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Adaptive Scaling of Cluster Boundaries for
Large-scale Social Media Data Clustering
Lei Meng, Ah-Hwee Tan, Senior Member, IEEE, and Donald C. Wunsch II, Fellow, IEEE

Abstract—The large-scale and complex nature of social media
data raises the need to scale clustering techniques to big data and
make them capable of automatically identifying data clusters with
few empirical settings. In this paper, we present our investigation
and three algorithms based on the Fuzzy Adaptive Resonance
Theory (Fuzzy ART) that have linear computational complexity,
use a single parameter, i.e. the vigilance parameter to identify
data clusters, and are robust to modest parameter settings.
The contribution of this paper lies in two aspects. First, we
theoretically demonstrate how complement coding, commonly
known as the normalization method, changes the clustering
mechanism of Fuzzy ART, and discovers the vigilance region
(VR) that essentially determines how a cluster in the Fuzzy
ART system recognizes similar patterns in the feature space. The
VR gives an intrinsic interpretation of the clustering mechanism
and limitations of Fuzzy ART. Second, we introduce the idea
of allowing different clusters in the Fuzzy ART system to have
different vigilance levels in order to meet the diverse nature of
the pattern distribution of social media data. To this end, we pro-
pose three vigilance adaptation methods, namely, the Activation
Maximization Rule (AMR), the Confliction Minimization Rule
(CMR), and the Hybrid Integration Rule (HIR). With an initial
vigilance value, the resulting clustering algorithms, namely, the
AM-ART, CM-ART, and HI-ART, can automatically adapt the
vigilance values of all clusters during the learning epochs in order
to produce better cluster boundaries. Experiments on four social
media data sets show that AM-ART, CM-ART and HI-ART are
more robust than Fuzzy ART to the initial vigilance value, and
they usually achieve better or comparable performance and much
faster speed than several state-of-the-art clustering algorithms
that do not require a predefined number of clusters.

Index Terms—Clustering, Big social media data, Adaptive
Resonance Theory, Vigilance region, Adaptive parameter tuning.

I. INTRODUCTION

The popularity of social websites has resulted in a dramatic
increase in online multimedia documents, such as images,
blogs, and tweets. Recently, the clustering of web multimedia
data from social websites has drawn much attention for social
community discovery [12], [45], collective behavior analysis
[13], and underlying topic discovery [3], [5]. However, dif-
ferent from traditional image and text data sets, social media
data sets are usually large-scale and may cover diverse content
across different topics, making it difficult to manually evaluate
the number of underlying topics and the pattern distributions
of the data sets. These challenging issues raise the need for
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Email: {meng0027, asahtan}@ntu.edu.sg. Donald C. Wunsch II is with the
Department of Electrical and Computer Engineering, Missouri University of
Science and Technology, Rolla, Mo65409, USA. Email: dwunsch@mst.edu.

existing clustering algorithms to be scalable to big data and
capable of automatically identifying data clusters with few
empirical settings, such as the number of clusters.

Unfortunately, most of the widely-used clustering approach-
es, such as K-means, spectral, probabilistic and matrix fac-
torization approaches, require setting the number of clusters
in a data set, which is still an open problem nowadays. To
address this problem, numerous methods have been proposed,
which can be categorized under the cluster tendency analysis
approach [15], [16], [17] and the cluster validation approach
[18], [19], [20], [21], [22], [23]. The first approach aims to
identify the number of clusters in a data set by studying the
neighborhood of patterns, while the second one achieves this
end by evaluating the quality of different cluster structures.
However, both of these methods are typically slow and may
not scale big social media data. As an alternative solution,
clustering approaches are available that do not require a pre-
defined number of clusters, including the hierarchical approach
[26], [27], [28], the genetic approach [29], [30], the density-
based approach [24], [31], affinity propagation (AP) [25], the
approach by finding density peaks (Clusterdp) [49], and the
adaptive resonance theory (ART) [9], [1], [2], [39], [40], [41].
However, the hierarchical and genetic approaches are similar to
the cluster validation approach. The other algorithms typically
have a quadratic time complexity of O(n2) and requires one
or more parameters in order to form clusters, which make their
performance sensitive to the settings of these parameters.

In order to meet the requirements of clustering large-scale
social media data, in this paper, we present our investigation
and three algorithms based on the fuzzy adaptive resonance
theory (Fuzzy ART) that have linear computational complex-
ity, use a single parameter, i.e. the vigilance parameter to
identify data clusters, and are robust to modest parameter
settings. To achieve this goal, we first conducted a theoret-
ical analysis in Fuzzy ART, in which we demonstrated that
complement coding [2] significantly changes the clustering
mechanism of Fuzzy ART and, with complement coding, the
vigilance parameter of a cluster in Fuzzy ART forms a hyper-
octagon region for the cluster, called a vigilance region (VR),
in the high-dimensional feature space. The VR essentially
determines how a cluster in the Fuzzy ART system recognizes
similar patterns in the feature space and gives an intrinsic
interpretation of the clustering mechanism and limitations of
Fuzzy ART. Subsequently, with the deep understanding of the
clustering mechanism of Fuzzy ART, we introduce the idea
of allowing different clusters in the Fuzzy ART system to
have different vigilance levels in order to meet the diverse
nature of the pattern distribution of social media data. Three
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vigilance adaptation rules, namely, the activation maximization
rule (AMR), the confliction minimization rule (CMR), and the
hybrid integration rule (HIR) are further proposed to make the
vigilance values of all clusters in the Fuzzy ART system self-
adaptable during the learning epochs. In this way, with an
initial vigilance value, the clusters in the resulting algorithms,
namely, the AM-ART, CM-ART, and HI-ART, are able to
adaptively tune their boundaries to recognize similar patterns,
and the performance of the proposed algorithms will be more
robust than Fuzzy ART to the initial vigilance value.

AM-ART, CM-ART and HI-ART were applied to four social
media data sets, including a subset of the NUS-WIDE image
data set [7], a subset of the 20 Newsgroups data set [48],
the Corel5k data set [50], and the BlogCatalog data set [51].
Their performance was studied in terms of their robustness
to the initial vigilance parameter, the convergence speed, the
noise immunity, the time-cost analysis, and the clustering
performance comparison with Fuzzy ART [2], DBSCAN [31],
Affinity Propagation [25] and Clusterdp [49] in terms of purity
[44], class entropy [46] and the Rand index [47]. The empirical
results show that AM-ART, CM-ART and HI-ART are more
robust than Fuzzy ART to the vigilance parameter and usually
perform better than the algorithms in comparison.

The remainder of the paper is organized as follows. Sec-
tion II reviews previous studies on the automatic identification
of the number of clusters in a data set. Section III summarizes
the Fuzzy ART algorithm. Section IV presents our study
on complement coding and the VR. Section V presents our
proposed vigilance adaptation rules, including AMR, CMR
and HIR. The experiments are reported in Section VI. The
last section concludes our work.

II. RELATED WORK

A. Cluster Tendency Analysis

Cluster tendency analysis aims to identify the number of
clusters in a data set before clustering. Most recent studies
[15], [16], [17] have focused on investigating the dissimilarity
matrix of patterns. Visual assessment of tendency (VAT) [15]
reorders the dissimilarity matrix of patterns to form a reordered
dissimilarity image (RDI), and the number of clusters is
identified by counting the dark blocks along the diagonal
pixels. Cluster count extraction (CCE) [16] and dark block
extraction (DBE) [17] are further proposed to objectively
identify the number of clusters instead of manual counting.
CCE constructs a histogram using the off-diagonal pixel values
of the filtered RDI obtained by VAT, and the number of clusters
equals the number of spikes in the histogram. In contrast, DBE
employs matrix transformation methods to project all of the
pixel values of the obtained RDI to the main diagonal axis in
order to obtain a projection signal, and the number of clusters
equals the number of major peaks in the signal.

