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SUPERVISED ADAPTIVE

RESONANCE THEORY AND RULES

A.-H. Tan

Kent Ridge Digital Labs
National University of Singapore

Singapore

Supervised Adaptive Resonance Theory is a family of neural net-
works that performs incremental supervised learning of recognition
categories (pattern classes) and multidimensional maps of both bi-
nary and analog patterns. This chapter highlights that the supervised
ART architecture is compatible with IF-THEN rule-based symbolic
representation. Speci�cally, the knowledge learned by a supervised
ART system can be readily translated into rules for interpretation.
Similarly, a priori domain knowledge in the form of IF-THEN rules
can be converted into a supervised ART architecture. Not only does
initializing networks with prior knowledge improve predictive accu-
racy and learning e�ciency, the inserted symbolic knowledge can also
be re�ned and enhanced by the supervised ART learning algorithm.
By preserving symbolic rule form during learning, the rules extracted
from a supervised ART system can be compared directly with the
originally inserted rules.

1 Introduction

Supervised Adaptive Resonance Theory is an extension of Adaptive
Resonance Theory (ART) to perform incremental supervised learning
of recognition categories (pattern classes) and multidimensional maps
of both binary and analog patterns. Two classical examples of su-
pervised ART systems are ARTMAP [3, 4] and its bidirectional com-
pressed variant, known as the Adaptive Resonance Associative Map
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Figure 1: Rules in ARTMAP. Each node in the F a
2 �eld represents a

recognition category of ARTa input patterns. Through the inter-ART map
�eld, each such node is associated to an ARTb category in the F b

2 �eld,
which in turn encodes a prediction. Learned weight vectors, one for each
F a
2 node, constitute a set of rules that link antecedents to consequents.

The number of rules equals the number of F a
2 nodes that become active

during learning.

(ARAM) [15]. Although both ARTMAP and ARAM has architec-
tures that are compatible with rule-based representation, to facilitate
discussion, I have used ARTMAP (in particular fuzzy ARTMAP) to
illustrate the linkages between supervised ART systems and symbolic
knowledge processing.

When performing classi�cation tasks, ARTMAP formulates recog-
nition categories of input patterns, and associates each category with
its respective prediction. The knowledge that ARTMAP discovers
during learning, is compatible with IF-THEN rule-based representa-
tion. Speci�cally, the recognition categories learned by the F a

2 cat-
egory nodes are compatible with rules that link antecedents to con-
sequents (Figure 1). At any point during the incremental learning
process, the system architecture can be translated into a compact set
of rules analyzable by human experts [6].
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Figure 2: Cascade ARTMAP for symbolic knowledge re�nement and eval-
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On the other hand, rules can be readily inserted into an ARTMAP
network that can then be re�ned by learning from examples. To han-
dle intermediate attributes, Cascade ARTMAP, a generalization of
ARTMAP, represents rule cascades of rule-based knowledge explicitly
[16]. During ARTMAP learning, new recognition categories (rules)
are created dynamically to cover the de�ciency of the domain the-
ory. By the self-stabilizing property, learning in Cascade ARTMAP
does not wash away existing knowledge and the meanings of units do
not shift. This allows preservation of symbolic rules during neural
network learning. Using a generalized ARTMAP rule extraction pro-
cedure, the �nal system states can be converted back to a compact
set of rules. This enables direct comparison of the original knowl-
edge with the re�ned rules. Also, each extracted rule is associated
with a con�dence factor that indicates its importance or usefulness.
This allows ranking and evaluation of the extracted knowledge. In
all, the Cascade ARTMAP rule insertion, re�nement, and extraction
procedures form a paradigm for symbolic knowledge re�nement and
evaluation (Figure 2).

The remaining sections of this chapter are organized as follows.
To make this chapter self-contained, section 2 provides a summary
of fuzzy ARTMAP. Section 3 motivates the generalization of fuzzy
ARTMAP to Cascade ARTMAP and presents the Cascade ARTMAP
rule insertion, rule chaining, rule re�nement, and rule extraction al-
gorithms. Section 4 illustrates Cascade ARTMAP's performance on



a DNA promoter recognition problem. The �nal section states con-
cluding remarks and highlights future applications.

2 Fuzzy ARTMAP

Fuzzy ARTMAP [3], a generalization of binary ARTMAP [4], learns
to classify inputs by a pattern of fuzzy membership values between
0 and 1 indicating the extent to which each feature is present. This
generalization is accomplished by replacing the ART 1 modules [2]
of the binary ARTMAP system with fuzzy ART modules [5]. Each
ARTMAP system includes a pair of Adaptive Resonance Theory mod-
ules (ARTa and ARTb) that create stable recognition categories in re-
sponse to arbitrary sequences of input patterns (Figure 3). An asso-
ciative learning network and an internal controller link these modules
to make the ARTMAP system operate in real time.

2.1 Fuzzy ART

Fuzzy ART [5] incorporates computations from fuzzy set theory into
ART systems. By replacing the crisp (nonfuzzy) intersection operator
(\) that describes ART 1 dynamics [2] by the fuzzy AND operator (^)
of fuzzy set theory, fuzzy ART can learn stable categories in response
to either analog or binary patterns.

ART �eld activity vectors: Each ART system includes a �eld F0

of nodes that represent a current input vector; a �eld F1 that receives
both bottom-up input from F0 and top-down input from a �eld F2 that
represents the active code, or category. Vector I denotes F0 activity;
vector x denotes F1 activity; and vector y denotes F2 activity.

Weight vector: Associated with each F2 category node j is a vector
wj of adaptive weights, or long-term memory (LTM) traces. Initially

wj1(0) = : : : = wjM(0) = 1; (1)

then each category is uncommitted. After a category codes its �rst
input, it becomes committed.

