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Semi-Supervised Heterogeneous Fusion for
Multimedia Data Co-clustering

Lei Meng, Ah-Hwee Tan, Senior Member, IEEE and Dong Xu, Member, IEEE

Abstract—Co-clustering is a commonly used technique for tapping the rich meta-information of multimedia web documents, including
category, annotation, and description, for associative discovery. However, most co-clustering methods proposed for heterogeneous
data do not consider the representation problem of short and noisy text and their performance is limited by the empirical weighting of
the multi-modal features. In this paper, we propose a generalized form of Heterogeneous Fusion Adaptive Resonance Theory, called
GHF-ART, for co-clustering of large-scale web multimedia documents. By extending the two-channel Heterogeneous Fusion ART
(HF-ART) to multiple channels, GHF-ART is designed to handle multimedia data with an arbitrarily rich level of meta-information. For
handling short and noisy text, GHF-ART does not learn directly from the textual features. Instead, it identifies key tags by learning the
probabilistic distribution of tag occurrences. More importantly, GHF-ART incorporates an adaptive method for effective fusion of multi-
modal features, which weights the features of multiple data sources by incrementally measuring the importance of feature modalities
through the intra-cluster scatters. Extensive experiments on two web image data sets and one text document set have shown that
GHF-ART achieves significantly better clustering performance and is much faster than many existing state-of-the-art algorithms.

Index Terms—Semi-supervised learning, heterogeneous data co-clustering, multimedia data mining.

F

1 INTRODUCTION

THE increasingly popularity of social networking
websites, such as Flickr and Facebook, has led to

the explosive growth of multimedia web documents
sharing online. In order to provide easy access for users
to browse and manage large-scale repositories, effective
organization of those documents with common subjects
is desired. Clustering techniques, designed to identify
groupings of data in multi-dimensional feature space
based on measured similarity, are often applied to this
task. As web multimedia resources are often attached
with rich meta-information, for example, category, an-
notation, description, images and surrounding text, how
to utilize the additional information to enhance the
clustering performance poses a challenge to traditional
clustering techniques.

In the recent years, the heterogeneous data co-
clustering approach, which advances from the clustering
of one data type to the co-clustering of multiple data
types, has drawn much attention and been applied to the
image and text domains [1], [2], [3], [4], [5]. However, the
algorithms follow the similar idea of linearly combining
the objective functions of each feature modality and
subsequently minimizing the global cost. For the co-
clustering of multimedia data, existing algorithms face
three challenges elaborated as follows. Firstly, similar to
the short text clustering problem [6], meta-information
is usually very short and therefore the extracted tags
cannot be effectively weighted by traditional data min-
ing techniques such as term frequency-inverse document
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frequency (tf-idf). Secondly, the weights of features in
the objective function still rely on empirical settings,
which usually leads to a sub-optimal result. Finally, this
approach requires an iterative process to ensure the con-
vergency, which leads to high computational complexity.
Thus, existing methods are only applicable to small data
sets consisting of up to a thousand of documents but
become very slow and not scalable to big data.

In view of the above issues, a self-organizing neural
network called Heterogeneous Fusion Adaptive Reso-
nance Theory (HF-ART) [7] has been recently proposed
for web image co-clustering, which performs fusion of
visual and textual features as a mapping across two
feature spaces. HF-ART achieves effective representation
of the surrounding text by modeling the cluster proto-
type of textual features using probabilistic distribution
of tag occurrences, and addresses the problem of feature
weighting by employing a robustness measure to weight
the features by learning from the intra-cluster scatters.
Moreover, HF-ART is semi-supervised as it is able to
take in prior knowledge by initializing the network with
pre-defined clusters, indicating regions of interests to
users. Different from traditional semi-supervised cluster-
ing techniques such as [4], in which the user-provided
knowledge is rarely reflected by the resulting clusters,
HF-ART can incrementally generalize and preserve the
learnt knowledge by identifying and learning from rel-
evant input patterns, and present the resulting clusters,
reflecting user preferences, directly to the users.

Whereas HF-ART is restricted to two pattern channels,
in this paper, we propose a generalized heterogeneous
data co-clustering algorithm, termed Generalized Het-
erogeneous Fusion Adaptive Resonance Theory (GHF-
ART), for fast and robust web multimedia data co-



2

clustering. By extending HF-ART from a two-channel
model to multiple feature channels wherein each channel
may receive different types of data patterns, GHF-ART is
designed to handle multimedia data with an arbitrarily
rich level of meta-information. Accordingly, the adaptive
feature weighting algorithm has also been generalized
by evaluating a robustness measure for each of the
multiple feature channels.

The performance of GHF-ART has been evaluated on
two public web image data sets, namely the NUS-WIDE
[8] and Corel data sets, and a public text document set,
known as the 20 Newsgroups data set [9]. Our empirical
results show that GHF-ART consistently achieves better
cluster quality and is much faster than many state-of-
the-art heterogeneous data co-clustering algorithms.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related works on image-text fusion and
heterogeneous data co-clustering. The problem formu-
lation of heterogeneous data co-clustering are described
in section 3. An introduction of Heterogeneous Fusion
ART is presented in section 4. The details of GHF-ART
are introduced in section 5. The experiment results are
presented in section 6. The last section summarizes our
work and highlights the future work.

2 RELATED WORK

2.1 Image-Text Fusion

Information fusion aims to process multiple interrelated
data modalities in a unified way and identify their
underlying interactions. Along with the rich multimedia
contents published on the World Wide Web, information
fusion has became an essential technique on various ap-
plications, such as multi-document summarization [10],
[11] and multi-modal multimedia indexing and retrieval
[12], [13], [14], [15].

Our work is related to the fusion of visual and textual
features through clustering methods. In the early works,
visual and textual features are concatenated into a single
vector [16] or used in a consequence manner [17]. How-
ever, the first approach usually cannot achieve desired
results since the concatenated features come from differ-
ent resources and cannot well represent the key features
of documents. Besides, the second method, which use
textual and visual features consequently to generate a
two-layer cluster structure, suffers from the problem
of error propagation and the usage of visual features
in the second step has no contribution to improve the
clustering quality. Jiang et al. [18] interpret the fusion
of visual and textual features as identifying pairs of
related images and texts, and propose two methods for
learning the image-text associations. The first method
is based on the vague transformation [19] that models
the associations between images and texts by measuring
the visual-textual similarities. The other method is based
on Fusion ART [20], which incrementally learns a set of
prototypical image-text pairs from the data set.

A large literature of recent works are based on graph
theory. Gao et al. [21] propose a Consistent Bipartite
Graph Co-partitioning (CBGC), which interprets the
image-text co-clustering task as a tripartite graph and
transforms the partitioning of the tripartite graph into
the simultaneous partitioning of the visual and textual
sub-graphs. In this way, CBGC models the solution as a
multi-objective optimization problem which is solved by
the Semi-Definite Programming (SDP). A similar work
Consistent Isoperimetric High-order Co-clustering (CI-
HC) [2] also considers the co-clustering problem as the
partitioning of a tripartite graph. Different from CBGC,
CIHC models the problem by an extended Isoperimetric
Co-clustering Algorithm (ICA) [22] which is solved by a
sparse system of linear equations. Cai et al. [23] propose
a Multi-modal Spectral Clustering (MMSC) which uses
a unified objective function to iteratively optimize the
clustering results of each feature modality and their com-
bination. In [24], a Multi-modal Constraint Propagation
(MMCP) is proposed which first defines the random
walk on multiple graphs and then deduces the results by
quadratic optimization method. However, it requires to
set many empirical parameters settings, such as the prior
graph probabilities and the number of clusters, which are
usually inapplicable to large-scale data set.

