
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2007

Mining generalized associations of semantic relations from Mining generalized associations of semantic relations from

textual web content textual web content

Tao JIANG

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

We WANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer Engineering Commons, and the Databases and Information Systems Commons

Citation Citation
JIANG, Tao; TAN, Ah-hwee; and WANG, We. Mining generalized associations of semantic relations from
textual web content. (2007). IEEE Transactions on Knowledge and Data Engineering. 19, (2), 164-179.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5228

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Mining Generalized Associations of Semantic
Relations from Textual Web Content

Tao Jiang, Ah-Hwee Tan, and Ke Wang

Abstract—Traditional text mining techniques transform free text into flat bags of words representation, which does not preserve

sufficient semantics for the purpose of knowledge discovery. In this paper, we present a two-step procedure to mine generalized

associations of semantic relations conveyed by the textual content of Web documents. First, RDF (Resource Description Framework)

metadata representing semantic relations are extracted from raw text using a myriad of natural language processing techniques. The

relation extraction process also creates a term taxonomy in the form of a sense hierarchy inferred from WordNet. Then, a novel

generalized association pattern mining algorithm (GP-Close) is applied to discover the underlying relation association patterns on RDF

metadata. For pruning the large number of redundant overgeneralized patterns in relation pattern search space, the GP-Close

algorithm adopts the notion of generalization closure for systematic overgeneralization reduction. The efficacy of our approach is

demonstrated through empirical experiments conducted on an online database of terrorist activities.

Index Terms—RDF mining, association rule mining, relation association, text mining.

Ç

1 INTRODUCTION

WITH the explosive growth of the World Wide Web, we
face an increasing amount of information resources,

of which most are represented in free text. As text data are
inherently unstructured and difficult to directly process by
computer programs, there has been great interest in text
mining techniques [1] for helping users to quickly gain
knowledge from the Web. Text mining technologies usually
involve two subtasks [2]: text refining, which transforms free
text into an intermediate representation form which is
machine-processable, and knowledge distillation, which de-
duces patterns or knowledge from the intermediate form.

Existing techniques mainly transform text documents into

simplistic intermediate forms, e.g., term vectors and bags of

keywords. As terms are treated as individual items in such

simplistic representations, terms lose their semantic relations

and texts lose their original meanings. For example, in Fig. 1,

two short text documents with different meanings can be

represented in a similar bag of keywords, e.g., {France,

Defeat, Italy, World Cup, Quarter Final}. In the original

documents, “France” and “Italy” have different roles in the

events of “Defeat.” However, the semantic relations depict-

ing the conceptual roles are lost in the bag-of-keyword

representations. Therefore, the original meanings of the

documents in Fig. 1 cannot be discriminated against any

more. Based on such simplistic representations of text, text

mining techniques can only discover shallow patterns, such

as term associations, deviations, and document clusters,

which are statistical patterns of terms, not knowledge about

text semantics. In this paper, we aim to overcome the

limitation of text mining technologies to discover knowledge

based on the detailed meanings of the text. For this purpose,

we need an intermediate representation that expresses the

semantic relations between the concepts in texts.
Resources Description Framework (RDF), proposed by the

World Wide Web Consortium (W3C), is a language

specification for modeling machine-processable and hu-

man-readable semantic metadata to describe Web resources

on the Semantic Web [3]. The basic element of RDF is RDF

statements, which are triplets in the form of <subject,

predicate, object>. An RDF statement can express that there

is a relation (represented by the predicate) between the

subject and the object. In [4], Berners-Lee further illustrated

that RDF can be interworkable with conceptual graphs, [5],

[6], which serve as an intermediate language for translating

natural languages into computer-oriented formalisms. As

the full conceptual graph standard is complex for large-

scale applications, simplified conceptual graphs are used in

many existing practices, such as [7]. In our work, we also

use a set of simplified conceptual graphs containing only

three kinds of predicates, i.e., “agent,” “theme,” and

“modifiedBy,” for representing the key semantics of text.

As an example, Fig. 2 shows such a simplified conceptual

graph translated from the first sentence in Fig. 1. We treat

each directed arc in the conceptual graph as a semantic

relation consisting of a subject (the start node of the arc), a

predicate (the label or type of the arc), and an object (the

end node of the arc). Each of these relations can be encoded

using an RDF statement. For example, the three semantic

relations in the conceptual graph in Fig. 2 can be

represented using the RDF statements <Defeat, agent,

France>, <Defeat, theme, Italy>, and <Defeat, modifiedBy,

World Cup Quarter Final>. More details on the semantics of

the three predicates will be introduced in Section 3.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007 1

. T. Jiang and A.-H. Tan are with the School of Computer Engineering,
Nanyang Technological University, Block N4-B3b-06, 50 Nanyang
Avenue, Singapore 639798. E-mail: {jian0006, asahtan}@ntu.edu.sg.

. K. Wang is with the Department of Computing Science, Simon Fraser
University, 8888 University Drive, Burnaby, British Columbia, Canada
V5A 1S6. E-mail: wang@cs.sfu.ca.

Manuscript received 30 Sept. 2005; revised 14 Apr. 2006; accepted 2 Aug.
2006; published online 19 Dec. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDESI-0429-0905.

1041-4347/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society

Using RDF as the intermediate representation, our
proposed knowledge discovery process consists of two
stages (Fig. 3). During the semantic relation extraction stage,
text documents are processed using a myriad of natural
language processing (NLP) techniques, including pronom-
inal coreference resolution, part-of-speech (POS) tagging,
and sentence structure parsing. A set of predefined
syntactic patterns is then used to extract semantic relations
(composing the conceptual graphs) from the tagged text
sentences. The extracted relations are encoded in RDF
statements. In addition, a term taxonomy is constructed on
the fly based on WordNet and domain-specific lexicons.
The term taxonomy, described using RDF Schema [8] (a
vocabulary specification for RDF), is, in turn, used in the
subsequent stage.

During the association rule mining stage, relation
association patterns are discovered from RDF metadata
extracted from text. A problem for mining semantic
relations is that a relation is seldom repeated in many
documents. Therefore, statistically significant patterns can
hardly be extracted. To overcome this limitation, general-
izations of the semantic relations are needed. Most existing
generalized pattern mining algorithms, such as Cumulate
[9], are designed for mining patterns on atomic items, not
relations. Therefore, the existing methods cannot be directly
applied to mining generalized relation patterns from RDF
metadata. Even if we treat each relation as an item, the
existing algorithms do not work efficiently on the RDF data.
We observe that generalizing a semantic relation is complex
as the relation can be generalized in many different ways.
For example, <Defeat, agent, France> can be generalized by
generalizing “Defeat” into “Is Unbeaten,” generalizing
“France” into “European Football Team,” or their combina-
tion. This implies that the generalized pattern search space
can be very large and there can be many redundant
overgeneralized patterns [10]. Using the existing general-
ized pattern mining approaches, such as the Cumulate
algorithm [9], all generalized patterns including the over-
generalized ones will be extracted. It is not only computa-
tionally inefficient but also causes much redundancy in the
mining results. Therefore, pruning the generalized pattern
search space and reducing the overgeneralized patterns are
the new challenges for mining patterns of semantic relations

from RDF metadata. In this paper, we present a novel
generalized association pattern mining algorithm, called
GP-Close (Closed Generalized Pattern Mining) for disco-
vering generalized association patterns of semantic rela-
tions from RDF data. The proposed algorithm with efficient
pattern space pruning and full overgeneralization reduction can
be applied to any RDF database with the existence of an
RDF vocabulary.

The rest of the paper is organized as follows: Section 2
introduces the related work. Section 3 presents the semantic
relation extraction procedure. Section 4 formulates the
problem statement for generalized association pattern
mining of RDF metadata and presents the GP-Close
algorithm. Section 5 reports our experiments based on a
document set in the terrorist domain downloaded from the
online database of International Policy Institute for Coun-
ter-Terrorism (ICT). Concluding remarks are given in the
final section.

2 RELATED WORK

2.1 Resource Description Framework and
RDF Schema

Resource Description Framework (RDF) [11] is a specifica-
tion proposed by the World Wide Web Consortium (W3C)
for describing and interchanging semantic metadata. The
basic element of RDF is RDF statements, each consisting of a
subject, a predicate, and an object. In this paper, a triplet of
the form <subject, predicate, object> is used to express an
RDF statement. At the semantic level, an RDF statement can
be interpreted as “the subject has an attribute (represented
by the predicate) whose value is given by the object” or “the
subject has a relation (represented by the predicate) with
the object.” RDF is mainly a language specification
addressing syntactical aspects. Based on RDF, RDF Schema
[8] (RDFS) is further proposed to define RDF vocabularies
for constructing RDF statements. In this study, we use RDF
and RDFS to encode concepts and semantic relations which
are extracted from textual Web content.

2.2 Semantic Modeling and Computing on the
Semantic Web

In the Semantic Web area, semantic modeling and comput-
ing are two essential issues that determine how data
semantics can be helpful for building a more meaningful
and intelligent Web. A lot of recent research efforts focus on
these two problems. In [12], an infrastructure for supporting

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

Fig. 1. Two short text documents with similar keywords but of distinct

semantic meanings.

Fig. 2. A simplified conceptual graph translated from the first sentence in

Fig. 3. Overview of the knowledge discovery process.

human-centric Semantic Web is presented. In such a
Human Semantic Web, relation-oriented conceptual model-
ing plays an important role. In [13], a vision of developing
powerful semantic techniques which combine knowledge
composition and statistical analysis for scalable and flexible
applications is presented.

