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Abstract

The basic tenet of a learning process is for an agent to learn for only as much and as long as it is necessary. With reinforcement

learning, the learning process is divided between exploration and exploitation. Given the complexity of the problem domain

and the randomness of the learning process, the exact duration of the reinforcement learning process can never be known with

certainty. Using an inaccurate number of training iterations leads either to the non-convergence or the over-training of the

learning agent. This work addresses such issues by proposing a technique to self-regulate the exploration rate and training du-

ration leading to convergence efficiently. The idea originates from an intuitive understanding that exploration is only necessary

when the success rate is low. This means the rate of exploration should be conducted in inverse proportion to the rate of suc-

cess. In addition, the change in exploration-exploitation rates alters the duration of the learning process. Using this approach,

the duration of the learning process becomes adaptive to the updated status of the learning process. Experimental results from

the K-Armed Bandit and Air Combat Maneuver scenario prove that optimal action policies can be discovered using the right

amount of training iterations. In essence, the proposed method eliminates the guesswork on the amount of exploration needed

during reinforcement learning.

c© 2012 The Authors. Published by Elsevier B.V.

Selection and/or peer-review under responsibility of the Program Committee of INNS-WC 2012.

Keywords: reinforcement learning, exploration-exploitation dilemma, k-armed bandit, pursuit-evasion, self-organizing neural

network

1. Introduction

The most desirable form of learning is to spend just the right amount of time and effort to learn the knowledge

necessary for a task. With reinforcement learning (RL), the learning process switches between exploration and

exploitation [1]. The need to discover action policies more optimal than the existing ones is met by exploring the

action space. The effectiveness of the learned action policies are probed as they are exploited during learning.

Consequentially, it must be able to eventually settle into the full exploitation of the learned action policies.

Exploration and exploitation are known to be balanced using a variety of solutions [2, 3, 4, 5]. Greedy strate-

gies such as the ε-greedy method and prioritized sweeping, randomized strategy such as the Boltzmann exploration
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and interval-based techniques such as the interval estimation algorithm are used to balance exploitation and explo-

ration [6]. Despite all these works, it remains a challenge to explore for just the right amount of time. In addition,

there seems to be a lack of an adaptive approach to ensure the right amount of training iteration for the RL process.

In this respect, this work proposes a solution to self-regulate action exploration during RL. The proposed

solution addresses the issues of uncertainty over the amount of exploration and the length of the training process.

The aim is to discover the optimal action policies using just the right amount of training iterations. During

learning, at a fixed interval known as a window, the value of ε of the ε-greedy method is revised using the interval

success rates. The exploration of the action space and training duration are then self-regulated using the revised

ε. In effect, this proposed technique has adapted two external parameters - exploration rates and training duration

- using a learning status parameter known as the interval success rate.

In this work, learning and exploitation of the action policies are carried out using an ART-based Neural Net-

work known as the Fusion Architecture for Learning and Cognition (FALCON) [7]. It is known to be capable

of incremental learning in real time for a variety of learning tasks [8, 9, 10]. It is used within the RL framework

where the proposed solution of self-regulating action exploration (SRE) is applied. Empirical results collected

from experiments conducted using two multi-state problem domains (the Air Combat Maneuver scenario and K-

Armed Bandit problem) have demonstrated the ability to correlate the exploration rate to the updated status of

the learning process and the length of the training process is regulated in real time during RL. Therefore, using

the proposed solution ensures the right amount of exploration and the training iterations are allocated to the RL

process.

The rest of the paper is organized as follows. Survey of the related works is presented in Section 2. This is

followed by the summarized presentation of FALCON using temporal difference method during RL in Section 3.

The proposed technique to self-regulate action exploration is detailed in Section 4. Introduction to the problem

domains, description of respective experiments as well as analysis of results are provided in Section 5. Last but

not least, the conclusions as well as future directions for this work are provided in Section 6.

2. Related Work

Reinforcement learning (RL) uses exploration to discover new action policies and exploitation to apply the

learned action policies to the situations [1]. The K-Armed Bandit problem is widely used to study the exploration-

exploitation dilemma [11]. In a multi-state environment [12], the task of discovering the optimal action policies

for the states is a non-trivial issue that has attracted wide attention [13, 4, 5, 14].