B. Clustering Validation

Cluster validation aims to find the best clustering by evaluating
the quality of the different cluster structures generated. Consid-
ering the difference in the mechanism for cluster assignment,
existing cluster validation indices can be divided into those for

hard clustering [52], where one pattern belongs to one cluster,
and those for fuzzy clustering [18], where one pattern has the
levels of fuzzy membership for all clusters. Regarding the hard
clustering, existing methods typically follow three directions.
First, validation indices, usually based on the intracluster
compactness and the between-cluster separation, are employed
to evaluate the quality of different clusterings generated by
running a base algorithm with different numbers of clusters
[19], [22], [53]. Second, the values of validation indices for
different clusterings are plotted as a function of the number
of clusters, and the best number of clusters located at the
extreme or “elbow” values [20], [54], [55]. Third, multiple
data sets are first produced by distorting the patterns in the
given data set, using distortion tools like subsampling and
adding random noise. Subsequently, a clustering algorithm is
performed on each data set to identify the best number of
clusters [23], [56], [57]. Existing methods for the fuzzy cluster
validation [18], [21], [58] typically employ Fuzzy C-means as
the base algorithm and evaluate the quality of the produced
cluster assignments to identify the best number of clusters. A
review of fuzzy cluster validation indices is available in [18].

C. Cluster Property Modeling

1) Hierarchical Clustering: Hierarchical clustering algo-
rithms typically incorporate a cluster validity index to measure
the cluster quality during each merging or splitting iteration.
Li et al. [26] proposed an Agglomerative Fuzzy K-means
algorithm that runs multiple times with a maximum number of
clusters and a gradually increased penalty parameter. During
these runs, the clusters that share centers are merged according
to a validation method. Leung et al. [27] proposed a scale-
based algorithm which considers a data set as an image, and
each pattern is considered a light point on the image. The
generation of a hierarchy is then simulated by blurring the
image such that the light points gradually merge together. Sev-
eral cluster validity indices, including lifetime, compactness,
isolation and outlierness, are used to select the best cluster
structure in the hierarchy. In [28], an agglomerative clustering
algorithm was proposed based on an intracluster dissimilarity
measure, and a merge dissimilarity index (MDI) is presented
to find the optimal number of clusters.

2) Genetic Clustering: The use of genetic algorithms [29],
[30] to identify the best clustering typically depends on the
evolution of cluster structures, as evaluated by certain cluster
validity indices. In the symmetry-based genetic clustering
algorithm (VGAPS-clustering) [29], each pattern in the popu-
lation pool is a concatenation of the weight values of cluster
centers, and different patterns may each have a different
number of centers. After the maximum number of iterations,
the pattern with the highest fitness is selected as the best
cluster structure. A review of genetic clustering algorithms
was provided in [30].

3) Density-based Clustering: Density-based clustering al-
gorithms identify dense regions of patterns as clusters in the
feature space. DBSCAN [31] forms the degree of density using
two parameters, namely, the maximum distance for the search
of neighbors and the minimum number of neighbors. Patterns
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and their neighbors that satisfy the above requirements are
deemed to be in the same cluster while others are considered
noises. There are different variants of DBSCAN with different
cluster density measures, such as GDBSCAN [32], OPTICS
[33], DECODE [34], and KNNCLUST [35]. A review of
density-based clustering algorithms can be found in [24].

4) Affinity Propagation: Affinity propagation (AP) [25] is
an exemplar-based clustering algorithm that identifies a set
of representative patterns as “exemplars” to the other patterns
in the same cluster. Exemplars are identified by recursively
updating two messages of patterns, namely, the “availability”
indicating the qualification of a pattern to be an exemplar,
and the “responsibility” indicating the suitability of a pattern
to be a member of the exemplars’ clusters. Two algorithms
[36], [37] have been proposed to improve the efficiency of
affinity propagation. Fast sparse affinity propagation (FSAP)
[36] generates a sparse graph using the K-nearest neighbor
method, rather than the original similarity matrix, in order to
reduce the computational cost. In [37], the computational cost
is saved by pruning the edges that can be directly calculated
after the convergence of affinity propagation.

5) Clustering by Finding Density Peaks: Clusterdp [49]
identifies clusters of patterns by measuring the distances
between patterns in order to find the density peaks. With
a predefined value of search radius, the density peaks are
evaluated by following two criteria: 1) Density peaks should
have more neighbors than those of their neighbors; and 2) all
density peaks should be far away from each other. Clusterdp
plots a decision graph for the user to identify the density peaks
as cluster centers, and the remaining patterns are assigned to
the nearest cluster centers.

6) Adaptive Resonance Theory: Adaptive resonance theory
(ART) [9] is a learning theory that simulates how a human
brain captures, recognizes and memorizes information about
objects and events. It has resulted in the development of a
series of unsupervised learning models, such as ART 1 [1],
ART 2 [39], ART 2-A [40], ART 3 [41] and Fuzzy ART [2],
as well as supervised learning models, such as ARTMAP [6]
and Fuzzy ARTMAP [42].

Fuzzy ART, as the base model studied in this paper, incre-
mentally processes input patterns one at a time by performing
real-time searching and matching of existing clusters (memory
prototypes) in the category space. The vigilance parameter
is used to restrain the minimum degree of similarity for
patterns in the same cluster. When none of existing clusters is
deemed similar to the input pattern, a new cluster is generated
to encode this novel pattern. Fuzzy ART has been used in
different variants to resolve many image and text mining
problems, such as web document management [3], tag-based
web image organization [5], image-text association [4], and
heterogeneous data co-clustering [14].

Existing studies on the adaptation of or doing without the
vigilance parameter in ART-based algorithms do not allow d-
ifferent clusters to have different vigilance levels and typically
require additional information, such as the number of clusters
[10], [11] and class labels [6], [43]. Therefore, adapting the
vigilance parameter in ART under the clustering scenario
without any additional information remains a challenge.

Fig. 1: Fuzzy ART architecture.

III. FUZZY ART

The architecture of Fuzzy ART (Fig. 1) consists of the input
field F1 for receiving the input patterns and the category field
F2 for clusters. The generic network dynamics of Fuzzy ART
are described as follows.

Input vectors: Let I = x denotes the input pattern in the
input field F1. With complement coding [2], x is further con-
catenated with its complement vector x̄ such that I = (x, x̄),
where x̄ = 1− x.

Weight vectors: Let wj denotes the weight vector associated
with the jth cluster cj (j = 1, ..., J) in the category field F2.

Parameters: The Fuzzy ART dynamics are determined by
choice parameter α > 0, learning parameter β ∈ [0, 1] and
vigilance parameter ρ ∈ [0, 1].

The clustering process of Fuzzy ART has three key steps:

1) Category choice: For each input pattern I, Fuzzy ART
calculates the choice function for all of the clusters in the
category field F2 and selects the most suitable cluster (winner)
cj∗ , which has the largest value. The choice function for the
jth cluster cj is defined by

Tj =
|I ∧wj |
α+ |wj |

, (1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡

∑
i pi.

