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Ontology-Assisted Mining of RDF Documents

Tao Jiang and Ah-Hwee Tan

Summary. Resource description framework (RDF) is becoming a popular encoding
language for describing and interchanging metadata of web resources. In this paper,
we propose an Apriori-based algorithm for mining association rules (AR) from RDF
documents. We treat relations (RDF statements) as items in traditional AR mining
to mine associations among relations. The algorithm further makes use of a domain
ontology to provide generalization of relations. To obtain compact rule sets, we
present a generalized pruning method for removing uninteresting rules. We illustrate
a potential usage of AR mining on RDF documents for detecting patterns of terrorist
activities. Experiments conducted based on a synthetic set of terrorist events have
shown that the proposed methods were able to derive a reasonably small set of
association rules capturing the key underlying associations.

9.1 Introduction

Resource description framework (RDF) [19, 20] is a data modeling language
proposed by the World Wide Web Consortium (W3C) for describing and
interchanging metadata about web resources. The basic element of RDF is
statements, each consisting of a subject, an attribute (or predicate), and an
object. A sample RDF statement based on the XML syntax is depicted in
Figure 9.1. At the semantic level, an RDF statement could be interpreted
as “the subject has an attribute whose value is given by the object” or “the
subject has a relation with the object”. For example, the statement in Fig-
ure 9.1 represents the relation: “Samudra participates in a car bombing event”.
For simplicity, we use a triplet of the form <subject, predicate, object> to
express an RDF statement. The components in the triplets are typically de-
scribed using an ontology [15], which provides the set of commonly approved
vocabularies for concepts of a specific domain. In general, the ontology also
defines the taxonomic relations between concepts in the form of a concept
hierarchy.

Due to the continual popularity of the semantic web, in a foreseeable future
there will be a sizeable amount of RDF-based content available on the web.
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<rdf:Description about="http://localhost:8080/TerroristOntoEx.rdfs#Samudra ">

<TerroristOntoEx: participate  

rdf:resource = "http://localhost:8080/TerroristOntoEx.rdfs#CarBombing"/>

</rdf:Description> 

Fig. 9.1. A sample RDF statement based on the XML syntax. “Samudra” denotes
the subject, “participate” denotes the attribute (predicate), and “CarBombing” de-
notes the object.

A new challenge thus arises as to how we can efficiently manage and tap the
information represented in RDF documents.

In this paper, we propose a method, known as Apriori-based RDF Asso-
ciation Rule Mining (ARARM), for discovering association rules from RDF
documents. The method is based on the Apriori algorithm [2], whose sim-
plistic underlying principles enable it to be adapted for a new data model.
Our work is motivated by the fact that humans could learn useful patterns
from a set of similar events or evidences. As an event is typically decomposed
into a set of relations, we treat a relation as an item to discover associations
among relations. For example, many terrorist attack events may include the
scenario that the terrorists carried out a robbery before the terrorist attacks.
Though the robberies may be carried out by different terrorist groups and
may have different types of targets, we can still derive useful rules from those
events, such as “<Terrorist, participate, TerroristAttack>→ <Terrorist, rob,
CommercialEntity>”.

The flow of the proposed knowledge discovery process is summarized in
Figure 9.2. First, the raw information content of a domain is encoded using
the vocabularies defined in the domain ontology to produce a set of RDF
documents. The RDF documents, each containing a set of relations, are used
as the input of the association rule mining process. For RDF association rule
mining, RDF documents and RDF statements correspond to transactions and
items in the traditional AR mining context respectively. Using the ontology,
the ARARM algorithm is used to discover generalized associations between
relations in RDF documents. To derive compact rule sets, we further present
a generalized pruning method for removing uninteresting rules.

The rest of this chapter is organized as follows. Section 9.2 provides a
review of the related work. Section 9.3 discusses the key issues of mining
association rules from RDF documents. Section 9.4 formulates the problem
statement for RDF association rule mining. Section 9.5 presents the proposed
ARARM algorithm. An illustration of how the ARARM algorithm works is
provided in Section 9.6. Section 9.7 discusses the rule redundancy issue and
presents a new algorithm for pruning uninteresting rules. Section 9.8 reports
our experimental results by evaluating the proposed algorithms on an RDF
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Fig. 9.2. The flow of the proposed RDF association rule mining process.

document set in the Terrorist domain. Section 9.9 concludes and highlights
the future work.

9.2 Related Work

Association rule (AR) mining [1] is one of the most important tasks in the
field of data mining. It was originally designed for well-structured data in
transaction and relational databases. The formalism of typical AR mining
was presented by Agrawal and Srikant [2]. Many efficient algorithms, such as
Apriori [2], Close [16], and FP-growth [10], have been developed. A general
survey of AR mining algorithms was given in [12]. Among those algorithms,
Apriori is the most popular one because of its simplicity.

In addition to typical association mining, variants of the Apriori algo-
rithm for mining generalized association rules have been proposed by Srikant
and Agrawal [17] to find associations between items located in any level of a
taxonomy (is-a concept hierarchy). For example, a supermarket may want to
find not only specific associations, such as “users who buy the Brand A milk
usually tend to buy the Brand B bread”, but also generalized associations,
such as “users who buy milk tend to buy bread”. For generalized rule min-
ing, several optimization strategies have been proposed to speed up support
counting. An innovative rule pruning method based on taxonomic information
was also provided. Han and Fu [9] addressed a similar problem and presented
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an approach to generate frequent itemsets in a top-down manner using an
Apriori-based algorithm.

