
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2015

Self-organizing neural networks integrating domain knowledge Self-organizing neural networks integrating domain knowledge

and reinforcement learning and reinforcement learning

Teck-Hou TENG
Nanyang Technological University

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Jacek M. ZURADA
University of Louisville

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer and Systems Architecture Commons, Databases and Information Systems

Commons, and the OS and Networks Commons

Citation Citation
TENG, Teck-Hou; TAN, Ah-hwee; and ZURADA, Jacek M.. Self-organizing neural networks integrating
domain knowledge and reinforcement learning. (2015). IEEE Transactions on Neural Networks and
Learning Systems. 26, (5), 889-902.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5236

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Self-Organizing Neural Networks Integrating
Domain Knowledge and Reinforcement Learning

Teck-Hou Teng, Member, IEEE, Ah-Hwee Tan, Senior Member, IEEE, and Jacek M. Zurada, Life Fellow, IEEE

Abstract— The use of domain knowledge in learning systems
is expected to improve learning efficiency and reduce model
complexity. However, due to the incompatibility with knowledge
structure of the learning systems and real-time exploratory
nature of reinforcement learning (RL), domain knowledge cannot
be inserted directly. In this paper, we show how self-organizing
neural networks designed for online and incremental adap-
tation can integrate domain knowledge and RL. Specifically,
symbol-based domain knowledge is translated into numeric
patterns before inserting into the self-organizing neural networks.
To ensure effective use of domain knowledge, we present an
analysis of how the inserted knowledge is used by the self-
organizing neural networks during RL. To this end, we propose a
vigilance adaptation and greedy exploitation strategy to maximize
exploitation of the inserted domain knowledge while retaining the
plasticity of learning and using new knowledge. Our experimental
results based on the pursuit-evasion and minefield navigation
problem domains show that such self-organizing neural network
can make effective use of domain knowledge to improve learning
efficiency and reduce model complexity.

Index Terms— Adaptive resonance theory (ART), domain
knowledge, reinforcement learning (RL), self-organizing neural
networks.

I. INTRODUCTION

THE use of domain knowledge in machine learning has
become pervasive over the past two decades largely due

to its significant impact on learning outcomes [1]. Integrating
domain knowledge that cannot be easily learned into a learning
model can lead to improvements in terms of both learning effi-
ciency as well as model complexity [2]. When designing real-
time autonomous systems, knowledge insertion is especially
beneficial as it allows the systems to start operating at a reason-
able level of performance in a potentially hostile environment.

Various approaches to incorporating domain knowledge
into different learning processes have been proposed. Early
works on the use of domain knowledge include training
neural networks by learning from hints [3], the first-order
combined learner in inductive learning [4], the explanation-
based neural network in explanation-based learning [5], the
knowledge-based artificial neural network (KBANN) [6], and

Manuscript received July 17, 2013; revised May 13, 2014; accepted May 24,
2014.

T.-H. Teng and A.-H. Tan are with the School of Computer Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
thteng@ntu.edu.sg; asahtan@ntu.edu.sg).

J. M. Zurada is with the University of Louisville, Louisville, KY 40292
USA, and also with the Information Technology Institute, University of Social
Sciences, Łódź 90-113, Poland (e-mail: jacek.zurada@louisville.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2014.2327636

the knowledge-based conceptual neural network (KBCNN) [7]
in supervised learning. Although many different usages of
domain knowledge have been demonstrated, few of them
attempted to insert symbolic knowledge explicitly into the
learning models. This is thought to be largely due to the
difficulty in reconciling the human-specified symbolic knowl-
edge and the specialized knowledge representation typically
found in the learning models. For reinforcement learning (RL)
systems, there is also a dilemma between exploiting inserted
knowledge and exploring new knowledge.

In most RL systems, domain knowledge is used indirectly
to improve learning efficiency [8]–[11]. In contrast, this paper
shows how domain knowledge can be directly inserted into
a self-organizing neural network model known as fusion
architecture for learning and cognition (FALCON) [12], [13]
and used for RL. As a generalized form of adaptive resonance
theory (ART) [14], FALCON performs online incremental
learning of cognitive nodes for encoding value and action
policies based on evaluative feedback from the environ-
ment. As the knowledge encoded by the cognitive nodes in
FALCON is compatible with symbolic rule-based represen-
tation, IF-THEN rules specified by human experts can be
inserted into FALCON, and subsequently, refined and supple-
mented by the discovered knowledge.

While our initial experiments on rule insertion have yielded
encouraging results, they are limited to relatively simple
domains, such as minefield navigation task (MNT) [15] and
route planning task [16]. Issues arise when the method was
applied to problems involving larger state spaces. Specifically,
rather than making use of the inserted knowledge, which are
highly generalized patterns of the state space, the model tends
to create and use newly learned knowledge.

To improve the use of the inserted knowledge, we present
an analysis to show how the vigilance parameters of FALCON
can influence the exploitation of inserted knowledge and the
learning of new knowledge patterns. From the analysis, we
conclude that using low state vigilance encourages exploita-
tion of domain knowledge. More importantly, we propose a
reward vigilance adaptation strategy that enables the max-
imal exploitation of domain knowledge while retaining the
flexibility of exploring new knowledge if necessary. This
strategy depends on the reward vigilance criterion to ensure
the selection of good rules. Consequentially, exploration of
new knowledge is conducted only when no cognitive nodes
can satisfy the reward vigilance criterion.

We evaluate our proposed strategies using a nontrivial
pursuit-evasion (PE) problem domain and the MNT. The first

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

set of experiments investigates the impact of using different
state vigilances on the inserted domain knowledge. The next
set of experiments investigates the effect of using greedy
exploitation with the reward vigilance adaptation strategy. The
third set of experiments compares the greedy exploitation and
adaptive reward vigilance strategy with alternative approaches,
including a naïve response system, a nonadaptive FALCON,
an adapted k nearest neighbor (NN)-TD(λ) model [17], an
adapted growing self-organizing map (GSOM) [18], and stan-
dard Q-learning. The final experiment evaluates the proposed
strategies in the MNT problem domain. The experimental
results confirm our hypothesis that a self-organizing neural
network that makes proper use of domain knowledge can have
improved learning efficiency and reduced model complexity.

The presentation of this approach opens with a survey of
related works that use domain knowledge to improve learning
efficiency in Section II. This is followed by a summary of
FALCON in Section III. Details on how domain knowledge
can be used to improve learning efficiency are provided
in Section IV. The PE problem domain is introduced in
Section V. This is followed by the presentation of the exper-
iments and the results in Section VI. The conclusion of this
paper is provided in Section VII.

II. RELATED WORK

Various approaches to integrate domain knowledge and
different types of learning systems have been known. In many
of these works, domain knowledge is used in an indirect
manner. For example, domain knowledge has been used to
generate rare examples for learning [19]. Domain knowledge
were also used for selecting variables and features for learning
systems [20]. Direct use of different types of domain knowl-
edge in inductive learning was also known to significantly
reduce the amount of search required [4].

Bayesian networks, on the other hand, have used domain
knowledge in both direct and indirect ways. Direct use
of domain knowledge in Bayesian networks includes [21],
where domain knowledge expressed intuitively using object-
oriented Bayesian network was used with the structural EM
algorithm for improving learning efficiency. Indirect uses of
domain knowledge in Bayesian networks includes [22], where
domain knowledge in the form of Bayesian prior probabil-
ity distribution within the preferential metric was used to
derive the instantaneous cost of incremental learning using
gradient-descent algorithms. In [23], domain knowledge from
experts was used in search-based learning process of Bayesian
networks.

Indirect uses of domain knowledge in neural networks
includes [3], where knowledge on known properties of a func-
tion was used in learning-from-examples paradigm for training
neural networks. In [24], transformation-invariance domain
knowledge and knowledge on data were incorporated into
support vector machines to build invariant kernels, generate
training data, and formulate problem of optimization methods.
In addition, domain knowledge was used to design a new
class of neural networks that generalized better than standard
artificial neural network [25].

Fig. 1. FALCON architecture.

