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What Difference Do New Factor Models Make in Portfolio Allocation?

Abstract

This paper compares the Hou-Xue-Zhang four-factor model with the Fama-French five-factor model from an

investing perspective both in- and out-of-sample. Without margin requirements and model uncertainty, the

Hou-Xue-Zhang model outperforms the Fama-French model. However, the outperformance could become

negligible if an investor is subject to margin requirements and model uncertainty. The Hou-Xue-Zhang

model shows similar power as the Fama-French model in describing the covariance matrix of asset returns.

Overall, the two models do not make a difference for investing in a realistic setting.

JEL Classification: G11; G12; C11
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1 Introduction

Much of asset pricing research involves searching for factors to improve the understanding of the cross-

section of stock returns. Based on the neoclassical Tobin q-theory, Hou, Xue, and Zhang (HXZ, 2015)

propose a four-factor model, which can explain 29 out of 36 significant anomalies. Concurrently, motivated

by the dividend discount model, Fama and French (FF5, 2015a, 2016) propose a five-factor model that

explains anomalies such as the low market beta, share repurchases, low stock return volatility, etc. In a

follow-up study, Hou, Xue, and Zhang (2019) compare the pricing power of HXZ with FF5 and conclude

that the HXZ model largely subsumes FF5 and is able to explain more anomalies.

This paper asks whether HXZ is a better model for investing relative to FF5. There are three reasons

for this question. First, as shown by Pástor and Stambaugh (2000), a model that is better for pricing

is not necessarily better for investing, because investors are usually subject to margin requirements and

model uncertainty that prevent them from implementing certain extreme investment strategies suggested by

asset pricing models. Second, investing involves both the mean and covariance of asset returns. A model

that is worse for pricing is not necessarily worse for investing. There could be factors that account for

substantial return comovements, but they are not priced or have very low risk premiums (Constantidides,

1980). Although these factors do not improve the description of average asset returns, they are important for

an investor to control portfolio risk (Lewellen, 2023). Finally, pricing errors may not be a desirable criterion

to assess a model, because, in-sample, “it is not difficult to data mine factor models that explain a large cross-

section of anomalies” (Tian, 2021). Instead, investing provides an economic criterion for model comparison

that accommodates pricing errors and allows one to compare asset pricing models out-of-sample, which is

advocated by MacKinlay (1995) and Ang (2014), among others.

This paper compares the investing performance of HXZ with FF5 assuming the investor is subject to

margin requirement and model uncertainty. Specifically, we focus on the portfolio allocation problem in

the standard mean-variance framework. To make the optimal portfolio implementable, the investor faces

a margin requirement ranging from 0% to 50% (Pástor and Stambaugh, 2000). Fama and French (2015b)

show that, without a short selling constraint, it is easy for an investor who is investing in two anomalies

to have a leverage ratio of more than 300, which is apparently unrealistic in practice. Moreover, because

the distribution of asset returns is unknown, the investor imposes a factor model, either HXZ or FF5, to

reduce the dimension of the estimation problem and to allocate her wealth among the factors. Although

1
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this restriction often improves the portfolio performance (MacKinlay and Pástor, 2000), the investor faces

uncertainty regarding the model’s pricing ability. Following Pástor and Stambaugh (2000) and Wang (2005),

we assume that the investor has a prior belief, specified with varying degrees of confidence in the factor

model, and computes the optimal portfolio with her posterior belief, which is updated by the data.

We consider 15 anomaly portfolios in Novy-Marx and Velikov (2016) as the non-benchmark risky assets

to invest.1 We classify the anomalies into two groups. The first group consists of five anomalies that can

be explained by HXZ but not FF5, i.e., the alpha of each anomaly is insignificant with HXZ but significant

with FF5. The average alphas are 0.13% (t = 0.63) and 0.67% (t = 3.45) when using the two models. The

second group consists of 10 anomalies that cannot be explained by either HXZ or FF5. In this case, the

average alphas are 0.72% (t = 4.11) and 0.75% (t = 4.44). These two groups of anomalies are intentionally

classified to explore whether HXZ is better for investing when it performs better than or the same as FF5 for

pricing.

We first compare the in-sample investing performances between the two models. When an asset pricing

model cannot explain the average returns of risky assets with significant alphas, imposing the model on

the return-generating process can lead to biased estimates for the predictive mean and covariance matrix of

asset returns, and therefore, results in certainty-equivalent return (CER) losses relative to the case without

imposing any model. As such, an asset pricing model is better for investing if it generates smaller CER

losses. Without a margin requirement, we find that HXZ uniformly outperforms FF5. For example, the

CER loss for an investor with a perfect confidence in HXZ is over 13% per year less than the CER

loss for an investor with a perfect confidence in FF5. However, the outperformance of HXZ is shrunk

dramatically when there is a margin requirement. For instance, a 50% margin requirement shrinks the HXZ

outperformance to be less than 3%. In this case, the investor who uses HXZ is even suggested to invest in

redundant assets, assets that are explained by HXZ with insiginficant alphas.

We then compare the out-of-sample investing performances. To this goal, we perform two exercises. The

first exercise assumes that asset returns are independent and identically distributed (i.i.d) over time, and uses

a bootstrap simulation to compare the out-of-sample CERs between the two models. The second exercise

relaxes the i.i.d assumption and compares the out-of-sample CERs with real time data. We use an expanding

window approach. At the end of each month, we estimate the predictive mean and covariance matrix with

1Novy-Marx and Velikov (2016) consider 32 anomalies in total, but only 15 are significant when using the FF5 as the
benchmark. The data can be downloaded from https://sites.psu.edu/assayinganomalies/code/overview/.

2
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the most up-to-date data, and apply the resulting optimal portfolio to the next month’s returns. Then, we

calculate the out-of-sample CERs with the realized portfolio returns. In either exercise, because the investor

has to estimate the model parameters, the estimation error or model uncertainty reduces the outperformance

of HXZ further. With a 50% margin requirement, the two models perform virtually the same. Without

margin requirements, FF5 even performs better when the investor does not have high confidence in HXZ.

Finally, we explore how HXZ and FF5 describe the covariance matrix of asset returns. A better model

for investing could be the result of its superior ability to describe the mean, the covariance matrix, or both.

We compare the performances of the global-minimum-variance portfolios between the two models, which

solely use the predictive covariance information for portfolio allocation. The result shows that the two

models perform virtually the same, no matter which group of anomalies is used as the non-benchmark

assets.

The studies that are most closely related to this paper are Pástor and Stambaugh (2000) and Wang (2005),

which incorporate model uncertainty, measured by investors’ varying beliefs about asset pricing models,

into the framework of portfolio allocation. Focusing on the Fama-French three-factor model and the Daniel

and Titman (1997) characteristic model, Pástor and Stambaugh (2000) find that the two models generate

indistinguishable performances under model uncertainty and margin requirements. This paper concentrates

on the two most recent competing factor models and finds that HXZ and FF5 perform similarly for investing,

even in the case when they have different degrees of pricing ability on the non-benchmark assets.2 Wang

(2005) focuses on model uncertainty and does not consider the effect of margin requirements. Moreover,

despite its importance for investing, these two papers do not consider out-of-sample performance.