In recent years, AR mining has also been used in the field of text mining.
Some basic differences between text mining and data mining were described
in [8]. Whereas data mining handles relational or tabular data with relatively
low dimensions, text mining generally deals with unstructured text docu-
ments with high feature dimensions. A framework of text mining techniques
was presented in [18]. According to [13], text mining involves two kinds of
tasks, namely deductive text mining (DTM) and inductive text mining (ITM).
Deductive text mining (or information extraction) involves the extraction of
useful information using predefined patterns from a set of text. Inductive text
mining, on the other hand, detects interesting patterns or rules from text
data. In [5], an AR mining algorithm, known as the Close algorithm, was
proposed to extract explicit formal concepts and implicit association rules
between concepts with the use of a taxonomy. However, the method was de-
signed to discover statistical relations between concepts. It therefore can not
be used to extract semantic relations among concepts from unstructured text
data.

Recently, some interesting work on mining semi-structured XML data has
been reported [3, 4, 6, 7, 14]. A general discussion of the potential issues in
applying data mining to XML was presented in [4]. XML is a data markup
language that provides users with a syntax specification to freely define el-
ements, to describe their data and to facilitate data exchange on the web.
However, the flexibility has resulted in a heterogeneous problem for knowl-
edge discovery on XML. Specifically, XML documents that describe similar
data content may have very different structures and element definitions. In
[14], this problem was discussed and a method for determining the similarity
between XML documents was proposed. In contrast to relational and trans-
action databases, XML data have a tree structure. Therefore, the context for
knowledge discovery in XML documents should be redefined. Two approaches
for mining association rules from XML documents have been introduced [3, 7].
In general, both approaches aimed to find similar nested element structures
among the branches of the XML Document Object Model (DOM) trees [21].
At the semantic level, the detected association rules represent the correlation
among attributes (nested elements) of a certain kind of elements. In [6], an
approach was presented that used association rule mining methods for detect-
ing patterns among RDF queries. The detected association rules were then
used to improve the performance of RDF storage and query engines. How-
ever, the method was designed for mining association rules among subjects
and attributes, but not among RDF statements.
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9.3 Mining Association Rules from RDF

RDF/RDFS data consist of a set of RDF statements in the form of triplets.
The RDF triplets form a directed graph (RDF Graph) with labels (attributes
or predicates) on its edges. For the purpose of data exchange, RDF/RDFS
uses an XML-based syntax. Mining association rules from RDF/RDFS data
presents a number of unique challenges, described as follows.

First, each RDF statement is composed of a subject, an attribute (or
predicate), and an object, that are described using the vocabularies from a
predefined domain ontology. Suppose the ontology includes 100 concepts and
an average of three predicates between each pair of concepts, the number of
possible RDF statements is already 30,000. In real applications, the number
of concepts defined in domain ontology could far exceed 100. Therefore, the
number of distinct statements may be so large that each single RDF statement
only appears a very small number of times, far below the typical minimum
support threshold. This motivates our approach in mining generalized associ-
ation rules.

Second, RDF statements with the same attributes can be generalized, if
both their subjects and objects share common super-concepts. Recursively
generalizing a set of statements creates a relation lattice. The information
in the relation lattices can be used to improve the performance of itemset
candidate generation and frequency counting (see Section 9.5).

Third, in contrast to items in relational databases, statements in RDF
documents may be semantically related. Intuitively, semantically related state-
ments should be statistically correlated as well. This motivates us to define a
new interestingness measure for pruning uninteresting rules.

Furthermore, RDF statements express a rich set of explicit semantic re-
lations between concepts. This makes the association rules discovered from
RDF documents more understandable for humans.

9.4 Problem Statement

The problem formulation of association rule mining on RDF documents is
given as follows. As we are interested in mining the associations among RDF
statements, i.e., relations, we will use the term “relationset” instead of “item-
set” in our description.

Let O = <E , S , H> be an ontology, in which E={e1,e2,. . . ,em} is a set of
literals called entities; S={s1,s2,. . . ,sn} is a set of literals called predicates (or
attributes); and H is a tree whose nodes are entities. An edge in H represents
an is-a relationship between two entities. If there is an edge from e1 to e2, we
say e1 is a parent of e2, denoted by e1 > e2; and e2 is a child of e1, denoted by
e2 < e1. We call e+ an ancestor of e, if there is a path from e+ to e in H ,
denoted by e+ >> e. If e >> e1, e >> e2. . . .e>> ek, we call e a common
ancestor of e1,e2,. . . ,ek, denoted by e >> e1,e2,. . . ,ek. For a set of entities
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e1, e2, . . . e k, if e′ ∈{ e | e >> e1, e2, . . . e k } and not exists e′′ ∈{ e | e >>
e1, e2, . . . e k } such that e′ >> e′′, e′ is called the least common ancestor
of e1, e2, . . . e k, denoted by e′ = lca(e1, e2, . . . e k).

Thing

Terrorist
Terrorist

Activity

Samudra Omar 

Financial

Crime 

Terrorist

Attack

Bank

Robbery 

Card

Cheating Bombing Kidnapping 

Fig. 9.3. A simple concept hierarchy for the Terrorist domain ontology.

Table 9.1. A sample RDF knowledge base SD in the terrorist domain.