The two facets of the exploration-exploitation dilemma - large state-action space and non-stationary envi-

ronment - are addressed by combining recency-based exploration (RBE) with a detect-and-explore (DAE) algo-

rithm [3]. The Boltzmann action selection policy is used to decide between exploitation and exploration. However,

from their experiments conducted using two non-stationary navigation-based scenarios, their RB-DAE algorithm

is only capable of performance level between the RBE and DAE algorithms. On the other hand, there is a work

based on the bandit problem theory to derive exploration bonus to address the problem of uncertainty in exploring

the states [12]. Extensive experimental results are presented to show greater learning efficiency over the conven-

tional approaches.

The Explicit, Explore or Exploit (E3) algorithm was proposed to identify the optimal policy using a balanced
wandering phase where the least used action choices are explored on entering into a particular state [5]. The

balanced wandering approach is replaced with an adaptive exploration phase in [14]. However, both algorithms

are only presented analytically. The empirical performance of these two approaches for standard RL problems

remains unclear.

Like the Boltzmann distribution, the ε-greedy method is commonly used to balance between exploration and

exploitation. The conventional ε-greedy method decays ε linearly to gradually shift from the exploration to the

exploitation of the learned action policies. In general, high exploration, i.e. high ε, is preferred at the beginning to

spur the discovery of effective action policies [4]. Alternatively, ε may be moderated using time-based discounts

of the past rewards [13]. Another method is to use value function error to control the value of ε [2]. Experimental

results only show it to be more robust but not necessarily much better over the conventional action selection

policies such as the ε-greedy method and the softmax method.
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The surveyed works in [3, 12, 5, 14] improves learning efficiency using different exploration-specific strategies

while a number of surveyed works such as [4, 13, 2] modifies ε for the similar effect. However, not all of them

are able to clearly illustrate their effectiveness using experimental results. Also, experiment results for some

other works are rather inconclusive in some sense. Like [4, 13, 2], this work controls the value of ε to self-

regulate exploration rate and training duration. However, the self-regulation of training duration using ε remains

a novel concept. Also, the multi-state K-armed bandits problem domain used in this work marks the attempted

bandits to prevent the “sticking problem” experienced in [12]. In addition, using a commercial-grade simulation

platform, the proposed SRE algorithm used with FALCON is also illustrated using a pursuit-evasion problem in

three-dimensional airspace.

3. The Reinforcement Learning Model

In this work, the learning agent is driven by a self-organizing neural network known as FALCON [7]. Based

on the adaptive resonance theory (ART), it can learn incrementally and generalize on the vector patterns. Using

reinforcement learning, action policies are discovered during real-time interactions with the environment.

3.1. FALCON Model and Processes
The FALCON network [7] employs a 3-channel architecture (Fig. 1), comprising a category field Fc

2
and three

input fields, namely a sensory field Fc1
1

for representing current states, an action field Fc2
1

for representing actions,

and a reward field Fc3
1

for representing reinforcement values. A brief summary of the FALCON generic network

dynamics, based on fuzzy ART operations [15], is described below.

Fig. 1. An illustration of the FALCON Architecture.

Input vectors: Let S = (s1, s2, . . . , sn) denote the state vector, where si ∈ [0, 1] indicates the sensory input i. Let

A = (a1, a2, . . . , am) denote the action vector, where ai ∈ [0, 1] indicates a possible action i. Let R = (r, r̄) denote

the reward vector, where r ∈ [0, 1] is the reward signal value and r̄ (the complement of r) is given by r̄ = 1 − r.

Complement coding is used to normalize the magnitude of the input vectors to prevent the code proliferation

problem.

Activity vectors: Let xck denote the Fck
1

activity vector for k = 1, . . . , 3. Let yc denote the Fc
2

activity vector.

Upon input presentation, xc1 = S, xc2 = A, and xc3 = R.

Weight vectors: Let wck
j denote the weight vector associated with the jth node in Fc

2
for learning the input patterns

in Fck
1

for k = 1, . . . , 3. Initially, Fc
2

contains only one uncommitted node and its weight vectors contain all 1’s.