2) Template matching: The similarity between input pattern
I and winner cj∗ is evaluated using a match function Mj∗ ,
which is defined by

Mj∗ =
|I ∧wj∗ |
|I|

. (2)

If the winner satisfies the vigilance criteria such that Mj∗ ≥
ρ, a resonance will occur, which leads to the learning step.
Otherwise, a new winner will be selected among the rest of
the clusters in the category field. If no winner satisfies the
vigilance criteria, a new cluster will be generated to encode
the input pattern.

3) Prototype learning: If cj∗ satisfies the vigilance criteria,
its corresponding weight vector wj∗ will be updated through
a learning function, defined by

w
(new)
j∗ = β(I ∧wj∗) + (1− β)wj∗ . (3)
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Fig. 2: An example of a cluster and its vigilance regions with
or without complement coding in Fuzzy ART in 2D space.

IV. COMPLEMENT CODING AND
VIGILANCE REGION IN FUZZY ART

The vigilance region (VR) of a cluster in Fuzzy ART, which
is calculated based on the vigilance criteria, is geometrically
defined by a region associated to the cluster in the feature
space. It geometrically interprets the vigilance criteria of Fuzzy
ART where the input patterns falling into VRs are considered
to be similar to the corresponding clusters.

The shapes and functional behaviors of a VR depend on
the use of complement coding. With complement coding, an
input pattern x is represented as I = (x, x̄). Therefore, the
weight vector w of a cluster also includes the feature part and
the complement part. As demonstrated in [2], given a weight
vector w = (a, b̄), the match area of the weight vector w
corresponds to a rectangle in the 2D space, where a and b
are the two diagonal corner points of the rectangle. As shown
in Fig. 2, VR1 and VR2, are the VRs of the weight vector
w generated under vigilance parameters ρ = 0.75 and 0.825
respectively. Without complement coding, weight vector w is
the point a, and VR3 and VR4 are the VRs generated under
the same vigilance parameters. Therefore, with complement
coding, the VR is a hyper-octagon centered by the weight
hyper-rectangle, which shrinks as the cluster size expands;
otherwise, without complement coding, the VR is an irregular
hyper-polygon with axes.

A. Complement Coding in Fuzzy ART

Complement coding [2] is employed in Fuzzy ART as a
normalization method for the input patterns, which prevents
cases in which the values of the weight vector of a cluster
decrease to such a low level that the cluster is no longer
representative for its category, and a set of new clusters must
be generated to encode input patterns for this category; this
is known as the problem of category proliferation. However,
complement coding significantly changes the clustering mech-
anism of Fuzzy ART.

1) Effect of Complement Coding on Category Choice:
Choice function (1) evaluates the degree to which the weight
vector wj of cluster cj is a subset of input pattern I. We can
prove that, incorporating complement coding in Fuzzy ART,

the choice function considers the similarity between the input
pattern and the weight hyper-rectangle of the selected cluster.

Property 1: Given the input pattern I = (x, x̄), weight
vector wj = (a, b̄) of cluster cj , and α ≈ 0, choice function
Tj considers the similarity between the original input pattern
x and the weight hyper-rectangle of cluster cj .

Proof 1:

Tj =
|I ∧wj |
α+ |wj |

=
|x ∧ a|+ |x̄ ∧ b̄|

|wj |

=
|x ∧ a|+ |x ∨ b|
|a + b̄|

=
|a|
|a + b̄|

· |x ∧ a|
α+ |a|

+
|b̄|
|a + b̄|

· |x ∨ b|
α+ |b̄|

. (4)

As shown in (4), the choice function evaluates both the degree
to which a is a subset of x and to which x is a subset
of b. The final choice value is obtained by their weighted
summation, which is normalized by their respective norms.
Therefore, given x = (x1, ..., xm), a = (a1, ..., am), and
b = (b1, ..., bm), choice function Tj achieves its maximum for
cj when, for ∀i ∈ [1,m], ai ≤ xi ≤ bi. For example, in Fig. 2,
the choice function for this cluster achieves its maximum when
the input pattern falls into the weight rectangle.

Therefore, with complement coding, the choice function
evaluates the similarity of the input pattern to the weight
hyper-rectangle of the selected cluster cj .

2) Effect of Complement Coding on Template Matching:
Match function (2) evaluates the degree to which the input
pattern I is a subset of weight vector wj∗ of cluster cj∗ . In
template matching, input pattern I is considered to be similar
to the winner cluster cj∗ if

Mj∗ =
|I ∧wj∗ |
|I|

≥ ρ. (5)

The VR, therefore, is identified to show the extent to which
an input pattern can be categorized into a specific cluster.
Given the weight vector wj∗ = (w1, ..., wm) of cluster cj∗ ,
the vigilance parameter ρ, and an arbitrary input pattern
I = (x1, ..., xm) in the Fuzzy ART system. If Fuzzy ART
does not employ complement coding, (5) is equivalent to

Σm
i=1 min(xi, wi)− ρΣm

i=1xi ≥ 0. (6)

As shown in Fig. 2, when m = 2, (6) is an irregular polygon
constructed by three functions and the axes.

In contrast, if Fuzzy ART employs complement coding,
the number of dimensions of the feature space will be m

2 .
Therefore, (5) can be expressed as

Σm
i=1 min(xi, wi) ≥

mρ

2
. (7)

When m = 4, as shown in Fig. 2, the VR of cj∗ becomes a
regular polygon, namely, an octagon.
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B. Vigilance Region in Fuzzy ART
1) Properties of Weight Hyper-rectangle and Vigilance Re-

gion: In Section IV-A, we prove that, with complement
coding, the VR of a cluster becomes a hyper-octagon centered
by the weight vector of the cluster, namely, the weight hyper-
rectangle. In this section, we analyze the properties of the
weight hyper-rectangle and VR of a cluster and subsequently
use them to interpret the clustering process of Fuzzy ART.

Property 2: Given the weight vector wj = (w1, ..., wm) of
cluster cj in the Fuzzy ART system with complement coding,
the VR of cj consists of 3

m
2 − 1 hyper-planes.

Proof 2: Similar to (4), given wj = (a1, ..., am
2
, b̄1, ..., b̄m

2
),

and I = (x1, ..., xm
2
, x̄1, ..., x̄m

2
), (5) can be expressed as

Σ
m
2
i=1 min(xi, ai) + Σ

m
2
i=1max(xi, bi) ≥

mρ

2
. (8)

In view that the m dimensional vector wj is a hyper-
rectangle in the m

2 dimensional space, and for ∀i ∈ [1, m2 ],
xi ∈ [0, ai) ∪ [ai, bi) ∪ [bi, 1]. Therefore, the feature space
is divided into 3

m
2 subsections. Considering that (8) is an

identical equation in the weight hyper-rectangle, the number
of hyper-planes for constructing the VR is 3

m
2 − 1.

Property 3: Patterns falling into the weight hyper-rectangle
have the same value of match function (2).

Proof 3: Given a cluster cj and its weight vector wj =
(a1, ..., am

2
, b̄1, ..., b̄m

2
) and I = (x1, ..., xm

2
, x̄1, ..., x̄m

2
)

falling into the weight hyper-rectangle, we have for ∀i ∈
[1, m2 ], ai ≤ xi ≤ bi. In this case, according to (8), the value
of the match function depends only on weight vector wj such
that |I ∧ wj∗ | = wj∗ . Therefore, all of the patterns in the
weight hyper-rectangle have the same match value.