This paper is also related to the literature in portfolio allocation with factor-based asset pricing models.

To evaluate the performance of different factor models for the covariance structure of individual stock

returns, Chan, Karceski, and Lakonishok (1998, 1999) show that the Fama-French three-factor model

does a fair job constructing the global-minimum-variance portfolio. Also focusing on the estimation of

the covariance structure, Briner and Connor (2008) explore the trade-off between estimation errors and

model specification errors.3

2After our paper was firstly posted at SSRN on March 16, 2016, Kan, Wang and Zheng (2022) explore the effect of estimation
errors on the mean-variance frontiers spanned by the factors of the two models. Detzel, Novy-Marx and Velikov (2023) and Li,
DeMiguel and Marı́n-Rtrera (2023) examine how linear and nonlinear transaction costs affect the factor performance of the two
models, respectively. Interestingly, all the three papers reach a similar conclusion as ours.

3Excellent books that consider portfolio allocation with factor models include Brandt (2010), Connor, Goldberg, and Korajczyk
(2010), and Ang (2014).

3

Electronic copy available at: https://ssrn.com/abstract=2752822



The remainder of the paper is organized as follows. Section 2 reviews the HXZ and FF5 factor models

and discusses the importance of comparing them from the perspective of investing. Section 3 presents a

framework for making portfolio allocation and shows that HXZ and FF5 perform similarly for investing if

the investor is subject to margin rquirement and model uncertainty.

2 New Factor Models

This section reviews the HXZ and FF5 factor models and discusses the importance of comparing them from

an investing perspective. We focus on these two models because they are representative and are motivated

by two different theories.4

The HXZ model is motivated by the neoclassical q-theory of investment and consists of four factors:

a market factor (MKT), a size factor (ME), an investment factor (I/A), and a profitability factor (return on

equity, ROE). The first factor is the market excess return and the last three factors are constructed from

a triple (2× 3× 3) sort on size, investment-to-assets, and return-on-equity. More specifically, size is the

market equity, which is stock price per share times shares outstanding from the Center for Research in

Security Prices, I/A is the annual change in total assets divided by one-year-lagged total assets, and ROE is

income before extraordinary items divided by one-quarter-lagged book equity.

The FF5 model is based on the dividend discount valuation theory and adds an investment (conservative-

minus-aggressive, CMA) factor and a profitability (robust-minus-weak, RMW) factor to the Fama-French

three-factor model, which consists of market, size (small-minus-big, SMB), and value (high-minus-low,

HML) factors. More specifically, CMA is defined as the difference between the returns on diversified

portfolios of low and high investment stocks and RMW is defined as the difference between the returns on

diversified portfolios of stocks with robust and weak profitability.

Table 1 presents summary statistics of the HXZ and FF5 factors in the sample period of 1972:01–

2013:12. Panel A reports the average return (mean), t-statistic from the test that the average return of

the factor is zero, standard deviation, skewness, kurtosis, first-order autocorrelation, and annualized Sharpe

ratio. Among the seven descriptive statistics, mean and standard deviation are reported in percent per month.

The average monthly returns on the factors are all more than two standard errors above zero, except for the

4Subsequent models, such as Stambaugh and Yuan (2017) and Daniel, Hirshleifer, and Sun (2020), are variations of these two
models. The MGMT factor in Stambaugh and Yuan (2017) and the FIN factor in Daniel, Hirshleifer, and Sun (2020) are variations
of the investment factor, and the PERF and PEAD factors in the two papers are variations of the profitability factor.

4
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FF5 size factor, which has an average monthly return of 0.23% (t = 1.71). The HXZ size factor has a higher

average monthly return of 0.31%, with a t-statistic of 2.20.

Although both HXZ and FF5 use annual asset growth as the proxy for investment, the HXZ investment

factor I/A has a higher average monthly return (0.44% versus 0.37%) and a lower standard deviation

(1.87% versus 2.00%) than the FF5 investment factor CMA. As a result, I/A has a higher annualized

Sharpe ratio than CMA (0.82 versus 0.66). Moreover, I/A is less persistent than CMA and their first-order

autocorrelations are 0.06 and 0.12, respectively.

The most striking difference between HXZ and FF5 is the profitability factor. First, the HXZ profitability

factor ROE uses monthly earnings data, whereas the FF5 profitability factor RMW uses annual operating

profitability data. Hou, Xue, and Zhang (2015) argue that the ROE factor is designed to capture anomalies,

such as price momentum, earnings surprise, and financial distress, which are all studied at a monthly

frequency. Next, since the ROE factor contains the most up-to-date information about future ROE, its

standard deviation is slightly higher than the CMW factor (2.62% versus 2.25%), and its average monthly

return almost doubles (0.57% versus 0.29%). This is reflected directly in their annualized Sharpe ratios,

0.75 and 0.44. Finally, ROE has a more negative skewness (−0.75 versus −0.44) and a smaller kurtosis

(8.01 versus 14.4) than RMW.

Panel B of Table 1 reports the contemporaneous correlations of all of the factors. The market factors

in the HXZ and the FF5 models have a perfect correlation of 1, and the size factors have a correlation of

0.98. Together with the descriptive statistics in Panel A, we assume that the market and size factors in

the two models are indistinguishable and use the returns of MKT and SMB in the FF5 model for portfolio

allocation throughout the paper.5 The negative correlations of MKT with the investment and profitability

factors suggest the necessity of new factors that can hedge the market risk. The two investment factors have

a correlation of 0.90, and the two profitability factors have a correlation of 0.67. An interesting observation

is that the FF5 value factor has high correlations with the investment factors and low correlations with the

profitability factors, suggesting that the redundancy of HML for pricing, shown in FF5 (2015a), is mainly

due to the investment factor.

Table 1 raises a question about the main difference in the two models in explaining the cross-section of

stock returns. Using factor spanning regressions, Hou, Xue, and Zhang (2019) compare the two models and

5In portfolio allocation, when assets i and j are highly correlated, the estimation of the covariance is highly volatile with
extreme entries on (i, i),(i, j),( j, i) and ( j, j), resulting in extreme portfolio positions in assets i and j that swing dramatically over
time.

5
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find that HXZ can fully describe FF5 in terms of alpha. As such, they conclude that FF5 is in essence a

noisy version of the q-factor model.

However, there are two concerns about the conclusion. First, the comparison in Hou, Xue, and Zhang

(2019) is ex post. The conclusion may change if we compare them ex ante. At the end of each month, we

regress individual stock returns on the factors of the two models using the past 60-month observations, and

examine how many stocks are mispriced. Figure 1 plots the proportions of firms that are mispriced by HXZ

and FF5, respectively. Surprisingly, there are a lot of months where HXZ has worse pricing performance,

say 2005 and 2013. Second, alpha is not an appropriate metric for model comparison and can generate

counterintuitive results.6 For example, over the sample period of 1972:01–2013:12, the monthly alpha of

the momentum factor is 0.78% (t = 3.94) for the CAPM model but is 0.95% (t = 4.82) for the Fama-French

three-factor model, which is in stark contrast to most studies, if not all, that the three-factor model is a better

pricing model. Another example is from Fama and French (2016) who find that the FF5 model exaggerates,

instead of shrinking, the accrual anomaly. The FF5 alpha is 0.31% (t = 2.27) and the Fama-French three-

factor alpha is 0.27% (t = 1.96) over the sample period of this paper. In general, Barillas and Shanken

(2017) show that zero alpha for a non-benchmark asset is neither a sufficient nor a necessary condition for

model comparison.