Parameters: A choice parameter � > 0, a learning rate parameter
� 2 [0; 1], and a vigilance parameter � 2 [0; 1] determine fuzzy ART
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Figure 3: Fuzzy ARTMAP architecture. The ARTa complement coding
preprocessor transforms the Ma-vector a into the 2Ma-vector A = (a;ac)
at the ARTa �eld F a

0 . A is the input vector to the ARTa �eld F a
1 . Simi-

larly, the input to F b
1 is the 2Mb-vector (b;b

c). When ARTb discon�rms a
prediction of ARTa, map �eld inhibition induces the match tracking pro-
cess. Match tracking raises the ARTa vigilance (�a) to just above the
F a
1 -to-F

a
0 match ratio jxaj=jAj. This triggers an ARTa search which leads

to activation of either an ARTa category that correctly predicts b or to a
previously uncommitted ARTa category node.



dynamics.

Category choice: For each input I and F2 node j, the choice function
Tj is de�ned by

Tj(I) =
jI ^wjj

� + jwjj
; (2)

where the fuzzy intersection ^ (Zadeh, 1965) is de�ned by

(p ^ q)i � min(pi; qi) (3)

and where the norm j � j is de�ned by

jpj �
MX
i=1

jpij: (4)

The system makes a category choice when at most one F2 node
can become active at a given time. The index J denotes the chosen
category, where

TJ = maxfTj : j = 1 : : :Ng: (5)

When the J th category is chosen, yJ = 1; and yj = 0 for j 6= J .

Resonance or reset: Resonance occurs if the match function jI ^
wJ j=jIj of the chosen category meets the vigilance criterion:

jI ^wJ j

jIj
� �: (6)

Learning then ensues, as de�ned below. Otherwise Mismatch reset

occurs, where the value of the choice function TJ is set to 0 for the
duration of the input presentation . The search process continues
until a chosen category J satis�es the matching criterion (6).

Learning: Once search ends, the weight vector wJ learns according
to the equation

w
(new)
J = �(I ^w

(old)
J ) + (1� �)w

(old)
J : (7)

Fast learning corresponds to setting � = 1. Using the fast learning
and slow recoding option, we set � = 1 when J is an uncommitted
node and take � < 1 after the category is committed.



Normalization by complement coding: Normalization of fuzzy
ART inputs prevents category proliferation. The complement coded
F0 ! F1 input I is the 2M-dimensional vector

I = (a; ac) � (a1; : : : ; aM ; a
c
1; : : : ; a

c
M); (8)

where
aci � 1� ai: (9)

A complement coded input is automatically normalized, because

jIj = j(a; ac)j =
MX
i=1

ai + (M �
MX
i=1

ai) = M: (10)

With complement coding, the initial condition

wj1(0) = : : : = wj;2M(0) = 1; (11)

replaces the fuzzy ART initial condition (1).

2.2 ARTMAP Prediction and Search

Fuzzy ARTMAP incorporates two fuzzy ART modules ARTa and
ARTb that are linked together via an inter-ART map �eld F ab. The
map �eld forms predictive associations between categories and realizes
the ARTMAP match tracking rule.

ARTa and ARTb: Inputs to ARTa and ARTb are complement coded.
For ARTa, I = A = (a; ac); and for ARTb, I = B = (b;bc) (Figure 3).
For ARTa, x

a denotes the F a
1 output vector; ya denotes the F a

2 output
vector; and wa

j denotes the jth ARTa weight vector. For ARTb, x
b

denotes the F b
1 output vector; yb denotes the F b

2 output vector; and
wb

k denotes the k
th ARTb weight vector. For the map �eld, xab denotes

the F ab output vector, and wab
j denotes the weight vector from the

jth F a
2 node to F ab.

Map �eld activation: The map �eld F ab receives input from either
or both of the ARTa or ARTb category �elds. A chosen F a

2 node J
sends input to the map �eld F ab via the weights wab

J . An active F b
2

node K sends input to F ab via one{to-one pathways between F b
2 and

F ab. If both ARTa and ARTb are active, then F
ab remains active only



if ARTa predicts the same category as ARTb. The F
ab output vector

xab obeys:

xab =

8>>><
>>>:
yb ^wab

J if the Jth F a
2 node is active and F b

2 is active
wab

J if the Jth F a
2 node is active and F b

2 is inactive
yb if F a

2 is inactive and F b
2 is active

0 if F a
2 is inactive and F b

2 is inactive.
(12)

By (12), xab = 0 if yb fails to con�rm the map �eld prediction made
by wab

J . Such a mismatch event triggers an ARTa search for a better
category, as follows.

Match tracking: At the start of each input presentation ARTa vig-
ilance �a equals a baseline vigilance parameter �a. When a predictive
error occurs, match tracking raises ARTa vigilance just enough to trig-
ger a search for a new F a

2 coding node. ARTMAP detects a predictive
error when

jxabj < �abjy
bj; (13)

where �ab is the map �eld vigilance parameter. A signal from the
map �eld to the ARTa orienting subsystem causes �a to \track the
F a
1 match." That is, �a increases until it is slightly higher than the

F a
1 match value jA ^ wa

J jjAj
�1. Then, since ARTa fails to meet the

matching criterion, the search for another F a
2 node begins.

Map �eld learning: Weights wab
jk in F

a
2 ! F ab paths initially satisfy

wab
jk(0) = 1: (14)

During resonance with the ARTa category J active, wab
J approaches

the map �eld vector xab as in (7). With fast learning, once J learns
to predict the ARTb category K, that association is permanent; i.e.,
wab
JK = 1 for all time.

3 Cascade ARTMAP

Prior knowledge of a problem domain could help a neural network in
learning to solve the problem. Speci�cally, pre-existing symbolic rules
can be used to initialize a neural network architecture before learn-
ing. Not only can rule insertion improve network learning e�ciency,



it also serves to provide knowledge that is not captured by training
cases or that cannot be easily learned by a neural network, and thus
improves the system predictive performance. In addition, incomplete
or partially correct symbolic knowledge can be re�ned or enhanced
through neural network learning algorithms. Rule insertion and re-
�nement in neural networks therefore automates symbolic knowledge
enhancement and repair.