Transaction Relation
1 <Samudra, raiseFundBy, BankRobbery >

< Samudra, participate, Bombing>

2 <Omar, raiseFundBy, CardCheating>
<Omar, participate, Kidnapping>

3 <Omar, participate, Bombing>

Typically, there is a top-most entity in the ontology, called thing , which
is the ancestor of all other entities in E . Thus, E and H define a concept
hierarchy. A sample concept hierarchy for the Terrorist domain is shown in
Figure 9.3. The ontology O defines a set of vocabularies for describing knowl-
edge in a specific domain.

Let D be a set of transactions, called a knowledge base . Each trans-
action T is a set of relations (RDF statements), where each relation r is
a triplet in the form of <x, s, y>, in which x, y∈E , and s∈S . We call x the
subject of the relation r, denoted by sub(r)=x; we call s the predicate of
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the relation r, denoted by pred(r)=s; we call y the object of the relation r,
denoted by obj(r) = y.

A sample knowledge base SD in the terrorist domain is shown in Table 9.1.
There are three transactions in the knowledge base, each of which contains a
set of relations describing a terrorist event.

A set of relations R = {r1, r2, . . ., rd} (where ri =< xi, si, yi > for i =
1, . . ., d) is called an abstract relation of r1, r2, . . ., rd in D , if and only if s1 =
s2 = . . . = sd and there exist e′ and e′′ ∈ E , such that e′=lca{x1, x2, . . ., xd},
e′′ = lca{y1, y2, . . ., yd}, e′ �= thing , and e′′ �= thing , and not exist r′ =<
x′, s′, y′ > in transactions of D where r′ /∈ R, s′ = s1 = ... = sd, e

′ >> x′ and
e′′ >> y′. We also define the subject of R as sub(R) = e′ = lca{x1, x2, . . ., xd};
the predicate of R as pred(R) = s′, where s′ = s1 = s2. . . = sd; and the object
of R as obj(R) = e′′ = lca{y1, y2, . . ., yd}. For simplicity, we use the triplet
< e′, s′, e′′ >, similar to that for denoting relations, to represent abstract
relations. We call an abstract relation R a sub-relation of an abstract relation
R′, if R ⊂ R′ hold. An abstract relation R is the most abstract relation ,
if and only if there does not exist another abstract relation R′ in D where
R⊂ R′.

We say a transaction T supports a relation r if r ∈ T . We say a trans-
action T supports an abstract relation R if R∩T �= ∅. We assume that each
transaction T has an id, denoted by tid. We use r.tids = {tid1, tid2,. . ., tidn}
to denote the set of ids of the transactions in D that support the relation r.
We define the support of r, denoted by support(r) = |r.tids|. Similarly, for
an abstract relation R, we define R.tids = ∪r.tids, for all r ∈ R. We further
define the support of R, denoted by support(R) = |R.tids|. In this paper,
we use A, B, or C to represent a set of abstract relations {R1, R2. . .Rn},
named relationset . We define the support of a relationset A, denoted by
support(A) = | ∩ Ri.tids|, i = 1, 2, . . .n. We call a relationset A a fre-
quent relationset , if support(A) is greater than a user-defined minimum
support (minSup). An association rule in D is of the form A→B, where
A, B, and A∪B are frequent relationsets and its confidence , denoted by
confidence(A→B) = support(A∪B)/support(A), is greater than a user-defined
minimum confidence (minConf).

9.5 The ARARM Algorithm

Following the method presented in [2], our Apriori-based approach for mining
association rules can be decomposed into the following steps.

1. Find all 1-frequent relationsets. Each 1-frequent relationset contains only
one abstract relation R, which may contain one or more relations r1. . . rn

(n≥1).
2. Repeatedly generate k-frequent (k ≥2) relationsets based on k−1-frequent

relationsets, until no new frequent relationsets could be generated.
3. Generate association rules and prune uninteresting rules.
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9.5.1 Generation of 1-Frequent Relationsets

For generating 1-frequent relationsets, we use a top-down strategy. We first
find all the most abstract relations by scanning the RDF knowledge base D
and merging similar relations that have common abstract relations. Next, we
repeatedly split the frequent abstract relations into their sub-relations until
all abstract relations are not frequent. We then keep all the frequent abstract
relations as the 1-frequent relationsets. The procedure of identifying most
abstract relations is summarized in Figure 9.4.

Algorithm 1: Find Most Abstract Relations

Input: A set of transactions D
Output: A set of most abstract relations 

(1) Rlist:=

(2) for each transaction T D do 

(3) for each relation r in T do 

(4) if (exist an abstract relation R in Rlist AND

(5)             (r R OR (pred(r) == pred(R) AND lca(sub(R), sub(r)) != thing AND

(6)                                 lca(obj(R), obj(r)) != thing)))
(7)             R := {r} R    //For the set of transactions D’ scanned, R is an abstract relation. 

(8)             R.r.tids := R.r.tids {T.tid} //In R, R.r.tids represents the set of ids of the 

transactions that have been scanned and support r. If r doesn’t exist in R before, R.r.tids represents .

(9) else

(10)             R’ :={r} //if r could not be merged into an existing abstract relation, create a 

new abstract relation R’ for r. 

(11)             R’.r.tids := {T.tid} 

(12)             Rlist :={R’} Rlist

(13) Output Rlist 

Fig. 9.4. The algorithm for identifying most abstract relations.

Through the algorithm defined in Figure 9.4, we obtain a set of most ab-
stract relations (Rlist). Each abstract relation and its sub-relations form a
relation lattice. An example of a relation lattice is shown in Figure 9.5. In this
lattice, <Terrorist, participate, TerroristAttack> is the most abstract relation
subsuming the eight relations at the bottom levels. The middle-level nodes in
the lattice represent sub-abstract-relations. For example, <Samudra, partici-
pate, Bombing> represents a sub-abstract-relation composed of two relations,
namely <Samudra, participate, CarBombing> and <Samudra, participate,
SuicideBombing>.