In terms of investing, Figure 2 plots the mean-variance frontiers for investing in the factors of HXZ,

FF5, or both, where the market and size factors in the two models are assumed to be the same and refer to

the MKT and SMB factors in FF5. Three observations follow the figure immediately. First, the frontier of

FF5 does not lie inside or overlaps that of HXZ. Second, the global minimum-variance of investing in the

HXZ is different from that of the FF5. Specifically, the standard deviation and mean of the global minimum-

variance for investing in HXZ are 1.03% and 0.44%, which are in contrast to 0.97% and 0.34% for investing

in FF5. This difference suggests that the HXZ factors cannot mimic the global minimum-variance portfolio

of FF5. Third and lastly, if one invests in both the HXZ and FF5 factors (FF5’s five factors plus HXZ’s I/A

and ROE factors), the standard deviation and mean of the global minimum-variance are 0.94% and 0.38%,

respectively. Therefore, this strategy can reduce the minimum-variance and improve its expected return,

relative to investing in HXZ or FF5 alone.

According to Barillas and Shanken (2017, 2018), a factor model is better for pricing if it can price the

factors in the competing model with zero alphas. Similarly, a factor model is better for investing if it can

6Levy and Roll (2016) also show that with an optimization framework alpha is a bad target for investing.
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mimic the performance of the competing model, i.e., it outperforms any portfolio spanned by the competing

model in terms of the Sharpe ratio. As such, we turn to Huberman and Kandel (1987) and run a mean-

variance spanning test on the hypothesis that whether the competing factors’ returns can be spanned or

replicated in the mean-variance space of the factor model.

Following Kan and Zhou (2012), we carry out six spanning tests: Wald test under conditional

homoscedasticity, Wald test under independent and identically distributed (i.i.d.) elliptical distribution,

Wald test under conditional heteroscedasticity, Bekerart-Urias spanning test with errors-in-variables (EIV)

adjustment, Bekerart-Urias spanning test without the EIV adjustment and DeSantis spanning test. The six

spanning test results reported in Table 2 strongly reject the hypothesis that the FF5 factors are inside the

mean-variance frontier of the HXZ factors. Delving deeper, we also test whether the FF5’s investment and

profitability factors can be replicated by the HXZ factors, and find that the answer is negative. Hence, it not

clear whether the HXZ model is better for investing, which is the focus of this paper. For comparison, in the

last column of Table 2, we conduct the Gibbons-Ross-Shanken (GRS) test and show an opposite result: The

HXZ model largely subsumes the FF5 factors.

3 Comparing Factor Models in Portfolio Allocation

This section presents the mean-variance portfolio allocation problem under model uncertainty and margin

requirements. The objective is to compare asset pricing models from the perspective of investing. For a

given investment universe, we calculate the portfolio that is selected by an investor who bases her prior

belief in HXZ or FF5, and compare the performances of the two models in- and out-of-sample.

3.1 Portfolio allocation under model uncertainty and margin requirements

Consider the portfolio allocation problem in a universe with a risk-free asset and n risky assets. Without

loss of generality, we assume that the risk-free rate r f is constant over time throughout the paper. Let

rt = (r′1t ,r
′
2t)

′ be the long-short spread returns, as in Pástor and Stambaugh (2000), where the long side is a

risky asset and the short side is either a risky asset or a risk-free asset, r1t is the first m non-benchmark assets,

and r2t is the last k (= n−m) benchmark assets. For example, when HXZ is used as the benchmark model,

r2t is the HXZ four-factor returns and the HML, CMA, and RMW factor returns are included in r1t , which

then has n− 4 elements. Similarly, when FF5 is used as the benchmark model, r2t is the FF5 five-factor

7
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returns and the I/A and ROE factor returns are simply included in r1t , which then has n−5 elements.

Suppose rt follows a multivariate normal distribution and is i.i.d. over time. The true mean and

covariance matrix are denoted as follows corresponding to the m assets and k factors:

µ =

 µ1

µ2

 , V =

 V11 V12

V21 V22

 , (1)

which can be summarized in a regression model:

r1t = α +Br2t +ut , (2)

where u follows a multivariate normal distribution with mean zero and covariance matrix equal to Σ. With

this factor structure, one can write the mean and covariance matrix of the risky assets as

µ =

 α +Bµ2

µ2

 , V =

 BV22B′+Σ BV22

V22B′ V22

 . (3)

The asset pricing model is true if and only if α = 0m×1, where 0m×1 is an m×1 vector of zeros.

In the portfolio allocation framework using asset pricing models, the mean-variance investor chooses to

believe or not to believe the asset pricing model. If the investor does not believe the asset pricing model at

all, she estimates µ and V without restricting α to zero. The maximum likelihood estimates of α,B, and Σ

are denoted by α̂, B̂, and Σ̂, respectively. The investor estimates µ and V in (3) as:

µ̂ =

 µ̂1

µ̂2

=

 α̂ + B̂µ̂2

µ̂2

 , V̂ =

 B̂V̂22B̂′+ Σ̂ B̂V̂22

V̂22B̂′ V̂22

 , (4)

where µ̂2 and V̂22 are the sample mean and covariance matrix of r2t .

When the investor has a dogmatic belief about the asset pricing model, µ and V can be estimated by by

imposing α = 0m×1. Let B̄ and Σ̄ be the maximum likelihood estimates of B and Σ with the restriction. The

estimates of µ and V are

µ̄ =

 B̄µ̂2

µ̂2

 , V̄ =

 B̄V̂22B̄′+ Σ̄ B̄V̂22

V̂22B̄′ V̂22

 . (5)

8

Electronic copy available at: https://ssrn.com/abstract=2752822



In this paper, we assume that the investor places a confidence level of ω in the asset pricing model. Let

R = {rt , t = 1, · · · ,T} and Ŝ2 = µ̂ ′
2V̂−1

22 µ̂2 be the squared Sharpe ratio of the ex ante tangency portfolio with

the same mean and covariance matrix of the k factors. With a Bayes updating, Wang (2005) shows that the

investor estimates the predictive mean and covariance matrix as:

µ̃ = E(rT+1|R,ω) =

 µ̂1 +ω(B̄µ̂2 − µ̂1)

µ̂2

 , (6)

Ṽ = Var(rT+1|R,ω) =

 ψ0 +ωψ1 +ω2ψ2 b[ωB̄+(1−ω)B̂]V̂22

bV̂22[ωB̄+(1−ω)B̂]′ bV̂22

 , (7)

where

ψ0 = bB̂V̂22 pB̂′+hδ̂ Σ̂, (8)

ψ1 = b(B̄− B̂)V̂22B̂′+bB̂V̂22(B̄− B̂)′+h(δ̄ − δ̂ )Σ̂+hδ̂ (Σ̄− Σ̂), (9)

ψ2 = b(B̄− B̂)V̂22(B̄− B̂)′+h(δ̄ − δ̂ )(Σ̄− Σ̂), (10)

and where δ̄ , δ̂ ,b, and h are scalars and are defined as follows:

δ̄ =
T (T −2)+ k
T (T − k−2)

− k+3
T (T − k−2)

· Ŝ2

1+ Ŝ2
, (11)

δ̂ =
(T −2)(T +1)
T (T − k−2)

, (12)

b =
T +1

T − k−2
, (13)

h =
T

T −m− k−1
. (14)

From (6) and (7), the HXZ and FF5 models imply different restrictions on α and yield different

predictive means and covariance matrices. As a result, their optimal portfolios are different. When ω = 0, the

predictive mean and covariance are the sample mean and covariance matrix, which are unbiasedly estimated

without the restriction on α . When ω = 1, the predictive mean and covariance matrix are fully determined

by the estimates that restrict α to zero.