Besides the principles for advanced semantic modeling,
new methods are also proposed for advanced computing
and reasoning based on the existing semantic modeling
technologies, such as RDF. Liu et al. [14] propose a method
for discovering taste fabric from the Web social networks. In
[15], a rule-based system, called DR-DEVICE, for defeasible
reasoning over RDF metadata is presented. In this system,
the incomplete and inconsistent information can be effi-
ciently handled.

We can see that there is a trend in the Semantic Web
literature, which is to leverage loose and lightweight
computing and reasoning techniques, instead of formal
reasoning, for enabling various flexible applications. Our
method for mining semantic relation association patterns is
sympathetic to this trend. In addition, besides knowledge
discovery, our proposed techniques can also be used for
supporting other applications in the Semantic Web, such as
processing versatile Web queries [16] for retrieving informa-
tion from both the conventional Web and the Semantic Web.

2.3 Association Rule Mining and Frequent Pattern
Mining

Association Rule Mining (ARM) [17] since its introduction
has become one of the key data mining techniques in the field
of Knowledge Discovery in Database (KDD). Given a set of
items I and a large database of transactions D, where each
transaction is a set of items T � I with a unique identifier tid,
an association rule is an implication of the form X) Y ,
where X;Y � I (called itemsets or patterns) and X \ Y ¼ ;.
A transaction T supports an itemset X if X � T . The support
of an itemset X, denoted by suppðXÞ, is the fraction of
transactions inD that supportX. Additionally, the support of
an association rule X) Y , denoted by suppðX) Y Þ, is
defined as suppðX [Y Þ. The confidence ofX) Y , denoted by
confðX) Y Þ, is defined as suppðX [Y Þ=suppðXÞ. The
problem of association rule mining is to discover all rules
that have supports and confidences greater than some
predefined minimum support (minsup) and minimum
confidence (minconf). Mining association rules consists of
two subtasks. The first task, known as frequent itemset mining
(or frequent pattern mining), generates all itemsets that have
supports higher than a minimum support (minsup) thresh-
old. In the second task, association rules are generated based
on the discovered frequent patterns. The rule generation
methods are relatively straightforward and have been
discussed extensively in [18]. Therefore, most recent efforts
focus on frequent pattern mining, such as [19], [20], [21], [22],
[23]. In this paper, we focus on mining frequent generalized
association patterns.

For discovering associations between items across differ-
ent levels of a taxonomy, generalized association rule mining
is proposed [9]. In particular, users may require the generated
rules to have a large support to avoid trivial knowledge being
discovered. In this case, a large portion of the rules that
include only the leaves of the item taxonomy may be filtered

away. However, useful knowledge may still be found by
generalizing the elemental patterns to an abstract level. For
example, a rule like “Outwear) HikingBoot” may be
extracted from the fact that the people usually bought Jackets
and Ski Pants with Hiking Boots, while the specialized rules
“Jacket) HikingBoot” and “SkiPant) HikingBoot” may
not be extracted due to their low supports. Therefore,
generalized association rule mining allows users to extract
a small set of useful rules instead of generating a large set of
trivial ones. This property is especially important for mining
associations from large text data sets, in which the support of
most items (words) is very low.

2.4 Association Rule Mining in Text Databases

Mining association rules between words in text documents
has been done in [24] and [25]. These efforts have shown
that text databases cannot be efficiently analyzed by
standard association mining algorithms. This is because
the characteristics of text databases are quite different from
those of relational and transactional databases. First, the
number of distinct words in a text database is usually quite
large (large size of I) and so is the number of words in each
document (long transactions). The large number of words
implies a large number of possible patterns (sets of words)
both in a document collection and in each individual
document. Thus, a text AR mining algorithm needs to
explore a much larger search space to find interesting
patterns. Moreover, the document frequency of each word
is usually very low. For example, 68.8 percent of the
47,189 words occurs in only three or less of 3,568 articles in
a sample drawn from the 1996 TReC data collection [25].
Low minsup was thus used in the existing work for mining
text association rules. However, this will cause a large set of
trivial patterns discovered. The work presented in [24] and
[25] aims to mine shallow word patterns on text and is
fundamentally different from our task of mining relation
associations on RDFs.

For discovering more detailed knowledge from text,
y Gómez et al. [26] presented a method for extracting
knowledge from text based on conceptual graphs, [5], [6]. At
the knowledge discovery stage, the conceptual graphs are
first clustered into a hierarchy. Then, pattern mining
techniques, such as association rule mining, can be applied
to this hierarchical structure. This method shows that
meaningful and detailed patterns can be discovered from
text using the conceptual graph representation, which is in
spirit similar to our method. However, y Gómez et al.’s
method requires the conceptual graphs to be clustered
before the mining process. This is not only costly initially,
but also involves many efforts for maintenance and update
of the clustered structure, in particular, for mining dynamic
Web content.

3 SEMANTIC RELATION EXTRACTION

In this section, we introduce the procedure for semantic
relation extraction in details. As shown in Fig. 4, the raw
textual Web content is sequentially preprocessed by a
pronominal coreference resolution module and a POS (part-
of-speech) tagging and syntax parsing module. For elim-
inating the ambiguities of the pronouns in text, we employ

JIANG ET AL.: MINING GENERALIZED ASSOCIATIONS OF SEMANTIC RELATIONS FROM TEXTUAL WEB CONTENT 3

the pronominal coreference resolution function of Gate [27],

an NLP toolkit developed by the University of Sheffield. In

addition, domain-specific name lexicons are embedded in

Gate for identifying name entities (NE) in text. After

coreference resolution, we replace each resolved pronoun

with the origin term that it refers to. The text documents are

then tagged and parsed by two NLP tools, namely, Brill’s

rule-based part-of-speech (POS) tagger [28] and Collins’

parser [29]. After preprocessing, each parsed document

contains a set of sentence grammar trees. Based on the

sentence grammar trees, simplified conceptual graphs

containing semantic relations are extracted and encoded

by the following three modules.

1. Term and Relation Extraction. Based on the
preprocessing results, a set of predefined rules
adopted from [30] is used for extracting semantic
relations from the sentence grammar trees. When
extracting semantic relations, we first identify the
important terms describing the major concepts, i.e.,
noun phrases (NP) and verb phrases (VP), in the
grammar trees, followed by three major types of
relations between these terms. The three relation
types are introduced in Section 3.1.

2. Term Taxonomy Construction. The terms (NP/VP)
extracted from the sentence grammar trees are
incrementally clustered into a term taxonomy with
the assistance of WordNet [31]. The atomic clusters
in the term taxonomy are groups of synonyms.
When a new term is inserted into the term
taxonomy, we first try to find whether there is a
synonym group it can join. If there is such a
synonym group, we simply insert the new term into
the synonym group and the structure of term
taxonomy will not change; otherwise, it will be
inserted as a new synonym group and the structure
of the term taxonomy will change.

3. RDF Encoding. The term taxonomy and the seman-
tic relations extracted from the sentence grammar
trees are encoded as an RDF vocabulary and RDF
statements, respectively.

In the following sections, we describe the three modules

in detail.

3.1 Extraction of Terms and Relations from
Sentence Grammar Trees

As noun phrases (NP) and verb phrases (VP) convey the
main meaning of text, we first extract those terms of NP or
VP from the sentence grammar trees. Then, three types of
relations between those terms (NP/VP) are identified based
on their syntactic dependencies using a set of rules [30].
Similarly to Sowa’s conceptual graphs [5], [6] as used in
many knowledge-based systems [7], [26], the definitions of
the three types of relations are given below:

. < A; agent; B > , where A can be a VP and B can be
an NP/VP. The relation indicates that B is the agent
that performs the actionA.

. < A; theme; B > , where A can be a VP and B can be
an NP/VP. The relation indicates that B is the theme
(i.e., recipient, object, or target) of the action A.

. < A;modifiedBy; B > , where A can be an NP/VP
and B can be an NP/VP. This relation indicates that
A is modified by B through a proposition.

Fig. 5 shows an example. A sentence is first parsed into a
grammar tree structure. We then extract three relations, i.e.,
<Defeat, agent, France>, <Defeat, theme, Italy>, and
<Defeat, modifiedBy, World Cup Quarter Final>, based
on the obtained grammar tree. These three relations form a
simplified conceptual graph as in Fig. 5.

We note that other forms of expressions can be used for
modeling relations. For example, from the sample grammar
tree in Fig. 5, we can also extract a relation <France, defeat,
Italy>, where the action, its agent, and its theme are
combined into one relation. However, we observe that, in
many sentences (in particular those in passive voice), the
agents or themes of an action may be missing. For example,
the sentence “France was defeated” does not contain the
agent of the action. In this case, we cannot extract a full
relation containing action, agent, and theme. However,
using the three relation types that we adopt, useful relations

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

Fig. 4. An overview of the procedure for semantic relation extraction.

Fig. 5. Conversion of text to semantic relations shown in the form of a

conceptual graph.

can still be extracted, even though the agents or themes of
the actions are missing in the sentences.

3.2 Term Taxonomy Construction

Our purpose in building a term taxonomy is to hierarchi-
cally group similar terms into meaningful clusters. Based on
such clusters, semantic relations that consist of similar
terms can be generalized for deducing statistically signifi-
cant patterns during the knowledge mining stage.

