
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

2-2008 

Integrating temporal difference methods and self‐organizing Integrating temporal difference methods and self organizing 

neural networks for reinforcement learning with delayed neural networks for reinforcement learning with delayed 

evaluative feedback evaluative feedback 

Ah-hwee TAN 
Singapore Management University, ahtan@smu.edu.sg 

Ning LU 

Dan XIAO 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Computer Engineering Commons, Databases and Information Systems Commons, and the 

OS and Networks Commons 

Citation Citation 
TAN, Ah-hwee; LU, Ning; and XIAO, Dan. Integrating temporal difference methods and self‐organizing 
neural networks for reinforcement learning with delayed evaluative feedback. (2008). IEEE Transactions 
on Neural Networks. 9, (2), 230-244. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5237 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5237&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


230 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 2, FEBRUARY 2008

Integrating Temporal Difference Methods and
Self-Organizing Neural Networks for Reinforcement

Learning With Delayed Evaluative Feedback
Ah-Hwee Tan, Senior Member, IEEE, Ning Lu, and Dan Xiao

Abstract—This paper presents a neural architecture for learning
category nodes encoding mappings across multimodal patterns
involving sensory inputs, actions, and rewards. By integrating
adaptive resonance theory (ART) and temporal difference (TD)
methods, the proposed neural model, called TD fusion architecture
for learning, cognition, and navigation (TD-FALCON), enables
an autonomous agent to adapt and function in a dynamic envi-
ronment with immediate as well as delayed evaluative feedback
(reinforcement) signals. TD-FALCON learns the value functions of
the state–action space estimated through on-policy and off-policy
TD learning methods, specifically state–action–reward–state–ac-
tion (SARSA) and Q-learning. The learned value functions are
then used to determine the optimal actions based on an action
selection policy. We have developed TD-FALCON systems using
various TD learning strategies and compared their performance
in terms of task completion, learning speed, as well as time and
space efficiency. Experiments based on a minefield navigation task
have shown that TD-FALCON systems are able to learn effectively
with both immediate and delayed reinforcement and achieve a
stable performance in a pace much faster than those of standard
gradient–descent-based reinforcement learning systems.

Index Terms—Reinforcement learning, self-organizing neural
networks (NNs), temporal difference (TD) methods.

I. INTRODUCTION

REINFORCEMENT learning [1] is an interaction-based
paradigm wherein an autonomous agent learns to adjust

its behavior according to feedback received from the environ-
ment. The learning paradigm is consistent with the notion of
embodied cognition that intelligence is a process deeply rooted
in the body’s interaction with the world [2]. Often formalized
as a Markov decision process (MDP) [1], an autonomous
agent performs reinforcement learning through a sense, act,
and learn cycle. First, the agent obtains sensory input from
the environment representing the current state ( ). Depending
on the current state and its knowledge and goals, the system
selects and performs the most appropriate action ( ). Upon
receiving feedback in terms of rewards ( ) from the environ-
ment, the agent learns to adjust its behavior in the motivation of
receiving positive rewards in the future. It is important to note
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that reward signals may not always be available in a real-world
environment. When immediate evaluative feedback is absent,
the system will have to internally compute an estimated payoff
value for the purpose of learning.

Classical approaches to the reinforcement learning problem
generally involve learning one or both of the following func-
tions, namely, policy function which maps each state to a desired
action and value function which associates each pair of state and
action to a utility value. The learning problem is closely related
to the problem of determining optimal policies in discrete-time
dynamic systems, of which dynamic programming (DP) pro-
vides a principled solution. The problem of the DP approach is
that mappings must be learned for each and every possible state
or each and every possible pair of state and action. This causes
a scalability issue for continuous and/or very large state and ac-
tion spaces.

This paper describes a natural extension of a family of self-or-
ganizing neural networks (NNs), known as adaptive resonance
theory (ART) [3], for developing an integrated reinforcement
learner. Whereas predictive ART performs supervised learning
through the pairing of teaching signals and the input patterns [4],
[5], the proposed neural architecture, known as fusion architec-
ture for learning, cognition, and navigation (FALCON), learns
multichannel mappings simultaneously across multimodal input
patterns, involving states, actions, and rewards, in an online and
incremental manner. Using competitive coding as the under-
lying adaptation principle, the network dynamics encompasses a
myriad of learning paradigms, including unsupervised learning,
supervised learning, as well as reinforcement learning.

The first FALCON system developed is a reactive model,
known as R-FALCON, that learns a policy directly by creating
category nodes, each associating a current state to a desirable
action [6]. A positive feedback reinforces the selected action,
whereas a negative experience results in a reset, following which
the system seeks alternative actions. The strategy is to associate
a state with an action that will lead to a desirable outcome. As
the reactive model relies on the availability of immediate feed-
back signals, it is not applicable to problems in which the merit
of an action is only known several steps after the action is per-
formed.

To overcome this inadequacy, this paper presents a family
of deliberative models that learns the value functions of the
state–action space estimated through temporal difference (TD)
algorithms. Whereas a reactive model learns to match a given
state directly to an optimal action, a deliberative model learns
to weigh the consequences of performing all possible actions

1045-9227/$25.00 © 2007 IEEE
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in a given state before selecting an action. We develop var-
ious types of TD-FALCON systems using TD methods, specif-
ically, Q-learning [7], [8] and state–action–reward–state–action
(SARSA) [9]. The learned value functions are then used to de-
termine the optimal actions based on an action selection policy.
To achieve a balance between exploration and exploitation, we
adopt a hybrid action selection policy that favors exploration
initially and gradually leans towards exploitation.

Experiments on TD-FALCON have been conducted based on
a case study on minefield navigation. The task involves an au-
tonomous vehicle (AV) learning to navigate through obstacles
to reach a stationary target (goal) within a specified number of
steps. Experimental results have shown that using the proposed
TD-FALCON models, the AV adapts in real time and learns to
perform the task rapidly in an online manner. Benchmark ex-
periments have also been conducted to compare TD-FALCON
with two gradient–descent-based reinforcement learning sys-
tems. The first system, called BP-Q learner, employs the stan-
dard Q-learning rule with a multilayer feedforward NN trained
by the backpropagation (BP) learning algorithm as the func-
tion approximator [7], [10], [11]. The second system is direct
neural dynamic programming (NDP) [12], belonging to a class
of adaptive critic designs (ACDs), known as action-dependent
heuristic dynamic programming (ADHDP). The results indicate
that TD-FALCON learns significantly faster than the two gra-
dient–descent-based reinforcement learners, at the expense of
creating larger networks.