Let x denote the n-vector with the ith element xi. With µ̃ and Σ̃, the Bayesian investor is assumed to

9
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choose x to maximize the mean-variance objective function:

max
x

x′µ̃ − γ

2
x′Ṽ x, (15)

where γ is the coefficient of relative risk aversion. For simplicity, we assume that γ is equal to three

throughout the paper. Without any constraint, the optimal portfolio weight x̃ is

x̃ =
1
γ

Ṽ−1
µ̃ =

1
γ

 Σ̃−1α̃

Ṽ−1
22 µ̃2 − B̃′Σ̃−1α̃

 . (16)

One important property in (16) is that if some of the non-benchmark assets in r1 have non-zero alphas,

the investor with benchmark assets of r2 should improve her portfolio Sharpe ratio by changing her portfolio

weights on the non-benchmark assets in proportion to their alphas. The alpha of a non-benchmark asset,

calculated with respect to a given asset pricing model, measures the change in the portfolio’s Sharpe ratio that

is driven by a marginal increase in the asset weight of the portfolio. Thus, the sign of alpha is the direction of

the marginal adjustment in portfolio weight space that yields the maximal increase in the portfolio’s Sharpe

ratio. Therefore, alphas explain the optimal way to marginally adjust the portfolio relative to the benchmark:

increase the weights of non-benchmark assets with positive alphas, and decrease the weights with negative

alphas.

In the framework of asset pricing, by the mathematical definition, the adjustment to the portfolio weight

can be infinitesimal. However, in the framework of investing, the adjustment is actually finite as the investor

is usually subject to portfolio constraints (Almazan et al., 2004). Certain risky assets are not tradable because

the investor cannot sell short with full use of the proceeds. Fama and French (2015b) show that, without a

short selling constraint, it is easy for an investor who is investing in two anomalies to have a leverage ratio

of more than 300, which is apparently unrealistic in practice.

Following Pástor and Stambaugh (2000), we assume that the mean-variance investor in the optimization

problem (15) is subject to the following margin requirements:

∑
j∈Λ

2|x j|+ ∑
j ̸∈Λ

|x j| ≤ c, (17)

where Λ denotes the set of positions in which the short position for the spread return j is risky, and c is
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the maximum permitted total value of risky long and short positions per dollar of the investor’s wealth. For

example, c= 2 corresponds to a margin requirement of 50% and c= 10 corresponds to a margin requirement

of 10%. When c = ∞, there is no margin requirement and the investor will invest in the capital market line

with the maximum Sharpe ratio that she can obtain.

Another reason for using constraint (17) is that it has a good statistical property when controlling for

estimation risk (Fan, Zhang, and Yu, 2012). For simplicity, suppose the short position of any spread return

j in constraint (17) is a risk-free asset. Then, (17) reduces to

n

∑
j=1

|x j|= ∥x∥1 ≤ c. (18)

Given the true mean µ and and covariance matrix V , the utility loss of the optimal portfolio x̃ from using the

predictive µ̃ and covariance Ṽ has an upper bound as:

∣∣(x̃′µ̃ − γ

2
x̃′Ṽ x̃)− (x̃′µ − γ

2
x̃′V x̃)

∣∣ ≤
∣∣x̃′µ̃ − x̃′µ|+ γ

2

∣∣x̃′Ṽ x̃− x̃′V x̃
∣∣

≤ ∥µ̃ −µ∥∞∥x̃∥1 +
γ

2
∥Ṽ −V∥∞∥x̃∥2

1, (19)

where ∥x̃∥1 is the L1 norm of vector x̃, and ∥µ̂ − µ∥∞ and ∥V̂ −V∥∞ are the maximum component-wise

estimation errors.7 Therefore, if ∥x̃∥1 is bounded above (economically, it is a margin requirement), the

utility loss resulting from estimation errors is controlled by the largest component-wise errors of ∥µ̃ −µ∥∞

and ∥Ṽ −V∥∞. As long as each element is estimated well, the overall utility is approximated well without

the accumulation of estimation errors.

3.2 Anomalies that are considered for investing

We consider the anomalies in Novy-Marx and Velikov (2016) as the non-benchmark risky assets. After

excluding those that are insignificant with FF5, 15 are left, including return-on-book equity, value-

momentum combo, idiosyncratic volatility, momentum, size, accruals, net issuance, investment, gross

margins, value-momentum-profitability combo, industry momentum, industry relative reversals, high-

frequency combo, seasonality, and industry low volatility. Among these 15 anomalies, the first five are

explained by HXZ but not FF5, and the remaining 10 are not explained by either HXZ and FF5.

7If x is an N-dimensional vector, ∥x∥1 = ∑
N
j=1 |x j| and ∥x∥∞ = max j |x j|. If X is an M ×N-dimensional matrix, ∥X∥∞ =

maxi ∑
N
j=1 |xi, j|, where xi, j is the element in row i and column j of X .

11

Electronic copy available at: https://ssrn.com/abstract=2752822



Table 3 reports the summary statistics of the anomalies. Panel A consists of those unexplained by FF5

but HXZ. The average alpha is 0.13% (t = 0.63) with HXZ and 0.67% (t = 3.45) with FF5. An interesting

observation is that the average R2 statistics of these two models are 50% and 53%, respectively, implying

that although HXZ outperforms FF5 in terms of alpha, there are half variations in the average anomaly

returns unexplained by both of them. Panel B consists of the 10 anomalies unexplained by either HXZ or

FF5. The average alphas are 0.72% (t = 4.11) and 0.75% (t = 4.44), respectively. The average regression

R2s of the two models are 18% and 22%, suggesting that there are more than three quarters of variations

in the average anomaly returns left unexplained by both models. Compared with Table 1, the high average

annualized Sharpe ratio, 0.71, is slightly smaller than that of the investment and profitability factors of HXZ

(0.82 and 0.75), but it is larger than any other factors.

3.3 Predictive means and standard deviations

According to (6) and (7), imposing an asset pricing model on the return-generating process with a confidence

of ω has a first-order effect on the predictive mean and a second-order effect on the predictive variance.