The algorithm for finding all 1-frequent relationsets is given in Figure 9.6.
For each most abstract relation R in Rlist, if R is frequent, we add R into 1-
frequent relationsets L1 and we traverse the relation lattice whose top vertex
is R to find all 1-frequent sub-relations of R (Figure 9.6a).

Figures 9.6b and 9.6c define the procedures of searching the abstract rela-
tion lattice. First, we recursively search the right children of the top relation
to find 1-frequent relationsets and add them into L1. Then, we look at each
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<Terrorist, participate, TerroristAttack> 

<Terrorist, participate, Bombing> 

<Terrorist, participate, Kidnapping> <Samudra, participate, TerroristAttack > 

<Omar, participate, TerroristAttack > 

< Samudra, participate, Bombing> 

< Omar, participate, Bombing > 

<Samudra, participate, Kidnapping > 

<Omar, participate, Kidnapping > 

< Samudra, participate, CarBombing> 

< Omar, participate, CarBombing > 

< Samudra, participate, SuicideBombing> 

< Omar, participate, SuicideBombing > 

<Samudra, participate, Kidnapping1 > 

<Omar, participate, Kidnapping1 > 

<Samudra, participate, Kidnapping2 > 

<Omar, participate, Kidnapping2 > 

< Terrorist, participate, CarBombing> 

< Terrorist, participate, SuicideBombing>

< Terrorist, participate, Kidnapping1 > 

< Terrorist, participate, Kidnapping2 > 

1

2

3

4

5

Fig. 9.5. The flow of searching in a sample relation lattice.

left child of the top abstract relation. If it is frequent, we add it into L1 and re-
cursively search the sub-lattice using this left child as the new top relation. In
Figure 9.5, the dashed arrows and the order numbers of the arrows illustrate
the process of searching the lattice for 1-frequent relationsets.

Here, we define the notions of right/left children, right/left sibling, and
left/right parent of an abstract relation in a relation lattice. In Figure 9.5,
<Terrorist, participate, Bombing> and <Terrorist, participate, Kidnapping>
are sub-relations of <Terrorist, participate, TerroristAttack>. They are de-
rived from their parent by drilling down its object based on the domain
concept hierarchy. We call them the right children of <Terrorist, partici-
pate, TerroristAttack> and call <Terrorist, participate, TerroristAttack> the
left parent of <Terrorist,participate, Bombing> and <Terrorist, participate,
Kidnapping>. Similarly, if some sub-relations are derived from their parent
by drilling down its subject, we call them the left children of their parent
and call their parent the right parent of these sub-relations. If there exists
an abstract relation that has a left child A and a right child B, A is called a
left sibling of B and B is called a right sibling of A.

Lemma 1. (Abstract Relation Lattice) Given an abstract relation R =
<x, s, y> with a right parent Rrp = <x+, s, y> (or left parent Rlp = <x,
s, y+>), if support(Rrp) < minSup (or support(Rlp) < minSup), it can be
derived that support(R) < minSup.
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Algorithm 2: Find 1-frequent relationsets

Input: A set of transactions D
Output: A set of 1-frequent relationsets 

(1) marList := getMostAbsRelations(D)

(2) for each most abstract relation R in marList do 

(3)     if (support(R)   minSup) 

(4) L1 := {R} L1

(5)         L1’:=searchAbsRelationLattice(R, NULL); //NULL means that most abstract relations 

don’t have right siblings. 

(6)         L1 := L1 L1’

(7) Output L1

(a)

Procedure searchAbsRelationLattice

Input: Abstract relation R; hash table that stores right siblings of R, rSiblings

Output: 1-frequent relationsets in the relation lattice of R (excluding R)

(1) L1’:=

(2) L1’ :=searchRightChildren(R, rSiblings) 

(3) for each left children Rlc of R do //get left child by drilling down the subject of R 

(4) if  support(Rlc)  minSup 

(5) L1’ := { Rlc } L1’

(6)      Rlc.rightParent := R 

(7)         R.leftChildren.insert(Rlc)

(8)         L1’’:=searchAbsRelationLattice(Rlc, R.rightChildren) 

(9) L1’ := L1’ L1’’

(10) Output L1’

(b)

Procedure searchRightChildren

Input: Abstract relation R; hash table that stores right siblings of R, rSiblings

Output: 1-frequent relationsets among the right descendants of R 

(1) L1
R:=

(2) for each right children Rrc of R do 

(3)     rParent := getRParent(Rrc, rSiblings) //get the right parent of Rrc by finding the right 

sibling of R that has the same object with Rrc.

(4) if support(rParent) < minSup 

(5)         continue;  //Optimization 1. 