The rest of this paper is organized as follows. Section II
provides a review on related work. Section III introduces
the FALCON architecture and the associated learning and
prediction algorithms. Section IV provides a summary of the
reactive FALCON model. Section V presents the TD-FALCON
algorithm, specifically, the action selection policy and the
value function estimation mechanism. Section VI describes the
minefield navigation experiments and presents the simulation
results. Section VII analyzes the time and space complexity of
TD-FALCON, comparing with BP-Q and direct NDP. The final
section concludes and discusses limitations and future work.

II. RELATED WORK

Over the years, many approaches and designs have been pro-
posed and used in different disciplines to deal with the scala-
bility problem of reinforcement learning. A family of approx-
imate dynamic programming (ADP) systems [13], [14], most
notably based on ACDs, has been steadily developed, which
employs function approximators to learn both policy and value
functions by iterating between policy optimization and value es-
timation. A typical ACD system consists of an actor for learning
the action policy and a critic for learning the value or cost func-
tion. Most ADP systems do not constrain the use of function
approximators. Applicable to function approximation are many
statistical and supervised learning techniques, including gra-
dient-based multilayer feedforward NNs [also known as mul-
tilayer perceptron (MLP)] [10], [15], [16], generalized adalines
[17], decision tree [18], fuzzy logic [19], cerebellar model arith-
metic computer (CMAC, also known as tile coding) [20], radial
basis function (RBF) [1], [21], and extreme learning machines
(ELMs) [22], [23].

Among these methods, multilayer perceptron (MLP) with
the gradient–descent-based BP learning algorithm has been
used widely in many reinforcement learning systems and ap-
plications, including complementary reinforcement backprop-
agation algorithm (CRBP) [15], Q-AHC [24], backgammon
[25], connectionist learning with adaptive rule induction online
(CLARION) [11], and ACDs [12], [26]. The BP learning
algorithm, however, makes small error correction steps and typ-
ically requires an iterative learning process. In addition, there
is an issue of instability as learning of new patterns may erode
the previously learned knowledge. Consequently, the resultant
systems may not be able to learn and operate in real time.
Compared with the gradient–descent approach, linear function
approximators such as CMAC and RBF often learn faster but
at the expense of using more internal nodes or basis functions.
A variant of RBF networks called resource allocation networks
(RAN) [27] further adds locally tuned Gaussian units to the
existing network structure dynamically as and when necessary.
This idea of dynamic resource allocation has been adopted in a
Q-learning system with a restarting strategy for reinforcement
learning [28]. More recently, reinforcement learning systems
with dynamic allocation and elimination of basis functions
have also been proposed [29].

Instead of using supervised learning to approximate the
value functions directly, unsupervised learning NNs, such as
self-organizing map (SOM), can be used for the representa-
tion and generalization of continuous state and action spaces
[30], [31]. The state and action clusters are then used as the
entries in a traditional Q-value table implemented separately.
Using a localized representation, SOM has the advantage of
more stable learning, compared with gradient–descent NNs
based on distributed representation. However, SOM remains an
iterative learning system, requiring many rounds to converge.
In addition, SOM is expected to scale badly if the dimensions
of the state and action spaces are significantly higher than the
dimension of the map [30].

A recent approach to reinforcement learning builds upon
ART [3], also a class of self-organizing NNs, but with very
distinct characteristics from SOM. Through a unique code
stabilizing and dynamic network expansion mechanism, ART
models are capable of learning multidimensional mappings of
input patterns in an online and incremental manner. Whereas
various models of ART and their predictive (supervised
learning) versions have been widely applied to pattern analysis
and recognition tasks [4], [5], there have been few attempts to
use ART-based networks for reinforcement learning. Ueda et
al. [32] adopt an approach similar to that of SOM using unsu-
pervised ART models to learn the clusters of state and action
patterns. The clusters are then used as the compressed states
and actions by a separate Q-learning module. Another line of
work by Ninomiya [33] couples a supervised ART system with
a TD reinforcement learning module in a hybrid architecture.
While the states and actions in the reinforcement module are
exported from the supervised ART system, the two learning
systems operate independently. This redundancy in represen-
tation unfortunately leads to instability and an unnecessarily
long processing time in action selection and learning of value
functions.
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Fig. 1. FALCON architecture.

Compared with these ART-based systems [32], [33], our pro-
posed FALCON model presents a truly integrated solution in
the sense that there is no implementation of a separate rein-
forcement learning module or Q-value table. Comparing with
RBF-based systems, the category nodes of FALCON are sim-
ilar to the basis functions. Also, the inherent capability of ART
in creating category nodes dynamically in response to incoming
patterns is also found in dynamically allocated RBF networks.
However, the output of RBF is based on a linear combination
of RBFs whereas FALCON uses a winner-take-all strategy for
selecting ONE category node at a time so as to achieve fast and
stable incremental learning.

III. FALCON ARCHITECTURE

FALCON employs a three-channel architecture (Fig. 1),
comprising a category field and three input fields, namely,
a sensory field for representing current states, a motor
field for representing actions, and a feedback field for
representing reward values. The generic network dynamics of
FALCON, based on fuzzy ART operations [34], is described as
follows.