Hence, we examine the predictive means and standard deviations of risky assets before analyzing the

portfolio decisions. If there are no substantial differences in these parameter estimates, it is unlikely that

there are dramatic differences in portfolio allocations.

Panels A and B of Table 4 report the predictive means. It is apparent that by varying the confidence ω and

asset pricing model, the predictive mean of each asset is dramatically changed. For example, the predictive

mean of the return-on-book equity anomaly return is 0.71% per month if the investor is agnostic about HXZ

or FF5 by setting ω = 0 (the sample mean in this case). In contrast, if the investor believes dogmatically in

one of them (ω = 1), the predictive mean is 0.70% with HXZ and 0.25% FF5. The dramatic estimation bias

from using FF5 is due to the fact that FF5 cannot explain the return-on-book equity anomaly. When one

imposes a constraint by setting the alpha equal to zero when estimating the predictive mean, the estimate

is dramatically biased. Instead, since HXZ is able to describe the anomaly with an insignificant alpha, the

model is likely to capture the true mean of the return-generating process and the potential estimation bias

is negligible, as the imposed constraint is nearly slack. This argument is supported by Panel B of Table 4.

Since each anomaly in this panel cannot be explained by the two models, the estimates with them for the

predictive mean dramatically deviate from the unbiased estimate, the sample mean by setting ω = 0. For

instance, the unbiased predictive mean of the accrual anomaly is 0.26% per month, whereas it is −0.07%
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when using HXZ and −0.02% when using FF5.

Panels C and D of Table 4 report the predictive standard deviations. In contrast with the results in Panels

A and B, the difference in estimates between the two models is relatively small. This result is consistent

with Chan, Karceski, and Lakonishok (1999) who show that various models for forecasting covariances

generally perform quite similarly. In Panel C, although each anomaly can be explained by HXZ but not FF5,

the estimates of the predictive standard deviations with the two models are virtually the same. When ω = 1,

the biggest difference in the estimated predictive standard deviations between the two models is 0.09% in

the momentum anomaly, and amounts to only 1% of the estimate when ω = 0 (the case with an unbiased

predictive variance estimate). In Panel D, when ω = 1, the biggest difference is 0.08% in the ROE factor,

which amounts to approximately 3% of the estimate of ω = 0.

An interesting observation in Panel D is that the differences between ω = 1 and ω = 0 for both models

are generally larger than that in Panel C. For example, regarding the high-frequency combo anomaly, the

predictive standard deviations with the two models are 4.04% and 4.05% when ω = 1, and are both 3.77%

when ω = 0. The biases, 0.27% and 0.28%, amount to approximately 7% of 3.77%. We attribute this larger

bias between ω = 1 and ω = 0 to the larger proportion of variations in the average anomaly returns that are

left unexplained by the two factor models, as shown by the lower regression R2s in Table 3. Therefore, when

there is a significant mispricing error, imposing an asset pricing model leads to a large bias in the estimation

of the predictive standard deviation. To some extent, our finding is consistent with MacKinlay and Pástor

(2000) that when a risk factor is missing from an asset pricing model, the resulting mispricing is embedded

within the residual covariance matrix.

3.4 In-sample comparison

Table 5 reports optimal allocations per $100 of wealth when prior beliefs are centered on either of the two

asset pricing models, with varying degrees of confidence ω . The risky assets include the five anomalies

that can be explained by HXZ but not FF5 (see details in Panel A of Table 3), five factors in FF5, and

the investment and profitability factors of HXZ. Hence, the investment universe consists of 12 risky assets

and one risk-free asset. When the investor employs the HXZ model, the non-benchmark assets are the five

anomalies plus the HML, CMA, and RMW factors in FF5. Similarly, when FF5 is the asset pricing model,

the non-benchmark assets are the five anomalies plus the HXZ I/A and ROE factors.
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For a given c, let x̃ be the optimal portfolio under the predictive mean µ̃ and covariance Ṽ . We compute

the in-sample expected utility or certainty-equivalent return (CER) as:

CER = x̃′µ̃ − γ

2
x̃′Ṽ x̃. (20)

Moreover, we calculate the Sharpe ratio as:

Sharpe ratio =
x̃′µ̃√
x̃′Ṽx̃

. (21)

The investing problem (15) treats the risky assets on an individual basis, ignoring the fact that they are

constructed as portfolios of individual stocks, and a given stock can appear in a non-benchmark portfolio

and in each of the benchmark factors. For this reason, one can argue that the returns on the risky assets are

correlated; large differences in position-by-position allocations need not necessarily produce economically

significant differences in the overall portfolio characteristics. As a result, the CER and SR are more sensible

measures for model comparison.

In addition to portfolio weights, the last two rows of each panel in Table 5 report the in-sample CER and

Sharpe ratio. To facilitate understanding, we multiply the monthly CER by 1,200 to express it as percent

per year and multiply the monthly Sharpe ratio by
√

12 for an annual value. As confidence decreases, the

optimal portfolio converges to the portfolio based on the sample mean and covariance matrix of anomaly

returns (the case of ω = 0), regardless of the asset pricing model. The aim here is to explore the extent

to which this behavior occurs at interesting confidence levels of ω . The results in Table 5 are reported

for ω = 0.75 and 0.5 as well as the limiting cases ω = 1 (exact pricing) and ω = 0 (no use of a pricing

model). We consider two levels of margin requirements, c = ∞ and 2, which correspond to without a margin

requirement and with a 50% margin requirement.

Panel A of Table 5 is the case in which there is no margin requirement, i.e., c = ∞. When ω = 1, each

asset pricing model estimates the parameters of the non-benchmark assets with zero alphas, the portfolio

weights for these assets are zero. As a result, the investor allocates her wealth among the factors of the model

that she employs. However, when the investor does not have a dogmatic belief but places a confidence of

ω = 0.75, she will allocate across all of the risky assets, regardless of the asset pricing model. An interesting

result with this panel is that, while the portfolio is more diversified when the investor’s confidence level

decreases, the CER and Sharpe ratio do not improve substantially. Instead, the allocations on the non-
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benchmark assets are generally much smaller than the investments in the factors. In terms of the alternative

interpretation of the margin requirements in (19), the small portfolio weights on the non-benchmark assets

are partially due to estimation errors.

When the investor knows the mean and covariance, the CER is 42.6%. When she does not know the

mean and covariance and assumes a factor structure to estimate, the CER from using HXZ is at least 40.7%,

close to 42.6%. In contrast, the CER from using FF5 is at most 31.0%, far less than 42.6%. The performance

difference is mainly due to the fact that HXZ can price all the non-benchmark assets and imposing a factor

structure does not make the estimation biased. Instead, FF5 cannot price all the non-benchmark assets and

imposing a factor structure makes the estimation biased. As a result, HXZ outpreforms FF5.

Panel B reports the results of c = 2, which is a constraint with a 50% margin requirement. In this

case, the CER reduces dramatically. Even if the investor knows the true mean and covariance (ω = 0), the

CER is only 9.5%, much smaller than the counterpart 42.6% in Panel A that does not impose a margin

requirement. The first two columns of Panel B, with ω = 1, display the allocations corresponding to the

dogmatic beliefs in each of the two asset pricing models. In this case, each asset pricing model estimates

the parameters of the non-benchmark assets by restricting alphas equal to zero. According to Table 3 and

Hou, Xue, and Zhang (2019), ex post, HXZ explains the average returns of the five anomalies and the HML,

CMA, and RMW factors. Hence, the zero alpha constraint when using HXZ is nearly slack and innocuous.