A popular approach to rule insertion and re�nement uses rules to
initialize the architecture of a multi-layer neural network and re�nes
the network using a backpropagation algorithm [8, 9, 20]. One ma-
jor problem of using backpropagation networks (BP) to re�ne rule-
based knowledge is the preservation of symbolic knowledge. Under
the weight tuning process of a backpropagation algorithm, symbolic
rules quickly lose their original meanings. In fact, large shifts in the
meanings of hidden units can occur as a result of training [19].

Another major limitation of the BP approach is that the initial
rule base has to be roughly complete, or else the initial network ar-
chitecture created may not be su�ciently rich for dealing with the
problem domain. As the standard backpropagation algorithm is not
able to create additional nodes or connections dynamically during
learning, a network initialized by a small set of rules may even have a
lower chance of eventually learning the task. This problem was noted
and partially solved by Lacher et. al., who used virtual rules to cre-
ate potential connections for learning [9]. However, in general, it is
di�cult to decide beforehand the virtual rules or connections desired.
Tresp, Hollatz, and Ahmad [21] employed a learning algorithm that
allowed creation of basis functions during learning. However, as their
model only represents rules associating input attributes to output pre-
dictions, the network is not general enough to deal with rule-based
domain theories involving intermediate attributes and rule chaining.

3.1 Rule Cascade Representation

Note that ARTMAP also handles a class of IF-THEN rules that map
a set of input attributes directly to a disjoint set of output attributes.
Symbolic rule-based knowledge, on the other hand, often involves rule
cascades and intermediate attributes. A set of rules is said to form a



rule cascade when a consequent of a rule also serves as an antecedent
of another rule. Such attributes that have dual roles are usually called
intermediate attributes in contrast to input attributes that only serve
as antecedents and output attributes that only serve as consequents.
Through intermediate attributes, �ring of a rule may lead to the �ring
of another rule at a later stage of an inferencing process. Intermediate
attributes and rule cascades are useful for feature abstraction and task
decomposition so that only a small set of simple rules is needed at each
level of the cascade.

The proposed solution to representing rule cascades here is Cas-
cade ARTMAP that uses ARTMAP architecture but generalizes one-
step prediction to multi-step inferencing. Cascade ARTMAP uni�es
the ARTMAP input attribute �eld F a

1 and output attribute �eld F b
1

in the sense that both F a
1 and F b

1 contain the input, output, and inter-
mediate attributes. Consider the two rules below that form a simple
two-level rule cascade:

Rule 1: IF A and B THEN C
Rule 2: IF C and D THEN E

where A, B, and D are input attributes; C is an intermediate attribute;
and E is an output attribute. All attributes (A, B, C, D, and E)
are represented in both F a

1 and F b
1 (Figure 4). For Rule 1, an F a

2

category node is used to encode A and B, and is associated to an
F b
2 node that predicts C. Likewise for Rule 2, an F a

2 node is used to
encode C and D, and is associated to an F b

2 node predicting E. By
unifying the input �eld (F a

1 ) and the output �eld (F b
1 ) of ARTMAP,

several desired features of symbolic processing are obtained. Besides
that rule insertion can be readily performed in Cascade ARTMAP,
rule chaining and inferencing can also be performed as in production
systems.

3.2 Rule Insertion

As the knowledge structure of Cascade ARTMAP is compatible with
rule-based knowledge representation, IF-THEN rules can be readily
translated into the recognition categories of a Cascade ARTMAP sys-
tem. Initializing a Cascade ARTMAP network with pre-existing rules
before learning serves to set up the global solution structure. This
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helps to improve learning e�ciency and predictive accuracy. With-
out rule insertion, Cascade ARTMAP performance reduces to that of
fuzzy ARTMAP.

Rule insertion proceeds in two phases. The �rst phase parses all
rules for attribute names to set up a symbol table in which each at-
tribute in the rules has a unique entry. Based on the symbol table,
the second phase translates each rule into two 2M-dimensional vectors
A and B, where M is the total number of attributes in the symbol
table, as inputs to the Cascade ARTMAP ARTa and ARTb modules.
Given a rule of the following format,

IF x1; x2; : : : ; xm;:�x1;:�x2; : : : ;:�x �m

THEN y1; y2; : : : ; yn;:�y1;:�y2; : : : ;:�y�n

where x1; : : : ; xm and y1; : : : ; yn are positive attributes, and �x1; : : : ; �x �m

and �y1; : : : ; �y�n preceded by the logical NOT operator : are negative
attributes, the algorithm derives the pair of vectors

A = (a; ac) and B = (b;bc) (15)

such that for each index j = 1; : : : ;M ,

(aj; a
c
j) =

8><
>:

(1; 0) if ej = xi for some i 2 f1; : : : ; mg
(0; 1) if ej = �xi for some i 2 f1; : : : ; �mg
(0; 0) otherwise

(16)



and

(bj; b
c
j) =

8><
>:

(1; 0) if ej = yi for some i 2 f1; : : : ; ng
(0; 1) if ej = �yi for some i 2 f1; : : : ; �ng
(0; 0) otherwise

(17)

where ej is the jth attribute in the symbol table. Note that comple-
ment coding is employed above for encoding both the positive and
negative attributes. If the rules contain no negative attribute, the
complement vectors ac and bc may be eliminated.

The vector pairs derived from the rules are then used as train-
ing patterns to initialize a Cascade ARTMAP network. The network
learning and inferencing algorithms will be described in subsequent
sections. It su�ces to note at this point that each distinct vector A
is translated into a recognition category in ARTa and likewise each
distinct vector B is translated into a recognition category in ARTb.
Given a pair of vectors A and B derived from a rule, their respective
recognition categories are associated through the map �eld. During
network initialization, the vigilance parameters �a and �b are each set
to 1 to ensure that only identical attribute vectors are grouped into
one recognition category. Contradictory symbolic rules are detected
during rule insertion when identical input attribute vectors are associ-
ated with distinct output attribute vectors. The detection is achieved
through a perfect mismatch phenomenon, in which the system tries to
raise ARTa vigilance �a above 1 in response to a mismatch in ARTb.