3.2.1 Existing Work in Term Taxonomy Construction

Recently, there has been an increasing amount of attention
on automatic taxonomy construction in the field of ontology
engineering [32], [33], [34], [35]. Existing methods for
taxonomy construction mainly fall into two categories,
symbolic approaches and statistics-based methods, and
both have their limitations. Symbolic approaches, which
directly find taxonomic relations from text using lexico-
syntactic patterns [32], can hardly exhaustively extract all
possible taxonomic relations, especially when some com-
monly known domain-specific information, such as “goal-
keeper is a kind of soccer player,” does not explicitly exist in
the text documents. Statistics-based methods usually
employ bottom-up (agglomerative) or top-down (divisive)
hierarchical clustering methods to build term hierarchies
based on statistical context features of terms (such as
frequencies of surrounding terms) [35], [33]. The disadvan-
tages of these methods include the poor traceability of the
taxonomy construction process and the difficulty in labeling
nonleaf nodes (inner clusters) of the taxonomies. The
extracted taxonomies are thus difficult for human users to
understand. Furthermore, both symbolic and statistics-
based approaches require a large domain-specific text
corpus, which is usually unavailable, for taxonomy con-
struction. In addition, the costs of computation and update
of taxonomies may be very large in such a corpus. Besides
the symbolic and statistics-based methods, a more recent
work presented in [36] focuses on deriving produces and
services ontologies, including concept taxonomies, based on
the existing industrial categorization standards. The work
itself is interesting. However, as well-defined categorization
standards do not widely exist, the reusability of the propose
method is limited. In our opinion, most existing techniques
for taxonomy construction are more suitable to bootstrap an
ontology acquisition process but have limited usages in
data mining tasks such as the one presented in this paper. In
Section 3.2.3, we introduce a lightweight incremental
clustering strategy for taxonomy construction. Instead of
using a large text corpus, it utilizes the word sense
hierarchies in WordNet [31] as the basis for building the

term taxonomy. The constructed taxonomy is thus more
understandable for human users. In addition, because it
constructs the taxonomy in an incremental manner, the
computation and update costs are minimal.

3.2.2 Term Representation and Similarity Measure

Selection

A term (VP/NP) extracted from text is represented as a bag
of senses in WordNet [31] in the form of S ¼ fs1; s2; . . . ; sng,
where each sense represents a meaning of a word and
corresponds to a set of synonyms in WordNet. For each
word in a VP/NP, we add all its WordNet senses into the
bag representation. For each sense added in the bag, we
recursively add their hypernyms and derivationally related
senses into the bag. However, adding all senses of a term
and their related senses (hypernyms and derivationally
related senses) can generate a very large bag which will
slow down the process of term taxonomy construction.
Therefore, we impose a restriction on the WordNet search
depth (WNSD) when building the bag of senses for a term.
A set of sample terms represented by bags of senses is listed
in Table 1. A WordNet sense (e.g., 10283858_player) is
expressed using its ID (e.g., 10283858) in WordNet
conjuncted with its representative word (e.g., player). If
two terms have the same set of senses, they are called
synonyms. The extracted NP/VPs thus can be classified into
groups of synonyms.

For clustering the terms extracted from the text, we need a
method to measure the semantic similarity between the
terms. There have been many term similarity measures
proposed in the existing literatures, such as, Jiang and
Conrath’s measure [37], Leacock and Chodorow’s measure
[38], and Seco et al.’s measure [39]. Some measures uniquely
rely on the topology information in concept taxonomies such
as WordNet [38], [39], while some others use both concept
taxonomy and large text corpus for combining the topology
information and word statistics [37]. Evaluations and
comparisons of various term similarity measure are pre-
sented in [40] and [39]. However, the above-mentioned
similarity measures are seldom used in the existing work of
term taxonomy construction. One reason can be that these
similarity measures (in particular, those relying on the word
statistics) are computationally intensive. Another reason
may be that these measures usually do not take multiword
terms (e.g., “Attack Player” in Table 1) into account. For
handling multiword terms, an additional strategy must be
used.

As we represent each term as a bag of senses, we
calculate the term similarities based on the number of

JIANG ET AL.: MINING GENERALIZED ASSOCIATIONS OF SEMANTIC RELATIONS FROM TEXTUAL WEB CONTENT 5

TABLE 1
A Set of Sample Terms Represented by Bags of WordNet Senses

senses shared by two terms. However, our similarity
measure is intrinsically equivalent to the cosine similarity
measure which is widely used and has achieved satisfactory
results in many term taxonomy construction tasks [35], [33].
The similarity measure is defined as

simðt1; t2Þ ¼
jSðt1Þ \ Sðt2Þjffi
jSðt1Þj � jSðt2Þj

p ; ð1Þ

where ti denotes a term and SðtiÞ denotes its corresponding
bag of senses (i ¼ 1 or 2). This measure is equivalent to the
cosine similarity measure if we convert the bags of senses
into sense vectors where each sense is a feature dimension
and the feature values of the senses are set to 1 or 0,
depending on whether a sense is present in a bag of senses.

3.2.3 Incremental Term Taxonomy Construction

In our work, the term taxonomy is dynamically built on the
fly using an incremental hierarchical clustering strategy.
Here, we treat each group of synonyms as an atomic cluster.
Several clusters can be merged to form a larger cluster,
which is treated as the parent (supercluster) of the merged
clusters. A cluster is also represented as a bag of WordNet
senses, containing the senses shared by all terms in this
cluster. We can thus use (1) to measure the similarity
between two clusters. The root of the term taxonomy
corresponds to a cluster containing all terms. The bag of
senses associated with the root cluster is set to ;.

When a new term (NP/VP) is extracted, we first try to
find an existing atomic cluster (composed of its synonyms)
to which it can be directly assigned. If there is no such
atomic cluster, we create one for the new term and add it
into the term taxonomy using our incremental hierarchical
clustering strategy. The clustering process can be summar-
ized in the following steps:

. Step 1: We first find a cluster in the term taxonomy
that is most similar to the new term.1 If no similar
cluster can be found (i.e., there is no existing cluster
that has nonzero similarity with the new term), add
the new term as a subcluster of the root cluster and
the process is completed.

. Step 2: The new term and its most similar cluster are
merged to form a new cluster in three different
ways:

1. If the sense bag of the new term is a superset of
the sense bag of its most similar cluster (i.e., the
new term is more specific), we merge the new
term into its most similar cluster as a subcluster
(Fig. 6b) and the process is completed.

2. If the sense bag of the new term is a subset of the
sense bag of its most similar cluster (i.e., the new
term is more general), we merge its most similar
cluster into the new term as a subcluster (Fig. 6c)
and go to Step 1 to recursively insert the merged
cluster (the expanded cluster of the new term).

3. Else merge the new term with its most similar
cluster to form a new cluster (Fig. 6d) and go to
Step 1 to recursively insert the merged cluster.

In Case 2 and Case 3 of Step 2 described above, the
merged cluster is to be recursively inserted into the
taxonomy. According to Step 1, we need to find a most
similar cluster for the merged cluster. We know that the
merged cluster is generated from and thus similar to the
most similar cluster csim of the new term. Intuitively, the
merged cluster is very likely to be similar to a supercluster
of csim. Thus, a local search (i.e., searching the superclusters
of csim) is adopted for locating the most similar cluster for
the merged cluster.

In addition, we use another heuristic strategy to simplify
the taxonomy structure. We observe that terms sharing little
meaning may still be grouped into a cluster, e.g., terms “go”
and “stop.” To avoid grouping such irrelevant terms into a
cluster, we define a minimum similarity threshold (minsim). If
the similarity between a new cluster and its most similar
cluster is below minsim, we directly insert the new cluster
as a subcluster of the root.

We illustrate the term taxonomy construction process
using the sample terms listed in Table 1.

. As shown in Fig. 7, when the first term “Midfield
Player” (an atomic cluster) is inserted, the root
cluster is the only cluster in the taxonomy. There-
fore, we cannot find a most similar cluster for
“Midfield Player.” Thus, “Midfield Player” is
directly added as a subcluster of the root cluster.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

1. For simplicity, we use “new term” here to represent the atomic cluster
created for the new term.

Fig. 6. Three cases for merging the new cluster and its most similar

cluster.

Fig. 7. Term taxonomy construction using the sample terms in Table 1.

. When the term “Player” is inserted, “Midfield
Player” is found as the most similar cluster. As the
sense bag of “Player” is a subset of the sense bag of
“Midfield Player” (i.e., “Player” is more general),
“Midfield Player” is merged into “Player” as a
subcluster. Note that we need to recursively insert
the expanded “Player” cluster into the term taxon-
omy. As the root cluster is the only supercluster of
“Midfield Player,” we cannot find a most similar
cluster that has nonzero similarity to the expanded
“Player” cluster. “Player” is thus added as a
subcluster of the root cluster.

. When the term “Attack Player” is inserted, the
“Player” cluster is identified as the most similar
cluster. As “Attack Player” is more specific than
“Player,” “Attack Player” is directly inserted as a
subcluster of the cluster “Player.”

. Finally, when the term “Winner” is inserted, the
most similar cluster “Player” is identified. “Player”
and “Winner” are merged into a new cluster, labeled
by “contestant” (as sense 09476765_contestant ap-
pears in both sense bags of “Player” and “Winner”).
We then recursively add the “contestant” cluster into
the term taxonomy. As the root cluster is the only
supercluster of “Player,” we cannot find a cluster
that has nonzero similarity to “contestant.” There-
fore, the “contestant” cluster is inserted as a
subcluster of the root.

