implemented in
Python 3.6 using Pytorch 0.41 with Cuda 9.0. Following the
original paper, both the encoder and decoder have three
layers. However, due to the difference in problem domains,

2 Matlab code for SSC is available at http://www.vision.jhu.edu/code/.
3 Matlab code for TRR is available at http://pengxi.me/publications/.

we used three fully-connected ones. The encoder is of 4096–
4096–2048 neurons, each of which, except the last one, is
followed by a batch normalization and a ReLU layer. The
self-expressive layer has 512 neurons. The decoder reverses
the operations. It has 2048–4096–4096 neurons, each of
which, except the first one, is followed by a batch nor-
malization and a ReLU layer. Adam is used as optimizer
for the autoencoder. In experiments, we manually tuned
batch size bz and learning rate lr with decay rate dc. The
following spectral clustering was also implemented using
the Python package ‘‘sklearn.cluster.SpectralClustering’’, and
the number of clusters J was manually tuned.

6.5.2. Algorithm parameter selection
This section details our procedures of parameter selection for

all algorithms. It is notable that the eight algorithms either use
Fuzzy ART or k-means to obtain to final clustering results. Specif-
ically, BARTMAP and SA-ART are based on Fuzzy ART; EWKM
and FGKM are based on k-means; SSC, TRR, and DSC-Nets extend
from spectral clustering, which also uses k-means to cluster the
spectral embeddings. Therefore, identifying the suitable hyper-
parameters of k-means and Fuzzy ART is the first and the most
important step.

To achieve this, we first tuned the parameters of Fuzzy ART,
i.e. the learning rate β and the vigilance parameter ρ. It is mainly
because Fuzzy ART is fast and does not require to specify the
number of clusters. Besides, Fuzzy ART is easy to tune since it
uses solely a ratio value of ρ to control the minimum intra-cluster
similarity. We followed a typical approach (Meng & Tan, 2014)
to use a moderate value for learning rate, say β = 0.6, and
tune the value of ρ until Fuzzy ART generated a small amount of
small clusters in the first epoch. For example, on the ImageNet
dataset, we started from an empirical value of ρ = 0.3 and
one epoch of running cost only about 20 s. Subsequently, we
increased the value of ρ by 0.05 to find whether this resulted in
a significant increase in the number of small clusters generated.
Since each category of the ImageNet dataset has 1000 data objects
on average, we empirically define a small cluster as that has less
than 100 data objects. After several rounds of running, ρ = 0.6
was identified to be the most suitable setting, since it led to the
generation of 13 small clusters while this number increased to
38 at ρ = 0.65. The last step is to select the best setting by
fine-tuning the value of ρ and β and evaluating the clustering
performance. Finally, ρ = 0.6 and β = 0.6 were selected.
The performance of Fuzzy ART under this setting is reported in
Table 2.

The setting of Fuzzy ART is directly applicable to ARTa of
BARTMAP and SA-ART as a starting point, since both aim to
identify data clusters. Regarding the parameter turning for ARTb
of BARTMAP, we repeated the method for Fuzzy ART as described
in the paragraph above, i.e. using β = 0.6 and tuning the value
of ρ, since no prior knowledge and labels were available for
clustering features. Having a reasonable setting of ARTb, we tuned
the value of the matching threshold η. This also requires a further
fine-tuning for ARTa and ARTb. The parameter setting for SA-
ART requires a further selection from scratch for the balancing
parameter λ and the restraint parameter δ in AMR. Luckily, SA-
ART is generally robust to these two parameters, since both are
weighting parameters, rather than those that define the prop-
erties of cluster, such as ρ (see Section 5.4 for a discussion on
parameter selection and Fig. 4(a) for the sensitivity of SA-ART to
λ). Therefore, SA-ART solely requires a fine-tuning for ρ following
the method for Fuzzy ART.