2.2 Heterogeneous Data Co-clustering

Heterogeneous data co-clustering approach addresses
the problem of simultaneously integrating multiple type-
s of data for clustering. Typically, the primary data,
i.e. the documents, and the associative information, i.e.
the attached meta-information, are modeled into star-
structured relational data [4] and the co-clustering task is
to find an optimal clustering of the documents according
to all types of features. Considering different model
formulation, existing algorithms can be categorized into
three categories: models based on graph theory, Non-
negative Matrix Factorization and information theory.

Graph theory based approach is widely used for the
co-clustering task. Gao et al. [1] generalize their prior
work on image-text co-clustering [21] for heterogeneous
data co-clustering. Long et al. [3] propose a graph-based
model, Spectral Relational Clustering (SRC), which first
introduce a collective clustering based on minimizing
the reconstruction error of both object affinity matrix
and feature matrix, and then derive an iterative spectral
clustering algorithm accordingly for the factorization of
these relational matrices. However, SRC requires solving
the eigen-decomposition problem which is inefficient for
large-scale data sets. In addition, a separate clustering
algorithm (in this case K-means) is used to obtain the
final clustering. This is the common drawback of many
graph theoretical clustering algorithms.

The Non-Negative Matrix Factorization (NMF) ap-
proach has been applied for text document clustering
[25] and extended to a Co-clustering framework [26].
In the recent years, NMF has been extended to the
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Fig. 1: Examples of web images consistent in both image
content and high-level semantics.

multi-modal co-clustering task. Chen et al. [4] propose
a symmetric non-negative matrix tri-factorization algo-
rithm, called Semi-Supervised NMF (SS-NMF), which
minimizes the global reconstruction error of all the re-
lational matrices of the central type data and features.
This method can derive a latent semantic space which
reveals the relations between each data item and a
pre-defined number of clusters (the axis). The cluster
membership of each data item is determined by the
largest projection value among all clusters. Moreover,
by incorporating user-provided constraints, SS-NMF can
derive new relational matrices through distance learning
algorithm to enhance the clustering performance.

Bekkerman et. al [27] propose the Combinatorial
Markov Random Fields (Comrafs) for the multi-modal
information co-clustering based on the information Bot-
tleneck theory and apply it in various fields such as semi-
supervised learning [28], image clustering [5] and cluster
analysis [29]. Comrafs constructs the Markov Random
Fields wherein each modality of data is modeled as a
combinatorial random variable which take values from
all the possible partitions, and the edges between all
variables are represented by Mutual Information. The
clustering process is inferred by an information-theoretic
objective. One potential problem of this approach is
the time complexity. As Comrafs needs to traverse all
subsets of the data samples for each data modality,
the computational complexity will increase significantly
with the increase in the size of data set.

3 PROBLEM FORMULATION

Considering a set of documents D = {docn|Nn=1} with
the associated meta-information, which may be tags,
category information and surrounding text, each doc-
ument docn may be represented by a multi-channel
input pattern I = {xk|Kk=1}, where xk is a feature

vector extracted from the document or one type of meta-
information. The goal of the heterogeneous data co-
clustering task, as defined in this paper, is to partition the
set of N documents into a set of clusters C = {cj |Jj=1} by
evaluating the similarity between the input patterns of
the documents according to their corresponding feature
vectors such that the documents belonging to the same
cluster should be more similar to each other than to
the documents of the other clusters. For example, in the
image domain, the co-clustering task may be to identify
similar images according to both the visual content and
the surrounding text. In each cluster, the images therein
are similar in image content and the high-level semantics
reflected from the image content are consistent. Similarly,
in the text domain, the co-clustering task is to consider
both the features of the text document and the meta-
information, such as category information and authors.

As reviewed in the previous section, the heteroge-
neous data co-clustering task presents a number of issues
and challenges, especially for multimedia data set. We
discuss the key challenges in three aspects as follows.

1) Representation of document content: The repre-
sentation issue of text documents has been well
studied in literature. Typically, text documents are
represented by the keywords appearing in the
document collection, each of which is weighted
based on its frequency in and cross the documents,
known as tf-idf. On the other hand, visual repre-
sentation of images is still a challenge nowadays.
Current techniques for visual feature extraction are
based on color histogram, edge detection, texture
orientation and scale-invariant points so that the
visual features are inadequate to represent the im-
ages at the semantic level, a problem known as
semantic gap. It leads to difficulties to group the
images with very different appearance (Fig. 1(c))
or to distinguish those with similar background
(Fig. 1(a) and 1(b)).

2) Representation of meta-information: The meta-
information of documents provides additional
knowledge which indicates the relations between
documents from another perspective. However, in
both image and text domains, the problem of noisy
tags exists. Specifically, although the extracted tags
from the meta-information of documents usually
contain the key tags that are helpful for identifying
the correct groupings of documents, a large num-
ber of noisy tags exist which contribute nothing
or even indicate incorrect relations between docu-
ments. How to identify key tags from noisy text is
also an open problem in tag ranking [30], [31].

3) Integrating multiple types of features: It is the
key challenge which is related to heterogeneous
data utilization for clustering. Existing works, de-
scribed in Section 2, typically rely on some global
optimization methods for the partitioning of each
feature modality. However, they do not address
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the problem of weighting the feature modalities in
their objective functions. Instead, either a uniform
weighting or some empirical settings are used,
which may not yield the desirable results.

4 HETEROGENEOUS FUSION ART
Adaptive Resonance Theory (ART) [32] is a neural the-
ory of cognitive information processing. ART performs
unsupervised learning by modeling clusters as memory
prototypes and encodes each input pattern incrementally
through a two-way similarity measure, which simulates
how human brain capture, recognize and memorize in-
formation of objects and events. As long as the difference
between the input pattern and the selected prototype
does not exceed a threshold called vigilance parameter,
the input pattern is considered a member of the selected
cluster. ART takes the advantages of fast and stable
learning as well as the incremental manner, and has
shown strong noise immunity [33].

By extending ART from a single input field to multiple
ones, Fusion ART [20] provides a general architecture
for simultaneously learning of multi-modal feature map-
pings. Specifically, Fusion ART performs real-time search
for suitable clusters and learns to encode the mappings
of multi-modal features in an incremental manner. A
previous work [34] shows the viability of Fusion ART
for integrating visual and textual features for image-text
co-clustering. However, its performance is limited by the
textual feature representation and learning.

The architecture of HF-ART is a two-channel Fusion
ART. Different from Fusion ART, HF-ART employs het-
erogeneous learning for the features of documents and
meta-information respectively to achieve effective cluster
prototypes. The proposed learning method models the
corresponding cluster prototype by the probability dis-
tribution of tag occurrences, which helps to address the
problem of noisy tags, especially for data type of which
insufficient statistic information is provided. Besides,
by employing the robustness measure, the contribution
parameter is adaptively adjusted by learning the inner-
class scatter of clusters. In this way, the problem of
weighting multi-modal features is solved by learning
from the cluster structure of input patterns.

5 GENERALIZED HETEROGENEOUS FUSION
ART
Generalized Heterogeneous Fusion ART (GHF-ART)
(Fig. 2) extends the HF-ART from two channels to mul-
tiple channels so that GHF-ART can be applied to the
clustering of more than two modalities wherein each
channel may receive different types of data patterns.
More importantly, by generalizing the feature construc-
tion methods for multimedia documents and incorporat-
ing an adaptive channel weighting algorithm, GHF-ART
is able to effectively integrate different types of features
across multiple pattern channels. Whereas most current

Fig. 2: The Architecture of Generalized Heterogeneous
Fusion ART.

works [2], [3], [4], [5] employ statistical methods, the pro-
posed GHF-ART model performs the heterogeneous data
co-clustering using a self-organizing neural network.
In essence, GHF-ART simultaneously learns the multi-
dimensional mappings across multiple feature spaces to
the category space. The clustering process of GHF-ART
thus partitions the category space into regions of clusters
by incrementally learning the cluster prototypes from the
input patterns and identifying the key features.