(6)     if support(Rrc)  minSup 

(7)         if rParent != NULL 

(8) rParent.leftChildren.insert(Rrc);

(9)             Rrc.rightParent := rParent 

(10) R.rightChildren.insert(Rrc)

(11)         Rrc.leftParent := R 

(12) L1
R := { Rrc } L1

R

(13)         L1
R’:=searchRightChildren(Rrc,

rParent.rightChildren)

(14)          L1
R := L1

R L1
R’

(15) Output L1
R

(c)

Fig. 9.6. The algorithm for generating 1-frequent relationsets.
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Proof. We only need to prove support(R) ≤ support(Rrp) (and support(R)
≤ support(Rlp)). Since R is a sub-relation of Rrp (or Rlp), for each relation
r∈R, r∈Rrp(or r∈Rlp) holds. Therefore, ∪r.tids (r∈R) is a subset of ∪r′.tids
(r′ ∈Rrp or r′ ∈Rlp). Then the cardinality of ∪r.tids is smaller than or equals
to the cardinality of ∪r′.tids, i.e. support(R) ≤ support(Rrp) (support(R) ≤
support(Rlp)).

According to Lemma 1, once we find that the left parent or right parent
of an abstract relation is not frequent, we do not need to calculate the sup-
port of this abstract relation and can simply prune it away. This forms our
Optimization Strategy 1.

9.5.2 Generation of k-Frequent Relationsets

Observation 1. Given two abstract relations R1 and R2, if R1∩R2 �= ∅
and |R1| ≥ |R2|, either R2 is a sub-abstract-relation of R1 (i.e. R1∩R2=
R2), or R1 and R2 have a common sub-abstract-relation R3 in the rela-
tion lattice (i.e. R1∩R2=R3). For example, in Figure 9.5, two abstract re-
lations <Samudra, participate, TerroristAttack> and <Terrorist, participate,
Kidnapping> have a common sub-abstract-relation <Samudra, participate,
Kidnapping> = {<Samudra, participate, Kidnapping1>, <Samudra, partic-
ipate, Kidnapping2>}.

Lemma 2. Given a k-relationset A={R1,R2, . . . ,Rk}, if there are two ab-
stract relations Ri and Rj (1≤i, j≤k and i �=j), such that |Ri| ≥ |Rj | and
Ri∩Rj �= ∅, there exists a k−1-relationset B with support(B) = support(A).

Proof. According to Observation 1, there exists an abstract relation R′,
where either R′=Rj or R′ is a common sub-abstract-relation of Ri and Rj

(Ri∩Rj=R′). Therefore, there exists a k−1-relationset B = A∪{R′} <minus>
{Ri, Rj} and support(B) = support(A).

According to Lemma 2, a k-relationset that includes two intersecting ab-
stract relations is redundant and should be discarded. This is the basis of our
Optimization Strategy 2.

Observation 2. Given two 2-frequent relationsets A={R1, R2} and B={R1,
R2+}, where R1, R2, and R2+ are frequent abstract relations and R2+ is an
ancestor of R2, if the support of the relationset {R1, R2} equals the support
of the relationset {R1, R2+}, the relationset B is redundant because A and
B are supported by the same set of transactions. As {R1, R2} provides a
more precise semantics than {R1, R2+}, the latter is redundant and should
be discarded. This is Optimization Strategy 3.

The procedure of generating k-frequent relationsets Lk is described in Fig-
ure 9.7. To generate Lk, we need to first generate k-candidate relationsets
based on k− 1-frequent relationsets. We search the k− 1-frequent relationset
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Algorithm 3: Find k-frequent relationsets 

Input: 1-frequent relationset list L1

Output: k-frequent relationsets(k 2) 

(1) k:=2

(2) L:=

(3) while |L k-1|  k do 

(4)     Ck:= generateCandidate(L k-1)

(5)     for each candidate relationset A Ck do 

(6) if support(A) minSup  

(7)             Lk ={A} U Lk

(8)     prune(Lk) //Optimization 3 

(9)     L := L Lk

(10)     k := k+1 

(11) Output L 

Fig. 9.7. The algorithm for identifying k-frequent relationsets.

pair (A, B), where A, B ∈ Lk−1, A={R1,R2,. . . ,Rk−1}, B={R′
1,R

′
2,. . . ,R

′
k−1},

Ri= R′
i (i=1,2,. . . , k−2), and Rk−1∩R’k−1 = ∅ (Optimization Strategy 2 ). For

each such pair of k-1-frequent relationsets (A, B), we generate a k-candidate
relationset A∪B={R1,R2,. . . ,Rk−1,R′

k−1}. We use Ck to denote the entire
set of k-candidate relationsets. We further generate Lk by pruning the k-
candidate relationsets whose supports are below minSup. In Lk, some redun-
dant k-frequent relationsets also need to be removed according to Optimization
Strategy 3.

9.5.3 Generation of Association Rules

For each frequent relationset A, the algorithm finds each possible sub-
relationset B and calculates the confidence of the association rule B → A
< minus > B, where A < minus > B denotes the set of relations in A but not
in B. If confidence(B→A<minus>B) is larger than minConf, B→A<minus>B
is generated as a rule.

9.6 Illustration

In this section, we illustrate our ARARM algorithm by mining associations
from the sample knowledge base SD depicted in Table 9.1. Suppose that the
minimum support is 2 and the minimum confidence is 66%. The relations
(RDF statements) in the knowledge base are constructed using the ontology
as shown in Figure 9.3. The predicate set is defined as S = {raiseFundBy,
participate}.

First, we aggregate all relations in SD (as described in Figure 9.4) and
obtain two most-abstract relations (Table 9.2). Because the supports of those
two abstract relations are all greater than or equal to minimum support of 2,
they will be used in the next step to generate 1-frequent relationsets.
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Table 9.2. The most-abstract relations obtained from the knowledge base SD .