3.3 Rule Chaining and Inferencing

A symbolic production rule system consists of three main components:
a working memory component, a rule or production component, and
an external inference engine or interpreter. The interpreter repeatedly
performs a three-phase cycle, consisting of a match phase, a select

phase, and an execute phase. In the match phase, the interpreter
compares the antecedent set of each rule against the working memory
content. Rules with completely matched antecedents are included into
a conict set. In the select phase, a single rule is selected from the
conict set using some strategies. If the conict set is empty, the
system halts. Otherwise, in the execute phase, the interpreter adds
the consequent(s) of the selected rule to the working memory.
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In Cascade ARTMAP, the attribute �elds F a
1 and F b

1 can be iden-
ti�ed as the working memory component (Figure 5). F a

1 maintains the
current memory state xa and provides the antecedents for condition
matching and rule �ring. F b

1 stores the next memory state xb derived
through a rule �ring. The rule component is implemented by the two
category �elds F a

2 and F b
2 , the map �eld F ab, and their interconnec-

tions. The match, select, and execute three-phase cycle is performed
without an external interpreter. In the match phase, a choice function
T a
j is computed for each F a

2 category node (rule) based on the mem-
ory state xa. With parallel implementation, the match phase can be
performed in a single activation process. The select phase is realized
by a winner-take-all interaction among all F a

2 nodes in which the F a
2

node with the largest choice function T a
j is identi�ed. If the selected

node (rule) does not satisfy the ARTa vigilance constraint, the sys-
tem goes through another round of memory search to select another
F a
2 node that satis�es the ARTa vigilance criterion. If no such node

exists, the system halts. Otherwise, in the execute phase, the conse-
quent(s) of the selected rule is(are) read out into F b

1 . Note that exact
match is not required for a rule to be �red as long as it satis�es the



ARTa vigilance criterion. At the end of the cycle, the new memory
state xb is used to update xa in F a

1 to prepare for the next inferencing
cycle. For the sample rule cascade (Figure 4), the input attribute set
fA,B,Dg activates F a

2 node J1 that infers C. Through the memory
update process, C is fed back from F b

1 to F a
1 . The memory state xb

which contains fA,B,C,Dg then activates J2 in the next inferencing
cycle that derives E.

3.4 Learning and Rule Re�nement

Learning in Cascade ARTMAP is more complicated than that in fuzzy
ARTMAP as a chain of rule �ring is involved in making a prediction.
The proposed solution is a backtracking algorithm that identi�es all
rules (F a

2 nodes) responsible for making a prediction by tracing from
the last rule �red. Speci�cally, if J is the last F a

2 node selected which
makes the prediction, the algorithm identi�es a precursor set 	(J)
that contains node J and all F a

2 nodes that result in the �ring of
node J . The backtracking occurs in the direction of F a

2 ! F a
1 !

F b
1 ! F b

2 ! F ab ! F a
2 . For example in Figure 4, the backtracking

algorithm traces from J2 in F a
2 to its antecedents fC,Dg in F a

1 . It
then checks that C in F b

1 is an intermediate attribute activated by K1

in F b
2 , and �nally traces to J1 in F a

2 . The backtracking stops at J1 as
its antecedents are all input attributes. The precursor set of the F a

2

node J2, 	(J2) is thus evaluated to be fJ1; J2g.

If the prediction made by node J is correct, for each F a
2 node (rule)

j in the precursor set 	(J), the weight vector (antecedent set) wa
j is

reduced towards its fuzzy intersection with the F a
1 activity vector

xa. In the binary pattern and fast learning case, a �red rule learns
to ignore those features that are absent in the current input. This
results in a generalization by reducing the number of features the rule
attends to.

A more complicated situation occurs when a prediction error is
encountered. With a long chain of rule �ring, blame assignment can
be di�cult as it is unclear which rule in the inferencing path causes
the error. To handle prediction mismatch, a mini-match tracking pro-
cess raises the ARTa vigilance �a by slightly more than the minimum
match achieved by the �red rules. Mini-match tracking is equivalent



to the parallel match tracking mechanism used in Fusion ARTMAP
[1]. This method inhibits the F a

2 node with the minimum match from
�ring again for the current input. The assumption is that the rule with
the worst match is most likely to be the one which causes the predic-
tion error. The system then goes through another round of memory
search and inferencing with a higher vigilance until a resonance is
achieved.

3.5 Cascade ARTMAP Algorithm

As an on-line real-time system, Cascade ARTMAP needs not sepa-
rate learning and performance phases, i.e., the system functions in
response to the current input environment. Given an F a

1 input vec-
tor, Cascade ARTMAP undergoes a series of prediction loops until
either an uncommitted F a

2 node is selected (which means no predic-
tion), or a correct prediction is made by a committed F a

2 node (as in
fuzzy ARTMAP). In each prediction loop, Cascade ARTMAP accu-
mulates intermediate attribute values through a series of inferencing
cycles until one or more output attributes are derived. The Cascade
ARTMAP dynamics, as illustrated in Figures 6 and 7, are formalized
below. An A then B paradigm is used in which the ARTa input vector
A is processed before the ARTb input vector B.

Activity vectors: Let A and B denote the F a
1 and F b

1 input vectors
respectively. Let

xa � (xai ;x
a
h;x

a
o;x

ac
i ;x

ac
h ;x

ac
o ) (18)

and
xb � (xbi ;x

b
h;x

b
o;x

bc
i ;x

bc
h ;x

bc
o ) (19)

denote the 2M-dimensional F a
1 and F b

1 activity vectors respectively,
where xai and x

b
i denote the Mi-dimensional input attribute vectors; xah

and xbh denote the Mh-dimensional intermediate attribute vectors; xao
and xbo denote the Mo-dimensional output attribute vectors; and xaci ,
xbci , x

ac
h , x

bc
h , x

ac
o , and x

bc
o denote the respective complement attribute

vectors. xa and xb are also known as memory state vectors. Let ya

and yb denote the F a
2 and F b

2 activity vectors respectively. Let xab

denote the map �eld F ab activity vector.