Moreover, with the incremental characteristics of
Adaptive Resonance Theory, GHF-ART may perform
semi-supervised learning by taking in the user prefer-
ences in the form of prior knowledge to initialize the
cluster structure before clustering. Essentially, the user
may identify groupings of documents wherein docu-
ments in the same group are deemed to be similar
to each other. During the network initialization step,
GHF-ART first generates clusters for these user-specified
groups of documents. These pre-defined clusters can
then be treated as user-defined projection from the fea-
ture space to the category space. During the subsequent
clustering process, these user-defined clusters can be
further generalized by recognizing and learning from
similar input patterns, while new clusters can still be
created automatically for novel patterns dissimilar to
existing clusters. By incorporating user preferences, the
predefined clusters help to construct better cluster struc-
ture comparing to one using pure data driven clustering.

The dynamics of GHF-ART algorithm is summarized
as follows.

Input vectors: Let I = {xk|Kk=1} denote the multi-
channel input pattern, where xk is the feature vector
for the k-th feature channel. Note that, with complement
coding [35], xk is further augmented with a complement
vector x̄k such that x̄ki = 1− xki in the input field F1.

Weight vectors: Let {wk
j |Kk=1} denote the weight vectors

associated with the j-th cluster cj in the category field
F2.

Parameters: The GHF-ART’s dynamics is determined by
choice parameter α > 0, learning parameter β ∈ [0, 1],
contribution parameters γk ∈ [0, 1] and vigilance param-
eters ρk ∈ [0, 1] for k = 1, ...,K.

The clustering process of GHF-ART comprises four
key steps: 1) network initialization: if the user prefer-
ences are provided, generate a cluster for each group
of documents. Specifically, each cluster cj has K weight
vectors {wk

j |Kk=1}, obtained by averaging the values of
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the feature vectors of the documents it contains. Oth-
erwise, generate an uncommitted cluster with all the
feature values of its weight vectors set to 1; 2) category
choice: for each input pattern I = {x1, . . . ,xK}, select
the most suitable cluster (winner cluster) cj∗ , which
has the maximum score calculated by a choice function
T (cj , I) (j = 1, . . . , J); 3) template matching: evaluate the
similarity between the input pattern I and the winner
cj∗ using a match function M(cj∗ , I) and a vigilance
parameter ρ. If the winner satisfies the vigilance criteria,
a resonance occurs which leads to the learning step.
Otherwise, a new winner is selected from the rest of
the clusters in the category field. If no winner satisfies
the vigilance criteria, a new cluster is generated to
encode the input pattern; and 4) prototype learning:
if cj∗ satisfies the vigilance criteria, its corresponding
weight vectors wk

j∗ (k = 1, . . . ,K) are updated through
a learning function (see Section 5.3). The algorithm stops
when all the input patterns are presented.

5.1 Feature Extraction

5.1.1 Feature Extraction for Document Content

In our work, a document can be either an image or an ar-
ticle. For an image, the feature vector is the concatenation
of multiple types of visual features. For an article, we
extract the term frequency-inverse document frequency
(tf-idf) features. Since the ART-based algorithm requires
the values of input in the interval [0,1], we further apply
min-max normalization on the features.

5.1.2 Feature Extraction for Meta-Information

As the meta-information (e.g. the surrounding text for
a web image or the author information for an article)
is usually short and noisy, traditional text mining tech-
niques cannot effectively weight the tags. For example,
the tf-idf features usually leads to feature vectors with a
flat distribution of low values [6]. Therefore, we model
the textual features to indicate the presence of tags such
that the probabilistic distribution of tags occurrences in
the given clusters can be subsequently learnt as the clus-
ter prototype of textual features through the proposed
learning function (9).

We construct the textual feature vector for the meta-
information based on a textual table consisting of all
distinct tags in the whole image set expressed by G =
{g1, . . . , gM}. Then, we denote the textual feature vector
for the n-th document docn as tn = [t1n, . . . , t

M
n ]>, where

tmn corresponds to the m-th tag gm in G. The value of tmn
is given by:

tmn =

{
1, if gm ∈ docn
0, otherwise

. (1)

The feature vector indicates a point in the textual feature
space of M dimensions constructed by all tags. There-
fore, more common tags in two given images lead to a
shorter distance in the feature space of the GHF-ART.

5.2 Similarity Measure

We adopt the similarity measure of Fusion ART [20] to
select the best matching cluster for the input pattern.
Considering a document docn with its corresponding
multi-channel input pattern I = {x1,..., xK}, the cluster
selection process consists of two stages, namely category
choice and template matching. In the first step, a choice
function is applied to evaluate the overall similarity
between the input pattern and the template pattern of
each cluster in the category field. Specifically, the choice
function for each cluster cj is defined by

T (cj , I) =

K∑
k=1

γk
|xk ∧wk

j |
α+ |wk

j |
, (2)

where the fuzzy AND operation ∧ is defined by (p ∧
q)i ≡ min(pi,qi), and the norm |.| is defined by the `1
norm.

After identifying the cluster having the highest value
as the winner cj∗ , we use a match function to evaluate if
the similarity between the input pattern I and the win-
ner cj∗ meets the vigilance criteria. The match function,
for the k-th feature channel, is defined by

M(cj∗ ,x
k) =

|xk ∧wk
j∗ |

|xk|
. (3)

If, for all the K feature channels, the correspond-
ing match function satisfies the vigilance criteria
M(cj∗ ,x

k) > ρk (k = 1, ...,K), a resonance occurs and
the input pattern is categorized into the winner cluster.
Otherwise, a reset occurs to select a new winner from
the rest of the clusters in the category field.

PROPERTY 1. Using the category choice and template match-
ing functions, each input pattern is categorized into the cluster
with the best matching feature distribution.

Proof: From (2), we observe that, for each feature
channel k, the similarity is calculated by the ratio of
the intersection |xk ∧wk

j | and the corresponding cluster
prototype |wk

j |. If we interpret the feature vector using
histogram, the most similar feature distribution produces

the largest value of |x
k∧wk

j |
α+|wk

j |
. Taking into account all of

the feature channels, the choice function measures the
overall similarity between the input pattern I and the
cluster cj across all of the K feature channels. Thus, the
category choice procedure selects the cluster whose fea-
ture distribution across all features is the most satisfied
by the input pattern.

Subsequently, the template matching procedure de-
fined by (3) evaluates if the selected winner matches well
with the feature distribution of the input pattern, con-
trolled by the vigilance parameter ρk. With a reasonable
setting of ρk, the clusters that do not match the feature
distribution of the input pattern are rejected.

If all the existing categories are not fit for the input
pattern, a new cluster is generated and the prototypes
are set by the features of the input pattern. In this
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way, each input pattern will be grouped into the best
matching cluster.

5.3 Learning strategies for multi-modal features
5.3.1 Learning key features of document content
We use the learning function of Fusion ART [20] to
learn the cluster prototype for the document content.
Given an input document with its multi-channel input
pattern I = {x1, . . . ,xK} and the winner cluster cj∗ , if
xk is the feature vector for document content, then the
learning function for the corresponding weight vector
wk
j∗ is defined by

ŵk
j∗ = β(xk ∧wk

j∗) + (1− β)wk
j∗ , (4)

PROPERTY 2. The learning function defined by (4) incremen-
tally identifies the key features from the input patterns.

Proof: The learning function defined by (4) consists
of two components xk ∧wk

j∗ and wk
j∗ , in which the first

component is the intersection between the input pattern
and the cluster prototype and the second one is the
cluster prototype. We observe that whatever the value
of the learning rate β is, the values of the new cluster
prototype, for each component of the feature vector, will
not exceed the old one. That is, if the components of the
feature vector is unstable in values, the prototype learns
a small value. In this way, the cluster prototype learns
from the input pattern by stably depressing the rarely
high and unstable components while preserving the key
and frequently high ones.