Direct uses of domain knowledge in neural networks for
supervised learning includes [7], where domain knowledge is
inserted into KBCNN and refined using supervised learning.
In [6], symbolic rules were used to initialize the network
structure of KBANN. However, refinement of the learned
symbolic rules using backpropagation algorithm can erode
the originally inserted knowledge. To address this problem,
cascade ARTMAP was proposed to integrate domain knowl-
edge represented as propositional rules and neural network
learning [2]. Based on ART, cascade ARTMAP enabled sta-
ble encoding of inserted knowledge and further learning of
new knowledge when necessary by creating new cognitive
nodes.

Domain knowledge is typically used indirectly in RL
systems. For example, domain knowledge on the rate of
spatial variation of the action values was incorporated into
Q-learning [8]. In addition, domain knowledge was used to
initialize the evaluation function and to define state-dependent
action sets [9]. In addition, domain knowledge was used to
partition the key states to speed up RL [10]. An example of the
direct use of domain knowledge is when domain knowledge
in the form of approximate plans with several choices points
was incorporated into Icarus agent for further refinement using
RL [11].

As seen, many learning systems have used domain knowl-
edge in an indirect fashion. There are even fewer attempts
to insert domain knowledge directly into real-time learning
models. This, we believe, is due to the difficulty in reconciling
domain knowledge and real-time learning. For RL, there is an
added dilemma of balancing between exploitation of inserted
knowledge and the exploration of new knowledge.

III. REINFORCEMENT LEARNING MODEL

FALCON [12], [13] is a class of self-organizing neural
network designed for RL. Based on ART [14], FALCON learns
incrementally and generalizes in real time. The long-term
value of the selected action choices to the states is estimated
using a temporal difference (TD) method known as bounded
Q-learning [26].

A. Structure and Operating Modes

Structurally, the FALCON neural network employs a three-
channel architecture (Fig. 1) comprising an input/output (IO)
layer and a knowledge layer. The IO layer has three input
fields, namely a sensory field Fc1

1 for accepting state vector S,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TENG et al.: SELF-ORGANIZING NEURAL NETWORKS 3

Algorithm 1 FALCON Algorithm

Require: Activity vectors xck and all weight vectors wck
j for k = {1, 2, 3}

1: for each Fc
2 node j do

2: Code Activation: The choice function T c
j is derived using

T c
j =

3∑

k=1

γ ck
|xck ∧ wck

j |
αck + |wck

j | (1)

where the fuzzy AND operation (p ∧ q)i ≡ min(pi , qi), the norm | · | is
defined by |p| ≡ ∑

i pi for vectors p and q, αck ∈ [0, 1] are the choice
parameters, and γ ck ∈ [0, 1] are the contribution parameters.

3: end for
4: repeat
5: Code Competition: Index of winning cognitive node J is found using

J = arg max
j

{T c
j : for all Fc

2 node j}.

6: Template Matching: Derive mck
J to determine whether resonance is

attained using

mck
J = |xck ∧ wck

J |
|xck | ≥ ρck (2)

where ρck ∈ [0, 1] are the vigilance parameters.
7: if vigilance criterion is satisfied then
8: Resonance is attained.
9: else
10: Match Tracking: Modify state vigilance ρc1 using

ρc1 = min{mck
J + ψ, 1.0}

where ψ is a very small step increment to match function mck
J .

11: Reset: T c
J = 0.0.

12: end if
13: until Resonance State is attained.
14: if operating in LEARN/INSERT mode then
15: Template Learning: Modify wck

J using

wck(new)
J = (1 − βck)wck(old)

J + βck (xck ∧ wck(old)
J) (3)

where βck ∈ [0, 1] are the learning rate parameters.
16: else if operating in PERFORM mode then
17: Activity Readout: Read out the action vector A of cognitive node J

using

xc2(new) = xc2(old) ∧ wc2
J . (4)

Decode xc2(new) to derive action choice a.
18: end if

an action field Fc2
1 for accepting action vector A, and a reward

field Fc3
1 for accepting reward vector R. The category field Fc

2
at the knowledge layer stores the committed and uncommitted
cognitive nodes. Each cognitive node j has a set of template
weights wck

j for k = {1, 2, 3}.
FALCON operates in the PERFORM mode to decide on

action choices for the states. FALCON operates in the LEARN
mode to learn the long-term values of these action choices on
the states. To be detailed in Section IV-A, FALCON operates
in the INSERT mode to assimilate domain knowledge.

Given an input state, presented as activity vector xck ,
FALCON selects winning cognitive node J using the approach
outlined in Algorithm 1. In the PERFORM mode, the action
field is used in activity readout to decode wc3

J as action choice
a using (4). Selecting an uncommitted cognitive node in the
PERFORM mode triggers exploration for action choice a.
In the LEARN mode, cognitive node J is used in template
learning to learn the activity vectors xck using (3). A new

Algorithm 2 TD-FALCON Algorithm
1: Initialize the FALCON network.
2: Sense the environment and formulate a state vector S based on the current

state s.
3: Following an action selection policy, first make a choice between explo-

ration and exploitation.
4: if Exploration then
5: Choose action choice a using an exploration strategy.
6: else if Exploitation then
7: Identify action choice a with the maximal Q(s, a) value by presenting

the state vector S, the action vector A = {1, . . . , 1}, and the reward
vector R = {1, 0} to FALCON.

8: end if
9: Perform the action choice a, observe the next state s′, and receive a reward

r (if any) from the environment.
10: Estimate the revised value function Q(s, a) following a TD formula, such

as �Q(s, a) = α(r + γ maxa′ Q(s′, a′)− Q(s, a)).
11: Formulate action vector A based on action choice a and reward vector R

based on Q(s, a).
12: Present the corresponding state S, action A, and reward R vectors to

FALCON for learning.
13: Update the current state by s = s′.
14: Repeat from Step 2 until s is a terminal state.

cognitive node is created when an uncommitted cognitive node
is selected as the winning node in the LEARN mode.

B. Incorporating TD Method

For learning from delayed evaluative feedback signals, the
value function Q(s, a) of state-action pairs is estimated using
TD method outlined in Algorithm 2 [13]. At time t , lines
1–9 of Algorithm 2 show FALCON operating in PERFORM
mode to select action choice a either by exploration or by
exploitation. At time t + 1, lines 10–13 of Algorithm 2 show
that FALCON operating in LEARN mode uses reward r from
the environment on action choice a to estimate the value
function Q(s, a).

1) Iterative Value Estimation: A TD method known as
bounded Q-learning [13] is iteratively used to estimate the
value of applying action choice a to state s. The Q-value
update function is given by

Qnew(s, a) = Q(s, a)+ αTDerr(1 − Q(s, a))

where α ∈ [0, 1] is the learning parameter and the TDerr is
the temporal error term, which is derived using

TDerr = r + γ max
a′ Q(s′, a′)− Q(s, a)

where γ ∈ [0, 1] is the discount parameter and the
maxa′ Q(s′, a′) is the maximum estimated value of the next
state s′. The estimated Q-value Qnew(s, a) is used as a
teaching signal to learn the association of state s and action
choice a. It is notable that in TD-FALCON, the values of
Q(s, a) and maxa′ Q(s′, a′) are in turn estimated using the
same FALCON network.

C. Action Selection Policy

The action selection policy used here is known as self-
regulating action exploration [27]. Using this approach, action
exploration is performed with a probability of ε, where ε ∈
[0, 1] is regulated by the performance of the learning system.
The performance is estimated using an interval success rate

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

φ derived using φ = ws/wn , where ws is the number of
successful trials within wn training iterations. After every wn

trials, ε is updated using ε = 1 − φ.
In addition, after each update, ε is linearly decayed over

the next wn training iterations using an ε-decay rate δ, which
is derived using ε/wn . As exploitation is performed with a
probability of 1 − ε, such an approach gradually increases
exploitation of the learned knowledge within wn training
iterations.

D. Pruning

RL can lead to the learning of cognitive nodes that become
irrelevant after some time. Action selection and learning
become inefficient when these irrelevant cognitive nodes are
not pruned. Therefore, a confidence-based pruning strategy
similar to the one proposed in [12] is adopted to prune the
irrelevant cognitive nodes.