The situation may also be interpreted as all of those patterns
having the same `1 distance to a and b, as

|x− a|+ |x− b| =
∑
i

(xi − ai) +
∑
i

(bi − xi)

=
∑
i

(bi − ai). (9)

Property 4: Patterns falling into the weight hyper-rectangle
of the winner do not result in the expansion of the weight
hyper-rectangle during the learning step (3).

Proof 4: In Property 2, if I falls into the weight hyper-
rectangle of cluster cj , we have |I∧wj∗ | = wj∗ . In this case,
(3) is equivalent to

w
(new)
j∗ = βwj∗ + (1− β)wj∗ = wj∗ . (10)

Therefore, weight vector wj∗ undergoes no change after
encoding input pattern I.

Property 5: The weight hyper-rectangle of a cluster reflects
the cluster size, which is controlled by the learning rate β.

Proof 5: Given input pattern I = (x, x̄), winner cj∗ and its
corresponding weight vector wj∗ = (a, b̄). If I is categorized
into cj∗ , wj∗ is updated according to (3) such that

w
(new)
j∗ = (a(new), b̄(new)) = β(I ∧wj∗) + (1− β)wj∗

= β(x ∧ a,x ∨ b) + (1− β)(a, b̄)

= (β(x ∧ a) + (1− β)a, β(x ∨ b) + (1− β)b̄)).
(11)

We observe that the update of weight vector wj∗ is essentially
the movement of a and b towards the input pattern I. Specifi-
cally, a moves towards I in the dimensions {i|xi < ai}, while
b moves towards I in the dimensions {i|xi > bi}. Therefore,
when β = 1, the weight hyper-rectangle of cj∗ covers all
of the patterns in cj∗ , which indicates the boundaries of cj∗ .
When β < 1, the weight hyper-rectangle expands towards the
new patterns to some extent, making it unable to cover all the
patterns. However, the weight hyper-rectangle may reflect the
cluster size on a smaller scale.

Property 6: The VR shrinks as the weight hyper-rectangle
expands to control the minimum intracluster similarity.

Proof 6: As demonstrated in Property 2, a VR in the m
2

dimensional space is constructed by 3
m
2 − 1 functions, each

of which is calculated using (8). Because the learning function
(3) suppresses the values of features, we have a(new)

i ≤ ai and
b
(new)
i ≥ bi for ∀i ∈ [1, m2 ]. Therefore, after the weight hyper-

rectangle expands, the constant in the left part of (8) decreases
so that functions in the subsections either remain the same or
move towards the weight hyper-rectangle.

The shrinking of the VR can also be understood from an-
other perspective. As the VR indicates, the boundaries that the
weight hyper-rectangle expands towards go in all directions.
When the weight hyper-rectangle expands in one direction, its
distance from the VR is determined by the function in that
direction, and the functions in other directions should shrink
to meet this distance so that the updated VR remains a regular
hyper-octagon centered by the weight hyper-rectangle.

2) Interpretation of Fuzzy ART using Vigilance Region:
Given the properties of the weight hyper-rectangle and the
VR, we interpret the clustering process of Fuzzy ART by a 2D
example in Fig. 3. Fig. 3a depicts the evolution of a cluster
in Fuzzy ART under learning parameter β = 1. When the
cluster has only one pattern I1, the weight rectangle R1 is
situated exactly at point I1. In this case, the corresponding
VR1 is a square diamond centered by I1. After encoding I2,
R2 becomes a rectangle, and the corresponding VR2 becomes
an octagon, which satisfies Property 2. During the presentation
of I3 and I4, the weight rectangle expands to cover all of the
patterns, which satisfies Property 5. It is notable that I4 lies
directly on the edge of VR3 so that VR4 overlaps with R4.
Based on Property 3 and Property 4, patterns falling into R4
have the same match function value, and this cluster will no
longer expand. Also, the bottom-left edge of VR2-VR4, where
I4 lies, never shrinks, which can be interpreted by Property 6.

Fig. 3b illustrates that, with β = 0.6 < 1, R1 expands
towards I2 but cannot cover both I1 and I2. It is notable that a
repeated presentation I5 of I4 still causes the cluster to learn.
Therefore, when β < 1, the continuous presentation of the
same pattern to a cluster results in the gradual expansion of
the weight rectangle of the cluster towards the input pattern;
however, the rectangle cannot cover that pattern.

3) Discussion: The VR provides a geometric understanding
of how Fuzzy ART works. As shown in Fig. 2, without
complement coding, the VR of Fuzzy ART in a 2D space
is an open region, so the weight vector of the cluster denoted
by point a may gradually move to the origin, which causes
category proliferation. With complement coding, the VR of
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Fig. 3: A 2D example on the evolution of a cluster in Fuzzy ART under different learning parameter values, (a) β = 1 and (b)
β = 0.6. (a) Sequential presentation of I1(0.5,0.6), I2(0.6,0.5), I3(0.45,0.45) and I4(0.43,0.42). R1-R4 indicate the expansion
of the cluster’s weight rectangle, and VR1-VR4 indicate the corresponding VRs. (b) Sequential presentation of I1(0.5,0.6),
I2(0.6,0.5), I3(0.45,0.45), I4(0.4,0.41), and I5(0.4,0.41).

a cluster in Fuzzy ART is a regular polygon, which shrinks
as the cluster size expands. Therefore, Fuzzy ART with
complement coding tends to partition the high-dimensional
feature space into regions of hyper-rectangles.

The geometric interpretation of Fuzzy ART is also helpful
for deducing and improving its limitations. First, given that the
VR of a new cluster is usually much larger than the weight
rectangle of the cluster and shrinks quickly after the encoding
of the subsequent patterns, it may be difficult to cover a group
of patterns using a single cluster, even if the VR covers all of
the patterns. Second, a small VR may result in the generation
of multiple clusters to cover a group of patterns. Third, a
large VR may incur an incorrect categorization of patterns,
since the sequence of input patterns is unknown. Therefore,
the performance of Fuzzy ART depends greatly on the value of
vigilance parameter ρ, and, with different sequences of input
patterns, the clustering results may differ.

V. RULES FOR ADAPTING VIGILANCE PARAMETER IN
FUZZY ART

As discussed in IV-B3, the performance of Fuzzy ART de-
pends greatly on the value of vigilance parameter ρ, which
both determines the VRs of clusters for accepting patterns and
limits the size of all of the clusters. However, because large-
scale web multimedia data usually contain a large number of
groups of patterns in arbitrary shapes in the feature space, it is
not advisable to use a single value of the vigilance parameter
in ART to scale the size of all clusters. Based on the above
consideration, in our preliminary study [38], we proposed two
heuristic methods, the activation maximization rule (AMR)
and the confliction minimization rule (CMR), which allow
different clusters in ART to have individual vigilance param-
eters, which are self-adapted during the clustering process. In
the following sections, we offer a geometric interpretation of
AMR and CMR using VR and further propose a hybrid method
to integrate AMR and CMR.

A. Activation Maximization Rule

The activation maximization rule (AMR) comes from the
observation that input patterns are likely to incur resonances
for the same cluster with a small vigilance value, while a large
vigilance value may lead to the reset of input patterns for all
clusters in the category field, requiring the creation of a new
cluster. Therefore, AMR is proposed to restrain the continuous
activation of the same cluster and promote the activation of
clusters that usually incur resets.