Input vectors: Let denote the state
vector, where indicates the value of sensory
input . Let denote the action vector,
where indicates the preference of a possible
action . Let denote the reward vector, where

is the reward signal value and (the complement
of ) is given by . Complement coding serves
to normalize the magnitude of the input vectors and has
been found effective in ART systems in preventing the code
proliferation problem. As all input values of FALCON are
assumed to be bounded between 0 and 1, normalization is
necessary if the original values are not in the appropriate
range.
Activity vectors: Let denote the activity vector
for . Let denote the activity vector.
Weight vectors: Let denote the weight vector associ-
ated with the th node in for learning the input patterns
in for . Initially, contains only one un-
committed node. An uncommitted node is one which has
not been used to encode any pattern and its weight vectors
contain all 1s. When an uncommitted node is selected to
learn an association, its weight vectors are modified to en-
code the patterns and the node becomes committed.
Parameters: The FALCON’s dynamics is determined by
choice parameters , learning rates ,
contribution parameters where

, and vigilance parameters for .

To emulate the activities of sense, act, and learn, FALCON
network operates in one of the two modes, namely, predicting
and learning. The detailed algorithm is presented in the fol-
lowing.

A. Predicting

In a predicting mode, FALCON receives input patterns
from one or more input fields and predicts the patterns in the
remaining fields. Upon input presentation, the input fields
receiving values are initialized to their respective input vectors.
Input fields not receiving values are initialized to , where

for all .
Prediction in FALCON proceeds in three key steps, namely,

code activation, code competition, and activity readout, de-
scribed as follows.

Code activation: A bottom-up propagation process first
takes place in which the activities (known as choice func-
tion values) of the category nodes in the field are com-
puted. Specifically, given the activity vectors , , and

(in the input fields , , and , respectively),
for each node , the choice function is computed as
follows:

(1)

where the fuzzy AND operation is defined by
for vectors and , and the norm is de-

fined by . In essence, the choice function
computes the match between the input vectors and their
respective weight vectors of the chosen node with re-
spect to the norm of individual weight vectors.
Code competition: A code competition process follows
under which the node with the highest choice function
value is identified. The system is said to make a choice
when at most one node can become active after the code
competition process. The winner is indexed at where

for all node .
When a category choice is made at node , and

for all . This indicates a winner-take-all
strategy.
Activity readout: The chosen node performs a
readout of its weight vectors into the input fields such
that

(2)

The resultant activity vectors are thus the fuzzy AND

of their original values and their corresponding weight vec-
tors.

B. Learning

In a learning mode, FALCON performs code activation and
code competition (as described in Section III-A) to select a
winner based on the activity vectors , , and . To
complete the learning process, template matching and template
learning are performed as described in the following.

Template matching: Before node can be used for
learning, a template matching process checks that the
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weight templates of node are sufficiently close to their
respective input patterns. Specifically, resonance occurs if
for each channel , the match function of the chosen
node meets its vigilance criterion

(3)

Whereas the choice function computes the similarity be-
tween the input and weight vectors with respect to the norm
of the weight vectors, the match function computes the
similarity with respect to the norm of the input vectors. The
choice and match functions work cooperatively to achieve
stable coding and maximize code compression.
When resonance occurs, learning then ensues, as outlined
in the following. If any of the vigilance constraints is vi-
olated, mismatch reset occurs in which the value of the
choice function is set to 0 for the duration of the input
presentation. With a match tracking process in the sensory
field, at the beginning of each input presentation, the vig-
ilance parameter equals a baseline vigilance . If a
mismatch reset occurs in the motor and/or feedback field,

is increased until it is slightly larger than the match
function . The search process then selects another
node under the revised vigilance criterion until a reso-
nance is achieved. This search and test process is guaran-
teed to terminate as FALCON will either find a committed
node that satisfies the vigilance criterion or activate an un-
committed node which would definitely satisfy the crite-
rion due to its initial weight values of 1s.
Template learning: Once a node is selected for firing,
for each channel , the weight vector is modified by
the following learning rule:

(4)

The learning rule adjusts the weight values towards the
fuzzy AND of their original values and the respective weight
values. The rationale is to learn by encoding the common
attribute values of the input and the weight vectors. For an
uncommitted node , the learning rates are typically
set to 1. For committed nodes, can remain as 1 for fast
learning or below 1 for slow learning in a noisy environ-
ment.
Node Creation: Our implementation of FALCON main-
tains ONE uncommitted node in the field at any one time.
When the uncommitted node is selected for learning, it be-
comes committed and a new uncommitted node is added
to the field. FALCON thus expands its network archi-
tecture dynamically in response to the incoming patterns.
The FALCON network dynamics described previously can
be used to support a myriad of learning operations. We
present the various FALCON models, namely, R-FALCON
and TD-FALCON, in Sections IV–VII.

IV. REACTIVE FALCON

The reactive FALCON model (R-FALCON) acquires an ac-
tion policy directly by learning the mapping from the current
states to the corresponding desirable actions. A summary of

the R-FALCON dynamics based on the generic FALCON pre-
dicting and learning algorithms is provided in the following. In-
terested readers may refer to [6] for the detailed algorithm.

A. From Sensory to Action

During prediction, the activity vectors are initialized as
where indicates the value of

sensory input , , and . Set-
ting the reward vector to favors the selection of a category
node with the maximum reward value for a given state. With the
activity vector values, R-FALCON performs code activation and
code competition as described in Section III-A. Upon selecting
a winning node, the chosen node performs a readout of its
weight vector into the motor field such that

(5)

R-FALCON then examines the output activities of the
action vector and selects an action such that

for all node .

B. From Feedback to Learning

Upon receiving a feedback from its environment after per-
forming the action , R-FALCON adjusts its internal repre-
sentation using the following strategies. If a reward (positive
feedback) is received, R-FALCON learns that the chosen ac-
tion executed in a given state results in a favorable outcome.
Therefore, R-FALCON learns to associate the state vector ,
the action vector , and the reward vector . During input pre-
sentation, where indi-
cates the value of sensory input ,
where indicates the preference of an action , and

where is the reward signal value
and is given by .

Conversely, if a penalty is received, there is a reset of ac-
tion and R-FALCON learns the mapping among the state vector

, the complement of action vector , and the complement
of reward vector . During input presentation,

and where
for all , and .

R-FALCON then proceeds to learn the association among the
activity vectors of the three input fields using the learning algo-
rithm as described in Section III-B.