Fa
1

Fa
2 F2

b

Fb
1

Fab

A B

Fa
1

Fa
2 F2

b

Fb
1

Fab

A B

Fa
1

Fa
2 F2

b

Fb
1

Fab

A B

Fa
1

Fa
2 F2

b

Fb
1

Fab

A B

Stage 1: Input presentation.

Stage 3a: No prediction.
Resonance and Learning.

Stage 3b: Inferencing.

Stage 2: Rule selection.

Figure 6: Cascade ARTMAP algorithm stages 1, 2, and 3. The shaded
sub-�elds of F b

1 represent output attributes.
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Weight vectors: Let wa
j and w

b
j denote the 2M-dimensional weight

vectors of the jth category node in F a
2 and F b

2 respectively. Let wab
j

denote the weight vector from the jth F a
2 node to F ab. Initially, the

weight vectors contain all 1's. This implies that all category nodes are
uncommitted and all F a

2 nodes are not associated with any prediction.

Scope vectors: Let Sj denote the 2M-dimensional scope vector of
the jth category node in F a

2 . A scope vector identi�es the attributes
relevant to an F a

2 node and allows a more accurate computation of
its match function. For an uncommitted F a

2 node j, the scope vector
Sj � (sj; sj) is de�ned by

sji =

(
1 if i indexes an input attribute
0 otherwise:

(20)

For an F a
2 node j created by an inserted rule, the scope vector Sj �

(sj; sj) is de�ned by

sji =

8><
>:

1 if i indexes an attribute at a level previous to
the rule's consequent(s) in the rule cascade

0 otherwise:
(21)

Parameters: Cascade ARTMAP dynamics are determined by the
choice parameters �a > 0 and �b > 0; the learning rates �a 2 [0; 1]
and �b 2 [0; 1]; and the vigilance parameters �a 2 [0; 1] and �b 2 [0; 1].
During network initialization, the network learns the patterns derived
from rules using �a = �b = 1 such that each distinct attribute vector
creates a category. During network re�nement, the system learns
example patterns using �b = 1 for output classi�cation and �a < 1 to
allow input generalization.

Stage 1 (Input presentation): At the beginning of an input pre-
sentation, the ARTa vigilance �a equals a baseline vigilance value ��a.
F a
1 contains the input vector A:

xa = A: (22)

Stage 2 (Rule selection): Given the memory state vector xa, for
each F a

2 node j, the choice function T a
j is de�ned by

T a
j =

jxa ^wa
j j

�a + jwa
j j
; (23)



where the fuzzy AND operator ^ is de�ned by

(p ^ q)i � min(pi; qi); (24)

and the norm j:j is de�ned by

jpj =
X
i

jpij (25)

for vectors p and q. The system is said to make a category choice

when at most one F a
2 node can become active at a given time. The

category choice is indexed at J , where

T a
J = maxfT a

j : for all F a
2 node jg: (26)

If more than one T a
j is maximal, the F a

2 category node j with the
smallest index is chosen. In particular, nodes become committed in
order j = 1; 2; 3; : : : . When the J th category is chosen, yaJ = 1; and
yaj = 0 for j 6= J .

Resonance occurs if the match function ma
J of the selected node J

meets the vigilance criterion:

ma
J =

jxa ^wa
J ^ SJ j

jxa ^ SJ j
� �a; (27)

where the generalized fuzzy AND operation ^ is de�ned by

(^N
j=1pj)i � min(p1i; : : : ; pNi); (28)

for vectors p1; : : : ;pN , and the norm j:j is de�ned as in (25). Otherwise
mismatch reset occurs in which the value of the choice function T a

J is
set to 0 for the duration of the input presentation to prevent persistent
selection of the same category during search. Stage 2 then repeats to
select another new index J .

Stage 3a (No prediction): If the selected F a
2 node J has no pre-

diction, i.e.,
wab
Jk = 1 for all F ab node k; (29)

each F a
2 node j in the precursor set 	(J) learns the F a

1 activity pattern
according to the equation

w
a(new)
j = (1� �a)w

a(old)
j + �a(x

a ^w
a(old)
j ): (30)



If the input vector B is present, a category node is selected in F b
2 as

in stage 2. The selected F b
2 node K learns the F b

1 pattern according
to the equation

w
b(new)
K = (1� �b)w

b(old)
K + �b(x

b ^w
b(old)
K ): (31)

The F a
2 category node J is then associated to the F b

2 node K through
the inter-ART map �eld:

wab
Jk =

(
1 if k = K
0 otherwise:

(32)

After which, the system halts.

Stage 3b (Inferencing): If the selected F a
2 node J has learned

to make a prediction, i.e., (29) does not hold, its weight vector wab
J

activates F ab. The F ab activity vector xab is de�ned by

xab = wab
J : (33)

Once the map �eld is active, F b
2 is activated through the 1-to-1 path-

way between F ab and F b
2 . For each F b

2 node k, the choice function
T b
k is de�ned by

T b
k = xabk : (34)

The system again makes a category choice indexed at K where

T b
K = maxfT b

k : for all F
b
2 node kg: (35)

When the Kth category is chosen, ybK = 1; and ybk = 0 for k 6= K. The
activated F b

2 node K then performs a top-down priming on F b
1 :

xb = wb
K: (36)

When F b
1 is activated by a category choice in F b

2 , the termination
condition is checked by computing a goal signal g:

g =
MoX
i=1

(xboi + xbcoi): (37)

A conclusion is reached whenever any output attribute is made known,
i.e., g > 0.



Stage 4a (Update memory state): If a conclusion is not reached,
i.e., g = 0, the memory state vector xa is updated with xb by the
equation

xa(new) = xa(old) _ xb(old); (38)

where the fuzzy OR operation _ is de�ned by

(p _ q)i � max(pi; qi) (39)

for vectors p and q. The inferencing cycle then repeats from stage 2.