5.3.2 Learning key features of meta-information
Directly learning the key tags of clusters from individual
documents represented by traditional weighting tech-
niques is usually biased by the limited tag lexicon and
statistical information. Based on the above consideration,
we propose to model the cluster prototype of textual fea-
tures by the probabilistic distribution of tag occurrences.
In this way, the weights of noisy tags are depressed while
the key and sub-key tags can be preserved.

Assuming the winner cj∗ contains L documents, de-
noted as cj∗ = {doc1, . . . , docL}. Recall that in Sec-
tion 5.1.2, we denote the feature vector for the meta-
information of docl as tl = [t1l , . . . , t

M
l ]>, so the weight

vector for the k-th feature channel of cluster cj∗ can
be represented as wk

j∗ = [wkj∗,1, . . . , w
k
j∗,M ]>. Then, the

probability of occurrences of the m-th tag in G in the
winner cluster cj∗ having L documents is calculated by:

wkj,m = pL(gm|cj∗) =

∑L
l=1 t

m
l

L
. (5)

Therefore the prototype for the textual features of cluster
cj∗ can be represented by

wk
j = [pL(g1|cj∗), . . . , pL(gM |cj∗)]>. (6)

Now we introduce the sequential factor. We treat
pL(gm|cj∗) in (5) as the state for time L. Assuming a new

document docL+1 is grouped into cluster cj∗ , we derive
the relationship between the probabilities of occurrence
of the m-th tag at time L and L+ 1 by

pL+1(gm|cj∗) =

∑L+1
l=1 tml
L+ 1

=
L

L+ 1
pL(gm|cj∗) +

tmL+1

L+ 1
. (7)

Therefore, the general form of learning function for
wkj∗,m is defined by

ŵkj∗,m =
L

L+ 1
wkj∗,m +

tmL+1

L+ 1
. (8)

Considering tmL+1 equals to either 0 or 1, we further sim-
plify the learning function for wk

j∗ = [wkj∗,1, . . . , w
k
j∗,M ]>

such that

ŵkj∗,m =

{
ηwkj∗,m, if tmL+1 = 0

η(wkj∗,m + 1
L ), otherwise

. (9)

where η = L
L+1 .

5.4 Self-adaptive Parameter Tuning
The settings of vigilance parameter ρ and contribution
parameter γ affect the clustering results greatly. Using
some fixed values will certainly limit the robustness of
GHF-ART for a diverse range of data sets. Therefore,
self-adaptive tuning of the two parameters is desirable.

5.4.1 Match Tracking Rule
The original match tracking rule was first used in
ARTMAP [36] to maximize generalization with a min-
imum number of cluster nodes. GHF-ART utilizes a
generalized form of match tracking rule, wherein the
vigilance value of each feature channel can be adapted.

At the beginning of each input pattern presenta-
tion, the vigilance parameters of all feature channels
{ρ1, ..., ρK} are set to a baseline ρ0. A change in the
vigilance values is triggered when the template matching
process causes a reset. The process is formalized as:

ρ̂k = M(cj∗ ,x
k) + ε. (k = 1, ...,K) (10)

where ε > 0 is a very small value and M(cj∗ ,x
k) is

defined as in (3).

5.4.2 Robustness Measure of Features
The contribution parameter specifies the weighting fac-
tor given to each feature channel during the category
choice process. Intuitively, the feature channel which is
more robust in distinguishing the classes of the patterns
should have a higher weight. Therefore, we want to
scale the robustness of the feature channels by learn-
ing from the input patterns rather than following an
empirical setting. In view that a robust feature channel
represents the documents belonging to the same class
stably, namely with a small scatter in the cluster weights,
it can be measured by the difference between the intra-
cluster patterns and the cluster prototypes (weights).
Consider a cluster cj and the intra-cluster documents
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{doc1,. . . , docL}. By denoting the features vectors of docl
as Il = {x1

l ,..., xKl } and the weight vectors of the cluster
cj as wj = {w1

j , ...,w
K
j }, we define the Difference for the

k-th feature vector in cj as follows:

Dk
j =

1
L

∑
l |wk

j − xkl |
|wk

j |
. (11)

Subsequently, the overall difference of one feature
vector can be evaluated by averaging the difference of
all clusters, defined by:

Dk =
1

J

∑
j

Dk
j , (12)

where J is the number of clusters. Therefore, the robust-
ness of the k-th feature modality can be measured by

Rk = exp(−Dk). (13)

When Dk is 0, Rk becomes 1, which means that this
feature can well represent the images belonging to one
class. In contrast, when Dk is very large, Rk approaches
zero. The expression implies that the feature with higher
difference is not robust and has lower reliability. Thus,
in a normalized form, the contribution parameter γ for
the k-th feature channel can be expressed by

γk =
Rk∑K
k=1R

k
. (14)

This equation shows the rule for tuning the contribu-
tion parameter during the clustering process. Initially,
the contribution parameter is given by equal weights
based on the intuition that the powers of all features are
the same. Subsequently, the value of γ changes along
with the encoding of input patterns.

The tuning of contribution parameters occurs after
each resonance, i.e. the clustering epoch for each input
pattern, which can be computationally expensive. For
efficiency purpose, we further derive a method to in-
crementally update the contribution parameter values,
according to the learning functions defined in (4) and
(9). We consider the update equations in two cases:
• Resonance in existing cluster: Assuming the input

pattern is assigned to an existing cluster cj . In this
case, only the change of Dk

j should be considered.
For the k-th feature channel, the update equations
for document content and meta-information are de-
fined by (15) and (16) respectively:

D̂k
j =

η

|ŵk
j |

(|wk
j |Dk

j +|wk
j−ŵk

j |+
1

L
|ŵk

j−xkL+1|) (15)

D̂k
j =

η

|ŵk
j |

(ηDk
j + |ŵk

j −ηwk
j |+

1

L
|ŵk

j −xkL+1|). (16)

After the update for all of the feature channels, the
new contribution parameter can then be obtained by
calculating (12)-(14). In this way, the computational
complexity reduces from O(ninf ) to O(nf ), where

nf denotes the dimension of the feature channels
and ni denotes the number of documents.

• Generation of new cluster: When generating a
new cluster, the differences of other clusters remain
unchanged. Therefore, it just introduces a propor-
tionally change of the robustness. Considering the
robustness Rk (k = 1, ...,K) for all of the feature
channels, the update equation for the k-th feature
channel is derived as:

γ̂k =
R̂k∑K
k=1 R̂

k
=

(Rk)η∑K
k=1(Rk)η

, (17)

5.5 Summary of GHF-ART algorithm
The complete algorithm of GHF-ART is summarized as
follows.

Clustering algorithm of GHF-ART
1) Generate pre-defined clusters for the initial network

based on user preferences. If no prior knowledge is
received, create an uncommitted cluster with all weight
vectors containing 1’s.

2) For each document, present its corresponding input pat-
tern I = {x1, . . . ,xK} into the input field F1.

3) For each cluster cj in the category field F2, calculate the
choice function T (cj , I) defined in (2).

4) Identify the winner cj∗ with the largest value of the
choice function such that j∗ = argmaxj:cj∈F2 T (cj , I).

5) Calculate the match function M(cj∗ ,x
k) (k = 1, ...K)

defined in (3).

6) If ∃k such that M(cj∗ ,x
k) < ρk, set T (cj∗ , I) = 0, update

ρk (k = 1, ...,K) according to (10), go to 4; else, go to 7.

7) If the selected cj∗ is uncommitted, set each cluster pro-
totype to the corresponding feature vector of the input
pattern such that wk

j∗ = xk (k = 1, ...,K), and update γ
according to (17) and create a new uncommitted node,
go to 9; else, go to 8.

8) Update wk
j∗ (k = 1, ...,K) according to (4) and (9)

respectively and update γ according to (12)-(16).