When an uncommitted node is selected to learn an association, it becomes committed.

Parameters: The FALCON’s dynamics is determined by choice parameters αck > 0 for k = 1, . . . , 3; learning rate

parameters βck ∈ [0, 1] for k = 1, . . . , 3; contribution parameters γck ∈ [0, 1] for k = 1, . . . , 3 where
∑3

k=1 γ
ck = 1;

and vigilance parameters ρck ∈ [0, 1] for k = 1, . . . , 3.

Code activation: A bottom-up propagation process first takes place in which the activities (known as choice

function values) of the cognitive nodes in the Fc
2

field are computed. Specifically, given the activity vectors xc1,

xc2 and xc3 (in the input fields Fc1
1

, Fc2
1

and Fc3
1

respectively), for each Fc
2

node j, the choice function T c
j is

computed as follows:

T c
j =

3∑
k=1

γck
|xck ∧ wck

j |
αck + |wck

j |
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where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡ min(pi, qi), and the norm |.| is defined by |p| ≡ ∑i pi

for vectors p and q. In essence, the choice function T j computes the similarity of the activity vectors with their

respective weight vectors of the Fc
2

node j with respect to the norm of the weight vectors.

Code competition: A code competition process follows under which the Fc
2

node with the highest choice function

value is identified. The winner is indexed at J where

J = arg max
j
{T c

j : for all Fc
2

node j}

When a category choice is made at node J, yc
J = 1; and yc

j = 0 for all j � J. This indicates a winner-take-all

strategy.

Template matching: Before node J can be used for learning, a template matching process checks that the weight

templates of node J are sufficiently close to their respective activity patterns. Specifically, resonance occurs if for

each channel k, the match function mck
J of the chosen node J meets its vigilance criterion:

mck
J =
|xck ∧ wck

J |
|xck | ≥ ρck

The match function computes the similarity of the activity and weight vectors with respect to the norm of

the activity vectors. Together, the choice and match functions work cooperatively to achieve stable coding and

maximize code compression.

When resonance occurs, learning ensues. If any of the vigilance constraints is violated, mismatch reset occurs

in which the value of the choice function T c
J is set to 0 for the duration of the input presentation. The search process

then selects another Fc
2

node J under the revised vigilance criterion until a resonance is achieved. This search and

test process is guaranteed to end as FALCON will either find a committed node that satisfies the vigilance criterion

or activate an uncommitted node which would definitely satisfy the vigilance criterion due to its initial weight

values of 1s.

Template learning: Once a node J is selected, for each channel k, the weight vector wck
J is modified by the

following learning rule:

wck(new)
J = (1 − βck)wck(old)

J + βck(xck ∧ wck(old)
J )

For an uncommitted node J, the learning rates βck are typically set to 1. For committed nodes, βck can remain

as 1 for fast learning or below 1 for slow learning in a noisy environment. When an uncommitted node is selected

for learning, it becomes committed and a new uncommitted node is added to the Fc
2

category field.

3.2. Incorporating Temporal Difference Method
TD-FALCON [16] incorporates Temporal Difference (TD) methods to estimate and learn value functions of

state-action pairs Q(s, a) that indicates the goodness for taking a certain action a in a given state s. This is learned

as the feedback signal and is used in the selection of the action choices.

As shown in Algorithm 1, given the current state s, TD-FALCON first decides between exploration and ex-

ploitation by following an action selection policy. For exploration, a random action is picked. For exploitation,

TD-FALCON searches for optimal action through a direct code access procedure [17]. Upon receiving a feedback

from the environment after performing the action, a TD formula is used to compute a new estimate of the Q-value

for performing the chosen action in the current state. The new Q-value is then used as the teaching signal to

TD-FALCON to learn the association of the current state and the chosen action to the estimated Q-value.