Specifically, each cognitive node j has a confidence level
c j where c j ∈ [0.0, 1.0] and an age σ j where σ j ∈ [0,R]. A
newly committed cognitive node j has an initial confidence
level c j (0) and an initial age σ j (0). At time t , the confidence
level cJ of winning cognitive node J is reinforced using

cJ (t + 1) = cJ (t)+ η(1 − cJ (t))

where η is the reinforcement rate of the confidence level for
all cognitive nodes. Also at time t , the confidence level c j of
cognitive node j is decayed using

c j (t + 1) = c j (t)− ζ c j (t)

where ζ is the decay rate of the confidence level for all
cognitive nodes.

An age attribute σ j is introduced to cognitive node j to
prevent it from being pruned when σ j = σ j (0), c j = c j (0)
and c j < crec, where crec is the recommended confidence
threshold. At time t , age σ j of cognitive node j is modified
using σ j (t)+1. Cognitive node j is pruned only when c j (t) <
crec and σ j (t) ≥ σ old, where σ old is the old age threshold.

IV. BOOTSTRAP REINFORCEMENT LEARNING

USING DOMAIN KNOWLEDGE

A. Inserting Domain Knowledge

Domain knowledge defined using symbols has to be trans-
lated into vector patterns before insertion into FALCON. The
presentation of this two-step process of inserting domain
knowledge begins with the following definition of proposi-
tional rules.

Definition 1 (Propositional Rule): Given a state space

X = {x1, x2, . . . , xn, . . . , xN }
and an action space

Y = {y1, y2, . . . , ym, . . . , yM }
where X ∩ Y ≡ 0, and each unit of domain knowledge is
defined as a propositional rule r j with the following format:

Rule r j : IF Xr j THEN Yr j (REWARD pr j)

Algorithm 3 Translation of Propositional Rules
Ensure: Initialize FALCON with an uncommitted cognitive node.
1: for each propositional rule r j do
2: for each attribute ap ∈ Xr j do
3: for each attribute-value binding bpq ∈ V (ap) do
4: Translate bpq into vector vpq using (5).
5: end for
6: Translate ap into attribute vector Sp using (6).
7: end for
8: Translate antecedent Xr j into state vector Sr j using (7).
9: Repeat steps 3–7 for translation of each attribute ap ∈ Yr j .
10: Translate consequent Yr j into action vector Ar j using (8).
11: Set reward pr j into reward vector Rr j using (9).
12: Operate FALCON in INSERT mode to insert translated propositional

rule r j as {Sr j ,Ar j ,Rr j }.
13: end for
14: return FALCON with inserted domain knowledge.

where the antecedent set Xr j ⊂ X, the consequent set Yr j ⊂
Y, and pr j ∈ [0, 1] is the reward factor.

From Definition 1, let ap be an attribute in either state space
X or action space Y, the set of possible attribute-value binding
bpq of attribute ap is defined as

V (ap) = {bp1, bp2, . . . , bpq , . . . , bpQ}.
For ‖Xr j ‖ ≥ 2, conjunctive relationship exists among the

antecedents of rule r j , while disjunctive relationship exists
between rules r1 and r2 with identical consequent, i.e., Xr1
=
Xr2 and Yr1 ≡ Yr2 .

1) Translation: Outlined in Algorithm 3, each propositional
rule r j has to be translated from its symbol-based represen-
tation into vector pattern for insertion into FALCON. Each
attribute-value binding bpq of attribute ap in propositional
rule r j is converted into a complement-coded vector vpq =
{v pq , v

c
pq}, where vc

pq = 1 − v pq . Specifically, vpq is deter-
mined as

{v pq , v
c
pq } =

⎧
⎪⎨

⎪⎩

{1, 0} if ap ≡ bpq,

{0, 1} if ap
= bpq ,

{0, 0} if ap is not considered.

(5)

Consequentially, each attribute ap can be translated into a
concatenated vector

Sp = {vp1, vp2, . . . , vpq , . . . , vpQ}. (6)

Hence, the antecedent Xr j can be translated into a fixed-
length state vector

Sr j = {Sn |n ∈ [1, ‖X‖]} (7)

and the consequent Yr j can be translated into a fixed-length
action vector

Ar j = {Sm |m ∈ [1, ‖Y‖]} (8)

and the reward pr j , where pr j ∈ {0, 1} can be translated into
a two-element reward vector

Rr j = {pr j , 1 − pr j }. (9)

In effect, the antecedent Xr j , consequent Yr j , and reward
pr j of the propositional rule r j are translated into the state
vector Sr j , the action vector Ar j , and the reward vector Rr j ,
respectively.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TENG et al.: SELF-ORGANIZING NEURAL NETWORKS 5

Fig. 2. Encoding of domain knowledge and inserting it into FALCON.

2) Insertion: The tuple {Sr j ,Ar j ,Rr j } of translated propo-
sitional rule r j is presented to the respective fields of FALCON
as the activity vector xck . To learn {Sr j ,Ar j ,Rr j }, a winning
cognitive node J is selected using vigilance parameters ρck =
{1.0, 1.0, 1.0}. This means the respective weight vectors of
the winning cognitive node J have to be perfectly matched
to {Sr j ,Ar j ,Rr j }. An illustration of the rule translation and
insertion procedures can be observed in Fig. 2.

During insertion, duplicates are eliminated by grouping
translated propositional rules with identical vector patterns into
the same cognitive node. In the absence of a perfectly matched
committed cognitive nodes, an uncommitted cognitive node is
picked to learn {Sr j ,Ar j ,Rr j }. It becomes a newly committed
cognitive node, and a new cognitive node is created.

FALCON operates in the INSERT mode to assimilate the
translated propositional rules. The insertion of these trans-
lated propositional rules into FALCON as cognitive nodes
bootstraps FALCON for action selection and learning. When
FALCON operates in the PERFORM mode, the action choice
to the states is derived from a cognitive node best matched to
the states. When FALCON operates in the LEARN mode, the
cognitive node best matched to the previous state is picked for
updating.

3) Broad Propositional Rules: Domain knowledge is often
specified using selected attributes. Irrelevant attributes are
excluded from the antecedent leading to a broadening of the

scope of application of such propositional rules to more states.
Such propositional rules are formally defined below as broad
propositional rules.

Definition 2 (Broad Propositional Rule): Given that state
space X is a set of attributes xn where n ∈ [1, ‖X‖] and the
action space Y is a set of attributes ym where m ∈ [1, ‖Y‖],
a broad propositional rule r j has antecedent set Xr j where
Xr j ⊂ X and consequent set Yr j where Yr j ⊂ Y.

The antecedent set Xr j of a broad propositional rule r j is
translated into fixed-length state vector Sr j using the transla-
tion technique outlined in Algorithm 3. The length of state
vector Sr j is fixed because it encompasses the entire state
space X. Attribute xn missing from antecedent Xr j of a broad
propositional rule r j is translated into a zero attribute vector
S

r j
n = {0, . . . , 0}. State vector Sr j with zero attribute vector

S
r j
n leads to a generalized state vector as defined below.
Definition 3 (Generalized State Vector): The translated

antecedent Xr j of a broad propositional rule r j is a fixed length
generalized state vector Sr j such that Sr j = {Sr j

1 , . . . ,S
r j
‖X‖},

where Xr j ⊂ X and ∃i ∈ [1, ‖X‖], Si
r j = {0, . . . , 0}.

The consequent set Yr j is assumed to be equivalent to
the action space Y, while the reward pr j is translated into
a complement-coded two-element vector Rr j . Therefore, the
concept of being broad is limited to the definition of the
antecedent of the propositional rules. This is highlighted
because specific design principle of the self-organizing neural

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

network has to be followed to improve the learning efficiency
from the use of domain knowledge.

B. Analysis of FALCON Using Domain Knowledge

In this section, an analysis of the characteristic of the code
selection process is presented to show how FALCON balances
between exploitation of inserted domain knowledge and explo-
ration for new knowledge.