9) If no input pattern exist, algorithm stops. Otherwise, go
to 2.

5.6 Time Complexity
The time complexity of GHF-ART depends on the search
of suitable categories and the update of contribution
parameter. The first step calculates the choice and match
function defined in (2) and (3), which is O(ncnf ), where
nc denotes the number of clusters and nf denotes the
number of feature dimension of both visual and textual
features. The second step contains two cases: 1) the input
pattern is grouped into one of existing clusters; and 2)
a new cluster is generated for the input pattern. For the
first case, the new contribution parameter is calculated
by (12)-(16). The time complexity of (15) and (16) is
O(nf ) and that of (12)-(14) is O(1). For the second case,
the contribution parameter is updated according to (17),
whose time complexity is O(1). Assuming there are ni
input patterns, the overall time complexity is O(nincnf ).
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In comparison, the time complexity of CIHC co-cluster
algorithm is O(QR{ninf} + (ni + nf )log(ni+nf )), where
QR{.} is the time for QR matrix decomposition.
The time complexity of NMF is O(tncninf ),
SRC is O(t(max(n3i , n

3
f ) + ncninf )), Comrafs is

O(t(max(n3i , n
3
f )), where t is the number of iterations

in the algorithm. We observe that GHF-ART requires
the least time cost and maintains a linear increase of
running time with the increase of the data set.

6 EXPERIMENTS

6.1 NUS-WIDE Data Set
The NUS-WIDE data set [8] is the largest well-annotated
web image set with filtered surrounding text, which con-
sists of 269,648 images and 81 concepts as ground-truth.
The images are downloaded from the famous photo
sharing website Flickr.com. To evaluate the clustering
performance of our method on large scale image sets,
we collect a total of 23,284 images belonging to nine
biggest classes of NUS-WIDE data set, including dog,
bear, cat, bird, flower, lake, sky, sunset and wedding,
each of which contains nearly 3000 images, except bear
(1,271 images) and wedding (1,353 images).

We utilize the visual content and surrounding text of
images for clustering. For the visual features, we use
a concatenation of Grid Color Moment (255 features),
Edge Direction Histogram (73 features) and Wavelet
Texture (128 features). We use the above three types
of global features as they can be efficiently extracted
and have been shown to be effective for image content
representation [8]. Finally, each image is represented as
a vector of 426 features. We construct the texture feature
vector by considering all distinctive and high frequency
tags in the surrounding text of images. After filtering the
infrequency tags, we have a total of 1,142 textual features
and each image is associated with seven tags on average.

6.1.1 Performance of Robustness Measure
In the experiments, we set the choice parameter α =
0.01, the learning parameter β = 0.6 and the baseline
vigilance parameter ρ0 = 0.1. Small choice parameter
of α = 0.01 is commonly used as it has been shown
that the clustering performance is generally robust to
this parameter [37]. We empirically use β = 0.6 to
tune the cluster weight towards the geometric center
of the cluster. In our experiments, the performance of
GHF-ART remains roughly the same when the learning
parameter changes from 0.3 to 0.8. In view that the
vigilance parameter has a direct effect on the number
of generated clusters, we use ρ0 = 0.1 which produces
a small number of small clusters containing less than
1% of the data patterns. In our experiments, we find
that the performance of GHF-ART improves significantly
when ρ increases to 0.1. Beyond that, the performance
improvement is rather small but the number of clusters
increase almost linearly. Therefore, we use ρ0 = 0.1 con-
sistently in all our experiments. Other vigilance values

Fig. 3: (a) Clustering performance using fixed contribu-
tion parameters (γ) and self-adapted contribution pa-
rameter (γSA); (b) Tracking of γSA of textual feature
channel on NUS-WIDE data set.

may still work, but a higher vigilance value may lead to
a better performance in precision but may create many
more clusters resulting in poorer generalization.

We evaluate the performance of robustness measure
by comparing the clustering performance of GHF-ART
using the self-adapted contribution parameter γSA with
that of fixed values. Since we utilize two channels for
visual and textual features respectively, we vary the
contribution parameter of textual features and calculate
that of visual features by (14). The result is shown in
Fig. 3(a). We observe that, without prior knowledge,
the self-adaptive tuning method always has comparable
performance with the best settings and even slightly im-
prove the results in several classes. The average precision
across all classes shows that the overall performance of
the robustness measure is slightly better than the best
results of the fixed settings of the contribution parameter.
Besides, the time cost of GHF-ART with fixed settings
is 9.610 seconds and that with the robustness method
is 9.832 seconds. Therefore, this method is effective and
efficient for solving the tuning problem of contribution
parameter and is also scalable to big data.

To understand how the robustness measure works, we
show the value tracking of γSA of the textual feature
channel in Fig. 3(b). We observe that, despite the initial
fluctuation, the value of γSA climbs from 0.5 to 0.8 and
then stabilizes in the interval of [0.7, 0.8]. The initial
fluctuation should due to the order of input pattern
presentation. As the robustness measure adjusts the con-
tribution parameters along with the learning from input
patterns, a large amount of images with similar image
content or tags may result in such a change in values.
However, with the learning from massive input patterns,
the value of γSA becomes stable. It demonstrates the
convergency of robustness measure.
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TABLE 1: Clustering results on NUS-WIDE data set using visual and textual features in terms of nine classes.

Average Precision dog bear cat bird flower lake sky sunset wedding Overall
K-means 0.8065 0.7691 0.8964 0.6956 0.7765 0.4873 0.5278 0.5836 0.9148 0.7175

CIHC 0.8524 0.8343 0.9167 0.8942 0.8756 0.6544 0.7466 0.6384 0.9127 0.8139
SRC 0.8184 0.7831 0.8193 0.8302 0.8713 0.6852 0.7132 0.5684 0.8723 0.7735

Comrafs 0.8292 0.6884 0.9236 0.8541 0.8667 0.6719 0.7240 0.6562 0.9065 0.7959
NMF 0.8677 0.8133 0.8623 0.7845 0.8259 0.7848 0.7134 0.6956 0.8648 0.8014

SS-NMF 0.8913 0.8272 0.9149 0.8366 0.8723 0.8213 0.7274 0.7346 0.9174 0.8381
Fusion ART 0.8139 0.7914 0.8500 0.9131 0.8368 0.7448 0.7039 0.6829 0.9653 0.8111
GHF-ART 0.9339 0.8814 0.9685 0.9231 0.9368 0.8755 0.7782 0.7829 0.9932 0.8971

GHF-ART(SS) 0.9681 0.9023 0.9719 0.9655 0.9593 0.8864 0.8132 0.8482 0.9961 0.9234

6.1.2 Clustering Performance Comparison

We compare the performance of GHF-ART with Fusion
ART which is the original model of GHF-ART, the
baseline algorithm K-means, and existing co-clustering
algorithms CIHC, SRC, Comrafs, NMF and SS-NMF. To
make a fair comparison, For K-means, we concatenate
the visual and textual features and use Euclidean dis-
tance. For K-means, SRC and NMF which need to set the
number of clusters and iterations, we average their per-
formance with different cluster numbers ranging from 9
to 15 and set the number of iteration to 50. The parameter
settings of Fusion ART are the same with GHF-ART. For
fusion ART and SRC which need to set the weights for
multi-modal features, we set the value of weight by 0.7
which is the best setting in our empirical study. For the
semi-supervised algorithms SS-NMF and GHF-ART(SS),
three images of each class are used as user preferences.
As CIHC applies ratio cut which only divides the data
set into two clusters, we calculate the precision of each
class by clustering with each of all other classes and
averaging them. As two-class clustering is easier than
our nine-class one, the effectiveness of GHF-ART can still
be demonstrated if their performance are comparable.