Iterative Value Estimation: A value function based on a temporal difference method known as Bounded Q-

Learning [18] is used to iteratively estimate the value of applying action choice a to situation s. The estimated

Q-value Q(s, a) is learned by TD-FALCON during RL. The temporal difference of the value function is iteratively

estimated using

ΔQ(s, a) = αT Derr(1 − Q(s, a))

where α ∈ [0, 1] is the learning parameter, the term (1 − Qj(s, a)) allows the adjustment of Q-values to be self-

scaling in such a way that it will not be increased beyond 1.0 and T Derr is the temporal error term which is derived

using

T Derr = r + γmax
a′

Q(s′, a′) − Q(s, a)
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Algorithm 1 The TD-FALCON Algorithm

1: Initialize FALCON

2: Sense the environment and formulate a state representation s
3: Use Action Selection Policy to decide between Exploration and Exploitation
4: if Exploration then
5: Use Exploration Strategy to select an action choice from action space

6: else if Exploitation then
7: Use Direct Code Access to select an action choice from existing knowledge

8: end if
9: Use action choice a on state s for state s′

10: Evaluate effect of action choice a to derive a reward r from the environment

11: Estimate the Q-value function Q(s, a) following a temporal difference formula given by ΔQ(s, a) = αT Derr

12: Present state S , action A and reward R vectors for Learning
13: Update the current state s = s′

14: Repeat from Step 2 until s is a terminal state

where γ ∈ [0, 1] is the discount parameter and the maxa′ Q(s′, a′) is the maximum estimated value of the next state

s′ and r is either the intermediate or terminal reward.

3.3. Pruning
Newly discovered action policies is learned as cognitive nodes during RL. However, quite a number of these

cognitive nodes will become irrelevant as learning progresses. Action selection and learning become inefficient

when these irrelevant cognitive nodes are not pruned. Therefore, a confidence-based pruning strategy similar to

the one proposed in [7] is adopted to prune these irrelevant cognitive nodes.

Specifically, each cognitive node j has a confidence level c j where c j ∈ [0.0, 1.0]and an age σ j where σ j ∈
[0,R]. A newly committed cognitive node j has an initial confidence level c j(0) and an initial age σ j(0). The

confidence level c j of cognitive node j picked for action selection and updating is reinforced using

cnew
j = cold

j + η(1 − cold
j ),

where η is the reinforcement rate of the confidence level for all cognitive nodes. After each training iteration, the

confidence level of all cognitive nodes is decayed using

cnew
j = cold

j − ζcold
j

where ζ is the decay rate of the confidence level for all cognitive nodes. At the same time, the age σ j of cognitive

node j is also incremented.

The age attribute σ j of cognitive node j prevents it from being pruned when σ j = σ j(0), c j = c j(0) and

c j < crec where crec is the recommended confidence threshold. A cognitive node j is pruned only when c j < crec

and σ j ≥ σold where σold is the old age threshold.

4. Self-Regulating Action Exploration

A method to self-regulate the action exploration and training duration is proposed in this section. This pro-

posed method addresses issues pertaining to the lack of correlation with the actual status of the learning process

when trying to balance between exploration and exploitation and the stochastic nature of the learning process.

Details on the main features of the proposed method are provided in the subsequent sections.

4.1. The Action Selection Policy
As with many reinforcement learning solutions [7, 19], the ε-greedy action selection policy is used to balance

between exploration and exploitation. With such an action selection policy, exploration is occurring at a probabil-
ity of ε where ε ∈ [0, 1]. The conventional approach is to use high ε for higher exploration rate at the onset of the

learning process. At each training iteration, ε is linearly decayed using

εnew = εold − θ (1)
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where the decay rate θ is derived at the onset of the learning process, i.e. n = 0, using

θ =
ε0
NδN0

(2)

where ε0 is the initial value of ε, Nδ is the training proportion such that (N − NδN) is the number of training

iterations where the learning agent operates in full exploitation mode and N0 is the initial number of training

iterations. In this work, the total number of training iterations N is updated using

N = Ne +Nr (3)

where Ne denotes the elapsed training iterations and Nr denotes the remaining training iterations. Using the

conventional method, Nr is constant and the change in ε is de-correlated from the updated status of the learning

process.

Given the stochastic nature of the learning process, there is a non-zero probability that the optimal action

policies may yet to be discovered when ε is fully decayed. Since there can be no further exploration when ε is

fully decayed, the learning process will saturate at a non-optimal level. Therefore, for greater learning efficiency

and effectiveness, this work proposes an approach to correlate the modification of ε and Nr to the updated status

of the learning process using the interval success rates λ.