Stage 4b (Prediction matching): If a conclusion is reached, i.e.,
g > 0, the match function mb

K of the prediction xb and the F b
1 input

vector B is computed by

mb
K =

jB ^ xbj

jBj
: (40)

Stage 5a (Resonance): If the prediction match satis�es the ARTb

vigilance criterion (mb
K � �b), resonance occurs. The activated F a

2

and F b
2 nodes learn the template patterns in their respective modules

as in (30) and (31) respectively. After learning, the system halts.

Stage 5b (Match tracking): A prediction mismatch triggers a
match tracking process. Using mini-match tracking, a node j is iden-
ti�ed which has the minimum match function value among all nodes
in 	(J). The choice function T a

j of the node j is set to zero during
the input presentation. The ARTa vigilance �a is raised to slightly
greater than the match achieved by the node jm:

�(new)a = maxf�(old)a ;minfma
j jj 2 	(J)g+ �g: (41)

Perfect mismatch occurs when the system attempts to increase �a
above 1. A perfect match in ARTa (�a = 1) with a ARTb mismatch
indicates the existence of contradictory knowledge where identical an-
tecedent sets are associated with di�erent consequents. After match
tracking, a new prediction loop then repeats from stage 2.

3.6 Rule Extraction

Rules can be derived more readily from an ARTMAP network than
from a backpropagation network, in which the roles of hidden units



are usually not explicit. In an ARTMAP network, each node in the
F a
2 �eld represents a recognition category of ARTa input patterns.

Through the inter-ART map �eld, each such node is associated to
an ARTb category in the F b

2 �eld, which in turn encodes a prediction.
Learned weight vectors, one for each F a

2 node, constitute a set of rules
that link antecedents to consequences (Figure 1). The number of rules
equals the number of F a

2 nodes that become active during learning.

As large databases typically cause ARTMAP to generate too many
rules to be of practical use. The goal of the rule extraction task is to
select a small set of highly predictive category nodes and to describe
them in a comprehensible form. To evaluate a category node, a con-

�dence factor that measures both usage and accuracy is computed.
Removal of low con�dence recognition categories created by atypical
examples produces smaller networks. Removal of redundant weights
in a category node's weight vector reduces the number of antecedents
in the corresponding rule.

3.6.1 Rule Pruning

The rule pruning algorithm derives a con�dence factor for each F a
2

category node in terms of its usage frequency in a training set and its
predictive accuracy on a predicting set. As Cascade ARTMAP gener-
alizes ARTMAP one-step prediction process to multi-step inferencing,
an input pattern makes use of a set of F a

2 category nodes in Cascade
ARTMAP in contrast to a single F a

2 node in fuzzy ARTMAP. For
evaluating usage and accuracy, each F a

2 category node j maintains
three counters: an encoding counter cj, that records the number of
training set patterns encoded by node j; a predicting counter pj, that
records the number of predicting set patterns predicted by node j;
and a success counter sj, that records the number of predicting set
patterns predicted correctly by node j.

For each training set pattern, the encoding counter (cj) of each
F a
2 node j in the precursor set 	(J), where J is the last F a

2 node
(rule) �red that makes the prediction, is increased by 1. For each
predicting set pattern, the predicting counter (pj) of each F a

2 node
j in the precursor set 	(J) is increased by 1. If the prediction is
correct, the success counter (sj) of each F a

2 node j in the precursor



set 	(J) is increased by 1. Based on the encoding, predicting, and
success counter values, the usage (Uj) and the accuracy (Aj) of an F

a
2

node j are computed by

Uj = cj=maxfck: for all F
a
2 node kg (42)

and
Aj = Pj=maxfPk: for all F

a
2 node kg; (43)

where Pj, the percent of the predicting set pattern predicted correctly
by node j, is computed by

Pj = sj=pj: (44)

Uj and Aj are then used to compute the con�dence factor of node j
by the equation

CFj = Uj + (1� )Aj; (45)

where  2 [0; 1] is a weighting factor. After con�dence factors are
determined, recognition categories can be pruned from the network
using one of following strategies.

Threshold Pruning - This is the simplest type of pruning where
the F a

2 nodes with con�dence factors below a given threshold � are
removed from the network. A typical setting for � is 0:5. This method
is fast and provides a �rst cut elimination of unwanted nodes. To avoid
over-pruning, it is sometimes useful to specify a minimum number of
recognition categories to be preserved in the system.

Local Pruning - Local pruning removes recognition categories one at
a time from an ARTMAP network. The baseline system performance
on the training and the predicting sets is �rst determined. Then the
algorithm deletes the recognition category with the lowest con�dence
factor. The category is replaced, however, if its removal degrades
system performance on the training and predicting sets.

A variant of the local pruning strategy updates baseline perfor-
mance each time a category is removed. This option, called hill-

climbing, gives slightly larger rule sets but better predictive accuracy.
A hybrid strategy �rst prunes ARTMAP using threshold pruning and
then applies local pruning on the remaining smaller set of rules.



3.6.2 Antecedent Pruning

During rule extraction, a non-zero weight to an F a
2 category node

translates into an antecedent in the corresponding rule. The an-
tecedent pruning procedure calculates an error factor for each an-
tecedent in each rule based on its performance on the training and
predicting sets. When a rule (F a

2 node) J makes a prediction error,
for each F a

2 node j in the precursor set 	(J), each antecedent of the
rule j that also appears in the current memory state has its error
factor increased in proportion to the smaller of its magnitudes in the
rule and in the memory state vector xa. After the error factor for each
antecedent is determined, a local pruning strategy, similar to the one
for rules, removes redundant antecedents.

4 DNA Promoter Experiments

Promoters are short nucleotide sequences that occur before genes and
serve as binding sites for the enzyme RNA polymerase during gene
transcription. Identifying promoters is thus an important step in lo-
cating genes in DNA sequences. One major approach to DNA match-
ing or sequence comparison concerns with the alignment of DNA se-
quences. Sequence alignment is usually performed by computing a
match function which rewards matches and penalizes mismatches, in-
sertions, and deletions [22]. This can be done by dynamic program-
ming which can be computationally expensive for multiple sequences.
Consensus sequence analysis solves the problem of aligning multiple
sequences by identifying functionally important sequence features that
are conserved in the DNA sequences. For example, consensus pat-
terns of promoter sequences can be identi�ed at the protein binding
sites. Besides statistical methods reported in the biological literature,
machine learning and information theoretic techniques are also being
used for DNA matching and recognition [7, 10].