V. TD-FALCON

It is significant to note that the learning algorithm of
R-FALCON relies on the feedback obtained after performing
each action. In a realistic environment, it may take a long
sequence of actions before a reward or penalty is finally given.
This is known as a temporal credit assignment problem in
which we need to estimate the credit of an action based on what
it will lead to eventually.

In contrast to R-FALCON that learns a function mapping
states to actions directly, TD-FALCON incorporates TD
methods to estimate and learn value functions, specifically,
functions of state–action pairs that indicate the good-
ness for a learning system to take a certain action in a given
state . Such value functions are used in the action selection
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TABLE I
GENERIC FLOW OF THE TD-FALCON ALGORITHM

mechanism, the policy, that strives to achieve a balance between
exploration and exploitation so as to maximize the total reward
over time. A key advantage of using TD methods is that they
can be used for multiple-step prediction problems, in which the
merit of an action can only be known after several steps into
the future.

The general sense–act–learn algorithm of TD-FALCON is
summarized in Table I. Given the current state , the FALCON
network is used to predict the value of performing each avail-
able action in the action set based on the corresponding state
vector and action vector . The value functions are then pro-
cessed by an action selection strategy (also known as policy)
to select an action. Upon receiving a feedback (if any) from
the environment after performing the action, a TD formula is
used to compute a new estimate of the Q-value for performing
the chosen action in the current state. The new Q-value is then
used as the teaching signal (represented as reward vector )
for FALCON to learn the association of the current state and
the chosen action to the estimated value. The four key steps of
the TD-FALCON algorithm, namely, value prediction, action
selection, value estimation, and value learning, are elaborated
in Sections V-A–V-D.

A. Value Prediction

Given the current state and an available action in the ac-
tion set , the FALCON network is used to predict the value of
performing the action in state based on the corresponding
state vector and action vector . Upon input presentation, the
activity vectors are initialized as
where indicates the value of sensory input ,

, where if corresponds to the
action , for , and .

With the activity vector values, FALCON performs code acti-
vation and code competition as described in Section III-A. Upon
selecting a winning node, the chosen node performs a
readout of its weight vector into the reward field such that

(6)

The Q-value of performing the action in the state is then
given by

(7)

If node is uncommitted, and thus the predicted
Q-value is 0.5.

B. Action Selection Policy

Action selection policy refers to the strategy for selecting an
action from the set of actions available for an agent to take in a
prescribed state. The simplest action selection policy is to pick
the action with the highest value predicted by the FALCON net-
work. However, a key requirement of autonomous agents is to
explore the environment. If an agent keeps selecting the op-
timal action that it believes in, it may not be able to explore and
discover better alternative actions. There is thus a fundamental
tradeoff between exploitation, i.e., sticking to the best actions
believed, and exploration, i.e., trying out other seemingly infe-
rior and less familiar actions. Two policies designed to achieve
a balance between exploration and exploitation are presented in
the following.

1) The -greedy Policy: This policy selects the action with
the highest value with a probability of and takes a random
action with a probability of [35]. In other words, the policy will
pick the action with the highest value with a total probability of

and any other action with a probability of
, where denotes the set of the available actions

in a state .
With a constant value, the agent always explores the envi-

ronment with a fixed level of randomness. In practice, it may
be beneficial to have a higher value to encourage exploration
in the initial stage and a lower value to optimize the perfor-
mance by exploiting known actions in the later stage. A decay
-greedy policy is thus adopted to gradually reduce the value of
over time. The rate of decay is typically inversely proportional

to the complexity of the environment as a more complex envi-
ronment with a larger state and action space will take a longer
time to explore.

2) Softmax Policy: Under this policy, the probability
of choosing an action in state is given by the following:

(8)

where is a positive parameter called temperature and
is the estimated Q-value of action . At a high temperature, all
actions are equally likely to be taken, whereas at a low temper-
ature, the probability of taking a specific action is more depen-
dent on the value estimate of the action.
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C. Value Function Estimation

One key component of the TD-FALCON (Step 5) is the iter-
ative estimation of value function using a TD equation

TD (9)

where is the learning parameter and TD is a
function of the current Q-value predicted by FALCON and
the Q-value newly computed by the TD formula. Two distinct
Q-value updating rules, namely, Q-learning and SARSA, are
described as follows.

1) Q-Learning: Using the Q-learning rule, the temporal error
term is computed by

TD (10)

where is the immediate reward value, is the discount
parameter, and is the maximum estimated value
of the next state . It is important to note that the Q-values in-
volved in estimating are computed by the same
FALCON network and not by a separate reinforcement learning
system. The Q-learning update rule is applied to all the states
that the agent traverses. With value iteration, the value function

is expected to converge to over
time.

a) Threshold Q-learning: Whereas many reinforce-
ment learning systems have no restriction on the value of
the immediate reward and thus the value function ,
TD-FALCON and ART systems typically assume that the input
values are bounded between 0 and 1. A simple solution to this
problem is to apply a linear threshold function to the Q-values
computed such that

if
if
otherwise

(11)

The threshold function, though simple, provides a reasonably
good solution if the reward value is bounded within a range,
say between 0 and 1.

b) Bounded Q-learning: Instead of using the threshold
function, Q-values can be normalized by incorporating appro-
priate scaling terms into the Q-learning updating equation di-
rectly. The bounded Q-Learning rule is given by

TD (12)

With the scaling term, the adjustment of Q-values becomes
self-scaling so that they will not be increased beyond 1. The
learning rule thus provides a smooth normalization of the
Q-values. If the reward value is constrained between 0 and 1,
we can guarantee that the Q-values will remain to be bounded
between 0 and 1. This property is formalized in the following
lemma.

Lemma—Bounded Q-Learning Rule: Given that ,
, , and initially , the

bounded Q-learning rule

TD (13)

where

TD (14)

ensures that the Q-values are bounded between 0 and 1, i.e.,
, and that when learning ceases, the Q-values

equal either if ,
or 1, otherwise.

Proof: The proof of the lemma consists of three parts as
follows.