1) Code Selection: The inserted domain knowledge and the
learned knowledge are subjected to the same code selection
procedures for action selection and learning. Given an activity
vector xck , the choice function T c

j of each cognitive node
j is derived using (1). The property regarding the choice
probability of cognitive nodes with respect to activity vector
xck is specified in Lemma 1.

Lemma 1 (ChoiceProbabilityofCognitive Nodes): Assum-
ing all things equal, given two cognitive nodes j1 and j2 such
that

|wc1
j1 | < |wc1

j2 |
the probability of cognitive node j1 winning the code compe-
tition is higher than that of cognitive node j2.

Proof: Following the direct code access method [28], we
have xc1 = S, xc2 = {1, . . . , 1}, and xc3 = {1, 0}. The choice
function of cognitive node j derived using (1) is given by

Tj = γ c1
|xc1 ∧ wc1

j |
αc1 + |wc1

j | + γ c2
|wc2

j |
αc2 + |wc2

j | + γ c3
|wc3

j |
αc3 + |wc3

j | .

With all things equal, each cognitive node j has a uniform
norm in the action and reward fields. We have

Tj = γ c1
|xc1 ∧ wc1

j |
αc1 + |wc1

j | + C

where C is a constant across all cognitive nodes. This means
that the choice function T c

j will have the highest value when
each of the nonzero attributes in the template state vector wc1

j
is matched by the corresponding attributes in the input state
vector xc1. In other words, ∀i, xc1(i) ≥ wc1

j (i).
Assuming a uniform distribution of the input attribute values

in the state space, the probability for a state attribute to
match to the corresponding nonzero weight value in the
template vector encoded by a cognitive node is a constant
value p ∈ [0, 1]. It follows that the probability values for all
nonzero weight values of cognitive node j1 and cognitive node
j2 to be matched by the corresponding input attributes are
given by

Prob j1 = p(Nj1) and Prob j2 = p(Nj2)

where N j1 and N j2 are the number of nonzero attributes in
the template state vectors wc1

j1
and wc1

j2
, respectively.

Given that |wc1
j1
| < |wc1

j2
|, we have N j1 < N j2 , and thus

Prob j1 > Prob j2 .

Therefore, the choice probability of cognitive node j1 is
higher than that of cognitive nodes j2. �

Corollary 1: Assuming all things equal, a broad proposi-
tional rule with a smaller collection of antecedent attributes

than the state space X is likely to have a higher probability of
getting selected during code competition.

However, it is also known that the match function mck
J

derived using (2) will still have to satisfy the vigilance cri-
terion during template matching. Therefore, the probability of
cognitive node J satisfying the vigilance criterion is presented
as the match probability in the following lemma.

Lemma 2 (Match Probability of Cognitive Nodes): Assum-
ing all things equal, given two cognitive nodes j1 and j2 such
that

|wc1
j1 | < |wc1

j2 |
the probability of the cognitive node j1 satisfying the vigilance
criterion is lower than that of cognitive node j2.

Proof: Given that, for the same state activity vector xc1,
mc1

J= j1
and mc1

J= j2
are derived as

mc1
J= j1 = |xc1 ∧ wc1

j1
|

|xc1| and mc1
J= j2 = |xc1 ∧ wc1

j2
|

|xc1| .

Since |wc1
j1
| < |wc1

j2
|, we have

|xc1 ∧ wc1
j1
|

|xc1| <
|xc1 ∧ wc1

j2
|

|xc1| .

Therefore, for the same state vigilance ρc1, we have

P
(
mc1

J= j1 > ρc1) < P
(
mc1

J= j2 > ρc1).

�
Corollary 2: Assuming all things equal, a broad proposi-

tional rule with a smaller set of antecedent attributes has a
lower probability of satisfying the vigilance criterion.

Given the above analysis, a cognitive node jr j encoding
broad propositional rule r j has a higher probability of winning
the code competition, but has a lower probability of satisfying
the vigilance criterion. Therefore, it is inferred that using low
state vigilance ρc1 can allow cognitive node jr j to satisfy the
state vigilance criterion after winning the code competition.

C. Action Selection Strategy

Given the use of domain knowledge, FALCON is designed
to respond effectively from the onset of the learning process.
Therefore, an action selection strategy is proposed with the
following design principles in mind.

Design Principle 1: Given an input state, FALCON should
select an existing cognitive node encoding a broad proposi-
tional rule for action selection as much as possible.

Design Principle 2: Given an input state, FALCON should
select an existing cognitive node for action selection only when
it is effective to this state.

As a consequence, exploration is necessary only when
none of the cognitive nodes can be exploited for responding
to the states. Therefore, an exploitation strategy known as
greedy exploitation is proposed to maximize exploitation and
minimize exploration for greater learning efficiency.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TENG et al.: SELF-ORGANIZING NEURAL NETWORKS 7

Algorithm 4 Greedy Exploitation of Existing Knowledge
Require: FALCON with committed cognitive nodes.
Ensure: ρc1 → 0.0.
1: Search category field F2

c for cognitive node J such that mck ≥ ρck .
2: if cognitive node J is uncommitted then
3: Explore for action choice a using an exploration strategy.
4: else if cognitive node J is committed then
5: Perform activity readout of action field ωc2

J for action choice a.
6: end if
7: return action choice a.

1) Greedy Exploitation: This strategy always attempts to
exploit the existing knowledge for responding to the states.
With this approach, the code selection mechanism is used
to search for a cognitive node that satisfies the vigilance
criterion. Therefore, any cognitive node identified using the
code selection mechanism is taken to be suitable for providing
an action choice effective to the states.

However, it is also expected that no cognitive node can
be found for certain states. This is when the action space
is explored for an action choice to respond to such states.
In effect, exploration of the action space is no longer reg-
ulated using some probabilistic parameters, such as ε and
temperature T . Instead, it is performed only when none of the
existing cognitive nodes can be exploited for responding to the
states.

The greedy exploitation strategy outlined in Algorithm 4 is
incorporated into FALCON by replacing line 3 to line 8 of
Algorithm 2. Low state vigilance ρc1 → 0.0 is required to
exploit cognitive nodes of the broad propositional rules. The
insertion of the broad propositional rules increases exploitation
of the committed cognitive nodes from the onset of the
learning process. In this approach, FALCON explores only
when none of the committed cognitive nodes can be exploited.
The benefit of this approach is in the form of improved
learning efficiency and reduced model complexity.

The exclusion of an action selection policy from the RL
process means that the code selection mechanism of FAL-
CON is used to balance between exploitation and exploration.
The code activation and code competition procedures are, in
essence, self-organizing. Therefore, it is recognized that the
selection of cognitive node with an action choice effective
to the states can only be controlled using the vigilance
criterion. In this sense, a reward vigilance adaptation strategy
is proposed to ensure the use of appropriate reward vigilance
for the vigilance criterion.

2) Reward Vigilance Adaptation: The vigilance parameters
ρck for k = {1, 2, 3} are used to select a winning cognitive
node J for either action selection or learning. Individually,
the state vigilance ρc1 has to be low for matching generalized
state patterns, the action vigilance ρc2 = 0.0 is used for action
selection and ρc2 = 1.0 is used for learning, and the reward
vigilance ρc3 is used to select an effective cognitive node j
that is defined as follows.

Definition 4 (Effective Cognitive Node): A cognitive node
j is considered effective when it recommends action choice a
to state s resulting in E j (s, a) ≥ 0.5, and E j (s, a) is derived

Algorithm 5 Adaptation of Reward Vigilance
Require: Updated Q-value Q(s, a)
1: Derive effectiveness E j (s, a) of action choice a to state s using (10).
2: if E j (s, a) ≥ 0.5 then
3: Adapt reward vigilance ρc3 by applying Q(s, a) to (11).
4: end if
5: return updated reward vigilance ρc3.

using

E j (s, a) =
∑P

p κp

P
(10)

where P is the total number of reward attributes and κp ∈
{0, 1} indicates whether the action choice a is effective
(κp =1.0) or ineffective (κp = 0.0) to state s with respect
to reward attribute p.