3.3 RDF Encoding

The term taxonomy is encoded using RDFS as a part of our

RDF vocabulary (a schema file) for describing semantic

relations. Each term cluster in the taxonomy is mapped to as

RDFS class. For any two clusters c1 and c2 where c2 is a

subcluster of c1, the RDFS class of c2 is defined as a subclass

of the RDFS class of c1 using the “rdfs:subClassOf”

predicate.
To encode semantic relations in RDF, the three pre-

dicates, i.e., agent, theme, and modifiedBy, are defined as RDF

predicates (instances of rdf:Property) in our RDF vocabulary.2

In addition, we treat each NP/VP extracted from text as an

RDF resource with a Unified Resource Identifier (URI). As

atomic clusters (synonym groups) are defined as RDFS

classes, each NP/VP is thus defined as an instance of the

RDF class corresponding to its synonym group.

4 MINING GENERALIZED ASSOCIATIONS FROM RDF
METADATA

In the last section, we introduce the semantic relation
extraction process that generates RDF metadata describing
semantic relations together with an RDF vocabulary
defining the three RDF predicates (agent, theme, and
modifiedBy) and a hierarchy of RDF classes (encoded term
taxonomy). In this section, we present the GP-Close
algorithm for mining frequent generalized association

patterns based on the extracted RDF metadata and RDF
vocabulary.

4.1 Problem Statement

First, we present the necessary notations and the problem
statement for mining generalized associations on RDF
metadata with the assistance of an RDF vocabulary. For
simplicity, the mining task is defined based on a simplified
view of the RDF model.

Definition 1. Let V ¼ fE;P;H; domain; rangeg define an RDF

vocabulary in which E ¼ fe1; e2; . . .; emg is a set of entity

identifiers, P ¼ fp1; p2; . . .; png is a set of predicate identifiers,

and H is a directed acyclic graph. An edge in H represents an

is-a relationship between a pair of entities. If there is an edge

from e1 to e2, we say e1 is a parent of e2 and e2 is a child of e1.

We call ê an ancestor of e if there is a path from ê to e in H.

The function, domain : P ! 2E , relates a predicate to a set of

entities that can be its subject (defining the domain of the

predicate). The function, range : P ! 2E , relates a predicate

to a set of entities that can be its object (defining the range of

the predicate).

Fig. 8 a shows a sample RDF vocabulary

V ¼ fE;P;H; domain; rangeg;

where

E ¼ fa; b; c; d; e; f; ab; cd; ef; cdefg;
P ¼ fpg;
domainðpÞ ¼ fa; b; abg;

and rangeðpÞ ¼ fc; d; e; f; cd; ef; cdefg.
The above definition simplifies the model of an RDF

vocabulary in two aspects:

JIANG ET AL.: MINING GENERALIZED ASSOCIATIONS OF SEMANTIC RELATIONS FROM TEXTUAL WEB CONTENT 7

2. Note that the technologies used in our work are not limited by the
predefined types of relations. New types of relations can be included by
expanding the set of rules for relation extraction. In addition, our
generalized relation association mining algorithm can be applied on any
RDF document collection with the existence of a RDF vocabulary.

Fig. 8. A sample RDF vocabulary and the inferred relation hierarchy. (a)

A sample RDF vocabulary. (b) The generalized relation hierarchy.

. We treat instances and RDFS classes both as entities.
Correspondingly, we treat “rdf:type” and “rdfs:sub
ClassOf” predicates as an “is-a” relation between
entities without discrimination. Through this way,
we can represent instances and RDF classes in one
taxonomy so that the mining task can be simplified.
In our study, each entity corresponds to a term in
text (an instance) or a cluster of terms in the term
taxonomy (an RDFS class).

. For simplicity, we do not consider the hierarchy of
RDF predicates at the current stage. In Section 5, we
will show that the predicate hierarchy can be easily
incorporated into the generalized association mining
framework.

Definition 2. Given an RDF vocabulary

V ¼ fE;P;H; domain; rangeg;

we define a relation (RDF statement) r on V as a triplet
< x; p; y > , where x; y 2 E, p 2 P, x 2 domainðpÞ, and
y 2 rangeðpÞ. We call x, p, and y the subject, the predicate,
and the object of r, respectively. A relation r̂ ¼< x1; p1; y1 >

is called a generalized relation (ancestor) of another relation
r ¼< x2; p2; y2 > , if and only if:

1. r̂ 6¼ r,
2. p1 ¼ p2,
3. x1 is an ancestor of x2 or x1 ¼ x2, and
4. y1 is an ancestor of y2 or y1 ¼ y2.

We use GðrÞ to denote the set of relations containing r and all
its generalized relations. We use RV to denote the set of all
relations on V. Relations in RV and their generalization/
specialization relationships form a relation hierarchy HVr .

For example, Fig. 8b shows the generalized relation
hierarchy containing all relations that can be derived from
the sample RDF vocabulary in Fig. 8a.

Definition 3. A relationset (pattern) is a set of relations X �
RV where X does not contain both a relation and its ancestor.
We call X a generalized relationset of another relationset Y
and Y a specialized relationset of X, if and only if:
1) X 6¼ Y , 2) 8r 2 X; 9r� 2 Y such that r ¼ r� or r is an
ancestor of r�, and 3) 8r� 2 Y ; 9r 2 X such that r ¼ r� or r is
an ancestor of r�. Given a set of RDF documents D, where each
document consists of a set of relations, we say an RDF
document supports a relationset X if it contains X or a
specialized relationset of X. The support of a relationset X
(suppðXÞ) in the RDF document set D is defined as the
proportion of the RDF documents that support X.

For example, given the sample RDF vocabulary and the
relation hierarchy in Fig. 8, f< a; p; ef >;< b; p; c >g is a
relationset and it is also a generalized relationset of
f< a; p; e >;< b; p; c >g. Given a sample set of RDF docu-
ments in Table 2, the support of f< a; p; ef >;< b; p; c >g is
50 percent as document 1 and document 2 contain its
specialized relationsets.

Problem Statement. Given an RDF vocabulary and a set of
RDF documents, we aim to extract frequent relationsets

(frequent relation association patterns) whose supports are
larger than a predefined minimum support (minsup).

Currently, we use support as the criterion for generalized
relationset pruning. Though alternative interestingness
measures are available in the field of association rule
mining [41], [42], support is still one of the most widely
used as it represents the statistical significance of a pattern
[42]. In fact, no matter which interestingness measure is
used, the extracted patterns must be statistically significant,
i.e., satisfying the minimum support. Our pattern mining
and pruning approach, to be introduced in the subsequent
sections, is only based on support. After the frequent
(statistical significant) patterns are identified, other inter-
estingness measures [41], [42], such as confidence,
�-coefficient, or J-Measure, can be further applied to
measure the strength of the patterns. In addition, all the
information needed for calculating such pattern strength is
the supports of the frequent patterns. Therefore, strength
calculation can be treated as a postprocessing of the
frequent patterns and it will not influence the frequent
pattern mining process.

4.2 Overgeneralization Problem

First, we introduce the overgeneralization problem using an
example. With the sample set of RDF documents shown in
Table 2 and the RDF vocabulary in Fig. 8a, we can identify
the set of all frequent generalized relationsets with a
minimum support of 50 percent given in Table 3.

Among those frequent relationsets, we can find some
interesting patterns. For example, f< a; p; e >;< b; p; c >g,
i.e.,

f< Score; agent;F:Inzaghi >;< Assist; agent;RuiCosta >g

has a support of 50 percent. This pattern may be
explained as “Rui Costa often assists F. Inzaghi to
score.” On the other hand, its generalized relationset
f< a; p; ef >;< b; p; c >g, i.e.,

f< Score; agent;AttackPlayer >;

< Assist; agent; RuiCosta >g

also has the same support of 50 percent (see Fig. 9a).
Intuitively, with the same support, a specialized pattern is
more interesting than its generalized pattern as the
information conveyed by the specialized pattern is more
precise. Therefore, the pattern “Rui Costa always assists
attack players to score” is overgeneralized and not inter-
esting. Based on this observation, we define overgeneraliza-
tion as follows:

Definition 4. A frequent relationset X is overgeneralized if
there exists a specialized relationset Y of X with

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

TABLE 2
A Sample Set of RDF Documents

suppðXÞ ¼ suppðY Þ.

In Table 3, 41 frequent patterns (highlighted with under-
lines) are overgeneralized. It means that almost 89 percent (41
out of 46) of the patterns are not useful. In a real RDF data set,
the proportion of overgeneralized patterns may be even
higher. The existence of overgeneralized patterns not only
implies redundancy in the mining result, but also seriously
increases the computation cost. A strategy for pruning
overgeneralized pattern is thus needed for efficiently mining
generalized associations in RDF-like databases.

4.3 Overgeneralization Reduction: A Generalization
Closure-Based Approach

In this section, we introduce our method for overgener-
alization reduction based on the notion of generalization
closures. Informally, a generalization closure of a
relationset X, denoted as ’ðXÞ, is an RDF relation set
containing all relations in X and all their generalized
relations. We can see that an RDF document which supports
a relationset X must also support its generalization closure
and vice versa, i.e., suppðXÞ ¼ suppð’ðXÞÞ. As an example,
Fig. 9b shows the generalization closures of the relationsets
X and Y in Fig. 9a.

The formal definition of generalization closure is given
below.