4.2. The Interval Success Rates
Unlike the time-discounted past rewards [13], the interval success rate λ ∈ [0.0, 1.0] is used as an updated

measure of efficacy of the learned action policies. It is based only on two types of outcome status - positive

or negative - at the terminal states. Depending on the nature of the problem, a neutral outcome status may be

perceived as a negative or positive outcome status. Regardless of the treatment of the neutral outcome status, the

types of outcome status at the terminal states are limited to just the positive and negative.

Let P denotes the set of terminal states st whose outcome status Ost is positive, i.e. Ost ∈ P and let N denotes

the set of terminal states st whose outcome status Ost is negative, i.e. Ost ∈ N. The outcome at terminal state st

is a quantitative measure ηst and the function f (ηst ) is used to qualify this outcome status Ost as either positive or

negative. The number of positive outcome status is represented using Np.

The number of positive outcome statusNp is gathered over a fixed number of training iterationsNw collectively

known as a window such that Np ≤ Nw where Nw ∈ [ε|A|,N], ε ∈ (0.0, 1.0] and |A| denotes the size of action

space A. Using Nw ≡ N reverts to a windowless learning process.

A two-mode self-regulating process is implemented using a window. At training iteration n, the self-regulating

process is in the window-open mode when (n mod Nw � 0.0.) and is in the window-close mode when (n mod Nw ≡
0.0). The number of positive outcome status Np is gathered during the window-open mode. At the window-close
mode, the interval success rate λ is derived using

λ =
Np

Nw
(4)

The number of positive outcome status Np is also reset at the window-close mode. This approach reduces the

influence of the outcome status at the terminal states to the size of the window. This is found to have a stabilizing

effect on the learning process.

4.3. Regulating the Exploration Rate
It can be inferred from Section 4.1 that the exploration rate can be controlled using ε. The windowing concept

introduced in Section 4.2 is also used for the modification of ε. At the window-close mode, i.e. (n mod Nw) ≡ 0,

ε is updated using

εnew = f (1 − λ)
{
κ(1 − λ) + (1 − κ)εold

}
(5)

where κ ∈ [0.0, 1.0] is the ε-adaptation rate and f (x) is a step function such that

f (x) =

{
1 when x > 0

0 when x ≤ 0
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This means εnew > 0.0 when 0.0 ≤ λ < 1.0. Using (5) sets the exploration rate to be inversely proportional

to the interval success rate λ. Using this approach places the right amount of emphasis on the exploration of the

action spaceA.

At the window-open mode, the shift of the balance between exploration and exploitation is linearly moderated

using the linear decay method in (1) using the same ε-decay rate θ derived from the onset using (2). This gradual

shift from exploration to exploitation allows for more exploitation of the discovered action policies over time.

4.4. Regulating the Training Duration

From the onset of the learning process, the ε-decay rate is initialized using (2). Thereafter, it remains un-

changed during learning. Given that ε is modified using (5) at the window-close mode, the remaining number of

training iterations Nr is derived using

Nr =
εnew

Nδθ −
(
εnew

Nδθ mod Nw

)
+Nw (6)

From (6), it can also be seen that the training duration Nr becomes Nw when ε = 0.0. Given that (6) is only

used at the window-close mode, Ne is always (Ne mod Nw ≡ 0). Using (6) to derive Nr ensures the total number

of training iteration N updated using (3) remains as the multiple of window size Nw. Convergence is obtained

when the interval success rate λ = 1.0 at the last window-close mode or when ε is fully decayed within the last

window-open mode.

Algorithm 2 Self-Regulating Action Exploration (SRE)

1: Initialize ε0, N0, Nδ
2: Initialize θ using (2)

3: Set N = N0

4: for n = 0 to N do
5: if (n mod Nw) � 0 then
6: Update ε using (1) {See Section 4.1}
7: Tracks Np

8: else if (n mod Nw) ≡ 0 then
9: Derive λ using (4) {See Section 4.2}

10: Update ε using (5) {See Section 4.3}
11: Derive Nr using (6) {See Section 4.4}
12: Update N using (3)

13: Reset Np

14: end if
15: end for

Self-regulating the exploration rate and the training duration allows the ε-greedy method to be adaptive towards

the status of the learning process and eliminates the need to estimate the number of training iterations required

to ensure convergence. An outline of the novel method to self-regulate the action exploration is presented in

Algorithm 2.