Specifically, it is proposed that reward vigilance ρc3 be
adapted to guarantee the selection of an effective cognitive
node j using

ρc3(t + 1) = min(νρc3(t)+ (1 − ν)Q(s, a), ρc3(t)) (11)

where ν is the adaptation rate of ρc3 and Q(s, a) is an updated
estimation of the Q-value of cognitive node j with action
choice a known to have E j (s, a) ≥ 0.5.

The reward vigilance adaptation strategy, as outlined in
Algorithm 5, is to be inserted after Step 11 of Algorithm 2.
An effective reward vigilance can be found using the proposed
reward vigilance adaptation strategy given in (12). This is
because the existence of an effective reward vigilance is
guaranteed using the following lemma.

Lemma 3 (Existence of Effective Reward Vigilance):
Assuming Q-learning converges, given an effective cognitive
node j1 (Definition 4) recommending action choice a1 for
state s and an ineffective cognitive node j2 recommending
action choice a2 for state s, there exists a reward vigilance
ρc3 such that cognitive node j1 achieves resonance and
cognitive node j2 is reset.

Proof: Assuming Q-learning converges, Q(s, a1) and
Q(s, a2) track their respective effectiveness E j1(s, a1) and
E j2(s, a2), which are correlated to each other with respect to
κp used in (10).

Given that cognitive node j1 is effective and cognitive node
j2 is ineffective, we have

E j1(s, a1) > E j2(s, a2)

implying Q(s, a1) > Q(s, a2).
By the definition of the match function seen in (2), we have

mc3
J= j1 = |wc3

j1| = Q(s, a1)

mc3
J= j2 = |wc3

j2| = Q(s, a2).

Thus, mc3
J= j1

> mc3
J= j2

.
Therefore, there exists a reward vigilance ρc3 such that

mc3
J= j1 ≥ ρc3 > mc3

J= j2.

�

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. PE problem domain with safe and unsafe areas.

Following Lemma 3, exploration is only required when none
of the committed cognitive nodes can satisfy the vigilance
criterion. Therefore, exploitation of the domain and learned
knowledge is maximized leading to improved learning effi-
ciency.

V. PURSUIT-EVASION PROBLEM DOMAIN

The Pursuit-Evasion (PE) problem domain [29] is used here
to evaluate the self-organizing neural network that integrates
domain knowledge and RL. As shown in Fig. 3, there are two
autonomous agents known as the blue entity agent and the red
entity agent. The red entity agent is hostile toward the blue
entity agent. The 2-D environment has two safe areas, where
the blue entity agent will be safe from the red entity agent.
The red entity agent is constantly searching for the blue entity
agent. It eliminates the blue entity agent by touching it. The
blue entity agent is tasked with a search mission of the areas.
Therefore, it is also moving constantly. It will have to evade
the red entity agent to avoid elimination.

As in [30], the pursuit strategy of the red entity agent is
deterministic, while the blue entity agent progressively learns
the evasive strategies to improve on its chance of evading the
red entity agent over multiple training iterations. Knowledge
on the desired response is communicated to the entity agent
using the evaluated effect of the action choices.

A. State Space

A situation-awareness model, as defined in [31], is used as
the state space of the entity agents. It comprises eight types of
multivalued attributes on the enemy and the terrain. The per-
ception layer has four types of attributes: the comprehension
layer has three types of attributes and the projection layer has
just one type of attribute. A state space with such a situation-
awareness model can have up to around 2.86 × 1010 possible
states. Further details on the state space can be found in [29].

B. Action Space

The blue entity agent learns to identify a compass direction
to evade the pursuit of the red entity agent in this PE problem
domain. Therefore, the action space comprises eight compass
directions—north, northeast, east, southeast, south, southwest,

Fig. 4. Samples of one-attribute, two-attribute, and three-attribute proposi-
tional rules inserted as domain knowledge.

west, and northwest—as the consequent of the decision-
making task. The effect of choosing an evade direction as
a response to the states is learned, and may be exploited for
subsequent decision-making instances.

C. Reward Attributes

Sensory information is used to quantify the effect of action
choice a on state s. The trend revealed using these reward
attributes is used to derive the intermediate reward factor r
using

r =
∑P

p κpτp
∑P

p τp
(12)

where κp ∈ {0, 1} is the effectiveness (Definition 4) of action
choice a to state s with respect to reward attribute p and τp is
the weight that reward attribute p has on reward r . The choice
of reward attributes is specific to the problem domain, and is
derived based on the characteristic of the learning task. Details
on the choice of reward attributes can be found in [29].

D. Domain Knowledge

Domain knowledge in the PE problem domain is represented
as propositional rules. It comprises 74 broad propositional
rules with either one-attribute, two-attribute, or three-attribute
antecedents. Examples of such propositional rules are shown in
Fig. 4. Each propositional rule comprises a set of antecedents,
a consequent, and a reward value.

The antecedents of the propositional rules are defined using
at least one attribute from the state space in the PE situation-
awareness model. The antecedents are translated to become
the state vector S and presented to the state field of FALCON
during rule insertion.

The consequent of each propositional rule is matched to
an attribute in the action space specified in Section V-B. Just
a single attribute is specified for the action space of the PE
problem domain. It is translated to become the action vector A
and presented to the action field of FALCON during rule
insertion.

The inserted domain knowledge is expected to allow
FALCON to respond correctly in relevant states. Therefore,
these propositional rules are initialized with a reward value of
0.75. The reward value is translated as reward vector R and
presented to the reward field of FALCON during rule insertion.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TENG et al.: SELF-ORGANIZING NEURAL NETWORKS 9

E. Model Validation Criteria

1) Mission Completion Rates: Each training iteration i lasts
for the duration the blue entity agent requires to complete the
search mission or till it is being eliminated by the red entity
agent. No timeout is included in this PE simulation. Therefore,
the mission completion rates is derived using κ/wn , where κ
is the number of times the blue entity agent completes the
search mission at every wn training iterations and κ ≤ wn .

2) Code Population: This is the number of cognitive nodes
at each training iteration n. The growth of the code population
is expected to stagnate as the blue entity agent settles on a fixed
set of evasive strategies. FALCON with a low code population
is considered to have a reduced model complexity.

3) Exploitation Rates: This is the percentage at which the
cognitive nodes are used for responding to the states. A higher
exploitation rate is perceived as having the cognitive nodes
for responding to the states. This is positive in limiting the
growth of the code population. Therefore, high growth of the
code population is correlated to low exploitation rates and vice
versa.

F. Models for Comparisons

1) Naïve Response: An inference model only capable of
random response is included for a baseline performance profile
on the PE problem domain. For an action space A with N
decision choices of which M of them are invalid to the current
state, an entity agent will have 1/(N − M) probability of
selecting any of the valid decision choices.

2) Nonadaptive Rules-Only Model: Domain knowledge is
inserted into FALCON as cognitive nodes. This inserted
domain knowledge is used as the only source of knowledge
for action selection. RL does not apply as there is no learning.
To eliminate potential bias on the selection of the domain
knowledge, the direct code access mechanism of FALCON
is used for the selection of action choice from among the
cognitive nodes of the inserted domain knowledge. Without
learning, this model responds to the states by either exploiting
the inserted domain knowledge or by selecting random action
choices.

3) Adapted kNN-TD(λ): The k-NN algorithm was used in
a TD learning scheme during RL [17]. It is adopted in this
paper with some minor adaptations. The adaptations include
the use of k = 1 and getting each classifier to learn the
mapping of state vector S, action vector A, and reward vector
A during RL. Therefore, like cognitive node j in FALCON,
each classifier cl j has a weight template vector wck

j , encoding
the three vectors {S,A,R}.

For action selection, the Euclidean distance d(xc1, wc1
j)

between classifier cl j and the current activity vector xck is
determined using

d
(
xc1, wc1

j

) =
√√√√

n∑

i=0

(
xc1

i −wc1
j i

)2 for all node j. (13)

In addition, this is followed by the identification of the
winning classifier clJ using

J = arg min
j

d j
(
xc1, wc1

j

)
. (14)

The action weight vector wc2
J of classifier clJ is subse-

quently used to derive an action choice a to state s.
For learning, bounded Q-learning and λ = 0 are used

instead of the suggested eligibility traces for a fair comparison
with FALCON. It learns the estimated effect Q(s, a) of the
chosen action choice a by identifying a winning classifier
cJ using (13) and (14), which also satisfies the condition of
d(xc2, wc2

J) = 0. This is to ensure that the winning node
encodes the same action to be learned. A new classifier is
added to learn {S,A,R} in the absence of a classifier that can
satisfy the above selection criteria.