Definition 5. Given an RDF vocabulary

V ¼ fE;P;H; domain; rangeg;

we define a function’ on 2R
V
:’ðXÞ ¼

S
r2X GðrÞ, whereX is a

relationset andX � RV . (GðrÞ is a set of relations that contains
r and all its generalized relations, see Definition 2.) ’ is a
closure operator,3 [43] called the generalization closure
operator. ’ðXÞ is called the generalization closure of X.
Given two relationsets X and Y , we say ’ðY Þ can subsume
’ðXÞ if ’ðXÞ � ’ðY Þ and suppð’ðXÞÞ ¼ suppð’ðY ÞÞ.

Referring to Fig. 9, we can see that if a relationset X is a
generalized relationset of Y , ’ðXÞ must be a proper subset
of ’ðY Þ, i.e., ’ðXÞ � ’ðY Þ. In fact, for any relation in ’ðXÞ

(either a generalization of a relation in X or an identical of a
relation in X), it must be either a generalization of a relation
in Y or an identical of a relation in Y , i.e., it must be in ’ðY Þ.

It follows that if a relationset X is an overgeneralization
of a relationset Y , both ’ðXÞ � ’ðY Þ and suppð’ðXÞÞ ¼
suppð’ðY ÞÞ hold, i.e., ’ðXÞ is not closed. A pattern
(relationset) is closed if it does not have a proper superset
having the same support [21], [23], [44]. We say a general-
ization closure ’ðXÞ of a relationset X is closed if there does
not exist a relationset Y such that ’ðY Þ can subsume ’ðXÞ.
Based on the above observations, the following lemma
holds.

Lemma 1. Given a frequent relationset X, if ’ðXÞ is closed, X

is not overgeneralized.

Proof. Suppose X is overgeneralized. It follows that there
is a specialized pattern Y of X, where suppðY Þ ¼
suppðXÞ (see Definition 4). In addition, as X is a
generalized pattern of Y , ’ðXÞ � ’ðY Þ holds. Note that
the generalization closures of X and Y have the same
support with X and Y , respectively, i.e., suppðXÞ ¼
suppð’ðXÞÞ and suppðY Þ ¼ suppð’ðY ÞÞ. Therefore,

JIANG ET AL.: MINING GENERALIZED ASSOCIATIONS OF SEMANTIC RELATIONS FROM TEXTUAL WEB CONTENT 9

TABLE 3
Frequent Generalized Relationsets in the Sample RDF Documents (minsup ¼ 50%)

Fig. 9. Illustrations of the overgeneralization and the generalization

closure. (a) An illustration of overgeneralization problem: X is an

overgeneralized pattern of Y . (b) The generalized closures of the pattern

X and Y in Fig. 9a.

3. In [43], ’ is generally used to represent a closure operator. For
simplicity, this paper uses ’ to refer to the generalization closure
operator, FCA.

’ðXÞ � ’ðY Þ and suppð’ðXÞÞ ¼ suppð’ðY ÞÞ, i.e., ’ðXÞ is
not closed. It is contradictory to the statement that ’ðXÞ
is closed. tu
Lemma 1 shows that, if we extract only those patterns of

which the generalization closures are closed, all over-
generalized patterns will be pruned. This motivates us to
mine closed generalization closures by traversing the closure
search space for overgeneralization reduction.

4.4 Mining Closed Generalization Closures

In the last section, we show that the task of overgeneraliza-
tion reduction can be converted into a closed pattern
mining problem by using the notion of generalization
closures. In this section, we introduce the mining process
for discovering closed generalization closures in an intuitive
way. The detailed algorithms will be presented in the next
section.

Note that, given two generalization closures ’ðXÞ and
’ðY Þ, ’ðXÞ [’ðY Þ is also a generalization closure, i.e.,
’ðX [Y Þ. Thus, we can start with the generalization
closures of 1-frequent relationsets (frequent relations) and
gradually enumerate larger closures by merging the smaller
ones. Fig. 10 shows a closure enumeration (search) tree
based on four 1-frequent relationsets (X1, X2, X3, and X4),
wherein the closures are enumerated in a depth-first search
(DFS) manner.

In the closure enumeration tree in Fig. 10, each node is a
unique generalization closure. Its children or descendants
are the closures that expand it, i.e., its proper supersets. We
can see that if a closure and its children have the same
support, this closure is not closed and, thus, can be pruned.
We prune such a nonclosed closure by replacing it with the
union of its equal-support children (i.e., its child-closures that
have the same support). For example, in Fig. 10, ’ðX1Þ and
its two child-closures, ’ðX1X2Þ and ’ðX1X3Þ, have the same
support of 20 percent, so ’ðX1Þ is replaced by ’ðX1X2X3Þ,
the union of ’ðX1X2Þ and ’ðX1X3Þ (see Fig. 11).

For a nonclosed generalization closure ’ðXÞ, the union of
its equal-support children is the largest expansion of ’ðXÞ
that can preserve ’ðXÞ’s support. Therefore, this union is
locally closed in the subtree rooted at ’ðXÞ. For example, in
Fig. 10, ’ðX1X2X3Þ is the largest expansion of ’ðX1Þ that
maintains the support of 20 percent. It is thus locally closed
in the subtree with the root ’ðX1Þ. If a node in the closure
enumeration tree does not have equal-support children, the
node itself is locally closed (see ’ðX2X3Þ or ’ðX3Þ in Fig. 10
for an example).

The locally closed closures are candidates to be globally

closed. For determining whether a locally closed closure is

globally closed, we need to examine whether there is an

identified (globally) closed closure containing it and having

the same support (i.e., subsuming it). If there is no such

identified closed closure, it is globally closed. Therefore, by

recursively traversing the closure enumeration tree, the

entire set of the closed generalization closures can be

discovered.
The closed generalization closure mining process is

inspired by the existing closed pattern mining approaches,

such as [21], [23], [44]. However, the existing approaches are

designed for mining atomic or element patterns (itemsets),

not generalized patterns. Specifically, they do not involve a

taxonomy in their mining tasks and, therefore, do not use

taxonomic information for pruning pattern search space.
In the next section, we present the GP-Close algorithm

which is developed for mining closed generalization

closures. Besides using the closed pattern mining technique

described above, the GP-Close algorithm employs additional

pruning methods for reducing pattern search space. In

particular, we will show that taxonomy-based pruning techni-

ques can play an essential role in saving computation cost.

4.5 GP-Close Algorithm

In this section, we present an algorithm, called GP-Close

(Closed Generalized Pattern Mining) that discovers the set

of closed generalization closures instead of all frequent

generalized patterns.

4.5.1 Algorithm Design

The pseudocode of GP-Close algorithm is presented in

Algorithm 1 and Algorithm 2. GP-Close algorithm first

initializes the enumeration tree to contain only the root

closure, i.e., an empty set with the support of 100 percent,

and a set of closures of 1-frequent relationsets as the child-

closures of the root (see Algorithm 1, lines 1-2). Starting

from the root closure of the empty set, the closure

enumeration process (Algorithm 2) recursively traverses

the closure enumeration tree to discover closed general-

ization closures.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

Fig. 10. Closure enumeration tree.

Fig. 11. Pruning nonclosed closure in a closure enumeration tree.

Algorithm 1 GP-Close.
Input:

RDF database: D
Generalized relation lookup table: GRT

Support Threshold: minsup

Output:

The set of all closed frequent generalization closures: C
1: root ¼ ;; root:supp ¼ 1 //initialize closure enumeration

tree root
2: root:children ¼ f’frgjr 2 RV ^ suppðrÞ � minsupg

//Constructing closures of 1-frequent relationsets (by

looking up GRT) as child-closures of root

3: Sort(root:children) //sort child-closures in a

specialization-first (length-decreasing/

support-increasing) manner

4: Closure-Enumeration(root, C ¼ ;)
5: return C

Algorithm 2 Closure-Enumeration.

Input:

A node in the closure enumeration tree : n

A set of discovered frequent closed generalization

closures: C
Output:

The expanded set of frequent closed generalization

closures: C
1: If 9cast 2 C where c� subsumes n, return C. //Subtree

Pruning

2: Children-Prune(n:children). //Child-Closure Pruning

3: c = Closed-Closure(n) //Generate a locally closed

generalization closure c and c must also be globally

closed according to our subtree pruning strategy.
4: C ¼ C [fcg //Insert c into the frequent closed

generalization closure set.

5: for each child-closure childi of n where

childi 2 n:children do

6: Generating the child-closures of childi by merging

childi with one of its subsequent siblings:

childi:children ¼ fgcij j gcij ¼ childi [childj;
childj 2 n:children ^ i < jg

7: Closure-Enumeration(childi, C) //Recursively visit

the child-closure of the current tree node n

8: end for

9: return C
When a tree node n is visited, we first check whether the

closure n can be subsumed by an identified closed general-

ization closure. If so, the current tree node n and all its

descendants can be pruned (Algorithm 2, line 1). This is

known as the subtree pruning strategy. If n cannot be

subsumed, our child-closure pruning strategy is applied for

pruning n’s child-closures (Algorithm 2, line 2). (See

Section 4.5.2 for more details of our pruning strategies.)
Then, for the current tree node n, a locally closed

generalization closure c is generated (Algorithm 2, line 3).

As discussed in the last section, there are two cases to

generate the locally closed closures. In the first case, a tree

node n is locally closed (i.e., c ¼ n) if it does not have any

equal-support children. The other case is that the current

tree node n has equal-support children and the union of its
equal-support children is locally closed. For the second
case, we prune the current tree node n by replacing it with
the union of its equal-support children c (see the last
section). If the locally closed closure c cannot be subsumed
by an identified closed closure, it is deemed to be a globally
closed closure. In the next section, we will show that if a tree
node n cannot be pruned by our subtree pruning strategy
(Algorithm 2, line 1), the locally closed closure c generated
based on n must be globally closed. Therefore, we can
directly insert it into the frequent closed generalization
closure set (Algorithm 2, line 4).