5. Experiments

Two multi-state markov decision process (MDP) problem domains are used to evaluate the proposed technique

of self-regulating action exploration during reinforcement learning. Using a commercial-grade simulation plat-

form, the first problem domain models a 1-v-1 air combat maneuvering (ACM) scenario between two Computer-

Generated Forces (CGFs). The other problem domain is the K-Armed Bandit. It is widely used for illustrating the

exploration-exploitation dilemma [1].
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Table 1. Parameters of TD-FALCON

TD−FACLON Parameters
Choice Parameters (αc1, αc2, αc3) 0.1,0.1,0.1

Learning Rates (βc1, βc2, βc3) 1.0,1.0,1.0

Contribution Parameters (γc1, γc2, γc3) 0.33,0.33,0.33

Perform Vigilance (ρc1
p , ρ

c2
p , ρ

c3
p ) 0.0,0.0,0.45

Learn Vigilance (ρc1
l , ρ

c2
l , ρ

c3
l ) 0.95,1.0,0.45

Temporal Difference Learning Parameters
Learning Rate α 0.5

Discount Factor γ 0.1

Initial Q-Value 0.5

Table 2. Parameters of the SRE algorithm and Pruning strategy

SRE Algorithm Parameters

Initial ε Value 0.9
Training Proportion Nδ 0.95

ε-adaptation rate κ 1.0

Pruning Strategy Parameters

Confidence decay rate ζ 0.003

Confidence reinforcement rate η 0.05

Old age σold 20

5.1. The Air Combat Maneuver scenario
The Air Combat Maneuvering (ACM) scenario is based on a classical 1-v-1 pursuit-evasion problem in three-

dimensional airspace [20]. Like [10], the adaptive CGF is represented as the Blue CGF while the non-adaptive

CGF is represented as the Red CGF. Both CGFs are tasked to out-maneuver each other to enter into a favorable

position to eliminate each other using air-to-air missiles. Their state space is made up of 15 propositional symbols

and their action space is made up of 13 air combat maneuvers.

In this experiment, only the Blue CGF adapts its air combat maneuvers using TD-FALCON based on either the

proposed SRE algorithm or the conventional ε-greedy method with a linear decay schedule. The Red CGF does

not learn and is only driven using the built-in doctrine of the simulation platform. The reinforcement learning

problem here is for the Blue CGF to discover the most effective action policies for the different situations to

eliminate the Red CGF in a consistent manner in 1-v-1 dogfights.

Fig. 2. Illustration of the four initial conditions used for the ACM experiments

Experiments based on the 1-v-1 ACM scenario are conducted to compare the performance of the adaptive

Blue CGF driven by the proposed SRE algorithm (refer to as SRE20) and another adaptive Blue CGF driven by

the conventional ε-greedy method with a linear decay schedule (refer to as Linear20). As illustrated in Fig. 2, four

different initial conditions are rotated during reinforcement learning. For the ACM scenario, TD-FALCON and

the SRE algorithm are configured using the set of parameters illustrated in Table 1 and Table 2 respectively.

The interval success rate λ for this ACM scenario, referred to as HasKill, is the number of eliminations of

the Red CGF by the Blue CGF. Ten sets of results are averaged and condensed over the size of the window for
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both configurations. The SRE-driven Blue CGF in this ACM scenario uses a window comprising of 5 training

iterations. The initial training iterations N0 for both configurations is set at 20, i.e. N0 = 20.