4) Adapted GSOM: The GSOM is included for comparison
here because it is a well-known function approximator used
with Q-learning [18] for similar problem types. The GSOM
model is adapted to have nodes comprising {S,A,R}. Like
FALCON and kNN-TD(λ), domain knowledge is used to
initialize the adapted GSOM model. During RL, the adapted
GSOM alternates between two modes of operation. For action
selection, (13) is used to identify the winning GSOM node
J . Action choice a is then derived from the action field of
winning GSOM node J .

For learning, a GSOM node j with d(xc2,wc2
j) = 0 is first

selected. If such GSOM node j is not found, then d(xc1,wc1
j)

is derived using (13) to find the winning GSOM node J .
To determine whether xck is close enough to wck

J , a distance
threshold λd is derived using

λd = (1 − θ)λd + θd
(
xc1,wc1

j

)

where θ is the adaptation rate of λd to d(xc1,wc1
j). General-

ization occurs when a winning GSOM node J is used to learn
xck when d(xc1,wc1

J) < λd . A new GSOM node is used to
learn xck when d(xc1,wc1

J) ≥ λd or when no winning GSOM
node is found.

5) Q-Learning: The standard Q-learning approach [26] is
used to estimate the Q-value for every learned state-action
pair. For action selection, action choice a is derived using
the learned knowledge whose state field is perfectly matched
to the current state s. New knowledge is learned when none
of the existing knowledge is perfectly matched to state s
and action choice a. The same action selection policy as
the adapted kNN-TD(λ) and the adapted GSOM are used to
balance between exploitation and exploration. Pruning is not
used here.

VI. EXPERIMENTS

Four sets of experiments are conducted using the PE and the
MNT problem domains. The first set of experiments illustrates
the effect of state vigilance on the use of domain knowledge.
This is followed by the experiments to investigate the use
of greedy exploitation with reward vigilance adaptation. The
third set of experimental results compares FALCON using the
proposed strategies with the naïve response system, the non-
adaptive FALCON, the adapted kNN-TD(λ), and the adapted
GSOM. The final set of experiments directly compares this
paper with the earlier works based on the MNT problem
domain.

Each experiment conducted using the PE problem domain
has 500 training iterations. Each set of results is averaged using

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

PARAMETERS OF TD−FALCON AND ACTION SELECTION POLICY

Fig. 5. Comparison of mission completion rates for the use of different state
vigilance criterion.

20 runs of the same experiment. Subsequently, every 40 data
points are averaged to give just 12 data points to illustrate a
general trend while minimizing nonessential fluctuations. The
PE experiments use σ old = 20 iterations. Chosen empirically,
the parameters of FALCON and the other learning processes
used for the experiments based on both problem domains are
presented in Table I. The same Q-learning, pruning strategy,
and knowledge-based exploration strategy [29] are used for all
configurations with RL.

A. State Vigilance for Domain Knowledge

Experiments conducted using high (ρc1 = 0.85) (E2, E4)
and no (ρc1 = 0.0) (E1, E3) state vigilance are presented
to illustrate its effect on learning efficiency when domain
knowledge is used. FALCON inserted with domain knowledge
is used in adaptive (E1, E2) and nonadaptive (E3, E4) mode,
and a naïve response system (E5) is included for baseline
comparison.

The comparison of mission completion rates in the top
plot of Fig. 5 shows better completion rates using no state
vigilance for adaptive and nonadaptive FALCON with domain
knowledge. This is evident from the higher mission completion
rates of E3 over E4 and of E1 over E2. From the bottom plot of
Fig. 5, 0% exploitation rates is observed for E4. This signifies
that none of the inserted domain knowledge can be selected
when a high state vigilance is used. In effect, it responds

Fig. 6. Comparison of code population for the use of different state vigilance
criterion.

to the states by constantly selecting random action choices.
Therefore, E4 using a high state vigilance has a similar
outcome as E5. In addition, E2 is much less able to fully
exploit its cognitive nodes than E1. From these observations,
low state vigilance is clearly preferred when there is use of
domain knowledge.

Also shown in Fig. 6, high state vigilance is linked to a
higher peak code population. This is evident from comparing
the peak code population of E1 and E2. Even after signif-
icant pruning, E2 still has higher code population than E1.
The above experimental results show that the use of no
state vigilance by nonadaptive and adaptive FALCON with
domain knowledge leads to better mission completion rates,
exploitation rates, and lower code population. This is followed
by the experiments in Section VI-B to illustrate the effect of
using greedy exploitation with reward vigilance adaptation on
learning efficiency.

B. Greedy Exploitation With Reward Vigilance Adaptation

The experiments presented here use FALCON to evaluate the
effect of the reward vigilance adaptation strategy (E6, E8, E9)
and the greedy exploitation strategy (E6, E7, E8). Comparisons
are made with FALCON with no reward vigilance (ρc3 = 0.0)
(E7, E10) and FALCON with the adaptive ε-greedy strategy
(E9, E10). E8 is a variant of E6 without pruning.

From Fig. 7, E6 [ρc3(0) = 0.47] is observed with the
highest mission completion rate. E8 shows pruning has little
effect on the mission completion rate when compared with E6.
Comparison between E9 and E10 shows that adapting reward
vigilance leads to more efficient convergence. Comparison
between E6 and E9 shows that even higher mission completion
rates are possible using the greedy exploitation strategy. Direct
correlation between the mission completion rates (top plot)
and the exploitation rates (bottom plot) can be observed in
Fig. 7. From E7 and E10, no reward vigilance is linked
to higher exploitation rates from the onset of RL. E6, E8,
and E9 suggest that adapting reward vigilance can improve
exploitation rates as more effective knowledge is learned.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TENG et al.: SELF-ORGANIZING NEURAL NETWORKS 11

Fig. 7. Comparison of mission completion rates for using greedy exploitation
and reward vigilance adaptation.

Fig. 8. Comparison of code population for using greedy exploitation and
reward vigilance adaptation.

In contrast, the exploitation rates of E7 and E10 saturate much
more gradually.

From Fig. 8, the code population of E7 and E10 are among
the lowest. This is because using ρc3 = 0.0 leads to more
generalization among cognitive nodes with the same action
choices (ρc2 = 1.0). Very few new cognitive nodes are created
as there is more updating of existing cognitive nodes. The
higher code population of E8 accentuates the benefit of using
pruning. In summary, on top of using no state vigilance, the
experimental results here have illustrated significant reduction
to the model complexity when reward vigilance adaptation and
greedy exploitation are included.

C. Comparison With Other Function Approximators

The experiments here compare the effect of using FALCON
integrated with greedy exploitation and reward vigilance adap-
tation (E6) with other function approximators. FALCON with
no state vigilance (ρc1 = 0.0) is used for E3, E6, and E11.
Comparisons are made with E3, E5, the adapted kNN-TD(λ)

Fig. 9. Comparison of mission completion rates among the different
approaches.

Fig. 10. Comparison of code population among the different approaches.

(E12), the adapted GSOM (E16) (with θ = 0.25), and the
standard Q-learning (E13).

From the top plot of Fig. 9, illustrating just the use
of domain knowledge, E3 is already better than E5 (naïve
response). In comparison, E12, E13, and E16 are shown to
be converging slower than E11. Consequentially, E6 has the
best learning efficiency among the configurations. As can be
expected, the bottom plot of Fig. 9 shows E5 with 0% exploita-
tion rates. In contrast, E3 exploits the domain knowledge at
around 80% of the time while responding randomly for all the
other time. In comparison, E12, E13, and E16 require around
the same duration to fully exploit the learned knowledge. In
comparison, E11 is slower to achieve 100% exploitation rates
than E6.