The promoter data set [11] used in the Cascade ARTMAP exper-
iments consists of 106 patterns, half of which are positive instances
(promoters). Although larger sets of promoter data are available, this
version of the promoter data set is used here to allow a direct com-
parison with the results of the others. Each DNA pattern represents



57-position DNA sequence

228-bit nucleotide string

-50 7
AGACGTAGACCTGTCTTATTGAGCTTTCCGGCGAGAGTTCAATGGGACAGGTCCAGT

1000 0100 0010 0001............. ............. ................... .....

Figure 8: A 57-position DNA sequence. Each position takes one of the
four nucleotide values fA,G,T,Cg. Using local representation, each DNA
sequence is expanded into a 228-bit nucleotide string. This version of 106-
case promoter data set, obtained from the UCI machine learning database
repository, contains no missing value.

a 57-position window, with the leftmost 50 window positions labeled
-50 to -1 and the rightmost seven labeled 1 to 7 (Figure 8). Each
position is a nominal feature which takes one of the four nucleotide
values fA, G, T, Cg. There is no missing feature value. Using local
representation, each 57-position pattern is expanded into a 228-bit
nucleotide-position string.

The promoter data set and an imperfect domain theory have been
used to evaluate a hybrid learning system called Knowledge Based Ar-
ti�cial Neural Network (KBANN) [20]. The imperfect domain theory
(Table 1), if requires exact match, only classi�es half of the 106 cases
correctly. The KBANN theory re�nement procedure translates the
imperfect theory into a feedforward network, adds links to make the
network fully connected between layers, and trains the network us-
ing a backpropagation algorithm. Simulation results showed that by
incorporating the domain theory, KBANN outperformed many learn-
ing/recognition systems, including consensus sequence analysis [13], K
Nearest Neighbor (KNN), ID-3 symbolic learning algorithm [14], and
backpropagation network trained purely from examples [20] (Table 2).

In Cascade ARTMAP experiments, the �rst two rules of the do-
main theory are combined into a single rule:

promoter :- conformation, minus 35, minus 10.

Besides providing a slight improvement in system predictive accuracy,
the elimination of attribute contact reduces Cascade ARTMAP net-



Table 1: A rule-based theory for classifying promoters. It consists of
14 rules and a total of 83 antecedents. The antecedent notation T@-36
indicates the nucleotide value T in position -36.

promoter :- conformation, contact.
contact :- minus 35, minus 10.

minus 35 :- C@-37, T@-36, T@-35, G@-34, A@-33, C@-32.
minus 35 :- T@-36, T@-35, G@-34, C@-32, A@-31.
minus 35 :- T@-36, T@-35, G@-34, A@-33, C@-32, A@-31.
minus 35 :- T@-36, T@-35, G@-34, A@-33, C@-32.

minus 10 :- T@-14, A@-13, T@-12, A@-11, A@-10, T@-9.
minus 10 :- T@-13, A@-12, A@-10, T@-8.
minus 10 :- T@-13, A@-12, T@-11, A@-10, A@-9, T@-8.
minus 10 :- T@-12, A@-11, T@-7.

conformation :- C@-47, A@-46, A@-45, T@-43, T@-42, A@-40,
C@-39, G@-22, T@-18, C@-16, G@-8, C@-7,
G@-6, C@-5, C@-4, C@-2, C@-1.

conformation :- A@-45, A@-44, A@-41.
conformation :- A@-49, T@-44, T@-27, A@-22, T@-18, T@-16,

G@-15, A@-1.
conformation :- A@-45, A@-41, T@-28, T@-27, T@-23, A@-21,

A@-20, T@-17, T@-15, T@-4.



Table 2: Performance of fuzzy ARTMAP, Cascade ARTMAP, and Cascade
ARTMAP rules on the promoter data set comparing with the symbolic
learning algorithm ID-3, the KNN system, consensus sequence analysis,
the backpropagation network, the KBANN system, and the NofM rules.

# Nodes/ # Ante-
Systems Rules cedent Error (%)

ID-3 - - 17.9
KNN (K=3) 105 - 12.3
Consensus Sequences - - 11.3
Backpropagation Network 16 - 7.5
Fuzzy ARTMAP 20.6 - 6.5

KBANN 16 - 2.9
Cascade ARTMAP 13+15.9 - 2.0

NofM rules 12 100 3.8
Cascade ARTMAP rules 19.5 53.1 3.0

work complexity and produces simpler rule sets.

Cascade ARTMAP simulation is performed with parameter val-
ues �a = �b = 2 and �a = �b = 1, determined empirically. The input
patterns are not complement coded as they already have a uniform
norm of 57. In each simulation, Cascade ARTMAP is initialized with
the domain theory, trained on 96 patterns selected randomly, and
tested on the remaining 10 patterns. To use a voting strategy, Cas-
cade ARTMAP is trained in several simulation runs using di�erent
orderings of the training set. For each test case, voting across 20 runs
yields a �nal prediction. An averaging technique similar to voting was
also used in the KBANN system [20].

Table 2 compares the performance of fuzzy ARTMAP and Cascade
ARTMAP, averaged over 20 simulations, with other alternative sys-
tems. Among the systems that do not incorporate a priori symbolic
knowledge, fuzzy ARTMAP (Cascade ARTMAP without rule inser-
tion) achieves the lowest error rate. While the KBANN system and
Cascade ARTMAP both obtain signi�cant improvement in predictive
performance by incorporating rules, Cascade ARTMAP produces a
lower error rate than KBANN. In addition to the 13 inserted rules,



an average of 15.9 recognition nodes (rules) are created.