The parameter selection for ART variants makes that for EWKM
and FGKM easier, since the range for a suitable number of clusters
is identified. As such, we started with moderate settings of the

http://www.vision.jhu.edu/code/
http://pengxi.me/publications/
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Table 2
The clustering performance (mean ± std) of algorithms under the best settings on the ImageNet and BlogCatalog
datasets in terms of average precision (P), average recall (R), and F1 score (F ). Model settings (Using two values
for one parameter means different values for the two datasets were used): SSC (J = 300, 400; n = 300, 400;
d = 200, 1000), TRR (J = 350, 400; λTRR = 1), EWKM (J = 250, 400; γ = 1), FGKM (J = 300, 400; λFGKM = 1,
η = 4), BARTMAP (η = 0.2; βa = βb = 0.6; ρb = 0.8; ρa = 0.6, 0.7 (J = 362, 474)), DSC-Nets (J = 400, 450;
4096–4096–512; bz = 128; lr = 1e-5; dc = 0.1), Fuzzy ART (β = 0.6; ρ = 0.6, 0.7 (J = 358, 483)), and SA-ART
(ρ = 0.7, 0.75 (J = 349, 460)).

SSC TRR EWKM FGKM

ImageNet
P 0.347 ± 0.049 0.382 ± 0.041 0.408 ± 0.035 0.385 ± 0.056
R 0.145 ± 0.022 0.156 ± 0.032 0.185 ± 0.022 0.147 ± 0.041
F 0.181 ± 0.032 0.196 ± 0.028 0.226 ± 0.029 0.192 ± 0.033

BlogCatalog
P 0.573 ± 0.028 0.607 ± 0.036 0.590 ± 0.026 0.612 ± 0.035
R 0.221 ± 0.025 0.235 ± 0.031 0.238 ± 0.031 0.224 ± 0.022
F 0.300 ± 0.021 0.311 ± 0.027 0.309 ± 0.019 0.327 ± 0.028

BARTMAP DSC-Nets Fuzzy ART SA-ART

ImageNet
P 0.352 ± 0.053 0.413 ± 0.039 0.285 ± 0.047 0.449 ± 0.033
R 0.119 ± 0.023 0.193 ± 0.028 0.102 ± 0.021 0.129 ± 0.036
F 0.184 ± 0.047 0.249 ± 0.029 0.166 ± 0.026 0.252 ± 0.037

BlogCatalog
P 0.616 ± 0.019 0.628 ± 0.026 0.588 ± 0.031 0.645 ± 0.026
R 0.184 ± 0.027 0.223 ± 0.024 0.158 ± 0.024 0.176 ± 0.028
F 0.292 ± 0.025 0.325 ± 0.021 0.285 ± 0.031 0.337 ± 0.022

entropy weighting parameter γ = 1 for EWKM and the group
and feature weighting parameters λFGKM = 1 and η = 1, respec-
tively, for FGKM. Subsequently, their performance was scanned
by varying the number of clusters J from 200 to 500, with an
interval of 50. Having a suitable value range of J , all parameters
were fine-tuned to obtain the best setting. Notably, unlike ART
variants that need only one epoch of running for parameter
selection, EWKM and FGKM should run 20 epochs since the k-
means algorithm requires a number of iterations to achieve a
reasonable clustering result. Luckily, their computation costs are
dominated by k-means, which are around 30 s to complete one
epoch.

SSC, TRR, and DSC-Nets follow a similar procedure of (1) de-
riving new data representations and (2) using spectral clustering
to obtain clustering results. The latter requires only the number
of clusters J , which we already have empirical priors. In the first
step, SSC needs to specify the number of subspaces n and their
dimensionalities d. Both should be enumerated to find the proper
settings according to the final clustering performance. Therefore,
the time required for assessing a setting is about one hour (see
Fig. 6(a) for an instance). For the first trial, we empirically set
n to be the number of categories, i.e. 50 for ImageNet and 147
for BlogCatalog, and d to be 1/10 of the original features, i.e. 100
for ImageNet and 1782 for BlogCatalog. The number of clusters
J = 300 is used, which works well for k-means-based algo-
rithms. Subsequently, by fixing J and d, we tuned the number
of subspaces n, since it profiles the basis vectors available for
the representation of data objects. With a list of proper values
of n, d was tuned, followed by the fine-tuning of all the three
parameters. TRR is much easier since it has only a balancing
parameter λTRR. We followed the experimental analysis in the
original paper to evaluate the performance of TRR with λTRR ∈

{1e − 3, 0.01, 0.1, 1, 10} and J = 300, followed by a fine-tuning
of J .