Part I) To prove that , we show that the new
Q-values computed by the updating rule will not
be greater than 1

Part II To prove that , we show that the new
Q-values computed by the updating rule will not
be smaller than 0

Part III) When learning ceases, we have .
This implies that either

(15)

or

(16)

As Q-values are estimates of the discounted sums of future
rewards in a given state, our requirement for Q-values to be
bounded within the range of 0–1 imposes certain restriction
on the types of problems TD-FALCON can handle directly. In
cases where the discounted sums of future rewards fall signif-
icantly outside , TD-FALCON may lack the sensitivity to
learn the Q-values accurately.

2) SARSA: Whereas Q-learning estimates future reward as a
function of the discounted maximum possible reward of taking
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an action from the next state , the SARSA rule simply es-
timates the future reward using its behavior policy with a dis-
counted factor given by . Using the SARSA rule, the
temporal error term is computed by

TD (17)

where is the immediate reward signal, is the discount
parameter, and is the estimated value of the next state

. Unlike Q-learning, SARSA does not have a separate estima-
tion policy. Consequently, SARSA is said to be an on-policy as
it estimates value functions based on the actions it takes. With
value iteration, the value function is expected to con-
verge to .

As the value range of TD for SARSA is the same as
that for Q-learning, the normalization techniques derived for
Q-learning (described in Section V-C1) are applicable to
SARSA. Following the bounded Q-learning rule, the bounded
SARSA learning rule is given by

(18)

D. Value Function Learning

Upon estimating a new Q-value, FALCON learns to asso-
ciate the current state and the action with the Q-value.
During input presentation,
where indicates the value of sensory input ,

where if corresponds
to the action and for , and where

and . FALCON then performs code
activation, code competition, template matching, and template
learning as described in Sections III-A and III-B to encode the
association.

VI. EXPERIMENTAL RESULTS

A. Minefield Navigation Task

The minefield simulation task studied in this paper is similar
to the underwater navigation and mine avoidance domain de-
veloped by U.S. Naval Research Laboratory (NRL) [18]. The
objective is to navigate through a minefield to a randomly se-
lected target position in a specified time frame without hitting a
mine. To tackle the minefield navigation task, Gordan and Sub-
ramanian [18] build two cognitive models, one for predicting the
next sonar and bearing configuration based on the current sonar
and bearing configuration and the chosen action, and the other
for estimating the desirability of a given sonar and bearing con-
figuration. Sun et al. [11] employ a three-layer feedforward NN
trained by error BP to learn the Q-values and an additional layer
to perform stochastic decision making based on the Q-values.

For experimentation, we develop a software simulator for the
minefield navigation task. The simulator allows a user to specify
the size of the minefield as well as the number of mines in the
field. Our experiments so far have been based on a 16 16
minefield containing ten mines. In each trial, the AV starts at
a randomly chosen position in the field and repeats the cycles of
sense–act–learn. A trial ends when the system reaches the target
(success), hits a mine (failure), or exceeds 30 sense–act–learn

TABLE II
TD-FALCON PARAMETERS FOR LEARNING WITH IMMEDIATE REWARDS

cycles (out of time). The target and the mines remain stationary
during the trial.

Minefield navigation and mine avoidance are nontrivial tasks.
As the configuration of the minefield is generated randomly and
changes over trials, the system needs to learn strategies that can
be carried over across experiments. In addition, the system has a
rather coarse sensory capability with a 180 forward view based
on five sonar sensors. For each direction , the sonar signal is
measured by , where is the distance to an obstacle
(that can be a mine or the boundary of the minefield) in the

direction. Other input attributes of the sensory (state) vector
include the bearing of the target from the current position. In
each step, the system can choose one of the five possible actions,
namely, move left, move diagonally left, move straight ahead,
move diagonally right, and move right.

B. Learning With Immediate Reinforcement

We first consider the problem of learning the minefield nav-
igation task with immediate evaluative feedback. The reward
scheme is described as follows: At the end of a trial, a reward of
1 is given when the AV reaches the target. A reward of 0 is given
when the AV hits a mine. At each step of the trial, an immediate
reward is estimated by computing a utility function

utility (19)

where is the remaining distance between the current position
and the target position. When the AV runs out of time, the reward
is computed using the utility function based on the remaining
distance to the target.

We experiment with R-FALCON that learns the state–ac-
tion policy directly and four types of TD-FALCON models,
namely, Q-FALCON and BQ-FALCON based on threshold
Q-learning and bounded Q-learning, respectively, as well as
S-FALCON and BS-FALCON based on threshold SARSA and
bounded SARSA, respectively. Each FALCON system consists
of 18 nodes in the sensory fields (representing 5 2 comple-
ment-coded sonar signals and eight target bearing values), five
nodes in the action field, and two nodes in the reward field
(representing the complement-coded function value).

All FALCON systems use a standard set of parameter values
as shown in Table II. The choice parameters are used in the
choice function (1) in selecting category nodes. Using a larger
choice value generally improves the predictive performance of
the system but increases the number of category nodes created.
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Fig. 2. Success rates of R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and BS-FALCON operating with immediate reinforcement over 3000 trials across
ten experiments.

Fig. 3. Average normalized steps taken by R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and BS-FALCON operating with immediate reinforcement to
reach the target over 3000 trials across ten experiments.

The learning rate parameters for are set to 1.0
for fast learning. Decreasing the learning rates slows down the
learning process, but may produce a smaller set of better quality
category nodes and thus lead to a slightly better predictive per-
formance. The contribution parameters and are set to
0.5 as TD-FALCON selects a category node based on the input
activities in the state and action fields. The baseline vigilance
parameters and are set to 0.2 for a marginal level of
match criterion on the state and action spaces so as to encourage
generalization. The vigilance of the reward field is fixed at
0.5 for a stricter match criterion. Increasing the vigilance values
generally increases the predictive performance with the cost of
creating more category nodes. For the TD learning rules, the
learning rate is fixed at 0.5 to allow a modest pace of learning

while retaining stability. The discount factor is set to 0.1 to
favor the direct reward signals available. The initial Q-value,
used when TD-FALCON selects an uncommitted node during
prediction, is set to 0.5, corresponding to a weight vector of
(1,1). For action selection policy, the decay -greedy policy is
used with initialized to 0.5 and decayed at a rate of 0.0005
per trial, until drops to 0.005. This implies that the system
will have a low chance to explore new moves after around 1000
trials.