Fuzzy ART with AMR (AM-ART) adapts the vigilance
parameter ρj∗ of the winner cj∗ when

1) Resonance occurs: ρ(new)
j∗ = (1 + σ)ρj∗ ;

2) Reset occurs: ρ(new)
j∗ = (1− σ)ρj∗ .

The restraint parameter σ ∈ [0, 1] controls the degree to which
the vigilance parameter increases or decreases. With a small σ,
AMR incurs small changes in the vigilance values of clusters,
so the performance of ART still highly depends on the initial
value of the vigilance parameter. In contrast, a large σ may
help to make AM-ART to be robust to the initial vigilance
value but may result in unstable vigilance values of clusters.

Fig. 4 illustrates how AMR works. C1 and C2 are two
clusters with different values of vigilance parameter. When
the input pattern I is presented, the first winner, C2, incurs a
reset due to its small VR, and the next winner, C1, encodes
I. Without AMR, the VR of C1 shrinks from VR1 to VR2,
and that of C2 remains the same. In this situation, a new input
pattern located close to I will be miscategorized to C1 again.
In contrast, with AMR, the VR of C1 shrinks to VR3 while
that of C2 expands to VR2. Therefore, C2 is likely to encode
the following new input pattern located close to I than C1.

Based on the above discussion, AMR may help to improve
the clustering performance of Fuzzy ART when the initial
vigilance value is not suitable. Besides, AMR may also help
to prevent the generation of small clusters and the over-
generalization of cluster weights by evening out the sizes of
two very close clusters.
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Fig. 4: A 2D example on how AMR adapts vigilance values
of two clusters in Fuzzy ART with complement coding.

B. Confliction Minimization Rule

The confliction minimization rule (CMR) minimizes the over-
lap between VRs of close clusters to produce better cluster
boundaries. CMR is based on the idea that, in Fuzzy ART, the
incorrect recognition of patterns usually is caused by a small
vigilance value, so the VR of a cluster may cover patterns from
other classes. Therefore, well-partitioned boundaries between
clusters can minimize the risk of miscategorization.

Fuzzy ART with CMR (CM-ART) has three key steps:
1) Candidate Selection: Select all winner candidates

Winc = {cj |Mj ≥ ρ} in the category field F2 through the
match function (2). If no candidates are selected, CMR stops;

2) Winner Identification: Identify the winner cj∗ from
all candidates using the choice function (1) such that j∗ =
arg maxj Tj ;

3) Confliction Minimization: Update the vigilance param-
eters of all winner candidates except for the winner {cj |cj ∈
Winc ∧ j 6= j∗} using ρ

(new)
j = Mj + ∆ (∆ ≈ 0 is a very

small positive value).
Fig. 5 illustrates how CMR reduces the overlap between

the VRs of clusters. C1-C3 are three clusters and I is an input
pattern falling at the overlap between VRs of all clusters. C2
encodes the input pattern I and its VR shrinks to VR2. Without
CMR, the VRs of C1 and C3 remains the same, and the overlap
between all three clusters has no decrease. While with CMR,
the VRs of C1 and C3 shrinks from VR1 to VR2, and the
overlap undergoes significant reduction.

C. Hybrid Integration of AMR and CMR

AMR and CMR are inspired by different considerations for
ART and have different mechanisms when embedding in ART,
so we cannot simply combine them into a single framework.
However, we may simultaneously integrate the objectives of
AMR and CMR. Specifically, AMR essentially rewards the
clusters that have larger choice values than the winner but
incur resets due to large vigilance values, while penalizing
the clusters that incur resonances to avoid a potentially low
vigilance value. In contrast, CMR minimizes the overlap
between the VRs of clusters.
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Fig. 5: A 2D example on how CMR adapts vigilance values
of clusters to reduce overlap between their VRs.

The implementation of the hybrid method, called the hybrid
integration rule (HIR), may follow the procedures of either
AMR or CMR. For the purpose of time efficiency, Fuzzy
ART with HIR (HI-ART) is implemented according to the
procedures of CM-ART, as listed below:

1) Candidate Selection: Select all winner candidates
Winc = {cj |Mj ≥ ρ} in category field F2 through match
function (2). If no candidates are selected, for ∀cj ∈ F2, set
ρ
(new)
j = (1− σ)ρj , and HIR stops;
2) Winner Identification: Identify the winner cj∗ from

all candidates through choice function (1) such that j∗ =

arg maxj Tj . Set ρ(new)
j∗ = (1 + σ)ρj∗ ;

3) Confliction Minimization: Update the vigilance param-
eters of all winner candidates except for the winner {cj |cj ∈
Winc ∧ j 6= j∗} using ρ(new)

j = Mj + ∆;
4) Activation Maximization: Search in the remaining clus-

ters to identify the set of clusters Rc = {cj |cj ∈ F2 ∧ cj /∈
Winc∧Tj ≥ Tj∗}, and for ∀cj ∈ Rc, set ρ(new)

j = (1−σ)ρj .

D. Computational Complexity Analysis

As presented in Section III, given an input pattern, ART
undergoes procedures including complement coding, finding
matching cluster by category choice and template matching,
and prototype learning or new cluster creation. Their corre-
sponding time complexities are O(nf ), O(ncnf ), and O(nf ),
where nc denotes the number of clusters and nf denotes the
number of features. Therefore, given ni input patterns, the
overall time complexity of ART is O(nincnf ).

AMR requires ART to adapt the vigilance parameter val-
ues of the selected winners, of which the time complexity
is O(nc). Therefore, the time complexity of AM-ART is
O(nincnf ). CM-ART reverses procedures of category choice
and template matching and adapts the vigilance parameter
values of all winner candidates, whose time complexity is
O(nc). Therefore, the time complexity of CM-ART is al-
so O(nincnf ). Similarly, HI-ART makes a integration of
procedures of AM-ART and CM-ART. Therefore, its time
complexity is O(nincnf ).
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Fig. 6: Sensitivity of AM-ART, CM-ART, HI-ART, and Fuzzy ART to the vigilance parameter ρ measured by Purity and
number of generated clusters on the (a & b) NUS-WIDE and (c & d) 20 Newsgroups data sets.

VI. EXPERIMENTS

A. Data Sets

We conducted our experiments on four data sets:
1) NUS-WIDE data set [7] consists of 269,648 Flickr

images with their raw surrounding text and ground-truth
labels from 81 concepts. We collected 10,800 images in
total from nine classes, including dog, bear, cat, bird, flower,
lake, sky, sunset, and wedding, each of which contains 1,200
images. Each image was represented as a 426-D vector by
concatenating three types of visual features, including Grid
Color Moment (225 features), Edge Direction Histogram (73
features) and Wavelet Texture (128 features).

2) 20 Newsgroups data set [48] consists of ap-
proximately 20,000 messages from 20 different netnews
newsgroups, each of which contains nearly 1,000 doc-
uments. We collected 9,357 messages from 10 class-
es, including alt.atheism, comp.graphics, comp.windows.x,
rec.sport.baseball, rec.sport.hockey, sci.med, sci.space, mis-
c.forsale, talk.politics.guns, and talk.politics.misc, from the
processed MATLAB version of the 20news-bydate data set1.
Regarding the feature extraction, we filtered any words that
occurred less than 30 times, and each message was represented
by a bag-of-words vector of 6,823 features, weighted by the
term frequency-inverse document frequency (tf-idf) algorithm.