Finally, Algorithm 2 (lines 5-8) recursively visits the
child-closures of the current tree node n. Before recursively
visiting a child-closure childi of n, we need to first generate
the child-closures of childi (Algorithm 2, line 6) as these
child-closures are needed for determining whether childi is
locally closed when childi is visited. When the child-
closures of childi are generated, their supports are counted
(see Section 4.5.3) and the infrequent child-closures are
removed.

4.5.2 Pruning Child-Closures and Subtrees

Besides the basic closed pattern pruning strategy, we
further employ two additional pruning techniques to
reduce the pattern search space.

First, we note that a full closure enumeration tree, whose
root has n child-closures, has a total of 2n nodes. Thus,
pruning one child-closure of the tree root will reduce half of
the pattern search space. For example, as the tree in Fig. 10 has
four child-closures under the root, the total number of
nodes in the tree is 16 (24). Suppose X3 is a generalized
relationset of X2. This implies ’ðX3Þ � ’ðX2Þ. As
suppðX3Þ ¼ suppðX2Þ ¼ 20%, we conclude that X3 is an
overgeneralization of X2. Therefore, ’ðX3Þ is subsumed by
’ðX2Þ, i.e., any pattern containing ’ðX3Þ must also contain
’ðX2Þ. Therefore, ’ðX3Þ can be pruned. Fig. 12a shows the
pruning results. Upon pruning of ’ðX3Þ, half of the tree
nodes are gone. Therefore, early removal of redundant
child-closures of a (sub)closure enumeration tree is highly
desirable. In Algorithm 2, line 2, the function Children-Prune
prunes the redundant child-closures of the current tree
node visited. We call this pruning technique the child-closure
pruning technique. This is a taxonomy-based pruning
technique, which is very efficient for pattern search space
pruning and is not yet used in other closed pattern mining
approaches.

Second, we note that all descendants of an enumeration
tree node are its expansions (proper supersets). If the tree
node can be subsumed by an identified closed closure, i.e.,
the tree node is not closed, it follows that traversing the
(sub)enumeration tree rooted at this node cannot generate
new closed generalization closures. Therefore, the entire
(sub)tree can be pruned (Algorithm 2, line 1). For example,
in Fig. 12b, the closure ’ðX2Þ is subsumed by the closed
closure ’ðX1X2X3Þ and all its descendants can be sub-
sumed by the descendant of ’ðX1X2X3Þ. Thus, the subtree
with the root ’ðX2Þ can be pruned. In addition, we can see
that if a tree node n cannot be subsumed by any identified
closed closure, the locally closed closure generated based on
n cannot be subsumed by any identified closed closure, i.e.,

JIANG ET AL.: MINING GENERALIZED ASSOCIATIONS OF SEMANTIC RELATIONS FROM TEXTUAL WEB CONTENT 11

it is globally closed. This is because if there is an identified

closed closure that can subsume the locally closed closure

which is a superset of n, it must also subsume n. It

contradicts the statement that n cannot be subsumed.
There are three cases in which one closure can subsume

another:

1. A specialized closure can subsume a generalized
closure if they have the same support.

2. A closure can be subsumed by one of its superclosures
if they have the same support.

3. A closure can be subsumed by a superset of its
specialized closures if they have the same support.

Based on the above observations, a support-increasing

and length-decreasing strategy is adopted for dynamic

closure sorting (Algorithm 1, line 3). This sorting method

implies that specialized closures will be enumerated first.

This increases the occurrences of subsumption Cases 1 and

3 so that there is a higher probability that a subtree can be

pruned. In this way, the tree traversing space will be further

reduced.

4.5.3 Hybrid Support Counting

For simplifying the pseudocode in Algorithm 2, we do not

explicitly show the pattern support counting process. In

fact, our support counting method is basically a transaction

ID set (tidset)-based approach [19], [23]. Here, each general-

ization closure is associated with a tidset containing the IDs

of the RDF documents that support the closure. Then, if a
closure is expanded by merging with another closure, the
support of the expanded closure can be calculated by
intersecting the tidsets of the two original closures.

Note that tidsets may not be able to fit into the physical
memory, especially when the number of RDF documents is
large and the database is dense. A hybrid counting strategy
is used in GP-Close for handling data sets under different
circumstances. The hybrid support counting is a combina-
tion of the database (DB) scan method with the use of a
hash-tree structure [18] and the tidset-based counting. It
allows a user to define a tidset buffer with a maximum
buffer size. Support counting is initially performed by
scanning DB. During the DB scanning and support
updating, the algorithm tries to build tidsets for candidate
closures if these tidsets can fit into the preallocated buffer.
The constructed tidsets are then used for subsequent tidset-
based support counting. If the tidsets cannot fit into the
tidset buffer, the algorithm will still use DB scans for
subsequent support counting.

4.6 Correctness and Complexity Analysis

For guaranteeing the correctness of our closed general-
ization closure-based pruning approach, the following
theorem needs to be introduced:

Theorem 1. The support of all frequent relationsets can be
derived from the set of all frequent closed generalization
closures.

Proof. Based on the fact that each relationset X can be
mapped into a generalization closure ’ðXÞ that has the
same support as X, it follows that the support of X can
be derived from ’ðXÞ by one of the following ways:

1. If ’ðXÞ is a closed closure, suppðXÞ ¼ suppð’ðXÞÞ.
2. Otherwise, there exists a closed closure ’ðY Þ �

’ðXÞ and does not exist a closed closure ’ðZÞ
with ’ðXÞ � ’ðZÞ � ’ðY Þ. It follows that
suppðXÞ ¼ suppð’ðXÞÞ ¼ suppð’ðY ÞÞ. tu

Theorem 1 thus ensures that using closed generalization
closures for overgeneralized pattern pruning will not cause
any loss in information.

As the GP-Close algorithm adopts a hybrid support
counting strategy, its running time depends on whether DB
scans or tidsets are used for support counting. Here, we
analyze two extreme cases, i.e., using tidsets only for
support counting after 1-frequent relationsets are generated
(unlimited tidset buffer) and using DB scans only for
support counting (no tidset buffer).

Theorem 2. The running time of GP-Close is between OðjCj �
ðlgc � logjCj þ lgc þ ltidsetÞÞ (lower bound) and OðjCj � ðlgc �
logjCj þ lgc þ Clgc

jdocj � jDjÞÞ (upper bound), where lgc is the
average length of generalization closures, ltidset is the average
length of tidsets, jCj is the number of frequent closed
generalization closures, jdocj is the average number of
(generalized) relations in an RDF document, and jDj is the
total number of RDF documents.

Proof. Note that, when traversing the generalization closure
enumeration tree, we only visit those nodes based on
which a closed generalization closure will be generated.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

Fig. 12. Pruning the closure enumeration tree. (a) Child-closure pruning.

(b) Subtree pruning.

This is guaranteed by our subtree pruning strategy.

Therefore, GP-Close performs OðjCjÞ full tree node

accesses. Each full access of a tree node n consists of
three major operations, i.e., subtree pruning (Algo-

rithm 2, line 1), child-closure pruning (Algorithm 2,
line 2), and generating the child-closures for n’s children

(involving support counting) (Algorithm 2, line 6).
Subtree pruning is to check whether n can be subsumed

by an identified closed closure, i.e., whether there is an
identified closed closure that has the same support with
n and also contains n. The cost of finding the (hashed)
closed closures having the same support is OðlogjCjÞ. The
cost of checking whether a closed closure contains n is
OðlgcÞ. Therefore, the total cost of subtree pruning is
Oðlgc � logjCjÞ.

Note that, in a closure enumeration tree, each nonleaf
tree node on the average has two child-closures. The
child-closure pruning on a tree node n involves checking
whether one child-closure can be subsumed by another
child-closures. Referring to the analysis of the subsump-
tion checking for subtree pruning, we can see that the total
cost of child-closure pruning is Oðlgc � log2 � 2Þ or OðlgcÞ.

Finally, generating the child-closures for n’s children

means merging any pair of n’s children to create larger

closures. As n typically has two children, the algorithm,

on average, generates only one child-closure for

n’s children. The main cost here is counting the support

of the new closure. If we use tidsets for support counting,
the cost of intersecting two tidsets is OðltidsetÞ; if we use

DB scans, the cost of scanning jDj documents (each

having C
lgc
jdocj subsets with the length of lgc) and updating

the supports of the generalization closures stored in a

hash-tree is OðClgc
jdocj � jDjÞ [18].

Based on the above analysis, we can see that the
overall computation cost of GP-Close is between OðjCj �
ðlgc � logjCj þ lgc þ ltidsetÞÞ and

OðjCj � ðlgc � logjCj þ lgc þ Clgc
jdocj � jDjÞÞ:

When the document set is large (i.e., jDj and ltidset is
large), the running time of GP-Close is approximately

between OðjCj � ltidsetÞ and OðjCj � Clgc
jdocj � jDjÞ. tu

5 EXPERIMENTS

Our experiments were performed on a desktop PC running

Windows XP with a P4-2.6G CPU and 1 G RAM. The GP-

Close algorithm was implemented using Java (JDK 1.4.2).
Two variants of GP-Close with different sizes of tidset

buffer were used in the experiments, namely, GP-Close-0

with a tidset buffer of 0 KB and GP-Close-50000 with a

tidset buffer of 50,000 KB. GP-Close-0 is used to illustrate

the worst-case scenario wherein the support can only be

calculated by using DB scans. On the other hand, GP-Close-

50000 is to show the best-case scenario in which tidsets can

always fit into the main memory. Therefore, experimenting
with GP-Close-0 and GP-Close-50000 can inform us about

the performance boundary of our algorithm. We also
implemented the Cumulate algorithm [9], an original

algorithm for mining generalized association rules, as a

reference algorithm for performance evaluation and com-
parison.