Regarding DSC-Nets, we first used the three-layer autoencoder
as described in the last section. The learning rate was chosen from
lr = {1e-5, 1e-4, 1e-3}, with dc = 0.1 for every four epochs
(This is a commonly-used strategy for Adam optimization). The
batch size was chosen from bz ={64, 128, 256, 512}. With a fixed
J = 300, the final clustering performance was used for parameter
selection. We also investigated to use the self-expressive layer
of 1024 neurons and a more compact autoencoder network of
2048–2048–1024 neurons. Difference from the other algorithms,
training the autoencoder network requires GPU acceleration. The
entire training process requires 12 epochs to converge, each of

which costs 20 s using a single Tesla V100 GPU of 16 GB. However,
using CPU can be 20–40 times slower. Notably, a pretrain-and-
finetune strategy is used in the original paper. That is, two models
should be trained. The one without the self-expressive loss is
first trained to learn the proper encoding–decoding mappings.
Subsequently, the second model loads the parameters of the first
model, and finetunes them under the self-expressive loss. In this
case, the learning rate for the second model should be much
lower, say 100 times, than the first model.

6.5.3. Clustering result analysis
Table 2 reports the performance of each algorithm under

the best parameter settings, determined by the F1 score. The
performance averages ten runs of each algorithm with differ-
ent initializations. Specifically, the ART variants, i.e. BARTMAP,
Fuzzy ART, and SA-ART, are initialized with randomly-shuffled
data, and the others use randomly-selected cluster seeds for
k-means. Besides, BARTMAP, Fuzzy ART, and SA-ART run 20
epochs to obtain the final results, while the other algorithms run
100 epochs since the k-means algorithm is used by them and it
converges slow for sparse data. Note that SSC, TRR, and DSC-Nets
require a first-stage for computing new data representations.

As observed, SA-ART consistently outperforms the others in
terms of precision and F1 score while having a lower but rea-
sonable performance in recall. Since SA-ART models local salient
distributions for clusters, the higher precision is achieved at the
sacrifice of its generalization power. However, F1 score demon-
strates the superior overall performance of SA-ART. Specifically,
SA-ART is a significantly improvement from its base model, i.e.
Fuzzy ART. It significantly outperforms Fuzzy ART on both datasets
with a statistical significance of p < 0.01 for precision and F1
score. It also achieves a marginal p < 0.05 for recall.

Considering the performance on precision, SA-ART signifi-
cantly outperforms the second best, i.e. DSC-Nets, with p < 0.05
on the ImageNet dataset. Regarding the BlogCatalog dataset, its
performance is not significantly different from the second best,
i.e. DSC-Nets, with p = 0.12. However, it is significantly different
from the third best, i.e. BARTMAP, with p < 0.01. Although SA-
ART’s performance in recall is statistically significantly lower than
the best performance, it is not significantly different from the
third best, i.e. TRR, with p = 0.13 on the ImageNet dataset. In
terms of the overall performance, SA-ART’s performance of F1
score on the ImageNet dataset is not significantly different from
that of DSC-Nets (p = 0.75), but it significantly outperforms the
third best, i.e. EWKM, with p = 0.016. In terms of the BlogCatalog
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Fig. 5. Curves on performance drop of clustering algorithms when applied to
the data with an increasing number of categories on ImageNet dataset.

dataset, SA-ART significantly outperforms TRR with p = 0.023
and SSC, EWKM, BARTMAP, and Fuzzy ART with p < 0.01.

All algorithms perform worse on the ImageNet dataset. This
is expected since the discriminative power of visual features is
typically much lower than that of text. Interestingly, Fuzzy ART
does not perform well on the ImageNet dataset, but it achieves
a performance comparable to SSC, TRR, and EWKM, on the Blog-
Catalog dataset. This reveals that Fuzzy ART is vulnerable to the
sparse and noisy visual features. BARTMAP improves this problem
by introducing a constraint on feature associations, while SA-
ART further enhances Fuzzy ART’s robustness by incorporating
salience-aware methods for sparse data.

The algorithms based on spectral clustering, i.e. SSC and TRR,
perform similarly but slightly worse that EWKM and FGKM.
However, DSC-Nets significantly outperforms them. This shows
that sparse data may have a substantial side-effect on the sub-
space derivation using linear correlation analysis, as discussed in
Section 2.1.2. In contrast, it also demonstrates the strength of
using non-linear mappings to find the linear correlation coeffi-
cients for input data. It is notable that deep learning of feature
representation requires sufficient data for training, and it is com-
putationally expensive for large-scale data. Besides, DSC-Nets are
still a two-step algorithm. Therefore, light-weight clustering algo-
rithms that directly pass the cluster-aware signals as supervision
for deep neural networks should be a new direction for clustering
large-scale sparse data.