3) Corel5K data set [59] consists of 4999 images from 50
equal-sized classes. We utilized the whole data set for experi-
ments, and extracted the 426 features for image representation,
as used for the NUS-WIDE data set.

4) BlogCatalog data set [60] consists of the friendship
network and the raw blog data (blog content, category, and
tags) of 88,784 social network users. We used a polished
version of the data set as processed in [45]. Specifically, we
collected the blog content of 10,000 users from 10 equal-sized
classes, including travel, music, writing, sports, shopping,
computers, finance, film, fashion, and books. By filtering the
infrequent words, each user is represented by a 5685-D vector,
of which the features are weighted by the tf-idf algorithm.

B. Parameter Selection

Similar to Fuzzy ART, the proposed AM-ART, CM-ART, and
HI-ART have parameters α, β, and ρ. Besides, AM-ART has
the restraint parameter σ, CM-ART has the parameter ∆,

1http://qwone.com/∼jason/20Newsgroups/

and HI-ART has both. In the experiments, we consistently
used α = 0.01, β = 0.6, σ = 0.1, and ∆ = 0.01, as the
proposed algorithms and Fuzzy ART has general robustness
to the parameters with the above values [8], [38], [45].

The vigilance parameter ρ is essentially a ratio value that
controls the minimum intracluster similarity of patterns, so
its value is data-dependent. However, an empirical method
[45] has shown that a suitable value of ρ typically results
in the generation of a few small clusters, typically 10% of the
total number of the generated clusters. Besides, a small cluster
typically contains several or tens of patterns. We followed this
method to select the initial value of ρ.

C. Robustness to Vigilance Parameter

In this section, we evaluated the performance of AM-ART,
CM-ART, and HI-ART on improving the robustness of Fuzzy
ART to the vigilance parameter ρ. The performance was
measured in terms of purity [44] and the number of clusters
generated. Here, purity measures how well the algorithm
recognizes the data objects of the same class, and the number
of clusters measures how well the algorithm partitions the
data set with the lowest network complexity. We reported
the performance on the NUS-WIDE and 20 Newsgroups data
sets in Fig. 6, and similar observations were found in the
experiments on the Corel5K and BlogCatalog data sets.

As shown in Fig. 6a, when ρ < 0.4, AM-ART, CM-ART,
and HI-ART achieved much better performance in purity and
identified more clusters than Fuzzy ART. When ρ > 0.7,
all algorithms achieved comparable performance; however, as
shown in Fig. 6b, the higher purity was achieved by increasing
network complexity. Meanwhile, we observed that AM-ART
and HI-ART generated significantly fewer clusters than Fuzzy
ART and CM-ART. These findings indicated that AMR, CMR,
and HIR enabled the proposed algorithms to be more robust
than Fuzzy ART to the vigilance parameter, especially when
the initial vigilance value is low. AMR can effectively simplify
the generated cluster network when the initial vigilance value
is high. More importantly, HI-ART can take advantage of both
AM-ART and CM-ART, which demonstrates the viability of
developing hybrid methods for vigilance adaptation. Similar
findings can be observed in Fig. 6c and Fig. 6d.

A case study was further conducted by analyzing the size
and coherence of the clusters generated by each algorithm
to provide a deeper understanding of how the proposed algo-
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Fig. 7: Distributions of clusters generated by AM-ART, CM-ART, HI-ART, and Fuzzy ART on the NUS-WIDE data set in
terms of cluster sizes and average pattern-centroid distance under (a & b) ρ = 0.2 and (c & d) ρ = 0.9.
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Fig. 8: Convergence analysis of AM-ART, CM-ART, HI-ART, and Fuzzy ART measured by change in weights and patterns
in each iteration on the (a & b) NUS-WIDE and (c & d) 20 Newsgroups data sets.

rithms work. As shown in Fig. 7a and 7b, under ρ = 0.2, AM-
ART, CM-ART and HI-ART identified relatively more smaller
clusters having better coherence than Fuzzy ART. These facts
explained the lower performance of Fuzzy ART. In contrast,
as illustrated in Fig. 7c and Fig. 7d, when ρ = 0.9, all
algorithm generated clusters of similar quality while HI-ART
and AM-ART generated much fewer small clusters than CM-
ART and Fuzzy ART. This explained why they can generate
fewer clusters than the other algorithms and demonstrated the
effectiveness of AMR in simplifying the network with a high
vigilance value.

D. Convergence Analysis

This section presents a comparative study on the convergence
property of the proposed algorithms and Fuzzy ART, which
is measured by the overall change in weights and the number
of patterns moving across clusters with respect to the repeat
presentation of patterns.

We reported the results on the NUS-WIDE and 20 News-
groups data sets and similar findings were observed on the
other data sets. In the experiments, we set ρ = 0.7 and 0.6 for
the NUS-WIDE and 20 Newsgroups data sets, respectively.
As shown in Fig. 8, all algorithms experienced large changes
during the first six rounds. This circumstance likely is due
to the generation of new clusters. CM-ART and HI-ART
usually obtain comparable convergence speeds, which are
faster than AM-ART and Fuzzy ART. This is because CMR
promotes the shrinking of the VRs of neighboring clusters
by reducing their overlap, resulting in the fast stabilization of
cluster assignments. AM-ART usually converges slower than
Fuzzy ART, because AMR increases the vigilance value of
competitive winner candidates and decreases that of the winner

so that patterns may jump across those winner candidates
when they are presented multiple times. HI-ART converges
faster than Fuzzy ART during the first rounds of iterations
due to CMR but achieves a convergence speed similar to that
of Fuzzy ART after the network becomes stable due to AMR.
Interestingly, in contrast to its performance on the NUS-WIDE
data set, AM-ART converged faster than Fuzzy ART on the 20
Newsgroups data set. This may be due to the larger dispersion
of patterns in the feature space, which caused the increase in
the size of the VRs to have less of an effect on the cluster
assignments of patterns.

E. Clustering Performance Comparison

In this section, we presented an evaluation of the cluster-
ing performance of AM-ART, CM-ART and HI-ART, and
compared them to existing clustering approaches that also
automatically identify the number of clusters in data, including
DBSCAN, affinity propagation, Clusterdp, and fuzzy ART.
All algorithms were implemented in MATLAB. Hierarchical
and genetic clustering approaches were not considered here
because they require heavy computation and are not scalable
to large-scale data sets.