Most-Abstract Relations Support
<Terrorist, raiseFundBy, FinancialCrime> 2
<Terrorist, participate, TerroristAttack> 3

(a)

(b)

<Terrorist, participate, TerroristAttack> , support 3

<Terrorist, participate, 

Bombing>, support 2 

<Terrorist, participate, 

Kidnapping>, support 1 

<Samudra, participate, 

TerroristAttack >, support 1 

<Omar, participate, 

TerroristAttack >, support 2 

< Samudra, participate, Bombing>, support 1 

< Omar, participate, Bombing >, support 1 

<Samudra, participate, Kidnapping >, support 0 

<Omar, participate, Kidnapping >, support 1 

<Terrorist, raiseFundBy, FinancialCrime> , support 2

<Terrorist, raiseFundBy, 

BankRobbery>, support 1 

<Terrorist, raiseFundBy, 

CardCheating>, support 1 

<Samudra, raiseFundBy, 

FinancialCrime>, support 1 

<Omar, raiseFundBy, 

FinancialCrime >, support 1 

< Samudra, raiseFundBy, BankRobbery>, support 1 

< Omar, raiseFundBy, BankRobbery >, support 0 

<Samudra, raiseFundBy, CardCheating >, support 0 

<Omar, raiseFundBy, CardCheating >, support 1 

Fig. 9.8. The relation lattices of the two most-abstract relations.

Next, we search the relation lattices to find 1-frequent relationsets. The
relation lattices of the two most-abstract relations are shown in Figure 9.8.
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In Figure 9.8a, because all of the relations in the second level are be-
low the minimum support, the relations at the bottom of the lattice will
not be considered. In Figure 9.8b, because the relations <Omar, participate,
TerroristAttack> and <Terrorist, participate, Bombing> are frequent, their
child relation <Omar, participate, Bombing> at the bottom of the lattice will
still be considered. Other relations will be directly pruned because either the
support of their left parent or right parent is below the minimum support.

Table 9.3. The 1-frequent relationsets identified from the sample knowledge base
SD .

1-Frequent Relationsets Support

{<Terrorist, raiseFundBy, FinancialCrime>} 2 {1,2}
{<Terrorist, participate, TerroristAttack>} 3 {1,2,3}
{<Omar, participate, TerroristAttack >} 2 {2,3}
{<Terrorist, participate, Bombing>} 2 {1,3}

Table 9.4. The k-frequent relationsets (k ≥2) identified from the sample knowledge
base SD .

k-Frequent Relationsets Support

{<Terrorist, raiseFundBy, FinancialCrime>,
<Terrorist, participate, TerroristAttack> }

2{1,2}

Table 9.5. The association rules discovered from the sample knowledge base SD .

Association rules Support/
Confidence

<Terrorist, raiseFundBy, FinancialCrime>
→<Terrorist, participate, TerroristAttack>

2/66.6%

<Terrorist, participate, TerroristAttack>
→<Terrorist, raiseFundBy, FinancialCrime>

2/100%

After traversing the relation lattices, we obtain the 1-frequent relationsets
as shown in Table 9.3. Using the k-frequent relationset generation algorithm,
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we obtain the k-frequent relationsets (k ≥ 2), depicted in Table 9.4. The
association rule generation algorithm then derives the two association rules
as shown in Table 9.5.

9.7 Pruning Uninteresting Rules

Association rule mining algorithms typically produce a large number of rules.
Therefore, efficient methods for detecting and pruning uninteresting rules are
usually needed. A general survey on rule interestingness measures was pre-
sented in [11]. In [13], a set of commonly used properties for defining the
interestingness of the associations were introduced. The issues of pruning re-
dundant rules with the use of a concept hierarchy were discussed in [9] and
[17]. Srikant and Agrawal presented a method for calculating the expected
support and confidence of a rule according to its “ancestors” in a concept
hierarchy. A rule is considered as “redundant” if its support and confidence
can be estimated from those of its “ancestors”. The method however assumes
that the items appearing in an association are independent.

For mining association rules among the relations in RDF documents, the
problem of measuring interestingness becomes more complex on two accounts.
First, generalization and specialization of RDF relations are more compli-
cated. For example, a relation may have two direct parents in the relation
lattice. Second, the relations may be semantically related. For example, the
relations <Samudra, raiseFundBy, BankRobbery> and <Samudra, partici-
pate, Bombing> refer to the same subject Samudra. They are thus more likely
to appear together than two unrelated relations. To improve upon Srikant’s
method [17], we develop a generalized solution for calculating the expected
support and confidence of a rule based on its ancestors.

We call a relationset A+ an ancestor of relationset A if A+ and A have
the same number of relations and A+ can be derived from A by replacing one
or more concepts in A with their ancestors in a concept hierarchy. Given an
association rule A→B, we call the association rules A+→B, A+→B+, and
A→B+, the ancestors of A→B. We call A+→B+ a close ancestor of A→B,
if there does not exist a rule A′ → B′ such that A′ → B′ is an ancestor of
A→B and A+→B+ is an ancestor of A′ → B′. A similar definition applies to
both A+→B and A→B+.

For calculating the expected support and confidence of an association rule
based on its close ancestors’ support and confidence, the contribution of the
concept replacement could be estimated according to the three cases described
below.