With this tight margin requirement constraint, the optimal portfolio under the HXZ model includes four

assets: return-on-book equity (19.8), value-momentum combo (37.3), momentum (12.4), and MKT (61.0),

where only MKT is a benchmark asset. This result seems counterintuitive. HXZ can explain all the non-

benchmark assets, so the investor should allocate all his investment among the HXZ factors. However,

because of margin requirements, the investor cannot invest as much as Panel A in the HXZ factors. For

this reason, she switches to non-benchmark assets for risk diversification. FF5 cannot explain the non-

benchmark assets, so it is not surprising that the investor who imposes an FF5 factor structure invests in

these non-benchmark assets. Because of model misspecification, FF5 underperforms HXZ in terms of CER.

However, the underperformance is much less pronounced than the case without a margin requirement.

Table 6 reports the optimal portfolio choices, CERs, and Sharpe ratios when the investment universe of

risky assets are the 10 anomalies, five FF5 factors, and HXZ’s I/A and ROE factors. The key difference

between Tables 5 and 6 is that each of the anomaly returns in Tables 6 cannot be explained by HXZ or

FF5. From Table 3, both models have similar degrees of mispricing errors for the 10 anomalies. In Panel
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A, when there is no margin requirement, HXZ underperforms the case when the investor knows the mean

and covariance, but it still outperforms FF5. Hence, the model misspecification for imposing the HXZ

factor structure is less severe than imposing the FF5 factor structure. However, when including a margin

requirement in Panel B, the outperformance of HXZ become negligible.

As a mean-variance investor, if the distribution of asset returns is known, imposing an asset pricing

model by setting alphas equal to zero can lead to biased estimates of the portfolio parameters, which gives

rise to a CER loss. A better asset pricing model is the one that yields smaller biases in the predictive

mean and covariance matrix. As a result, it should have a smaller CER loss. Suppose the true mean and

covariance matrix are µ and V , and xo is the resulting optimal portfolio for a given c. We calculate the CER

as CERo = x′oµ− γ

2 x′oV xo. Then we calculate the CER of a suboptimal allocation xs as CERs = x′sµ− γ

2 x′sV xs,

where xs is an allocation that is optimal for the same c and ω under the predictive distribution from imposing

an asset pricing model. For example, if an asset pricing model is imposed, xs is the optimal allocation from

using the predictive mean and covariance matrix, µ̃ and Ṽ , that are estimated according to (6) and (7). The

difference CERo −CERs provides an economic measure of CER loss from imposing a pricing constraint on

the distribution of asset returns.

Figure 3 displays the annualized CER losses for an investor who believes in the sample mean and

covariance matrix that are estimated without imposing any asset pricing model, but is forced to hold a

portfolio chosen by another investor with a confidence ω in HXZ or FF5. The risky assets are the same as

Table 5, including five anomalies that can be explained by HXZ but not FF5, five factors in FF5, and the

investment and profitability factors in HXZ. For each of four values of c, the figure plots the CER loss versus

confidence ω . Losses are calculated for portfolios from HXZ and from FF5. The goal is to explore whether

HXZ is a better model for investing when it is a better model for pricing, as shown in Panel A of Table 3.

Figure 3 makes three statements. First, the CER loss increases monotonically with respect to the

confidence level ω . When ω = 0, the investor does not believe in the asset pricing model and the predictive

mean and covariance matrix are the same as the sample mean and covariance matrix. In this case, there is

no CER loss. When ω increases, the investor places a larger weight on the mean and covariance matrix that

are estimated by setting the alphas of non-benchmark assets equal to zero. The resulting predictive mean

and covariance matrix are more likely to be biased, and therefore, the CER loss is more likely to increase.

Second, the CER loss increases with respect to c. As c increases, the constraint of margin requirements

becomes less likely to be binding and the optimal portfolio is closer to the one suggested by the predictive
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mean and covariance matrix. Hence, the CER loss increases. Third and finally, HXZ outperforms FF5 when

the investor has a dogmatic belief in HXZ and does not suffer from a margin requirement. In a more realistic

setting, the investor does not have a dogmatic belief in HXZ and suffers from a margin requirement, HXZ

performs similarly as FF5.

Figure 4 displays the annualized CER losses for the case in which 10 anomaly spread returns cannot be

explained by either HXZ or FF5. As in Figure 3, the investor is assumed to believe in the sample mean and

covariance matrix but is forced to hold the portfolio chosen by another investor with confidence ω in HXZ

or FF5. The risky assets are those in Table 6. The goal here is to explore whether HXZ is a better model for

investing even when it performs similarly to FF5 for pricing the anomalies in Panel B of Table 3. Overall,

the performance difference between the two models is similar as Figure 3.

Figure 5 displays precisely the same analysis except that the CER losses are computed for an investor

who believes in HXZ with confidence ω but is forced to hold the portfolio chosen by another investor with

the same degree of confidence in FF5 (left two panels), and vice versa (right two panels). The upper two

panels correspond to the risky assets in Figure 3 and the lower two panels correspond to the risky assets in

Figure 4. When ω = 1 and c = 2, the CER loss for the investor who believes in one model but is forced

to use another model is always less than 2% per year. When c = 10, the CER losses for the investor who

believes HXZ but is forced to use FF5 are more than 7% per year, which is an economically large magnitude,

regardless of the risky assets. Similarly, the CER losses for the investor who believes in FF5 but is forced to

use HXZ are about 6% per year. When c = ∞, all of the CER losses are more than doubled, in comparison

to c = 10.

3.5 Out-of-sample comparison

A model with better in-sample performance for investing does not necessarily mean it has better out-of-

sample performance because of estimation errors. For example, DeMiguel, Garlappi, and Uppal (2009)

report that the Sharpe ratio is 0.219 for the mean-variance model with assets MKT, SMB, and HML, whereas

the Sharpe ratio is 0.096 with assets MKT, SMB, HML, momentum, 10 book-to-market portfolios, and 10

size portfolios. This example suggests that comparing models out-of-sample is important in that adding

more assets could reduce portfolio performance if the estimation errors are not controlled. Kan and Wang
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(2019) explicitly consider the out-of-sample utility loss using the sample mean and covariance matrix.8

3.5.1 Pseudo out-of-sample analysis

We follow Kozak, Nagel, and Santosh (2018) and perform a bootstrap simulation for out-of-sample

comparison, which maintains the i.i.d property over time, an assumption made in the main framework.

We randomly sample (with replacement) T +300 returns on the risky assets and use the first T to calculate

the portfolio weights, which are used for the remaining 300 observations to calculate the out-of-sample CER

(CEROS),

CEROS = µ̂x̃ −
γ

2
σ̂

2
x̃ , (22)

where µ̂x and σ̂2
x̃ are the sample mean and variance of the 300 out-of-sample excess returns of portfolio x̃

that is based on the first T observations. We repeat the procedure 1,000 times and report the average CEROS.