Fig. 3. Comparison of HasKill performance indicator for the ACM

scenario using N0 = 20, ε0 = 0.9
Fig. 4. Comparison of exploration rates for the ACM scenario using

N0 = 20, ε = 0.9

From Fig. 3, though both configurations are incapable of attaining 100% HasKill rate using N0 = 20, SRE20

is observed with a higher HasKill rate than Linear20. From the bottom plot of Fig. 3, the SRE algorithm keeps

ε little changed when the HasKill rate is found to be only at 30%. Higher ε leads to higher exploration rate for

SRE20 which improves the chance of finding more optimal action policies than Linear20. As a reminder, the top

plot of Fig. 3 compares the plots by aggregating 10 runs of the SRE20 and the Linear20 configurations. Due to

the adaptation of the training duration to the status of the learning process, the total number of training iteration

for each RL session for SRE20 is actually different. In fact, an average of 25.6 training iterations from ten sets of

results for the SRE20 configuration is observed. The aggregated plot of SRE20 shows some runs of the experiment

used up to another 20 training iterations to attain 100% HasKill rate. Therefore, it is confirmed using 20 training

iterations is insufficient to attain convergence for the ACM scenario.

The impact of ε on the exploration rates is revealed using Fig. 4. Expectedly, the exploration rate for Linear20

drops linearly as ε is decayed linearly. It is also observed that the fluctuations of the exploration rate for SRE20

track the value of ε plotted at the bottom plot of Fig. 4. As a reminder, exploration is occurring at a probability of

ε, not in direct proportion of ε. Therefore, some amount of de-correlation between the exploration rate and ε can

be observed at around the 30th training iteration.

It is known from Fig. 3 that up to 40 training iterations is required for the convergence of the ACM scenario.

Therefore, in the subsequent experiment, N0 = 40 is used in another Linear-based configuration denoted using

Linear40. From Fig. 5, the HasKill rate of Linear40 continues to rise with more training iterations. However,

unlike SRE20, Linear40 is still not able to achieve 100% HasKill rate. In fact, it is still lagging the SRE20

configuration for the larger portion of the learning process. This can only lead to a conclusion that linear depreci-

ation of exploration rate may actually need more training iterations than what can be achieved using the proposed

technique.

The trend of HasKill rate of Linear40 in the top plot of Fig. 5 can be explained by correlating it to the plot

of exploration rate in the top plot of Fig. 6. For Linear40, the exploration rates is declining in tandem with the

linearly decaying ε seen at the bottom plot of Fig. 6. There is a lack of correlation to the HasKill rate of Linear40

configuration. The linearly decaying ε reduces the probability of finding more optimal action policies at a constant

rate. Therefore, regulating the exploration rate using the proposed SRE algorithm actually facilitates the discovery

of the more optimal action policies.
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Fig. 5. Comparison of HasKill for the ACM scenario using N0 = 40

just for the Linear40 configuration
Fig. 6. Comparison of exploration rates for the ACM scenario using

N0 = 40, ε0 = 0.9

5.2. The K-Armed Bandit problem domain

The K-Armed Bandit is a classical MDP problem domain used to investigate the balance between the explo-

ration of the solution space and exploitation of the learned action policies [21]. It involves K slot machines that are

randomly allocated with a fixed but unique payoff and it is only known to the players when it is pulled. The player

is allowed to pull only Np number of slot machines for each game where Np < K. The pull of a slot machine in

each game cannot be repeated.

The payoff received by the player is accumulated after each pull of the slot machine in each game. The

optimal payoff is known from the onset of the learning process. The goal of the player in each game is to achieve an

accumulated payoff as close as possible to the optimal payoff. The player is allowed to improve on the accumulated

payoff over multiple games using knowledge of the payoff of the slot machines learned from the previous games.

The interval success rate λ for the K-Armed Bandit is the accumulated payoff in terms of the percentage to

the optimal payoff. For each game of the K-Armed Bandit, the player is expected to make 6 pulls on 15 slot

machines, i.e. Np = 6 and K = 15. The plots for the K-Armed Bandit problem are aggregated from 20 runs of the

experiments. Except for using ρc1
l = 0.98, Nw = 100 and N0 = 3000, parameters for TD-FALCON and the SRE

algorithm are as presented in Table 1 and Table 2.
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Fig. 7. Comparison of Player Payoff for the K-Armed Bandit problem

using N0 = 3000
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Comparisons of the Player Payoff using the proposed Self-Regulating Exploration techniques are made with

the ε-greedy method with linear decay (LinearDecayEpsilon), constant ε method (ConstantEpsilon) and the Ran-

dom approach. The top plot of Fig. 7 shows SelfRegulatingExploration outperforming all three other approaches

from the onset of the learning process. The results of all three configurations are highly correlated to their ε shown

at the bottom plot. In addition, it is also within expectation for LinearDecayEpsilon to outperform ConstantEp-

silon.