Table 1 shows the clustering performance in average
precision for each class using the visual content of
images and the corresponding surrounding text. We ob-
serve that GHF-ART outperforms the others in all cases.
K-means usually achieves the worst result especially
for the classes “bird”, “lake” and “sky”. The reason
should be that the sample mean in the concatenated
feature space cannot well represent the common char-
acteristics of features for some classes. CIHC, Comrafs
and NMF usually achieve comparable performance and
outperform SRC. For the semi-supervised algorithms, we
can see that SS-NMF and GHF-ART(SS) achieve better
performance than their unsupervised version. Besides,
GHF-ART outperforms Fusion ART in all classes, which
shows the effectiveness of the proposed methods in
addressing the limitations of Fusion ART.

To evaluate the scalability of GHF-ART to big data, we
study the time cost of each algorithm with the increase in
the number of input patterns. Since the user preferences
for GHF-ART are given before the clustering, the time
cost of GHF-ART(SS) is almost the same as that of GHF-
ART. As shown in Fig. 4, along with the increase in
the number of patterns, Comrafs has the highest time

Fig. 4: Time cost of eight algorithms on NUS-WIDE data
set along with the increase of input patterns.

cost among all the algorithms. CIHC and NMF have a
similar time cost and are slower than K-means. Fusion
ART and GHF-ART incur a very small increase of time
cost while those of other algorithms increase greatly.
Althrough GHF-ART employs the robustness measure,
Their time costs are similar. For over 20,000 images,
GHF-ART needs less than 10 seconds to complete the
clustering process.

To further evaluate the performance of GHF-ART un-
der more complex problems, we run experiments with
more classes and noisier data. To this end, we choose
nine new classes, including beach, boat, bridge, car,
cloud, coral, fish, garden and tree, each of which contains
1500 images. Three classes “car”, “cloud” and “tree” are
deemed as noisy classes since all the algorithms achieve
lower performance. In addition to weighted average
precision, we further utilize cluster and class entropies
[33], purity [38] and rand index [39] as performance mea-
sures. For those algorithms which need a pre-defined
number of clusters, we set the number from 18 to 30 and
calculate the average performance. For K-means, Fusion
ART, GHF-ART and GHF-ART(SS), which are sensitive
to initialization, we repeat the experiments for ten times
and calculate the means and standard deviations.

Table 2 shows the results on the original data set
with 9 classes and the new data set with 18 classes. In
Table 2(a), we observe that GHF-ART(SS) achieves the
best results in all the evaluation measures in terms of
the means. Without supervision, GHF-ART still obtains
better performance than all other algorithms. Comparing
Table 2(b) with Table 2(a), we find that all algorithms
perform worse when the number of classes increases.
This is expected as the increase in the number of classes
makes it more difficult to partition the feature spaces.
However, GHF-ART still obtain the best results.
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TABLE 2: Clustering results on NUS-WIDE data set with 9 and 18 classes in terms of weighted average precision,
cluster entropy (Hcluster), class entropy (Hclass), purity and rand index (RI).

K-means CIHC SRC Comrafs NMF SS-NMF Fusion ART GHF-ART GHF-ART(SS)
Average Precision 0.6582± 0.036 0.8139 0.7735 0.7959 0.8014 0.8381 0.8047± 0.031 0.8663± 0.022 0.9035± 0.016

Hcluster 0.5317± 0.034 0.4105 0.4462 0.4367 0.4189 0.3922 0.4124± 0.024 0.3692± 0.018 0.3547± 0.019
Hclass 0.4792± 0.037 0.3924 0.4169 0.4386 0.3779 0.3761 0.3744± 0.016 0.3583± 0.019 0.3428± 0.013
Purity 0.7118± 0.029 0.8307 0.7891 0.8036 0.8167 0.8498 0.8352± 0.027 0.8863± 0.018 0.9085± 0.021

RI 0.6291± 0.031 0.7806 0.7485 0.7340 0.7615 0.7759 0.7467± 0.018 0.7961± 0.023 0.8216± 0.013

(a) Clustering on 9 classes

K-means CIHC SRC Comrafs NMF SS-NMF Fusion ART GHF-ART GHF-ART(SS)
Average Precision 0.4528± 0.042 0.7739 0.6812 0.6583 0.7209 0.7637 0.7379± 0.024 0.7933± 0.023 0.8366± 0.024

Hcluster 0.6355± 0.024 0.4203 0.4726 0.4639 0.4491 0.4215 0.4378± 0.024 0.4109± 0.018 0.3921± 0.019
Hclass 0.3892± 0.029 0.4161 0.4497 0.4667 0.4018 0.3894 0.4125± 0.021 0.3849± 0.016 0.3624± 0.018
Purity 0.4682± 0.033 0.7795 0.6944 0.6727 0.7279 0.7346 0.7193± 0.018 0.8054± 0.022 0.8433± 0.023

RI 0.4677± 0.028 0.7049 0.6728 0.6496 0.7105 0.7488 0.7245± 0.022 0.7523± 0.012 0.7681± 0.014

(b) Clustering on 18 classes

TABLE 3: Clustering results on the NUS-WIDE data set using the whole set and the subsets.

dog bear cat bird flower lake sky sunset wedding

Whole Set Average Precision 0.9339 0.8814 0.9685 0.9231 0.9368 0.8755 0.7782 0.7829 0.9932
# of clusters 3 2 3 4 2 3 3 1 1

Subsets Average Precision 0.9273 0.9036 0.9512 0.9039 0.9368 0.8622 0.7694 0.8315 0.9967
# of clusters 2 2 3 3 2 2 3 2 1

TABLE 4: Clustering results on NUS-WIDE data set by applying equal weights to visual and textual features in all
the algorithms. GHF-ARTew indicates using equal weights and GHF-ARTaw indicates using adaptive weights

Average Precision dog bear cat bird flower lake sky sunset wedding Overall
K-means 0.8065 0.7691 0.8964 0.6956 0.7765 0.4873 0.5278 0.5836 0.9148 0.7175

CIHC 0.8524 0.8343 0.9167 0.8942 0.8756 0.6544 0.7466 0.6384 0.9127 0.8139
SRC 0.7629 0.7781 0.7667 0.8352 0.8274 0.6903 0.7095 0.5971 0.8566 0.7326

Comrafs 0.8292 0.6884 0.9236 0.8541 0.8667 0.6719 0.7240 0.6562 0.9065 0.7959
NMF 0.8677 0.8133 0.8623 0.7845 0.8259 0.7848 0.7134 0.6956 0.8648 0.8014

Fusion ART 0.7960 0.7835 0.8376 0.8891 0.8267 0.7614 0.6850 0.7035 0.9661 0.8037
GHF-ARTew 0.8746 0.7812 0.9211 0.9046 0.8952 0.8748 0.7814 0.7585 0.9746 0.8629
GHF-ARTaw 0.9339 0.8814 0.9685 0.9231 0.9368 0.8755 0.7782 0.7829 0.9932 0.8971

To evaluate statistical significance of performance d-
ifference, we conduct t-test among Fusion ART, GHF-
ART and GHF-ART(SS). The results show that the per-
formance of Fusion ART and GHF-ART is significantly
different at 0.05 level of significance in all evaluation
measures except class entropy, of which the difference
is at 0.1 level. For GHF-ART and GHF-ART(SS), the
difference between their performance in average preci-
sion, purity and rand index is significant at 0.05 level of
significance. For cluster entropy and class entropy, the
performance difference is at 0.1 level.

6.1.3 Evaluation on Incremental Property
To evaluate the incremental property of GHF-ART, as
described in Section 5, we divide the original data set
with nine classes into four smaller subsets and apply
GHF-ART to them sequentially. Then, we compare the
clustering performance of GHF-ART with that for the
whole data set. To make a fair comparison, we random-
ize the sequence of input patterns in all the subsets.