5.1 Semantic Relation Extraction

The data sets used in our experiments were collected from

the online database of the International Policy Institute for
Counter-Terrorism (ICT). The contents of the online docu-

ments of varying length were mainly descriptions of car
bombing and suicide bombing events. We apply semantic

relation extraction to extract semantic relations from the ICT
suicide bombing (ICT-SB) documents and the ICT car

bombing (ICT-CB) documents with a WordNet search
depth (WNSD) of 2 and a minimum similarity threshold

(minsim) of 0.1.
The statistics of the semantic relation extraction and term

taxonomy construction are summarized in Table 4. We see

that most of the extracted RDF relations are distinct,

heightening the necessity of mining generalized patterns.
In addition, Table 4 shows that the set of generalized

relations which can be derived from the term taxonomy is
much larger than the original set of relations stored in RDF

metadata. This implies that there is a very large generalized
relationset search space.

As Cumulate is not designed for mining RDF data, for a

fair comparison, the extracted RDF metadata are stored as
binary transaction files resided in the Microsoft new

technology file system (NTFS). We assign a unique
identifier (rid) for each (generalized) relation. Each RDF

document is thus encoded as a transaction containing a set
of rids. The generalized relation hierarchy (see Fig. 8b for an

example) is precomputed and stored as a generalized
relation lookup table (GRT) in a binary file. Both Cumulate

and GP-Close algorithms depend on this table for fast look

up of generalized relations. Note that, to incorporate a
hierarchy of RDF predicates in mining, we need to involve

the predicate hierarchy for computing the GRT.

5.2 Mining Generalized Associations on RDF
Metadata

5.2.1 Number of Patterns

We first do a comparison on the number of the patterns

extracted by the two algorithms, Cumulate and GP-Close.
Fig. 13 shows that the number of closed generalization

closures can be one to two orders of magnitude smaller than

JIANG ET AL.: MINING GENERALIZED ASSOCIATIONS OF SEMANTIC RELATIONS FROM TEXTUAL WEB CONTENT 13

TABLE 4
Summary of Semantic Relation Extraction Results

the number of frequent relationsets discovered by Cumu-
late. This is especially so with a low minsup.

We can see that as minsup decreases, the number of
frequent relationsets increases rapidly. The reason is that
when minsup is low, larger and more specialized
relationsets will be discovered. Note that the more
specialized and larger a frequent relationset is, the more
generalized relationsets it contains. And, all these general-
ized patterns are also frequent. This may not be a problem
when mining generalized item associations [9] as an item
has no inner structure and it usually has only one parent.
However, when mining relation associations, the problem
becomes critical as a relation is a triplet which consists of
a subject, a predicate, and an object, which means a
relation can be generalized in many different ways.
Therefore, when relationsets become larger and more
specialized, the number of their generalized patterns will
increase dramatically.

As the Cumulate algorithm generates all frequent
patterns, we can expect that the execution time of the
Cumulate algorithm also increases very fast when minsup
decreases. For the GP-Close algorithm, as it generates only a
small set of the closed generalization closures, its execution
time is expected to be less sensitive to minsup.

5.2.2 Time Efficiency

Fig. 14 shows the execution times of the algorithms by
varying the minimum support (minsup). As expected,
Cumulate can work properly only with high minsup. When
minsup is high, the performance of the algorithms are close.
The GP-Close-0 is slightly slower than GP-Close-50000 due
to the fact that it involves more IO accesses. However, when
minsup is low, both versions of the GP-Close algorithm can
run more than one to two orders of magnitude faster. This

can be explained by the number of patterns discovered by
the various algorithms, i.e., Cumulate generates many more
patterns than GP-Close.

5.2.3 Number of DB Scans

Fig. 15 shows the number of DB scans performed by the
various algorithms. The overall trend is that the number of
DB passes increases when minsup decreases. For GP-Close-
50000, the tidsets can always fit into the tidset buffer after
two DB scans. For GP-Close-0, DB scanning is the only way
for it to calculate the support. Notice that, at each level of
the closure enumeration tree, there may exist multiple
branches. Thus, GP-Close-0 needs to scan the database once
for support counting at each of these branches. The number
of DB scans performed by GP-Close-0 increases rapidly due
to the fact that more branches of the closure enumeration
tree are visited when minsup decreases. However, for low
minsup, though GP-Close-0 scans DB for many more times
than that of Cumulate, its execution time is still much
shorter than Cumulate. Based on this observation, we can
see that, when minsup is low, the bottleneck of the
algorithms lies in CPU computation instead of IO access.

5.2.4 Scalability

The scalability of the GP-Close algorithm is also evaluated
by replicating the ICT-CB database 100 to 500 times with an
incremental step of 100, i.e., the largest data set contains
more than 50,000 RDF documents. For introducing varia-
tions in the replicas, we randomly modify 1 percent of the
RDF statements by replacing them with noisy statements.
Then, the GP-Close algorithm is tested on the replicated

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

Fig. 13. Number of patterns. (a) ICT-CB. (b) ICT-SB.

Fig. 14. Execution time. (a) ICT-CB. (b) ICT-SB.

Fig. 15. Database scans.(a) ICT-CB. (b) ICT-SB.

Fig. 16. Scalability of the GP-Close algorithm.

data sets with a fixed minsup of 10 percent. As shown in
Fig. 16, the execution time of the GP-Close algorithm
increases linearly with the replication factor.

5.3 Analysis of Patterns

For evaluating the quality of the patterns discovered, we
analyze the patterns generated using GP-Close on the ICT-
CB data set with a minsup of 7 percent. We examine each of
the 78 generalized patterns (relationsets) to verify 1) if it is
previously known and 2) if it is significant.

We observe that 71.8 percent (56 out of 78) of the patterns
are commonsense patterns already known by people. For
example, the pattern {<explode, agent, bomb>, <wound,
theme, people>} (with support of 7.0 percent) describes a
commonsense fact that, when a bomb explodes, people get
wounded. Though such patterns may not be significant
knowledge for human users, they may still be useful for the
tasks of clustering or classification of Web documents as
they reflect the underlying semantic structures of a
particular domain. Ten out of 78 (12.8 percent) of the
patterns are identified as previously unknown and not
useful. These patterns usually involve general terms, such
as “group” or “city.” For example, {<kill, theme, group>}
can be interpreted as “something related to a certain group
is killed,” with support of 12.6 percent. However, terms like
“group” or “city” are too general to inform detailed
semantic knowledge. The remaining 15.4 percent (12 out
of 78) of the patterns are previously unknown and
potentially useful. An example of such patterns is {<deto-
nate, theme, truck>}, with support of 11.8 percent. In the
ICT-CB (car bombing) data set, this pattern can be
interpreted as “truck is often used by terrorists for carrying
out car bombing.” Another example is {<claim, agent,
Terrorist_Group_001>, <claim, theme, responsibility>},
with support of 7.8 percent. This pattern can be explained
as “the terrorist group with the identifier Terror-
ist_Group_001 often claims responsibility for a car bombing
event.”

6 CONCLUSION

This paper has proposed a systematic approach for
discovering knowledge from free-form textual Web content.
Specifically, we present an automatic semantic relation
extraction strategy to extract RDF metadata from textual
Web content and an algorithm known as GP-Close for
mining generalized patterns from RDF metadata. The
experimental result shows that the GP-Close algorithm
based on mining closed generalization closures can sub-
stantially reduce the pattern redundancy and perform
much better than the original generalized association rule
mining algorithm Cumulate in terms of time efficiency. The
pattern analysis based on human validation shows that the
proposed method is promising and useful.

ACKNOWLEDGMENTS

The reported work is supported in part by the I2R-SCE Joint
Lab on Intelligent Media. The authors would like to thank
the anonymous reviewers for providing many invaluable
comments to the previous versions of the paper. They also

thank Rohan Kumar Gunaratna and Teng-Kwee Ong at the
Institute of Defence and Strategic Studies, Singapore, for
providing their advice on data sources and the terrorist
domain.

REFERENCES

[1] J. Dörre, P. Gerstl, and R. Seiffert, “Text Mining: Finding Nuggets
in Mountains of Textual Data,” Proc. Int’l Conf. Knowledge
Discovery and Data Mining, pp. 398-401, 1999.

[2] A.-H. Tan, “Text Mining: The State of the Art and the Challenges,”
Proc. Pacific Asia Conf. Knowledge Discovery and Data Mining
(PAKDD ’99) Workshop Knowledge Discovery from Advanced
Databases, pp. 65-70, 1999.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “Semantic Web,”
Scientific Am., vol. 284, no. 5, pp. 35-43, 2001.

[4] T. Berners-Lee, “Conceptual Graphs and Semantic Web—Reflec-
tions on Web Architecture,” http://www.w3.org/DesignIssues/
CG.html, 2001.

[5] J.F. Sowa, Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley Longman, 1984.