As the sample size is important for out-of-sample performance, we consider five values of T : 60, 120, 240,

360, and 600.

Table 7 reports the annualized CEROS for investing in the anomalies that can be explained by HXZ but

not FF5. There are four observations. First, for given values of c and ω , the CEROS increases as the sample

size T increases. For example, when c = 10 and ω = 1, the annualized CEROS of HXZ is 18.1% when

T = 60, and it increases monotonically to 26.4% when T = 600. Similarly, the annualized CEROS of HXZ

increases from 12.2% to 19.8% in this case. Second, when c = 2, since HXZ is a “correct” pricing model

and explains all of the anomalies, its CEROS is flat and does not change as ω decreases. This pattern holds

true regardless of the sample size T . In contrast, since FF5 cannot explain the anomalies and its estimates

for the predictive mean and covariance matrix are biased, the CEROS increases in general when ω decreases.

Third, fixing ω , the CEROS does not necessarily increase when the margin requirement is relaxed

(increasing c). When ω = 1 and T = 60, the annualized CEROS values at c = 2,10, and ∞ are 6.3%,

18.1%, and 14.8% for the HXZ model, and they are 4.6%, 12.2%, and −4.0% for the FF5 model. Finally,

the outperformance of HXZ becomes smaller when estimation errors are larger (e.g., estimating the model

with a small sample size), which is further confirmed in Table 8 if the investor looks at the annualized

8In the literature, there is a large number of papers that explain why the out-of-sample performance could be poor and how to
improve it, such as MacKinlay and Pástor (2000), Jagannathan and Ma (2003), Siegel and Woodgate (2007), Kan and Zhou (2007),
Garlappi, Uppal, and Wang (2007), DeMiguel et al. (2009), Tu and Zhou (2011), and DeMiguel et al. (2013), among others.
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SROSs. This conclusion continues to be true when the non-benchmark assets are the anomalies that cannot

be explained by either HXZ or FF5 ( Tables 9 and 10).

3.5.2 Real-time out-of-sample analysis

The previous analysis assumes that the risky returns are i.i.d over time. In practice, however, this assumption

does not hold and expected returns are varying over time,9 which means that the expected returns are moving

targets and can never be estimated accurately (Gârleanu and Pedersen, 2013). As such, the outperformance

of the HXZ model in the previous subsection may not exist in real time.

We use an expanding window approach to compare their out-of-sample performances. With an initial

window of 120 months, in each month t, we use data from month 1 to month t to compute the various

portfolio rules, and apply them to determine the investments in the next month. For instance, let x̃t be the

estimated optimal portfolio in month t and rt+1 be the excess return on the risky assets realized in month

t + 1. The realized excess return on the portfolio is rx̃,t+1 = x̃′trt+1. We then compute the average value of

the realized returns, µ̂x̃, and the variance, σ̂2
x̃ . The out-of-sample CER can be calculated accordingly.

Figure 6 plots the CEROSs for investing in anomalies that can be explained by HXZ but not FF5.

As shown in Table 7, when ω is high, the difference in CEROSs between HXZ and FF5 is economically

significant. For example, when ω = 1, the CEROS values for the two models are 22.2% and 16.3% at c = 10,

and 28.3% and 20.6% at c = 20, respectively. The difference in CEROSs suggests that the HXZ outperforms

the FF5 by 5.8% or 6.7% per year when the investor is subject to a 10% or 5% margin requirement. However,

when ω is low, the investor faces more model uncertainty, HXZ performs similarly as FF5. In the case of

no margin requirement, it could even underperforms FF5. Figure 7 plots the CEROS values for investing in

the anomalies that cannot be explained by either HXZ or FF5, and delivers a similar pattern as Figure 6.

4 Source of Difference between HXZ and FF5

In the mean-variance framework, the only two parameters are the predictive mean and covariance matrix of

risky assets. The better investing performance of HXZ, if there is any, must come from its better ability to

capture the mean, the covariance matrix, or both.

9We keep the normality assumption as it works well in evaluating portfolio performance in a mean-variance framework (Tu
and Zhou, 2004).
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This subsection considers the global-minimum-variance portfolio allocation. That is, the investor

chooses portfolio x to minimize x′Ṽ x with the margin requirement (17), where Ṽ is the predictive covariance

matrix and is given in (7). Mathematically, this is an extreme case of (15) with γ = ∞. The goal here is to

show that whether the estimates of Ṽ with HXZ and FF5 are different enough to yield different portfolios.

Figures 8 and 9 plot the in-sample annualized Sharpe ratio losses from the perspective of a global-

minimum-variance investor, who knows the true mean and covariance matrix but is forced to hold the global-

minimum-variance portfolio chosen by another investor who places a confidence of ω in HXZ or FF5, where

the sample mean and covariance matrix are assumed to be the true mean and covariance matrix. In addition

to the five factors in FF5 and investment and profitability factors in HXZ, the risky assets also include five

anomalies that can be explained by the HXZ but not the FF5 model (Figure 8), or 10 anomalies that cannot

be explained by the HXZ or the FF5 (Figure 9).

A striking pattern in Figure 8 is that the Sharpe ratio loss is negligible and is always less than 0.1 for

both models, regardless of c and ω . In fact, the Sharpe ratio losses are virtually the same when c exceeds

10. This suggests that imposing one of the two asset pricing models does not lead to a significant bias for

estimating the risky assets’ covariance matrix. In Figure 9, the Shapre ratio loss is large; it is at least 0.2 for

both models. However, the losses for the HXZ and FF5 are similar for given c and ω , suggesting that the

predictive means and covariance matrix with the two pricing models are biased and similar. The evidence in

these two figures is similar to Chan, Karceski, and Lakonishok (1999), who focus on individual stocks and

find that the Fama-French three-factor model performs the same as a nine-factor model under the global-

minimum-variance criterion. With this exercise, one can conclude that HXZ does not outperform FF5 in

describing the covariance matrix of asset returns.

5 Conclusion

There are two schools of thought in empirical asset pricing. One school tries to identify new factors that

generate abnormal returns relative to commonly used asset pricing models, and the other school attempts to

choose a couple of factors from existing ones to construct a new asset pricing model. Both schools have been

successful in the past four decades. The former has identified more than 300 factors (see, e.g., Harvey, Liu,

and Zhu, 2016), and the latter has proposed the HXZ, FF5, Stambaugh and Yuan (2017) mispricing-factor

model, Daniel, Hirshleifer, Sun (2020) behavioral-factor model, etc. When introducing a new model, it is
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typically examined for its superior pricing capabilities compared to current ones, encapsulated by the saying

“it takes a model to beat a model.”

Instead of exploring the pricing ability, in this paper we are interested in the investing implications

of the two representative models, HXZ and FF5. We argue that although HXZ has better pricing power,

documented in Hou, Xue, and Zhang (2019), its suggested strategies ignore margin requirements and model

uncertainty and, therefore, are hard to implement in practice. We show that if an investor is subject to margin

requirements and model uncertainty, she would not benefit much from using HXZ, relative to FF5. That is,

the difference between the two models for investing is not economically significant, if there is any.