Fig. 2 summarizes the performance of R-FALCON,
Q-FALCON, BQ-FALCON, S-FALCON, and BS-FALCON in
terms of success rates averaged at 200-trial intervals over 3000
trials across ten sets of experiments. We can see that the success
rates of all systems increase steadily right from the beginning.
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Fig. 4. Average numbers of category nodes created by R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and BS-FALCON operating with immediate rein-
forcement over 3000 trials across ten experiments.

Among all, R-FALCON is the fastest, achieving 90% at 600
trials. Nevertheless, beyond 1000 trials, all TD-FALCON
systems can achieve over 90% success rates. In the long
run, R-FALCON and all four TD-FALCON systems achieve
roughly the same level of performance.

To evaluate in quantitative terms how well a system traverses
from a starting position to the target, we define a measure called
normalized step given by step step , where “step” is
the number of sense–act–learn cycles taken to reach the target
and is the shortest distance between the starting and target
positions. A normalized step of 1 means that the system has
taken the optimal path to the target.

Fig. 3 depicts the average normalized steps taken by
R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and
BS-FALCON to reach the target over 3000 trials across the ten
sets of experiments. We see that all systems are able to reach
the targets via near-optimal paths after 1200 trials, although
R-FALCON achieves that in 600 trials. In the long run, all
systems produce a stable performance in terms of the quality of
the paths taken.

Fig. 4 depicts the average numbers of category nodes cre-
ated by R-FALCON, Q-FALCON, BQ-FALCON, S-FLACON,
and BS-FALCON over 3000 trials across the ten sets of exper-
iments. Among the five systems, R-FALCON creates the most
number of codes, significantly more than those created by the
TD-FALCON systems. While we observe no significant perfor-
mance difference among the four TD-FALCON systems in other
aspects, BQ-FALCON and BS-FALCON demonstrate the ad-
vantage of the bounded learning rule by producing a more com-
pact set of category nodes than Q-FALCON and S-FALCON.

C. Learning With Delayed Reinforcement

In this set of experiments, the AV does not receive immediate
evaluative feedback for each action it performs. This is a more
realistic scenario, because in the real world, the targets may be
blocked or invisible. The reward scheme is described as follows:

A reward of 1 is given when the AV reaches the target. A re-
ward of 0 is given when the AV hits a mine. Different from the
previous experiments with immediate rewards, a reward of 0 is
given when the system runs out of time. In accordance with the
bounded Q-learning lemma, negative reinforcement values are
not used in our reward scheme to ensure the Q-values are always
bounded within the desired range of 0–1.

All systems use the same set of parameter values as shown in
Table II, except that the TD discount factor is set to 0.9 due
to the absence of immediate reward signals. Fig. 5 summaries
the performance of R-FALCON, Q-FALCON, BQ-FALCON,
S-FALCON, and BS-FALCON in terms of success rates aver-
aged at 200-trial intervals over 3000 trials across ten sets of ex-
periments. We see that R-FALCON produces a miserable near-
zero success rate throughout the trials. This is not surprising as
it only undergoes learning when it hits the target or a mine. The
TD-FALCON systems, on the other hand, maintain the same
level of learning efficiency as those obtained in the experiments
with immediate reinforcement. At the end of 1000 trials, all four
TD-FALCON systems can achieve success rates of more than
90%. In the long run, there is no significant difference in the
success rates of the four systems.

Fig. 6 shows the average normalized steps taken by
R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and
BS-FALCON to reach the targets over 3000 trials across ten
experiments. Without immediate rewards, R-FALCON as
expected performs very poorly. All four TD-FALCON sys-
tems, on the other hand, maintain the quality by always taking
near-optimal paths after 1000 trials.

Fig. 7 shows the numbers of category nodes created by
R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and
BS-FALCON over the 3000 trials. Without immediate reward,
the quality of the estimated value functions declines. As a
result, all systems create a significantly larger number of cat-
egory nodes comparing with those created in the experiments
with immediate reinforcement. Nevertheless, TD-FALCON
systems with bounded learning rule (i.e., BQ-FALCON and
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Fig. 5. Success rates of R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and BS-FALCON operating with delayed reinforcement over 3000 trials across
ten experiments.

Fig. 6. Average normalized steps taken by R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and BS-FALCON operating with delayed reinforcement to
reach the target over 3000 trials across ten experiments.

BS-FALCON) as before cope better with a smaller number of
nodes.

D. Comparing With Gradient–Descent-Based Q-Learning

To put the performance of TD-FALCON in perspective, we
further conduct experiments to evaluate the performance of a
reinforcement learning system (hereafter referred to as BP-Q
learner), using the standard Q-learning rule and a gradient–de-
scent-based multilayer feedforward NN as the function approx-
imator. Although we start off by incorporating TD learning into
the original (reactive) FALCON system for the purpose of han-
dling delayed rewards, FALCON effectively serves as a function
approximator for learning the Q-value function. It thus makes
sense to compare FALCON with another function approximator
in the same context of Q-learning. Among the various universal

function approximation techniques, we have chosen the gra-
dient-descent BP algorithm as the reference point for compar-
ison as it is by far one of the most widely used and has been
applied in many different systems, including Q-learning [10],
[11] as well as ACD [12], [13], [26]. The specific configuration
of combining Q-learning and multilayer feedforward NN with
error BP has been used by Sun et al. [11] in a similar underwater
minefield navigation domain.

The BP-Q learner employs a standard three-layer (consisting
of one input layer, one hidden layer, and one output layer)
feedforward architecture to learn the value function. The input
layer consists of 18 nodes representing the five sonar signal
values, eight possible target bearings, and five selectable ac-
tions. The input attributes are exactly the same as those used
in the TD-FALCON, except that the sonar signals are not
complement coded. The output layer consists of only one node
representing the value of performing an action in a particular
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Fig. 7. Average numbers of category nodes created by R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, and BS-FALCON operating with delayed rein-
forcement over 3000 trials across ten experiments.

state. All hidden and output nodes employ a symmetrical
sigmoid function. For a fair comparison, the BP-Q learner also
makes use of the same decay -greedy action selection policy.