[6] J.F. Sowa, “Conceptual Graphs: Draft Proposed American
National Standard,” Proc. Int’l Conf. Computational Science, pp. 1-
65, 1999.

[7] N. Guarino, C. Masolo, and G. Vetere, “Ontoseek: Content-Based
Access to the Web,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 70-
80, May/June 1999.

[8] W3C, W3c RDF Schema Specification, http://www.w3.org/TR/
rdf-schema/, 2005.

[9] R. Srikant and R. Agrawal, “Mining Generalized Association
Rules,” Proc. Conf. Very Large Databases, pp. 407-419, 1995.

[10] A. Inokuchi, “Mining Generalized Substructures from a Set of
Labeled Graphs,” Proc. Int’l Conf. Data Mining, pp. 415-418, 2004.

[11] W3C, W3c RDF Specification, http://www.w3.org/RDF/, 2005.
[12] A. Naeve, “The Human Semantic Web Shifting from Knowledge

Push to Knowledge Pull,” Int’l J. Semantic Web Information Systems,
vol. 1, no. 3, pp. 1-30, 2005.

[13] A.P. Sheth, C. Ramakrishnan, and C. Thomas, “Semantics for the
Semantic Web: The Implicit, the Formal and the Powerful,” Int’l J.
Semantic Web Information Systems, vol. 1, no. 1, pp. 1-18, 2005.

[14] H. Liu, P. Maes, and G. Davenport, “Unraveling the Taste Fabric
of Social Networks,” Int’l J. Semantic Web Information Systems,
vol. 2, no. 1, pp. 42-71, 2006.

[15] N. Bassiliades, G. Antoniou, and I. Vlahavas, “A Defeasible Logic
Reasoner for the Semantic Web,” Int’l J. Semantic Web Information
Systems, vol. 2, no. 1, pp. 1-41, 2006.

[16] F. Bry, C. Koch, T. Furche, S. Schaffert, L. Badea, and S. Berger,
“Querying the Web Reconsidered: Design Principles For Versatile
Web Query Languages,” Int’l J. Semantic Web Information Systems,
vol. 1, no. 2, pp. 1-21, 2005.

[17] R. Agrawal, T. Imielinski, and A.N. Swami, “Mining Association
Rules between Sets of Items In Large Databases,” Proc. ACM
SIGMOD Conf., pp. 207-216, 1993.

[18] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. Conf. Very Large
Databases, pp. 487-499, 1994.

[19] A. Savasere, E. Omiecinski, and S.B. Navathe, “An Efficient
Algorithm for Mining Association Rules in Large Databases,”
Proc. Conf. Very Large Databases, pp. 432-444, 1995.

[20] H. Toivonen, “Sampling Large Databases for Association Rules,”
Proc. Conf. Very Large Databases, pp. 134-145, 1996.

[21] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering
Frequent Closed Itemsets for Association Rules,” Proc. Int’l Conf.
Database Theory, pp. 398-416, 1999.

[22] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” SIGMOD Record, vol. 29, no. 2, pp. 1-12,
2000.

[23] M.J. Zaki and C.-J. Hsiao, “Charm: An Efficient Algorithm for
Closed Itemset Mining,” Proc. Siam Conf. Data Mining, 2002.

[24] R. Feldman and H. Hirsh, “Mining Associations in Text in the
Presence of Background Knowledge,” Knowledge Discovery and
Data Mining, pp. 343-346, 1996, http://citeseer.ist.psu.edu/
feldman96mining.html.

[25] J.D. Holt and S.M. Chung, “Multipass Algorithms for Mining
Association Rules in Text Databases,” Knowledge Information
System, vol. 3, no. 2, pp. 168-183, 2001.

JIANG ET AL.: MINING GENERALIZED ASSOCIATIONS OF SEMANTIC RELATIONS FROM TEXTUAL WEB CONTENT 15

[26] M.M. y Gómez, A.F. Gelbukh, and A. López-López, “Text Mining
at Detail Level Using Conceptual Graphs,” Proc. Int’l Conf.
Complex Systems, pp. 122-136, 2002.

[27] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan,
“GATE: A Framework and Graphical Development Environment
for Robust NLP Tools and Applications,” Proc. 40th Anniversary
Meeting Assoc. Computational Linguistics, 2002.

[28] E. Brill, “A Simple Rule-Based Part of Speech Tagger,” Proc. Conf.
Applied Natural Language Processing, pp. 152-155, 1992.

[29] M. Collins, “A New Statistical Parser Based on Bigram Lexical
Dependencies,” Proc. Conf. Assoc. Computational Linguistics,
pp. 184-191, 1996.

[30] C. Barriere, “From a Children’s First Dictionary to a Lexical
Knowledge Base of Conceptual Graphs,” PhD dissertation, 1997.

[31] G.A. Miller, “Wordnet: A Lexical Database For English,” Comm.
ACM, vol. 38, no. 11, pp. 39-41, 1995.

[32] M.A. Hearst, “Automatic Acquisition of Hyponyms from Large
Text Corpora,” Proc. 14th Conf. Computational Linguistics, pp. 539-
545, 1992.

[33] A. Maedche, V. Pekar, and S. Staab, “Ontology Learning Part
One—On Discovering Taxonomic Relations from the Web,”
citeseer.ist.psu.edu/maedche02ontology.html, 2002.

[34] P. Cimiano, A. Hotho, and S. Staab, “Comparing Conceptual,
Divisive and Agglomerative Clustering for Learning Taxonomies
from Text,” Proc. European Conf. Artificial Intelligence, pp. 435-439,
2004, citeseer.ist.psu.edu/630486.html.

[35] S.A. Caraballo, “Automatic Construction of a Hypernym-Labeled
Noun Hierarchy from Text,” Proc. 37th Ann. Meeting Assoc. for
Computational Linguistics on Computational Linguistics, pp. 120-126,
1999.

[36] M. Hepp, “Products and Services Ontologies: A Methodology for
Deriving Owl Ontologies from Industrial Categorization Stan-
dards,” Int’l J. Semantic Web Information Systems, vol. 2, no. 1,
pp. 72-99, 2006.

[37] J.J. Jiang and D.W. Conrath, “Semantic Similarity Based on Corpus
Statistics and Lexical Taxonomy,” Proc. Int’l Conf. Research on
Computational Linguistics, 1997, http://arxiv.org/pdf/cmp-lg/
9709008.

[38] C. Leacock and M. Chodorow, “Combining Lexical Context and
Wordnet Similarity for Word Sense Identification,” WordNet: An
Electronic Lexical Database, 1998.

[39] N. Seco, T. Veale, and J. Hayes, “An Intrinsic Information Content
Metric for Semantic Similarity in Wordnet,” Proc. European Conf.
Artificial Intelligence, pp. 1089-1090, 2004.

[40] A. Budanitsky, “Semantic Distance in Wordnet: An Experimental,
Application-Oriented Evaluation of Five Measures,” Proc. Work-
shop WordNet and Other Lexical Resources, citeseer. ist.psu.edu/
budanitsky01semantic.html, 2001.

[41] R. Hilderman and H. Hamilton, “Knowledge Discovery and
Interestingness Measures: A Survey,” citeseer.ist.psu.edu/hilder-
man99knowledge.html, 1999.

[42] P.-N. Tan, V. Kumar, and J. Srivastava, “Selecting the Right
Interestingness Measure for Association Patterns,” Proc. Eighth
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining,
pp. 32-41, 2002.

[43] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations. Springer-Verlag, 1997.

[44] J. Wang, J. Han, and J. Pei, “Closet+: Searching for the Best
Strategies for Mining Frequent Closed Itemsets,” Proc. Ninth ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 236-
245, 2003.

Tao Jiang received the BS degree in computer
science and technology from Peking University
in 2000. He is a PhD student in the School of
Computer Engineering, Nanyang Technological
University. His research interests include text
mining, semantic Web mining, and multimedia
information fusion in the Semantic Web.

Ah-Hwee Tan received the BS degree (first
class honors) and the MS degree in computer
and information science from the National
University of Singapore, and the PhD degree in
cognitive and neural systems from Boston
University. He is an associate professor with
the School of Computer Engineering, Nanyang
Technological University. He is also the director
of the Emerging Research Lab and the deputy
program director of the MSc Program in In-

formation Systems. He was a research manager and senior member of
the research staff with the Institute for Infocomm Research, where he
led research and development projects in knowledge discovery,
document analysis, and information mining. Dr. Tan is an editorial
board member of Applied Intelligence, a member of the ACM, and a
senior member of the IEEE.

Ke Wang received the PhD degree from the
Georgia Institute of Technology. He is currently
a professor in the School of Computing Science
at Simon Fraser University. Before joining Simon
Fraser, he was an associate professor at the
National University of Singapore. He has taught
in the areas of database and data mining. His
research interests include database technology,
data mining and knowledge discovery, machine
learning, and emerging applications, with recent

interests focusing on the end use of data mining. This includes explicitly
modeling the business goal and exploiting user prior knowledge. He has
published in database, information retrieval, and data mining confer-
ences, including SIGMOD, SIGIR, PODS, VLDB, ICDE, EDBT,
SIGKDD, SDM, and ICDM. He is an associate editor of the IEEE
Transactions on Knowledge and Data Engineering and has served on
program committees for international conferences including DASFAA,
ICDE, ICDM, PAKDD, PKDD, SIGKDD, and VLDB.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 2, FEBRUARY 2007

	Mining generalized associations of semantic relations from textual web content
	Citation

	TKDESI-0429-0905-2 1..16