In each simulation, rules are also extracted from the trained Cas-
cade ARTMAP network. Due to the small data set size, con�dence
factors are computed solely based on usage. Threshold pruning with
threshold � = 0:01 is applied, followed by the rule and antecedent
pruning procedures using the local pruning strategy. Comparing pre-
dictive performance, rules extracted from Cascade ARTMAP are still
slightly more accurate than the NofM rules extracted from KBANN
[18, 19]. While the Cascade ARTMAP rule sets contain more rules
than the NofM rule sets, the number of antecedents is almost half of
that of the NofM rule sets.

The promoter rules formulated by Cascade ARTMAP are simi-
lar in form to the consensus sequences derived by conventional sta-
tistical methods. However, whereas consensus sequences are used
with an exact match condition, Cascade ARTMAP rules are based
on competitive activation and do not require exact match in an-
tecedents. Through the approximate matching property, the number
of nucleotides used to identify a promoter is usually small (at most
four in this case). By contrast, the consensus sequences, obtained by
noting the positions with the same base in greater than 50% of the
promoter patterns [12], used a minimum of twelve nucleotides.

Table 3 shows a sample set of re�ned promoter rules extracted from
Cascade ARTMAP. Conformation has been dropped as a condition
for promoters, so are the four rules de�ning it. All the minus 35 and
minus 10 rules are preserved, but have been re�ned to refer to only
two salient nucleotide bases. Two new rules for identifying promoters
are created, which contain features of minus 35 and conformation.
These two rules are believed to compensate for the elimination of
conformation. Eight non-promoter rules are created. They are slightly
more irregular due to the randomness of non-promoters.

The con�dence factor attached to each ARTMAP rule provides
another dimension for interpreting the rule. By having a con�dence
factor of 1, the �rst promoter rule is very frequently used and thus
important. It is activated by di�erent combinations of minus 35 and
minus 10 rules, each individually does not have a high usage. The two
new promoter rules are roughly of equal importance but are not as



Table 3: A set of promoter rules extracted from Cascade ARTMAP. The
set consists of 19 rules and a total of 46 antecedents. The real number
associated with each rule represents the rule's con�dence factor.

promoter (1.00) :- minus 35, minus 10.
promoter (0.31) :- A@-45, G@-34.
promoter (0.22) :- G@-34, T@-25, T@-18.

minus 35 (0.41) :- G@-34, C@-32.
minus 35 (0.34) :- T@-36, T@-35.
minus 35 (0.22) :- A@-33, C@-32.
minus 35 (0.03) :- T@-36, C@-32.

minus 10 (0.44) :- A@-12, T@-8.
minus 10 (0.31) :- A@-13, T@-9.
minus 10 (0.19) :- A@-11, T@-7.
minus 10 (0.06) :- A@-9, T@-8.

non-promoter (0.19) :- A@5.
non-promoter (0.16) :- A@-49, C@6, G@.7
non-promoter (0.16) :- A@7.
non-promoter (0.16) :- T@-23.
non-promoter (0.12) :- A@-15, T@1.
non-promoter (0.12) :- C@-46, G@-26.
non-promoter (0.06) :- T@-34, T@-33, C@-27, T@-26, G@5.
non-promoter (0.03) :- A@-45, T@-44, G@-42, T@-29, A@-24,

T@-7, A@6, G@7.



heavily used as the �rst promoter rule. The �rst three minus 35 rules
are more highly utilized than the last minus 35 rule. A similar pattern
is observed for the minus 10 rules. The non-promoter rules have lower
and less contrasting con�dence values. The �rst four non-promoter
rules nevertheless seem slightly more important. The last two non-
promoter rules have the least con�dences, and could be dropped with
little degradation of overall performance.

In contrast, the promoter rules extracted by the NofM algorithm
consists of only 9 rules but contains 83 countable antecedents [19].
Moreover, the rules make use of several complex constructs, including
NofM, a counting function \nt", addition, subtraction, multiplica-
tion, and comparison of real numbers. Also, the NofM rules involve
seven nucleotide ambiguity codes, and have already employed a com-
pressed format for representing adjacent nucleotide bases to simplify
rules. Comparing complexity, ARTMAP rules are much cleaner and
easier to interpret. More importantly, by preserving the symbolic rule
form during learning, the extracted rules are identical in form and can
be compared directly with the original rules. Furthermore, the use of
con�dence factors enables ranking of rules. This is particularly im-
portant to human experts in analyzing the rules.

5 Conclusion

This chapter has presented supervised Adaptive Resonance Theory
systems in the perspective of symbolic knowledge processing. The in-
herent characteristics of the supervised ART systems, most notably,
the fast and incremental learning capabilities and the compatibility
with rule-based knowledge, give rise to a computing paradigm fun-
damentally di�erent from those of other machine learning systems,
speci�cally the backpropagation neural networks and the C4.5 sym-
bolic induction algorithm. With its unique features, supervised ART
has o�ered an interesting alternative approach to many real-world
problems. Two applications are described below.

In personalized information systems, supervised ART systems can
be used to model users' pro�le so that only the information most
relevant to a user is identi�ed and presented [17]. Each user pro�le is



represented by a set of recognition categories, each associating a set of
conjunctive features of a piece of information to a relevance factor. As
the network structure is compatible with rule-based knowledge, user-
de�ned rules can be readily translated into the recognition categories
of a supervised ART system. In addition, subsequent user feedback
on individual pieces of information can be used to re�ne the network.
Through the re�nement process, the network learns interest terms
that are not explicitly mentioned by the user. As both user-de�ned
and system-learned knowledge are represented in a single system, any
inherent conict or inconsistency can be detected and resolved readily.

Another potential domain is that of knowledge discovery and in-
terpretation. Traditional data mining tools do not incorporate users'
domain knowledge in the knowledge discovery process. As a result, the
discovered knowledge can be very di�erent from the users' perspec-
tives and di�cult to interpret. Supervised ART, on the other hand,
provides a mechanism to incorporate users' knowledge. By building
upon a user's prior knowledge, the �nal result is expected to be more
interpretable to the user.
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