As are shown in Table 3, we observe that, for all the
classes, the number of clusters and average precision
are similar for clustering the whole data set and the
subsets. This shows that, given several sequential data
sets with random patten sequences, the cluster structure

obtained by clustering the whole data set and the subsets
are similar. This demonstrates that GHF-ART is able to
cluster the new patterns of the updated data set by
incrementally adapting the cluster structure learnt from
the original data set.

6.1.4 Case Study Analysis of Performance
We present a case study to analyze why GHF-ART
outperforms other algorithms. Since one major differ-
ence between GHF-ART and the other algorithms is
the adaptive weighting method of GHF-ART, we eval-
uate the performance when all the algorithms employ
equal weights for the visual and textual features. The
results are summarized in Table 4. The performance
of GHF-ART with adaptive weights (GHF-ARTaw) is
also listed at below for a comparison. Comparing with
GHF-ARTaw, the performance of GHF-ART with equal
weights (GHF-ARTew) has an obvious decrease in most
classes, especially for the class “bear”. Similarly, the
performance of Fusion ART and SRC also have a de-
crease when using the equal weights. It demonstrates
the importance of weighting for feature modalities in
clustering. However, GHF-ARTew still obtains the best
results in six out of nine classes.

In addition, suppose we use the learning function of
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Fuzzy ART instead of the proposed learning method
for the meta-information, GHF-ART degenerates to the
original Fusion ART. We see that Fusion ART achieves
comparable performance with NMF and a little bit lower
than CIHC in the overall performance. For specific class-
es, Fusion ART obtains the best result in “wedding” and
usually achieves a comparable performance for the other
classes. However, with our proposed meta-information
learning method, GHF-ARTew outperforms Fusion ART
in most classes and has a relatively big improvement
in “lake”, “sky” and “sunset”. This also demonstrates
that the proposed learning method of meta-information
enables GHF-ART to be robust in handling noisy text.

In comparison, we find all the other algorithms
achieve a low level of performance on these noisy class-
es. This, we reckon, is due to the differences between
various methods in handling the patterns. For example,
K-means generates hyperspherical clusters in the fea-
ture space which are sensitive to noise. Therefore, K-
means performs poorly in the noisy classes but obtains
comparable performance in classes such as “wedding”.
CIHC and SRC, which employ spectral clustering, derive
eigenvectors from the graph affinity matrices. As such,
the noisy features may lead to spurious correlations
between patterns. This is why CIHC obtains reason-
able performance in all the classes except the three
noisy classes. Since SRC employs K-means to get the
final clusters, it also suffers from the drawbacks of K-
means. NMF derives the cluster indicator matrix from
the relational matrices which maps the data into a non-
negative latent semantic space. Similar to spectral clus-
tering, noisy features should also be the main reason
for the poor performance in the noisy classes. Comrafs
performs clustering by finding a cluster structure of
patterns that maximizes the Most Probable Explanation
based on mutual information. Therefore, noisy features
affect the calculation of mutual information and lead to
incorrect classification of patterns.

Based on the above analysis, we may conclude that
GHF-ART outperforms the other algorithms when the
surrounding text is noisy and when the desired weights
for different feature modalities are not equal.

6.2 Corel Data Set
Corel data set is a subset of Corel CDs data set and
consists of 5,000 images from 50 Corel Stock Pho-
to CDs, each of which contains 100 images on the
same topic. Each image is annotated by an average
of 3-5 keywords from a dictionary of 374 words. We
utilize the images of six classes including “sunset”,
“plane”,“birds”,“bear”,“beach” and “hills”. Similar to
the NUS-WIDE data set, we extract the 426 visual fea-
tures and build the textual features using 374 words.

6.2.1 Performance of Robustness Measure
Similar to the NUS-WIDE data set, we test the perfor-
mance of GHF-ART with different settings of contribu-
tion parameter of textual features on Corel data set. In

Fig. 5: (a) Clustering performance using fixed contribu-
tion parameters (γ) and self-adapted contribution pa-
rameter (γSA); (b) Tracking of γSA on Corel data set.

Fig. 5(a), we observe that robustness measure achieves
the best results for most classes except “sunset” and
“birds” and the best overall performance is achieved by
γ = 0.7. However, it still outperforms the other settings
and achieves performance very close to the best setting.
The value tracking of γ is shown in Fig. 5(b). In contrast
to that for NUS-WIDE, the result shows a relatively
smooth change in the contribution parameter value. The
reason should be that the Corel data set contains less
noisy tags. We can see that the value gradually increases
and stabilizes at γ = 0.7. It demonstrates that the ro-
bustness measure can effectively adjust the contribution
parameter to the best setting.

6.2.2 Clustering Performance Comparison
Similar to the NUS-WIDE data set, we evaluate the
performance of GHF-ART in terms of average precision,
cluster and class entropies, purity and rand index. We
set the number of clusters ranging from 6 to 15 for
those algorithms which need a pre-defined number of
clusters. As shown in Table 5, firstly, we observe that all
algorithms achieve better clustering performance than
that of NUS-WIDE data set. One possible reason is that
the visual content of the images belonging to the same
category is more similar and the tags of Corel data set is
relatively cleaner. We can also see that GHF-ART and
GHF-ART(SS) outperform the other algorithms in all
the performance measures. Particularly, GHF-ART got
a close mean result to CIHC and SS-NMF in average
precision, class entropy, purity and Rand Index but a
much better performance in cluster entropy. With super-
visory information, GHF-ART(SS) has a further improve-
ment on GHF-ART. In addition, GHF-ART has a big
improvement on Fusion ART, which demonstrates the
effectiveness of our proposed adaptive feature weighting
and meta-information learning methods in improving
the performance and robustness of Fusion ART.
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TABLE 5: Clustering results on Corel data set using visual content and surrounding text.

K-means CIHC SRC Comrafs NMF SS-NMF Fusion ART GHF-ART GHF-ART(SS)
Average Precision 0.7245± 0.023 0.8940 0.8697 0.8115 0.8794 0.8960 0.8525± 0.027 0.8944± 0.018 0.9168± 0.019

Hcluster 0.3816± 0.024 0.2614 0.2803 0.3316 0.2771 0.2592 0.2409± 0.019 0.2184± 0.016 0.1960± 0.014
Hclass 0.3538± 0.025 0.2566 0.2714 0.2972 0.2703 0.2667 0.2793± 0.022 0.2521± 0.018 0.2366± 0.015
Purity 0.7263± 0.026 0.9031 0.8725 0.8304 0.8862 0.8997 0.8628± 0.023 0.8975± 0.021 0.9176± 0.015

RI 0.6635± 0.024 0.8347 0.8051 0.7734 0.8172 0.8416 0.8116± 0.015 0.8342± 0.018 0.8533± 0.014

TABLE 6: Clustering results on Corel data set using visual content, surrounding text and category information.

K-means CIHC SRC Comrafs NMF SS-NMF Fusion ART GHF-ART GHF-ART(SS)
Average Precision 0.7254± 0.020 0.9014 0.8782 0.8279 0.8865 0.9047 1 1 1

Hcluster 0.3688± 0.022 0.2544 0.2758 0.3263 0.2709 0.2537 0.1727± 0.023 0.1496± 0.016 0.1362± 0.014
Hclass 0.3251± 0.026 0.2467 0.2682 0.2543 0.2489 0.2466 0 0 0
Purity 0.7284± 0.020 0.9106 0.8721 0.8463 0.8917 0.9044 1 1 1

RI 0.6775± 0.021 0.8428 0.8147 0.8045 0.8276 0.8315 0.9061± 0.019 0.9297± 0.021 0.9485± 0.016

Similar to NUS-WIDE data set, we further conduct t-
test between the performance of Fusion ART, GHF-ART
and GHF-ART(SS) reported in Table 5. The results show
that the performance differences between Fusion ART,
GHF-ART and GHF-ART(SS) are significant at 0.05 level
of significance across all evaluation measures.