From Fig. 10, E11 is observed with a higher initial code
population than E6. Without pruning, the code population
of E13 continues to rise above all the others. As training
progresses, E6 and E11 are able to converge on a similar
code population, while those of E12 and E3 remain above
them toward the end of the training process. The change in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the code population is perceived as being correlated to the
mission completion rates in Fig. 9. The code population for
E6, E11, and E12 begins to decline as their mission completion
rates saturate. The code population of E16, though higher than
those of E6, E11, and E12, remains rather constant while its
mission completion rates gradually improve over time. The
growth of the code population of E13 slows as the mission
completion rates saturate.

In terms of runtime efficiency, we compare the runtime
taken by each model for each decision cycle (comprising
action selection and learning) and the total runtime each model
took to reach full exploitation. From our results, E13 ran
at a decision cycle of 6.24 ms, and the decision cycles of
E6, E12, and E16 took 0.98, 8.08, and 2.61 ms, respectively.
As for the total runtime to reach 100% exploitation, E6, E12,
E13, and E16 took 473.85, 3878.71, 2996.26, and 1253.89 ms,
respectively. The results show that our proposed strategy (E6)
is more efficient than the compared models.

D. Experiments Using MNT

In the MNT problem domain [12], an autonomous vehicle
(AV) is tasked to navigate a 16 × 16 minefield consisting of
10 mines to a target position. Inputs to the AV include five
sonar readings of mine positions and eight target bearings. The
AV moves toward the destination in one of the five directions.
The immediate reward is based on the absolute distance to
the destination, while terminal reward of 1 is given when AV
reaches the target and terminal reward of 0 is given when it
either moves into a mine or fails to reach the destination in a
fixed number of steps.

The scenarios, defined by the placement of destination,
the mines, and the AV, are randomly generated for each run
of the experiment. The performance of FALCONs with the
proposed strategies (E6 and E11) in this MNT problem domain
is compared with five other approaches. The experimental
results are averaged using 20 runs of the experiments with
2000 training iterations each. This is followed by aggregating
every 100 data points to give just 20 data points. E14 and E15
use ρck = {0.25, 0.2, 0.5}, γ = 0.5, and ε = 0.5. Pruning is
conducted using σ old = 100.

From Fig. 11, E3 shows success rates of around 82% for the
five propositional rules that are also inserted in E6 and E14.
E5 shows less than 20% success rates by responding randomly.
E13 shows the standard Q-learning starting from around 30%
success rate and achieving close to 100% after around 1100
training iterations. Like in [15], E14 and E15 attain more than
90% success rates after learning for around the same duration.
In contrast, using domain knowledge based on the proposed
strategies, E6 is observed with better performance than E14
in Fig. 9. The improved performance of E11 over E15 shows
that the proposed strategies are also effective when no domain
knowledge is used.

Fig. 12 compares the model complexity of various meth-
ods. E13 with the highest number of cognitive nodes shows
the standard Q-learning to be the least efficient approach.
With pruning, the code populations of E14 and E15 settle at
around 500 nodes after 2000 training iterations. In contrast,

Fig. 11. Comparison of success rates as percentage of time AV navigates to
its destination in the MNT problem domain.

Fig. 12. Comparison of code population of the experiment configurations.

E6 and E11 are much more efficient in containing the growth
of its code population. Therefore, the proposed strategies allow
FALCON to learn more efficiently (shown in Fig. 12) and
more effectively (shown in Fig. 11).

Following [13], comparison of timing information in the
MNT problem domain is made using the runtime taken by
the AV for each decision cycle and the total runtime over
2000 iterations. Empirically, E13 has a total runtime of 4 min
26 s, whereas E6, E11, E14, and E15 took around 3.91 s,
6.66 s, 2 min, and 1 min 27 s, respectively. In terms of
the runtime per decision cycle, E13 took 14.21 ms. In com-
parison, E6, E11, E14, and E15 took 0.23, 0.42, 7.0, and
4.34 ms, respectively. Consequentially, domain knowledge in
the MNT problem domain is also used more efficiently using
our proposed strategies (E6).

VII. CONCLUSION

This paper has shown how domain knowledge can be inte-
grated with RL using a self-organizing neural network known

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TENG et al.: SELF-ORGANIZING NEURAL NETWORKS 13

as TD-FALCON. We have analytically shown how the inserted
domain knowledge is utilized for action selection and learning.
In addition, we proposed the greedy exploitation and reward
vigilance adaptation strategies to make better use of domain
knowledge to improve learning efficiency. Using such an
approach, exploration is triggered only when no effective
cognitive node can be exploited for the states. It is shown that
the appropriate cognitive nodes can be selected as the reward
vigilance is adapted during RL.

To illustrate the efficacy of the proposed strategies for
integrating domain knowledge with RL, experiments were con-
ducted using the PE and MNT problem domains. Comparing
with the selected models, the experiment results show that
inserting domain knowledge directly into TD-FALCON using
the proposed strategies improves success rates and reduces
code population in these two distinct problem domains. Com-
parison of timing information from these two problem domains
also shows the proposed strategies to be more efficient than
the compared models.

This work of integrating domain knowledge and RL using
a self-organizing neural network sets the framework for devel-
oping more efficient autonomous knowledge-based systems
capable of continuously expanding its knowledge through real-
time interaction with the environment. In our future work, we
shall embark on the application of the proposed strategies in
more challenging and complex real-world problem domains.
Beyond the type of logical structure, domain knowledge in
these problem domains is likely to be more complex and
heterogeneous. By drawing inspirations from the fields of
cognitive psychology and neuroscience, we aim to build self-
organizing knowledge systems for addressing the issues of
acquiring, managing, and retrieving such rich and diverse
knowledge, possibly through the use of different types of
memory representations and models [32].

REFERENCES

[1] A. M. Shapiro, “How including prior knowledge as a subject variable
may change outcomes of learning research,” Amer. Educ. Res. J., vol. 40,
no. 1, pp. 159–189, 2004.

[2] A.-H. Tan, “Cascade ARTMAP: Integrating neural computation and
symbolic knowledge processing,” IEEE Trans. Neural Netw., vol. 8,
no. 2, pp. 237–250, Mar. 1997.

[3] Y. S. Abu-Mostafa, “Learning from hints in neural networks,” J. Com-
plex., vol. 6, no. 2, pp. 192–198, 1990.

[4] M. Pazzani and D. Kibler, “The utility of knowledge in inductive
learning,” Mach. Learn., vol. 9, no. 1, pp. 57–94, 1992.

[5] T. M. Mitchell and S. Thrun, “Explanation-based neural network learn-
ing for robot control,” in Advances in Neural Information Process-
ing Systems 5. San Mateo, CA, USA: Morgan Kaufmann, 1993,
pp. 287–294.

[6] G. G. Towell and J. W. Shavlik, “Interpretation of artificial neural
networks: Mapping knowledge-based neural networks into rules,” in
Advances in Neural Information Processing Systems 4. San Mateo, CA,
USA: Morgan Kaufmann, 1992, pp. 977–984.

[7] L.-M. Fu, “Knowledge-based connectionism for revising domain the-
ories,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 1, pp. 173–182,
Jan./Feb. 1993.

[8] C. H. C. Ribeiro, “Embedding a priori knowledge in reinforcement
learning,” J. Intell. Robot. Syst., vol. 21, no. 1, pp. 51–71, 1998.

[9] R. Schoknecht, M. Spott, and M. Riedmiller, “Fynesse: An architecture
for integrating prior knowledge in autonomously learning agents,” Soft
Comput., vol. 8, no. 6, pp. 397–408, 2004.

[10] G. Hailu and G. Sommer, “Integrating symbolic knowledge in reinforce-
ment learning,” in Proc. Int. Conf. Syst., Man, Cybern., vol. 2. Oct. 1998,
pp. 1491–1496.

[11] D. Shapiro, P. Langley, and R. Shachter, “Using background knowledge
to speed reinforcement learning in physical agents,” in Proc. Int. Conf.
Auto. Agents, May 2001, pp. 254–261.

[12] A.-H. Tan, “FALCON: A fusion architecture for learning, cogni-
tion, and navigation,” in Proc. IJCNN, Budapest, Hungary, Jul. 2004,
pp. 3297–3302.