• Concept replacement in both the left- and right-hand sides. For example,
an association rule AR1: <a, rel1, b> → <c, rel2, a> could be derived
from an association rule AR2: <a+, rel1, b>→ <c, rel2, a+> by replacing
concept “a+” with its sub-concept “a”. This kind of concept replacement
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only influences the support of the association rule. The expected support
and confidence of AR1 is given by

supportE(AR1) = support(AR2) · P (a|a+) (9.1)

and
confidenceE(AR1) = confidence(AR2) (9.2)

where P(a|a+) is the conditional probability of a, given a+.
• Concept replacement in the left-hand side only. For example, an associ-

ation rule AR1: <a, rel1, b> → <c, rel2, d> could be generated from
an association rule AR2: <a+, rel1, b> → <c, rel2, d> by replacing the
concept “a+” with its sub concept “a”. This kind of concept replacement
influences only the support of the association rule. We can calculate the
support and confidence of AR1 by using Eqns. (9.1) and (9.2).

• Concept replacement in the right-hand side only. For example, an associ-
ation rule AR1: <c, rel1, d> → <a, rel2, b> could be generated from an
association rule AR2: <c, rel1, d> → <a+, rel2, b> by replacing concept
“a+” with its sub concept “a”. This kind of concept replacement influ-
ences both the support and the confidence of the association rule. We can
calculate the expected support and confidence of AR1 by

supportE(AR1) = support(AR2) · P (a|a+) (9.3)

and
confidenceE(AR1) = confidence(AR2) · P (a|a+) (9.4)

respectively.

Note that the above three cases may be combined to calculate the overall
expected support and confidence of an association rule. The conditional prob-
ability P(a|a+) can be estimated by the ratio of the number of the leaf sub-
concepts of “a” and the number of the leaf sub-concepts of “a+” in the domain
concept hierarchy. For example, in Figure 9.3, the number of the leaf sub-
concepts of “Financial Crime” is two and the number of the leaf sub-concepts
of “Terrorist Activity” is four. The conditional probability P(Financial Crime
|Terrorist Activity) is thus estimated as 0.5.

Following the idea of Srikant and Agrawal [17], we define the interesting-
ness of a rule as follows. Given a set of rules S and a minimum interest factor
F , a rule A→B is interesting , if there is no ancestor of A→B in S or both
the support and confidence of A→B are at least F times the expected support
and confidence of its close ancestors respectively. We name the above inter-
estingness measure expectation measure with semantic relationships (EMSR).
EMSR may be used in conjunction with other pruning methods, such as those
described in [13].
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9.8 Experiments

Experiments were conducted to evaluate the performance of the proposed
association rule mining and pruning algorithms both quantitatively and qual-
itatively. Our experiments were performed on an IBM T40 (1.5GHz Pentium
Mobile CPU, 512MB RAM) running Windows XP. The RDF storage system
was Sesame (release 1.0RC1) running on MySQL database (release 4.0.17).
The ARARM algorithm was implemented using Java (JDK 1.4.2).

(1) Every event includes an RDF relation <Terrorist, participate, TerroristActivity>.  

(2) 90% of the events, which include an RDF relation <Terrorist, participate, Bombing> 

also include an RDF relation <Terrorist, participate, Robbery>.  

(3) 85% of the events include an RDF relation <Terrorist, takeVehicle, Vehicle>. 

(4) For any event containing an RDF relation <Terrorist, participate, SuicideBombing >, 

if it also includes (probability of 85%)  <Terrorist, takeVehicle, Vehicle>, there is a 

probability of 80% that <Terrorist, takeVehicle, Vehicle> is in specialized form 

<Terrorist, takeVehicle, Truck>. 

(5) 85% of the events include an RDF relation <Terrorist, useWeapon, Weapon>. 

(6) For any event containing <Terrorist, participate, Bombing>, if it also includes 

(probability of 85%) <Terrorist, useWeapon, Weapon>, there is a probability of 100% 

that <Terrorist, useWeapon, Weapon> is in specialized form <Terrorist, useWeapon, 

Bomb>, and there is a probability of 70% that <Terrorist, useWeapon, Weapon> is in 

specialized form <Terrorist, useWeapon, PlasticBomb>. 

(7) For any event containing an RDF relation <Terrorist, participate, Kidnapping >, if it 

also includes (probability of 85%) <Terrorist, useWeapon, Weapon>, there is a 

probability of 100% that <Terrorist, useWeapon, Weapon> is in specialized form 

<Terrorist, useWeapon, NormalWeapon>, and there is a probability of 90% that 

<Terrorist, useWeapon, Weapon> is in specialized form <Terrorist, useWeapon, 

AK-47>.

Fig. 9.9. The seven domain axioms for generating the terrorist events.

Due to a lack of large RDF document sets, we created a synthetic data
set, which contained a large number of RDF statements related to the ter-
rorist domain. The data set has enabled us to conduct empirically extensive
experiments of the various algorithms. The ontology for encoding terrorist
events contained a total of 44 concepts (including classes and instances) and
four predicates (attributes). Among the four predicates, three were used for
describing the relationships between concepts in the terrorist events and one
was used to provide additional information, such as the start time of terrorist
events. To perform empirical evaluation, 1000 RDF documents were gener-
ated using a set of domain axioms (Figure 9.9). The maximum number of
RDF statements in a single RDF document was four. We then performed as-
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sociation rule mining according to the ARARM algorithm and evaluated if the
extracted rules captured the underlying associations specified by the domain
axioms. With a 5% minimum support and a 50% minimum confidence, the
ARARM algorithm generated 76 1-frequent and 524 k-frequent (k ≥2) rela-
tionsets, based on which 1061 association rules were extracted. With a 10%
minimum support and a 60% minimum confidence, the algorithm produced 42
1-frequent relationsets, 261 k-frequent relationsets, and 516 association rules.