Using a learning rate of 0.25 and a momentum term of 0.5
for the hidden and output layers, we first experiment with a
varying number of hidden nodes and obtain the best results with
36 nodes. Using a smaller number of, say 24, nodes produces
a slightly lower success rate with a larger variance in perfor-
mance. Increasing the number of nodes to 48 leads to a poorer
result as well. We then experiment with different learning rates,
from 0.1 to 0.3, for the hidden and output layers and obtain the
best results with learning rates of 0.3 for the two layers. In-
creasing the learning rates to 0.4 and 0.5 produces slightly infe-
rior results. We further experiment with different decay sched-
ules for the -greedy action policy. We find that BP-Q requires a
much longer exploration phase with an decay rate of 0.00001.
Attempts with a higher decay rate meet with significantly
poorer results. The best results obtained by the BP-Q learner
across ten sets of experiments in terms of success rates are re-
ported in Fig. 8. The performance figures, obtained with initial
random weight values between 0.5 and 0.5, are significantly
better than our previous results obtained using initial weight
values between 0.25 and 0.25.

Although there has been no guarantee of convergence by
using a function approximator, such as MLP with error BP,
for Q-learning [7], the performance and the stability of BQ-P
are actually quite good. For both experiments involving imme-
diate and delayed rewards, the BP-Q learner can achieve very
high success rates consistently, although it generally takes a
large number of trials (around 40 000 trials) to cross the 90%
mark. In contrast, TD-FALCON achieves the same level of
performance (90%) within the first 1000 trials. This indicates
that TD-FALCON is around 40 times (more than an order of
magnitude) faster than the BP-Q learner in terms of learning
efficiency.

Considering network complexity, the BP-Q learner has the
advantage of a highly compact network architecture. When
trained properly, a BP network consisting of 36 hidden nodes
can produce performance equivalent to that of a TD-FALCON
model with around 200 category nodes. In terms of adaptation
speed, however, TD-FALCON is clearly a faster learner by
consistently mastering the task in a much smaller number of
trials.

E. Comparing With Direct NDP

We have also attempted an ACD model [26], specifically di-
rect NDP [12], belonging to the class of ADHDP, on the mine-
field navigation problem. Direct NDP consists of a critic and
action networks, wherein the output of the action network feeds
directly into the input layer of the critic network. Our Java im-
plementation of the direct NDP is modified from the Matlab
code. As in typical action-dependent (AD) versions of ACD,
training of the critic network is based on optimizing a cost or re-
ward-to-go function by balancing the Bellman’s equation [36],
whereas training of the action network relies on the error signals
backpropagated from the critic network.

We first experiment with the original direct NDP and find
several extensions needed for the minefield problem. The key
changes include modifying the output layer of the action net-
work and the input layer of the critic network from a single
action node to multiple action nodes (one for each of the five
movement directions) and restricting the choice of actions to
those valid ones only. We also make use of the next total dis-
counted reward-to-go in calculating the error term of
the critic network [26] instead of the previous total discounted
reward-to-go as used in the original direct NDP code.
This modification is necessary as the minefield navigation task
does not run indefinitely (as in tasks such as pole balancing) and
using the next enables us to “ground” the values at the ter-
minal states. Specifically, when an action of the AV leads to the
target, we assign 1 to instead of using the critic network
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Fig. 8. Success rates of BP-Q learning over 100 000 trials across ten experiments.

TABLE III
TIME COMPLEXITIES OF R-FALCON, TD-FALCON, BP-Q, AND DIRECT NDP PER SENSE–ACT–LEARN CYCLE S AND A DENOTE THE DIMENSIONS OF THE

SENSORY AND ACTION FIELDS, RESPECTIVELY. N INDICATES THE NUMBER OF CATEGORY NODES FOR TD-FALCON AND THE NUMBER OF HIDDEN

NODES IN THE CONTEXT OF BP-Q AND DIRECT NDP

to compute . Similarly, when an action results in hitting
a mine, we assign 0 to . We also experiment with other
enhancement, such as incorporating bias nodes in the input and
hidden layers of the action and critic networks, and adding in
an exploration mechanism as used by Q-learning, but find that
they are not necessary in the context of direct NDP.

Our experiments of direct NDP so far do not always result in
convergence. Whereas training the critic network is generally
problem-free, convergence of the action network is much more
challenging. Despite experimenting with various learning and
decay rates, the output (action vector) values of the AN could
still become saturated (at 1 or 1) and this prevents further re-
duction of the action network’s error function value. In some
experiments, direct NDP does converge successfully. In a typ-
ical successful run, direct NDP is able to cross 90% success rate
in 30 000 trials and achieve around 95% after 50 000 trials. Al-
though the stability and performance of direct NDP should im-
prove as we gain more experience of the system, we reckon it is
unlikely to match the learning speed displayed by TD-FALCON
in the minefield domain.

VII. COMPLEXITY ANALYSIS

A. Space Complexity

The space complexity of FALCON is determined by the
number of weight values or conditional links in the FALCON
network. Specifically, the space complexity is given by

, where , , and are the dimensions
of the sensory, action, and reward fields, respectively, and
is the number of category nodes in the category field. With

a fixed number of hidden nodes, the space complexity of the
BP-Q learner as well as that of direct NDP is in the order of

. BP-Q and direct NDP are thus typically more
compact than a FALCON network.

Without function approximation, a table lookup reinforce-
ment learning system would associate a value for each state or
for each state–action pair. The space complexity for learning
state–action mapping is thus , where is the number
of the sensory inputs and is the largest number of discretized
values across the attributes. On the other hand, the space com-
plexity for learning the state–action-value mapping is ,
where is the number of available actions. It can be seen that
whereas the space complexities of TD-FALCON, BP-Q, and di-
rect NDP are in the order of polynomial, the space complexity
of a traditional table lookup system is exponential.