6.6. Robustness to data complexity

This section investigates the robustness of SA-ART to the in-
crease in the size and the complexity of data. To this end, data
of increasing size and the number of categories are fed to SA-
ART and the other algorithms in comparison, to assess their
performances. All algorithms are under their own best settings
as reported in Section 6.5.

As shown in Fig. 5, SA-ART consistently achieves the best
performance and exhibits a smoother drop in performance with
respect to the increase in the size of data. Fuzzy ART shows a
fast drop in performance since it does not have strategies to
properly handle noisy data and features. The soft subspace clus-
tering algorithms, i.e. FGKM and EWKM, and the ‘‘hard’’ subspace
clustering algorithms, i.e. TRR and DSC-Nets, achieve comparable
performance. DSC-Nets shows a relatively stable performance,
which indicates the promising of deep learning on unsupervised
representation learning for sparse data.

6.7. Time cost comparison

The time cost of SA-ART is compared with its base model,
i.e. Fuzzy ART, the spectral-based algorithms (Spectral cluster-
ing, SSC, and TRR), and the k-means-based algorithms (k-means,
EWKM, and FGKM), on the ImageNet dataset in terms of run-
ning time and convergence speed. The time cost of the spectral-
based algorithms includes the time for coefficient computing and
spectral clustering (We use ‘‘sklearn.cluster.SpectralClustering’’ to
alleviate the efficiency difference using Matlab and Python). DCS-
Nets involves GPU accelerations, without which the training of
the autoencoder is very slow. Therefore, DCS-Nets is not suitable
for time cost comparison. BARTMAP has a similar computational
cost to Fuzzy ART given a pretrained ARTb. For a fair comparison,
each algorithm is forced to run 20 iterations and generate 200
clusters. All algorithms are running on the server with 64 GB
memory and 11 processors of Intel(R) Xeon(R) CPU E5-2603 v3
@ 1.60 GHz.

Fig. 6(a) reports the running time of the algorithms on data
with an increasing number of categories. As observed, SA-ART and
Fuzzy ART have nearly the same time cost, which is much lower
than other algorithms. Besides, the feature weighting approach
is far more computationally efficient than the subspace learning
one for large-scale data when high-performance computing is
not accessible. Fig. 6(b) reports the convergence speed of algo-
rithms running on the whole ImageNet dataset. It is observed
that SA-ART inherits the fast learning capability of Fuzzy ART and
stabilizes with a shorter intra-cluster distance after 16 iterations.

Fig. 6. The (a) time cost and (b) convergence speed of clustering algorithms on ImageNet dataset.
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7. Conclusion

This paper presents a soft subspace learning algorithm, i.e. the
salience-aware adaptive resonance theory (SA-ART), for cluster-
ing large-scale sparse data. SA-ART inherits the advantages of
its base model, i.e. Fuzzy ART, including linear time complexity,
fast converging ability, and no need for a predefined number
of clusters. To discover the cluster-wise salient features, SA-ART
adopts three statistical measures and seamlessly incorporates
them into the Fuzzy ART’s typical procedures. Comparing to Fuzzy
ART, SA-ART has two major differences:

1. The shared feature matching strategy integrated in the
choice and match functions, as defined in Eqs. (6) and (8).
It enables SA-ART to effectively handle noisy features and
the computation incurred by high dimensionality.

2. The learning function as defined in Eq. (9). It removes the
need for the learning rate β as used in Fuzzy ART. Instead,
by modeling the mean values and the upper and lower
bounds for cluster weights, the rate of learning is deter-
mined by how well the feature value matches the statistics
of the corresponding weight. More importantly, rather than
monotonous suppression, this adaptation method is able to
recover, i.e. increase, the weight values to their statistical
means to better handle mismatches.

Experimental results show that SA-ART is promising in terms
of its sensitivity to the sole vigilance parameter ρ and its ability
to produce clusters with high precision and reasonably complex
structures. Besides the progress achieved so far, SA-ART still has
a good extensibility to incorporate new theories and approaches.
First, the cluster space matching strategy allows SA-ART to model
the cluster-wise salient features. However, such robustness to
noise is achieved at the cost of sacrificing the generalization
power. Therefore, adaptive merging strategies for clusters will
significantly improve SA-ART’s performance. Secondly, a smart
tuning mechanism for vigilance parameter ρ during the initial
epochs will help SA-ART in both salient feature modeling and
convergence.
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