We applied min-max normalization to the data sets because
ART-based algorithms require the input values to be in the
range of [0, 1]. Experimental results indicated that the nor-
malization of data has an unobvious effect on the performance
of other algorithms. To ensure a fair comparison, we utilized
several practical parameter tuning strategies for the algorithm-
s. For DBSCAN, we determined the minimum cluster size
minPts by evaluating the sizes of small clusters generated
by Fuzzy ART under high vigilance values ρ ∈ [0.7, 0.9].
Subsequently, we followed the method suggested in [31] to



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized parameter value

T
he

 R
an

d 
in

de
x

 

 

AM−ART
CM−ART
HI−ART
Fuzzy ART
DBSCAN
Affinity Propagation
Clusterdp

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized parameter value

T
he

 R
an

d 
in

de
x

 

 

AM−ART
CM−ART
HI−ART
Fuzzy ART
DBSCAN
Affinity Propagation
Clusterdp

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized parameter value

T
he

 R
an

d 
in

de
x

 

 

AM−ART
CM−ART
HI−ART
Fuzzy ART
DBSCAN
Affinity Propagation
Clusterdp

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized parameter value

T
he

 R
an

d 
in

de
x

 

 

AM−ART
CM−ART
HI−ART
Fuzzy ART
DBSCAN
Affinity Propagation
Clusterdp

(a) (b) (c) (d)

Fig. 9: Clustering performance comparison of the proposed algorithms and four baseline algorithms under different parameter
settings measured by the Rand index on the (a) NUS-WIDE, (b) 20 Newsgroups, (c) Corel5K, and (d) BlogCatalog data sets.

select the search radius ε, namely, plotting the k-distance graph
(k is the value of minPts) and choosing the “bend” value. For
Affinity propagation, we selected the preference value p using
the MATLAB function “preferenceRange.m”2. The values of
dampfact, convits and maxits were first set to the suggested
values by the authors and then changed with respect to the
preference value p to ensure convergence. Clusterdp requires
a search radius dc and a cluster center selection procedure by
the user. We set dc to the value of ε used in DBSCAN as both
have the same meaning and selected the cluster centers from
the decision graph that producing the best performance.

We used three external clustering performance measures,
including purity [44], class entropy [46] and the Rand index
[47]. Purity evaluates the precision aspect, i.e., how well an
algorithm recognizes patterns belonging to the same class,
and a higher value indicates better performance. Class entropy
evaluates the recall aspect, i.e., how well an algorithm parti-
tions the data set with the minimum number of clusters, and
a lower value indicates better performance. The Rand index
considers both aspects. Internal performance measures, such as
sum of squared error (SSE), were not used because they make
assumptions based on cluster shapes, so they are not suitable
to evaluate the performance of DBSCAN and Clusterdp.

We first reported the performance of each algorithm under
different parameter settings in terms of the Rand index on all
data sets, which provided an overall picture of the performance
of each algorithm. Specifically, for the ART-based algorithms,
we plotted the curve of performance as a function of the
vigilance parameter ρ; for DBSCAN, we plotted the curve
as a function of the minimum cluster size minPts; for
Affinity Propagation, we plotted the curve as a function of
the preference value p; for Clusterdp, we plotted the curve as
a function of the search radius dc. The other parameters of
each algorithm were fixed or tuned as aforementioned so that
the best performance was achieved under each condition of
the functions. Additionally, for DBSCAN and the ART-based
algorithms whose results may be affected by the input data
sequence, the performance was the mean value obtained by
repeating the experiments ten times with different sequences
of patterns, while that of Affinity Propagation and Clusterdp is
obtained on a single run. The results were shown in Fig. 9. To
facilitate the comparison, the x-axis values of each algorithm
were normalized to be in the range of [0, 1]. We observed

2http://genes.toronto.edu/index.php?q=affinity%20propagation

that the performance of the ART-based algorithms typically
increased with respect to the increase in the vigilance value
ρ, which indicated that better performance can be achieved
by setting higher intracluster similarity threshold to some
extent. However, a too high vigilance value would result in
a deteriorated performance by the high network complexity,
as shown in Fig. 9a and 9b. Besides, HI-ART and CM-
ART usually outperform AM-ART and Fuzzy ART when the
vigilance value is low, which were consistent with our findings
in Section VI-C. It is notable that Fuzzy ART achieved
very low performance when ρ < 0.3, which was caused
by the fact that all patterns in the Corel5K data set were
clustered into a single cluster. In contrast, AM-ART achieved
an improved performance on this case while CM-ART and
HI-ART had a big improvement over Fuzzy ART. Compared
with the ART-based algorithms, DBSCAN could achieve a
stable performance when the values of minPts were near to
the best setting. However, we observed that the best parameter
value varied with different data sets and the best performance
of DBSCAN was typically lower than these achieved by the
ART-based algorithms. Affinity Propagation could perform
comparably to the ART-based algorithms and achieved a more
stable performance under different parameter settings, espe-
cially in Fig. 9a and 9d. However, the performance of Affinity
Propagation could fluctuate a lot as shown in Fig. 9b and
9c, making it difficult to manually select the best parameter
settings. Clusterdp typically performed the worst among all
algorithms. Although a fairly stable performance was achieved
in Fig. 9a, its best performance is almost 10% lower than
those achieved by other algorithms. This should be caused by
the noisy features of patterns so that the neighboring relation
between patterns belonging to the same cluster may not be
well reflected by the calculated distance. Besides, Clusterdp
suffered from the problem of selecting qualified cluster centers
from the decision graph on all data sets. In our experiments,
almost all patterns were in a mass while few of them satisfied
the requirements of having many neighbors and long distance
to other more qualified cluster centers.

We further conducted a case study on the best clustering
results of all algorithms achieved in Fig. 9 by comparing
their performances in terms of purity, class entropy, and the
Rand index. For DBSCAN and the ART-based algorithms, the
means and standard derivations obtained from ten runs were
reported and their differences were further measured by t-test.
As shown in Table I, the proposed CM-ART and AM-ART
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TABLE I: Best clustering performance of DBSCAN, Affinity Propagation, Clusterdp, Fuzzy ART, AM-ART, CM-ART, and
HI-ART on the four data sets in terms of purity, class entropy, and the Rand index.

DBSCAN Affinity Propagation Clusterdp Fuzzy ART AM-ART CM-ART HI-ART

NUS-WIDE
Purity 0.6598 ± 0.015 0.6827 0.6193 0.7264 ± 0.026 0.7313 ± 0.023 0.7436 ± 0.023 0.7348 ± 0.025

Class entropy 0.7188 ± 0.011 0.7063 0.7497 0.7287 ± 0.024 0.7148 ± 0.022 0.7266 ± 0.026 0.7159 ± 0.021
Rand index 0.7970 ± 0.012 0.8084 0.7408 0.8305 ± 0.027 0.8244 ± 0.019 0.8461 ± 0.026 0.8419 ± 0.023

20 Newsgroups
Purity 0.7084 ± 0.017 0.7225 0.6518 0.7165 ± 0.027 0.7476 ± 0.022 0.7735 ± 0.019 0.7491 ± 0.024

Class entropy 0.5604 ± 0.016 0.5779 0.5978 0.5679 ± 0.027 0.5873 ± 0.021 0.6081 ± 0.024 0.5936 ± 0.026
Rand index 0.8303 ± 0.013 0.8522 0.7907 0.8527 ± 0.021 0.8745 ± 0.023 0.8918 ± 0.018 0.8794 ± 0.024

Corel5K
Purity 0.6792 ± 0.012 0.6926 0.5708 0.7983 ± 0.026 0.7627 ± 0.018 0.7863 ± 0.022 0.7715 ± 0.020

Class entropy 0.4940 ± 0.009 0.5358 0.5639 0.5216 ± 0.016 0.4758 ± 0.021 0.5391 ± 0.017 0.5034 ± 0.015
Rand index 0.8408 ± 0.018 0.8639 0.6977 0.9391 ± 0.024 0.9284 ± 0.014 0.9380 ± 0.019 0.9369 ± 0.021

BlogCatalog
Purity 0.7762 ± 0.017 0.8023 0.7129 0.8431 ± 0.017 0.8635 ± 0.013 0.8599 ± 0.023 0.8492 ± 0.016