We observed that although the events were generated based on only
seven domain axioms, a much larger number of rules were extracted. For
example, axiom 2 may cause the association rule “<Terrorist, participate,
Bombing> → <Terrorist, participate, Robbery>” to be generated. Axiom 2
may also result in the association rule “<Terrorist, participate, Robbery> →
<Terrorist, participate, Bombing>”, as <Terrorist, participate, Bombing>
tended to co-occur with <Terrorist, participate, Robbery>. In addition, ax-
ioms can be combined to generate new rules. For example, axioms 1, 3, and
5 can combine to generate association rules, such as “<Terrorist, partici-
pate, TerroristActivity> → <Terrorist, takeVehicle, Vehicle>, <Terrorist,
useWeapon, Weapon>”. As the association rule sets generated using the
ARARM algorithm may still be quite large, pruning methods were further
applied to derive more compact rule sets.

We experimented with a revised version of Srikant’s interestingness mea-
sure method [17] and the EMSR method for pruning the rules. The exper-
imental results are summarized in Table 9.6 and Table 9.7. We further ex-
perimented with two simple statistical interestingness measure methods [13]
described below:

• Statistical correlations measure (SC): Given a rule R1→R2, where R1 and
R2 are relationsets, if the conjunctive probability P(R1,R2) �= P(R1)·P(R2),
R1 and R2 are correlated and the rule R1→R2 is considered as interesting.

• Conditional independency measure (CI): Given two rules R1→R2 and R1,
R3→R2 where R1, R2 and R3 are relationsets, if the conditional prob-
ability P(R2|R1) = P(R2|R1,R3), we say R2 and R3 are conditionally
independent and the rule R1, R3→R2 is considered as redundant and un-
interesting.

Table 9.6. The experimental results using Srikant’s method.

minSup/
minConf

Number of rules
before pruning

Number of rules
after applying

Srikant’s method

Number of rules after
combining with

SC and CI

5%/50% 1061 297 148
10%/60% 516 162 72
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Table 9.7. The experimental results using the EMSR interestingness measure
method.

minSup/
minConf

Number of rules
before pruning

Number of rules
after applying

EMSR

Number of rules after
combining with

SC and CI

5%/50% 1061 277 91
10%/60% 516 177 46

When pruning association rules, we first applied Srikant’s and the EMSR
methods on the rule sets produced by the ARARM algorithm and derived
association rule sets considered as interesting for each strategy. Then we com-
bined Srikant’s method and the EMSR method individually with the SC and
CI interestingness measures to derive even smaller rule sets.

We observed that there was no significant difference between the numbers
of rules obtained using the EMSR method and Srikant’s method. However, by
combining with other pruning methods, the resultant rule sets of EMSR were
about 40% smaller than those produced by Srikant’s method. The reason was
that the rule sets produced by Srikant’s method contained more rules similar
to those produced using the SC and CI measures. In other words, Srikant’s
method failed to remove those uninteresting rules that could not be detected
by the SC and CI measures.

For evaluating the quality of the rule sets produced by the EMSR method,
we analyzed the association rule set obtained using a 5% minimum support
and a 50% minimum confidence. We found that the heuristics of all seven ax-
ioms were represented in the rules discovered. In addition, most of the associa-
tion rules can be traced to one or more of the domain axioms. A representative
set of the association rules is shown in Table 9.8.

9.9 Conclusions

We have presented an Apriori-based algorithm for discovering association
rules from RDF documents. We have also described how uninteresting rules
can be detected and pruned in the RDF AR mining context.

Our experiments so far have made use of a synthetic data set, created
based on a set of predefined domain axioms. The data set has allowed us to
evaluate the performance of our algorithms in a quantitative manner. We are
in the process of building a real Terrorist data set by annotating web pages.

Our ARARM algorithm assumes that all the RDF relations of interest
could fit into the main memory. In fact, the maximum memory usage of our
algorithm is proportional to the number of relations. When the number of
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Table 9.8. Sample association rules obtained by ARARM and EMSR.

Examples of association
rules discovered

Explanation Domain
axioms

<Terrorist, participate, Kidnapping>→
<Terrorist, useWeapon, AK-47>
{support:0.166; confidence:0.817}

The rule reflects the
heuristics of a do-
main axiom directly.

7

<Terrorist, useWeapon, AK-47>→
<Terrorist, participate, Kidnapping>
{support:0.166; confidence:0.790}

The rule reflects
the heuristics of
a domain axiom
indirectly.

7

<Terrorist, participate, Kidnapping>→
<Terrorist, useWeapon, Gun>
{support:0.168; confidence:0.827}

The rule is a general-
ized form of a domain
axiom.

7

<Terrorist, useWeapon, PlasticBomb>→
<Terrorist, participate, Robbery>
{support:0.251; confidence:0.916}

The rule reflects the
interaction of two or
more domain axioms.

2, 6

<terroristA, participate,TerroristActivity
>→ <terroristA, useWeapon,
Weapon>{support:0.051; confidence:0.809}

The rule is gener-
ated due to spurious
events. The support
for this type of rule is
usually very low.

relations is extremely large, an optimization strategy should be developed to
maintain the efficiency of the AR mining process.

For simplicity, we assume that the subjects and objects of the RDF state-
ments in the document sets are in the form of RDF Unified Resource Identifier
(URI), each referring to a term defined in a domain ontology. According to
the RDF/RDFS specification [19, 20], an RDF statement could also include
RDF literals and blank nodes. We will address these issues in our future work.
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