[13] A.-H. Tan, N. Lu, and X. Dan, “Integrating temporal difference methods
and self-organizing neural networks for reinforcement learning with
delayed evaluative feedback,” IEEE Trans. Neural Netw., vol. 19, no. 2,
pp. 230–244, Feb. 2008.

[14] G. A. Carpenter and S. Grossberg, “A massively parallel archi-
tecture for a self-organizing neural pattern recognition machine,”
Comput. Vis., Graph., Image Process., vol. 37, no. 1, pp. 54–115,
1987.

[15] T.-H. Teng, Z.-M. Tan, and A.-H. Tan, “Self-organizing neural models
integrating rules and reinforcement learning,” in Proc. IEEE IJCNN,
Jun. 2008, pp. 3770–3777.

[16] T.-H. Teng and A.-H. Tan, “Cognitive agents integrating rules and
reinforcement learning for context-aware decision support,” in Proc. IAT,
Dec. 2008, pp. 318–321.

[17] J. A. Martín H., J. de Lope, and D. Maravall, “The kNN-TD rein-
forcement learning algorithm,” in Methods and Models in Artificial and
Natural Computation. A Homage to Professor Mira’s Scientific Legacy
(Lecture Notes in Computer Science), vol. 5601. Berlin, Germany:
Springer-Verlag, 2009, pp. 305–314.

[18] H. Montazeri, S. Moradi, and R. Safabakhsh, “Continuous state/action
reinforcement learning: A growing self-organizing map approach,”
Neurocomputing, vol. 74, no. 7, pp. 1069–1082, 2011.

[19] P. Niyogi, F. Girosi, and T. Poggio, “Incorporating prior information in
machine learning by creating virtual examples,” Proc. IEEE, vol. 86,
no. 11, pp. 2196–2209, Nov. 1998.

[20] I. Guyon, A. Saffari, G. Dror, and G. Cawley, “Agnostic learning
vs. prior knowledge challenge,” in Proc. IJCNN, Orlando, FL, USA,
Aug. 2007, pp. 829–834.

[21] H. Langseth and T. D. Nielsen, “Fusion of domain knowledge with data
for structural learning in object oriented domains,” J. Mach. Learn. Res.,
vol. 4, pp. 339–368, Dec. 2003.

[22] R. Mahony and R. Williamson, “Prior knowledge and preferential
structures in gradient descent learning algorithms,” J. Mach. Learn. Res.,
vol. 1, no. 4, pp. 311–355, 2001.

[23] A. R. Masegosa and S. Moral, “An interactive approach for Bayesian
network learning using domain/expert knowledge,” Int. J. Approx. Rea-
soning, vol. 54, no. 8, pp. 1168–1181, 2013.

[24] F. Lauer and G. Bloch, “Incorporating prior knowledge in support
vector machines for classification: A review,” Neurocomputing, vol. 71,
nos. 7–9, pp. 1578–1594, 2008.

[25] C. Dugas, Y. Bengio, F. Belisle, C. Nadeau, and R. Garcia, “Incorpo-
rating functional knowledge in neural networks,” J. Mach. Learn. Res.,
vol. 10, pp. 1239–1262, Dec. 2009.

[26] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3, pp. 279–292, 1992.

[27] T.-H. Teng, A.-H. Tan, and Y.-S. Tan, “Self-regulating action exploration
in reinforcement learning,” Proc. Comput. Sci., vol. 13, pp. 62–74,
Oct. 2012.

[28] A.-H. Tan, “Direct code access in self-organizing neural net-
works for reinforcement learning,” in Proc. IJCAI, Jan. 2007,
pp. 1071–1076.

[29] T.-H. Teng and A.-H. Tan, “Knowledge-based exploration for rein-
forcement learning in self-organizing neural networks,” in Proc. IAT,
Dec. 2012, pp. 332–339.

[30] S. Ficici and J. Pollack, “Statistical reasoning strategies in the pur-
suit and evasion domain,” in Advances in Artificial Life (Lecture
Notes in Computer Science), vol. 1674, D. Floreano, J.-D. Nicoud,
and F. Mondada, Eds. New York, NY, USA: Springer-Verlag, 1999,
pp. 79–88.

[31] M. R. Endsley, “Situation awareness: Progress and directions,”
in A Cognitive Approach to Situation Awareness: Theory and
Application. Aldershot, U.K.: Ashgate Pub., 2004, ch. 17,
pp. 317–341.

[32] E. Tulving, “How many memory systems are there?” Amer. Psychol.,
vol. 40, no. 4, pp. 385–398, 1985.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Teck-Hou Teng (M’12) received the B.E. (Hons.)
degree in computer engineering and the Ph.D. degree
from Nanyang Technological University (NTU),
Singapore, in 2003 and 2013, respectively, with
the thesis titled Cognitive Information System for
Context-Aware Decision Support. He was with the
Modeling & Simulation Systems Team, Temasek
Laboratories, NTU, from 2003 to 2006, where he
was involved in the behavioral modeling of CGF
using FSM. Previously, he was with the University of
Salford, Lancashire, U.K., where he was involved in

the control mechanism of a dexterous robotics arm. He was then with INRIA
Rhone-Alpes, Grenoble, France, for six months, where he was involved in a
simulator for an electric vehicle in 2002. During the Ph.D. candidature, he had
collaborated with academic and industrial partners to investigate the use of
adaptive CGF for training and simulation. He has authored on topics such as
cognitive information system, reinforcement learning, and the use of domain
knowledge by self-organizing neural networks.

Ah-Hwee Tan (SM’04) received the B.Sc. (Hons.)
and M.Sc. degrees in computer and information
science from the National University of Singapore,
Singapore, in 1989 and 1991, respectively, and the
Ph.D. degree in cognitive and neural systems from
Boston University, Boston, MA, USA, in 1994. He
is currently an Associate Professor with the School
of Computer Engineering, Nanyang Technological
University (NTU), where he was the Head of Divi-
sion and the Founding Director of the Emerging
Research Laboratory, a center for incubating new

interdisciplinary research initiatives. Prior to joining NTU, he was a Research
Manager with the Institute for Infocomm Research, Agency for Science,
Technology and Research (A*STAR), Singapore, where he was spearheading
the Text Mining and Intelligent Agents research programs. He has authored
more than 160 technical papers in major international journals and conferences
of his fields, and six edited books and proceeding volumes. He holds two U.S.
patents, five Singapore patents, and has spearheaded several A*STAR projects
in commercializing a suite of document analysis and text mining technologies.
His current research interests include cognitive and neural systems, brain-
inspired intelligent agents, machine learning, knowledge discovery, and text
mining. Dr. Tan has served as an Associate Editor/Editorial Board Member
of several international journals, including the IEEE ACCESS and the IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS SYSTEMS.

Jacek M. Zurada (LF’14) received the Ph.D.
degree from the Gdańsk Institute of Technology,
Gdańsk, Poland. He currently serves as a Professor
of Electrical and Computer Engineering with the
University of Louisville, Louisville, KY, USA. He
has authored and co-authored several books and
over 370 papers in computational intelligence, neural
networks, machine learning, logic rule extraction,
and bioinformatics, and delivered numerous presen-
tations and seminars throughout the world. His work
has been cited over 8000 times. Dr. Zurada currently

serves as an IEEE Vice President, Technical Activities (TAB Chair), and
the Chair of the IEEE TAB Management Committee. He was the Editor-
in-Chief of the IEEE TRANSACTIONS ON NEURAL NETWORKS from 1997
to 2003, an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS, and was an Editorial Board Member of the PROCEEDINGS OF THE

IEEE. From 2004 to 2005, he was the President of the IEEE Computational
Intelligence Society. He is an Associate Editor of Neurocomputing, Neural
Networks, and several other international journals. He holds the title of a
Professor in Poland, is a member of the Polish Academy of Sciences, and has
been awarded numerous awards, including honorary professorships of four
Chinese universities, including Sichuan University, Chengdu, China. He is
a Board Member of the IEEE Computational Intelligence Society and the
International Joint Conference on Neural Networks.

	Self-organizing neural networks integrating domain knowledge and reinforcement learning
	Citation

	untitled