Class entropy 0.5121 ± 0.019 0.4889 0.5307 0.5321 ± 0.022 0.5003 ± 0.021 0.5218 ± 0.019 0.4963 ± 0.017
Rand index 0.8720 ± 0.016 0.9120 0.7836 0.9361 ± 0.014 0.9561 ± 0.018 0.9492 ± 0.018 0.9484 ± 0.015

typically obtained the best performance across all data sets
in terms of purity and the Rand index, which was usually
significantly better than that achieved by DBSCAN, Affinity
Propagation, and Clusterdp at the significant level p = 0.001.
Fuzzy ART usually obtains comparative performance to the
proposed algorithms and obtained the best performance on
the Corel5K data set in terms of purity and the Rand index.
However, it did not perform significantly differently than CM-
ART at the significant level p = 0.1. We also observed that
Affinity Propagation and DBSCAN usually obtain the best per-
formance of class entropy, which indicated that the ART-based
algorithms may general more clusters to produce clusters with
higher quality. This is due to the fact that the distributions of
patterns belonging to the same class are not regular because of
the noisy patterns in the data sets. Besides, the proposed AM-
ART, CM-ART, and HI-ART usually achieve the performance
not significantly different to the best performance in terms
of class entropy at the significant levels p = 0.05. The above
findings revealed that the proposed algorithms usually perform
better than or comparable to the compared existing algorithms
in terms of purity and the Rand index, and also perform
reasonably well in terms of class entropy.

F. Case Study on Noise Immunity

The noisy and diverse nature of the social media data raises a
challenge for the robustness of clustering algorithms to noise.
Here, noise is not only defined by the noisy patterns that are
isolated from clusters of the same class, but also defined by
the noisy features that result in the noisy or ill-represented
patterns. In this section, we reported the performance of our
proposed algorithms and the baselines on noisy data.

To quantitatively evaluate the effectiveness of the proposed
algorithms on noisy data, we followed a widely used method
to add noise to different proportions of the original data to
produce noisy data sets in different noisy levels. Specifically,
we used the Matlab function y = awgn(x, snr) to add
additive white Gaussian noise to our collected data from the
NUS-WIDE data set, where x and y are the original and
the generated noisy data patterns respectively, and snr is the
signal-to-noise ratio. We empirically set snr = 20 to ensure
that the generated noisy patterns will generally blur but not
break the original distribution of patterns to certain extent. For
each class of data patterns, we randomly selected the same
number of patterns to add noise. In total, we generated ten
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Fig. 10: Performance of AM-ART, CM-ART, HI-ART, and
the algorithms in comparison on noisy data generated from
the NUS-WIDE data set.

noisy data sets with different proportions of noisy patterns.
The average performance of all algorithms obtained from ten
runs on the original and ten noisy data sets were reported
in Fig. 10. Regarding the ART-based algorithms, we observed
that Fuzzy ART has a relatively stable decrease in performance
when applied to noisier data sets while AM-ART, CM-ART,
and HI-ART behave differently. AM-ART and HI-ART shows
a much better robustness than Fuzzy ART, especially HI-
ART whose performance is almost not affected by the noisy
patterns; while the performance of CM-ART has a fluctuation
on different noisy data sets. With an investigation of the
generated cluster structures, we found that the performance
of Fuzzy ART decreased mainly because of the increase in
the generated clusters while the clusters generated by Fuzzy
ART still had a high quality in terms of precision; AM-ART
and HI-ART alleviate this case by generating high-quality but
much fewer clusters than Fuzzy ART; the performance of
CM-ART was affected by the case when the noisy patterns
were selected as cluster centers. This produced much more
complex cluster boundaries and resulted in the over-generation
of clusters. However, by incorporating both AMR and CMR,
HI-ART can largely alleviate this problem. In comparison, the
performance of DBSCAN, Affinity Propagation, and Clusterdp
also decreased and fluctuated along with the increase in the
percentage of noisy data. It demonstrated the robustness of the
proposed AM-ART and HI-ART to noise.
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Fig. 11: Time cost of AM-ART, CM-ART, HI-ART, and the
algorithms in comparison on the NUS-WIDE data set.

G. Time Cost Analysis

This section presents an evaluation on the time cost of the
proposed algorithms and the baselines on the NUS-WIDE data
set with respect to the increase in the number of input patterns.
Specifically, to ensure an unbiased evaluation, we divided
the 10,800 patterns in the data set into 10 subsets, each of
which contained 1,080 patterns of equally sized subsets from
the nine classes, and tested the time cost of each algorithm
by incrementally adding a subset at each time. To ensure a
fair comparison, we followed the parameter settings of each
algorithm used in the previous section but tuned them slightly
to force them to generate the same number of clusters. All
algorithms were run on a 3.40GHz Intel(R) Core(TM) i7-4770
CPU with 16GB RAM. Fig. 11 illustrates that, compared with
Affinity Propagation, DBSCAN, and Clusterdp, the time cost
of the four ART-based algorithms increased slightly as the
number of input patterns increased. It is notable that AM-
ART, CM-ART, HI-ART, and Fuzzy ART were able to cluster
10,800 patterns in 6 seconds. This demonstrated the scalability
of the ART-based algorithms for big data sets. Moreover, the
largest difference in their time cost was only less than 0.2
seconds, which demonstrated that the incorporation of AMR,
CMR and HIR into Fuzzy ART incurs little computation.

VII. CONCLUSION

In this paper, we investigated making the vigilance parameter
in Fuzzy ART self-adaptable in order to allow Fuzzy ART
to consistently produce high-quality clusters under modest
parameter settings for large-scale social media data sets. The
contributions of this study are two-fold: First, we theoreti-
cally demonstrated the effect of complement coding on the
Fuzzy ART clustering mechanism and offered a geometric
interpretation of the cluster mechanism of Fuzzy ART using
the identified vigilance region (VR). Second, we introduced
the idea of allowing different clusters in the Fuzzy ART
system to have different vigilance levels in order to meet the
diverse nature of the pattern distribution of social media data,
and proposed three adaptation rules, namely, the activation
maximization rule (AMR), the confliction minimization rule
(CMR), and the hybrid integration rule (HIR), for the vigilance

parameter so that the clusters in the Fuzzy ART system would
have individual vigilance levels and be able to adaptively tune
their VR boundaries during the clustering process.

We demonstrated in experiments that by incorporating
AMR, CMR and HIR into Fuzzy ART, the resulting AM-
ART, CM-ART and HI-ART usually performed better than
or comparably to state-of-the-art clustering algorithms that
require no pre-defined number of clusters. More importantly,
we found AMR, CMR and HIR could greatly improve the
performance of Fuzzy ART when the vigilance value is low,
especially CMR; AMR could significantly reduce the number
of small clusters when the vigilance value was large; HIR
could greatly improve the robustness of Fuzzy ART to noisy
data. These enable AM-ART, CM-ART and HI-ART to be
more robust to the initial vigilance value than Fuzzy ART.

Several avenues exist for further study. First, with the
geometrical interpretation of the VR and Fuzzy ART, the clus-
tering mechanism could be further improved by, for example,
improving the shape of the VR to produce better cluster bound-
aries. Second, existing vigilance adaptation rules still require
an initial vigilance value. Therefore, algorithms for choosing
a suitable initial vigilance value is required. Third, HI-ART
has shown comparable performance and better noise immunity
than AM-ART and CM-ART, which demonstrates the viability
of integrating multiple ideas for tuning the vigilance parameter.
Therefore, exploring new rules to develop hybrid methods for
Fuzzy ART is also a promising way to make contribution
towards parameter-free clustering algorithms.
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