B. Time Complexity

Table III summarizes the computational complexity of var-
ious FALCON systems compared with BP-Q and direct NDP,
in terms of action selection and learning. For simplicity, we
have omitted the dimension of reward field , which is fixed
at 2. As TD-FALCON and BP-Q both compute the Q-values
of all possible actions before selecting one, they have a higher
time complexity than R-FALCON and direct NDP, which se-
lect an action based on the current state input directly. In terms
of learning, Q-FALCON, BQ-FALCON, and BP-Q are more
time consuming as they need to evaluate the maximum Q-value
of the next state. As TD-FALCON creates category nodes dy-
namically whereas BP-Q and direct NDP use a fixed number of
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TABLE IV
COMPUTING TIME TAKEN BY R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, AND BS-FALCON FOR LEARNING MINEFIELD

NAVIGATION WITH IMMEDIATE REINFORCEMENT

TABLE V
COMPUTING TIME TAKEN BY R-FALCON, Q-FALCON, BQ-FALCON, S-FALCON, AND BS-FALCON FOR LEARNING MINEFIELD

NAVIGATION WITH DELAYED REINFORCEMENT

hidden nodes, the latter two are deemed to have a lower time
complexity. Based on the time complexity analysis, we con-
clude that the time complexity of direct NDP per reaction cycle
is the lowest, followed by R-FALCON and BP-Q. Among the
various TD-FALCON systems, the time complexities are basi-
cally equivalent with a small action set. The overall relations can
be summarized as

(direct NDP) (R-FALCON)

(BP-Q)

(S-FALCON)

(BS-FALCON)

(Q-FALCON)

(BQ-FALCON)

where refers to the time complexity of the individual
system, “ ” means “is lower than” and “ ” means “is equiva-
lent to.”

C. Run Time Comparison

Tables IV and V show the computation time taken by the
various systems per step (i.e., sense–act–learn cycle) in the
minefield experiments with immediate and delayed reinforce-
ment, respectively. The figures are based on our experiments
conducted on a notebook computer using a 1.6-GHz Pentium
M processor with 512-MB memory. For experiments with
immediate reinforcement, R-FALCON is the fastest by learning
the action policy directly. BQ-FALCON and BS-FALCON
are slower than R-FALCON, but are faster than S-FALCON
and Q-FALCON. For experiments with delayed reinforce-
ment, BQ-FALCON and BS-FALCON are also faster than
Q-FALCON and S-FALCON. As the time complexities of
the four TD-FALCON systems are in the same order of the
magnitude, the variations in reaction time among the four
TD-FALCON systems are largely due to the different numbers
of category nodes created by the various systems over the
3000 trials. On the whole, the reaction time per step for all
systems are in the range of a few milliseconds. This shows that
TD-FALCON systems are able to learn and function in real
time with both immediate and delayed reinforcement.

TABLE VI
COMPUTING TIMES TAKEN BY BP-Q AND DIRECT NDP FOR LEARNING

MINEFIELD NAVIGATION. THERE IS NO NOTICEABLE DIFFERENCE

BETWEEN EXPERIMENTS WITH IMMEDIATE AND

DELAYED REINFORCEMENT

Referring to Table VI, the computing time of BP-Q and di-
rect NDP presents an interesting picture. BP-Q and direct NDP
tend to be more computationally expensive in the initial learning
stage. However, once the networks are fully trained, a minimal
amount of time is spent in learning and the reaction time per
cycle is extremely short. Averaged over 100 000 trials, the re-
action times of BP-Q and direct NDP are 0.3 millisecond and
1.3 ms, respectively, even lower than those of TD-FALCON
systems. However, both BP-Q and direct NDP require a much
larger number of trials to achieve the same level of performance
as TD-FALCON. The computing time required on the whole is
in fact longer.

VIII. CONCLUSION

We have presented a fusion architecture, known as
TD-FALCON, for learning multimodal mappings across
states, actions, and rewards. The proposed model provides a
basic building block for developing autonomous agents capable
of functioning and adapting in a dynamic environment with
both immediate and delayed reinforcement signals. Among
all, BQ-FALCON and BS-FALCON are the best performers in
terms of task completion, learning speed, and efficiency.

Whereas Q-learning implemented with table lookup has been
proven to converge under specific conditions [8], the proof of
convergence for TD learning with the use of function approxi-
mators, in general, is still an open problem. Nevertheless, ART-
based systems appear to provide a better incremental learning
and convergence behavior compared with standard gradient–de-
scent-based methods in our past and present experiments.

The minefield navigation task has supported the validity of
our approach and algorithms. However, the problem is rela-
tively small in scale. Our future work will involve applying
TD-FALCON to more complex and challenging domains and
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comparing with key alternative systems. As TD-FALCON as-
sumes that the input values are bounded between 0 and 1, our
requirement for Q-values to be bounded thus imposes some con-
straints on the choice of reward function ( ) and the TD pa-
rameter values ( and ). These, in turn, may restrict the types
of problems TD-FALCON can handle directly. In addition, our
study so far has assumed the use of a discrete action set. For
tasks that involve actions with continuous values, we would
need to extend the learning algorithms to handle both contin-
uous state and action spaces.

Our experiments have also shown that TD-FALCON may
create too many category nodes during learning resulting in
a drop in efficiency. As such, we will explore algorithms for
generating a more compact TD-FALCON network structure.
Another solution is to incorporate a real-time node evaluation
and pruning mechanism [6], [37] as part of the TD-FALCON
learning dynamics in order to reduce network complexity and
improve computational efficiency.

While the comparisons between TD-FALCON and the
standard gradient–descent-based methods have shown an ad-
vantage of TD-FALCON, additional comparisons remain to
be performed with more sophisticated gradient–descent ap-
proaches, such as least squares policy iteration (LSPI) [38], and
dynamic resource allocating methods, such as ones based on
Platt’s resource-allocating network (RAN) [27]. Considering
that TD-FALCON employs an augmented learning network
embedding the Q-learning algorithm, it will also be interesting
to see if other reinforcement learning methods, such as NDP,
can be integrated into the FALCON network to produce a more
robust and efficient learning system.
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