6.2.3 Clustering Performance Comparison with Catego-
ry Information
We further conduct the experiments by incorporating
the category information for clustering. The category
information is used in the same way of surrounding text.
In view that the category information for each image
is exactly one word, it therefore can also be seen as
a annotation corpus without any noise. As shown in
Table 6, we observe that Fusion ART, GHF-ART and its
semi-supervised version GHF-ART(SS) achieve 100% in
average precision, class entropy and purity. It is because
the ART-based algorithms not only have a global opti-
mization between features but also constraints for each
feature modality. Therefore, with the category label, the
ART-based algorithms can effectively identify the classes
of images. Besides, we can also observe an improvement
of GHF- ART(SS) over Fusion ART and GHF-ART in
cluster entropy and rand index, which also consider how
the patterns with the same label are grouped together.

Comparing the results with those in Table 5, we can
find that Fusion ART, GHF-ART and GHF-ART(SS) also
obtain a big improvement in terms of cluster entropy and
rand index, while the other algorithms have a relatively
small improvement. The reason should be that the global
optimization considers the overall similarity across all
the feature channels so that the noisy features still con-
tribute to incorrect categorization. It demonstrates the
importance of taking in the fitness of patterns in terms
of the overall similarity and also that for different modal-
ities individually rather than the only global optimum.

6.3 20 Newsgroups Data Set
The 20 Newsgroups data set [9] is a popular public
data set which comprises nearly 20,000 newsgroup doc-
uments across 20 different newsgroups and is widely
used for the experiments of text clustering techniques.

Fig. 6: (a) Clustering performance using fixed contribu-
tion parameters (γ) and self-adapted contribution pa-
rameter (γSA); (b) Tracking of γSA on 20 newsgroups
data set.

We directly collect ten classes from the processed matlab
version of the 20news-bydate data set and each of them
contains nearly 1,000 documents. For the ease of discus-
sion, we refer the ten categories by the abbreviations
as follows: comp.graphics (graphics), comp.windows.x
(windows), rec.sport.baseball (baseball), rec.sport.hockey
(hockey), sci.med (med), sci.space (space), misc.forsale
(forsale), talk.politics.guns (guns), talk.politics.misc (mis-
c) and alt.atheism (atheism). We use the traditional text
mining algorithm tf-idf to extract the features of docu-
ments and use the words in the category information to
construct the category features.

6.3.1 Performance of Robustness Measure
Fig. 6 shows the clustering results with different settings
of contribution parameter of the category features. In
Fig. 6(a), we observe that the robustness measure works
well for all classes and usually produces the best results.
From Fig. 6(b), we can observe that the contribution
parameter of category features gradually increases from
0.5 to over 0.6 after 1,500 input patterns. Despite the
small fluctuation, the value stabilizes at around 0.8,
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TABLE 7: Clustering results on 20 Newsgroups data set using document content and category information.

K-means CIHC SRC Comrafs NMF SS-NMF Fusion ART GHF-ART GHF-ART(SS)
Average Precision 0.6386± 0.027 0.7583 0.7246 0.6547 0.7357 0.7869 0.7566± 0.021 0.8071± 0.023 0.8452± 0.018

Hcluster 0.5284± 0.031 0.4573 0.4630 0.5162 0.4487 0.4296 0.4469± 0.015 0.4131± 0.017 0.3824± 0.019
Hclass 0.4833± 0.025 0.4246 0.4432 0.4679 0.4267 0.3938 0.4016± 0.016 0.3822± 0.018 0.3642± 0.018
Purity 0.6826± 0.027 0.7711 0.7348 0.6950 0.7503 0.7836 0.7538± 0.021 0.7994± 0.018 0.8435± 0.021

RI 0.6670± 0.025 0.7284 0.6867 0.6136 0.7019 0.7458 0.7268± 0.017 0.7759± 0.022 0.8013± 0.019

which indicates that the category information is more
robust during the clustering process.

6.3.2 Clustering Performance Comparison
Similar to the NUS-WIDE data set, we evaluate the
clustering performance of GHF-ART using average pre-
cision, cluster and class entropies, purity and rand index.
Since the number of classes in 20 Newsgroups data set is
10, we set the number of clusters ranging from 10 to 15.
In Table 7, we can see that GHF-ART and GHF-ART(SS)
outperform the other algorithms in all the performance
measures. Moreover, both of them achieve higher than
80% in average precision and purity while the other
algorithms typically obtain less than 75% except CIHC
and SS-NMF. Similarly, a gain of more than 3% over the
best performance by the other algorithms is achieved in
rand index. The t-test results further show that the per-
formance of Fusion ART, GHF-ART and GHF-ART(SS)
are significantly different at 0.05 level of significance
in all evaluation measures. In fact, we observe that
GHF-ART has a big improvement over Fusion ART.
This demonstrates that the proposed feature weighting
algorithm and meta-information learning method can
help to improve the performance of Fusion ART in the
heterogeneous data co-clustering task.

7 CONCLUSIONS
In this paper, we have proposed a novel heterogeneous
co-clustering algorithm termed Generalized Heteroge-
neous Fusion ART (GHF-ART) aiming at fast and robust
clustering of web multimedia data. GHF-ART extends
the Heterogeneous Fusion ART from two channels to
multiple channels so that GHF-ART can be applied to
the clustering of more than two modalities wherein each
channel may receive different types of data patterns.
By generalizing the feature construction methods for
multimedia documents and incorporating an adaptive
channel weighting algorithm, GHF-ART is able to effec-
tively integrate different types of features across multiple
pattern channels for measuring pattern similarity.

Comparing with existing co-clustering algorithms [2],
[3], [4], [5], GHF-ART has the advantages in four as-
pects: 1) Strong noise immunity: GHF-ART models the
textual features of meta-information by the probability
distribution of tag occurrences so that the key tags
of clusters can be incrementally identified while the
noisy tags are depressed. This helps to maintain the
robustness of GHF-ART when the quality of text is
low; 2) Adaptive channel weighting method: GHF-ART
has a well-defined weighting algorithm for multi-modal

feature channels. Different from the modality selection
method in SS-NMF [4] which only learn the weights
from the prior knowledge in the distance learning step,
GHF-ART evaluates the weights of feature modalities
by incrementally learning from the intra-cluster scatters
of so that the importance of feature modalities in clus-
tering can be incrementally evaluated, which increases
the robustness of GHF-ART in fusing feature modalities
for measuring pattern similarity. 3) Low computational
complexity: The real-time cluster searching mechanism
of GHF-ART leads to a linear time complexity, analyzed
in Section 5.6, which enables GHF-ART to be scalable
to big data sets; and 4) Incremental clustering man-
ner: Web multimedia data is usually big and requires
frequent update. As mentioned in Section 2, existing
co-clustering methods typically make use of an global
objective functions, which is then solved by an iterative
optimization approach. When new data are available,
these methods will have to be re-run on the entire data
set. In contrast, GHF-ART can re-cluster the new data set
by adapting the original cluster structure incrementally.
This so-called incremental property of GHF-ART is the-
oretically guaranteed by the ART clustering mechanism,
which incrementally clusters the input patterns, one at
a time, into the clustering structure. In this way, GHF-
ART is able to cluster the new patterns in an incremental
manner without referring to the old data by adapting
existing clusters or creating a cluster when a new pattern
is distinct from existing clusters.

Going forward, there remain some issues for further
investigation. Firstly, tag ranking methods can be em-
ployed in the textual feature construction stage to filter
noisy tags or give more weight to key tags so as to
further depress the effect of noisy tags. Secondly, since
the learning function for meta-information is designed
to track the probabilistic distribution of the data set in
an incremental manner, there is no guarantee of conver-
gence in response to the changing data characteristics.
Thirdly, as the current method for tuning vigilance pa-
rameters still cannot fully solve the problem of category
proliferation, developing effective criteria for learning
the desired vigilance parameters values will also be in
our future work.
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