This can be explained using plots of exploitation rates in Fig. 8. The SelfRegulatingEpsilon, LinearDecayEp-

silon and ConstantEpsilon exploit the learned action policies at a probability of (1 − ε). Consequentially, Lin-

earDecayEpsilon allows for full exploitation of the discovered action policies as ε is decayed fully. Keeping ε
constant (at 0.90), exploitation rate of ConstantEpsilon fluctuates between 10% and 20%.
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Fig. 9. Comparison of node population for the K-Armed Bandit prob-

lem using N0 = 3000
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Fig. 10. Comparison of the actual number of training iterations for 20

runs for the SelfRegulatingExploration configuration

From the node population in Fig. 9, the SRE algorithm is also shown to improve learning efficiency. Using

the pruning strategy presented in Section 3.3, the node population of SelfRegulatingExploration is pruned to the

minimal level earlier than LinearDecayEpsilon. The node population of ConstantEpsilon fluctates about the 80

cognitive nodes level due to the constant exploration rate. Learning efficiency can be improved using the SRE

algorithm because high λ that leads to high exploitation rates mean lesser cognitive nodes need to be learned.

Early exploitation of the effective cognitive nodes leads to the pruning of the irrelevant cognitive nodes.

All configurations are initialized with 3000 training iterations. Unlike LinearDecayEpsilon, ConstantEpsilon

and Random but similar to the results in Section 5.1, SelfRegulatingEpsilon uses (6) to fine-tune its remaining

training duration Nr. Therefore, the actual number of total training iteration for 20 runs of SelfRegulatingExplo-

ration are presented using Fig. 10. Together, this gives an average of 521 training iterations. This is a 82.63%

reduction in the number of training iterations. This is not observed in any earlier works and will not be possible

without using the SRE algorithm.

6. Conclusion

This work proposes a novel technique for self-regulating action exploration during reinforcement learning. It

addresses the uncertainty over the amount of exploration required during learning and the total number of training

iterations required for the learning process. Before, an informed estimation of the number of training iterations

has to be made for each training session and it remained unchanged for the rest of the learning process. However,

it is shown in this work that such estimations are often, at best, sub-optimal.

Using the proposed SRE algorithm, the exploration rate is regulated by correlating the interval success rate λ
to the value of ε of the ε-greedy method. In addition, the updated ε is also used to derive the remaining number

of training iterationsNr. Adapting the length of the learning process to the interval success rate λ ensures just the
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right number of training iterations for each run of the experiment. It is important to state that the proposed SRE

algorithm assumes the presence of optimal action policies.

Experiments are conducted using a 1-v-1 ACM scenario and a standard reinforcement learning benchmark

problem known as the K-Armed Bandit. Aggregated experimental results from these two multi-state MDP prob-

lem domains show tight correlation between the interval success rate λ and the exploration rate consistently lead

to convergence using the right number of training iteration. For the ACM scenario, the right amount of training

iterations is found to be more than the initial estimate of 20 training iterations. As for the K-Armed Bandit prob-

lem, the required number of training iteration is found to be around 82.63% lesser than the initial estimate of 3000

training iterations. From the experimental results, the SRE algorithm is shown to be a more effective and efficient

approach than the standard approaches.

The SRE algorithm introduces two more degrees of autonomy to self-organizing neural networks such as

FALCON. Now, it is able to exploit and explore in correlation to the status of the learning process and it is able to

learn for as long as necessary. There are plans to conduct more in-depth investigations on how learning efficiency

will change using 0.0 < κ < 1.0 instead of κ = 1.0 and using windows of different sizes. Further demonstrations

of the robustness of the SRE algorithm will also be conducted by presenting novel scenarios to FALCON at an

ad-hoc basis during reinforcement learning. The ability of the SRE algorithm to self-regulate the exploration rate

and the training duration should also facilitate the use of the FALCON in more challenging problem domains.
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