There are several limitations or directions for future research. It is interesting to examine how transaction

costs affect the investing performance in our framework, in a similar spirit of Detzel, Novy-Marx, and

Velikov (2023) and Li, DeMiguel, and Martı́n-Utrera (2023). This paper assumes that asset returns are i.i.d

over time. It is of interest to relax this assumption and explore how conditional information affects the

investing performance of the two models. While the investment framework does incorporate the investor’s

varying beliefs in the asset pricing models, it does not address the linkage between the priors and the

economic objectives, which can significantly improve the investing performance (Tu and Zhou, 2010).
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Figure 1 Proportion of mispriced stocks over time
This figure plots the proportion of firms with significant alpha (at the 5% level) for each factor model over
time. The alpha of each firm is calculated with a rolling window of 60 months, with a requirement of at least
36 observations. Gray bars indicate NBER recessions. The sample period is 1972:01–2013:12.
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Figure 2 In-sample mean-variance frontiers
This figure plots the mean-variance frontiers (in % per month) for investing in the HXZ four factors, the FF5
five factors, or the joint factors of HXZ and FF5.
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Figure 3 In-sample certainty-equivalent return loss
This figure plots the in-sample certainty-equivalent return (CER, in % per year) loss from the perspective of
a mean-variance investor, who knows the true mean and covariance but is forced to hold the portfolio chosen
by another investor who places a confidence ω in HXZ or FF5. The portfolio consists of five anomalies that
can be explained by HXZ but FF5, five factors in FF5, and investment and profitability factors in HXZ. The
sample mean and covariance are assumed to be the true mean and covariance. c is the maximum value of
risky positions that can be established per dollar of wealth. The investor’s risk aversion is set to 3.
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Figure 4 In-sample certainty-equivalent return loss
This figure plots the in-sample certainty-equivalent return (CER, in % per year) loss from the perspective of
a mean-variance investor, who knows the true mean and covariance but is forced to hold the portfolio chosen
by another investor who places a confidence ω in HXZ or FF5. The portfolio consists of 10 anomalies that
cannot be explained by either HXZ or FF5, five factors in FF5, and investment and profitability factors in
HXZ. c is the maximum value of risky positions that can be established per dollar of wealth. The sample
mean and covariance are assumed to be the true mean and covariance. The investor’s risk aversion is set to
3.
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Figure 5 In-sample certainty-equivalent return loss
This figure plots the in-sample certainty-equivalent return (CER, in % per year) loss from the perspective
of a mean-variance investor, who believes in HXZ with a confidence ω but is forced to hold the portfolio
chosen by another investor with the same degree of confidence in FF5 (left two panels), and vice versa
(right two panels). In addition to the five factors in FF5 and the investment and profitability factors in HXZ,
the risky assets are five anomalies that can be explained by HXZ but not FF5 (upper two panels), or 10
anomalies that cannot be explained by either HXZ or FF5. c is the maximum value of risky positions that
can be established per dollar of wealth. The investor’s risk aversion is set to 3.
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Figure 6 Out-of-sample certainty-equivalent return
This figure plots the out-of-sample certainty-equivalent return (CER, in % per year) for a mean-variance
investor with risk aversion equal to 3. c is the maximum value of risky positions that can be established per
dollar of wealth. ω is the confidence level the investor places in HXZ or FF5. The risky assets include five
anomalies that can be explained by HXZ but not FF5, five factors in FF5, and investment and profitability
factors in HXZ. We use an expanding window approach in calculating the out-of-sample CER, where the
initial window is 120 months. In each month t, we use data from month 1 to month t to compute the various
portfolio rules, and apply them to determine the investments in the next month. For instance, let x̃t be the
estimated optimal portfolio in month t and rt+1 be the excess return on the risky assets realized in month
t +1. The realized excess return on the portfolio is rx̃,t+1 = x̃′trt+1. We then compute the mean and variance
of the realized returns as µ̂x̃ and σ̂2

x̃ . The out-of-sample CER is thus given by CEROS = µ̂x̃ − γσ̂2
x̃ /2.

30

Electronic copy available at: https://ssrn.com/abstract=2752822



0 0.5 1
0

20

40

60

0 0.5 1
0

20

40

60

0 0.5 1
0

20

40

60

0 0.5 1
0

20

40

60

HXZ
FF5

Figure 7 Out-of-sample certainty-equivalent return
This figure plots the out-of-sample certainty-equivalent return (CER, in % per year) for a mean-variance
Bayesian investor with risk aversion equal to 3. c is the maximum value of risky positions that can be
established per dollar of wealth. ω is the confidence level the investor places in HXZ or FF5. The risky assets
include 10 anomalies that cannot be explained by either HXZ or FF5, five factors in FF5, and investment and
profitability factors in HXZ. We use an expanding window approach in calculating the out-of-sample CER,
where the initial window is 120 months. In each month t, we use data from month 1 to month t to compute
the various portfolio rules, and apply them to determine the investments in the next month. For instance, let
x̃t be the estimated optimal portfolio in month t and rt+1 be the excess return on the risky assets realized in
month t + 1. The realized excess return on the portfolio is rx̃,t+1 = x̃′trt+1. We then compute the mean and
variance of the realized returns as µ̂x̃ and σ̂2

x̃ . The out-of-sample CER is thus given by CEROS = µ̂x̃−γσ̂2
x̃ /2.
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Figure 8 In-sample annualized Sharpe ratio loss
This figure plots the in-sample annualized Sharpe ratio loss from the perspective of a global-minimum-
variance investor, who knows the true mean and covariance but is forced to hold the global-minimum-
variance portfolio chosen by another investor who places a confidence ω in HXZ or FF5. The risky assets
include five anomalies that can be explained by HXZ but not FF5, five factors in FF5, and investment and
profitability factors in HXZ. c is the maximum value of risky positions that can be established per dollar of
wealth. The sample mean and covariance are assumed to be the true mean and covariance.
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Figure 9 In-sample annualized Sharpe ratio loss
This figure plots the in-sample annualized Sharpe ratio loss from the perspective of a global-minimum-
variance investor, who knows the true mean and covariance but is forced to hold global-minimum-variance
portfolio chosen by another investor who places a confidence ω in HXZ or FF5. The risky assets include
10 anomalies that cannot be explained by either HXZ or FF5, five factors in FF5, and investment and
profitability factors in HXZ. c is the maximum value of risky positions that can be established per dollar of
wealth. The sample mean and covariance are assumed to be the true mean and covariance.
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Table 1
Summary statistics of factors.

Panel A reports the summary statistics of asset pricing factors, where MKTHXZ, ME, I/A, and ROE are
the market, size, investment, and profitability factors in HXZ, and MKT, SMB, HML, CMA, and RMW
are the market, size, value, investment, and profitability factors in FF5, respectively. t-stat is the t-statistic
from the test that the average return of the factor is zero, and is calculated using White heteroskedasticity
robust standard error. AC(1) represents the first-order autocorrelation. Annualized Sharpe ratio (SR) for
each individual factor is calculated as the mean return divided by its standard deviation and multiplied by√

12. Panel B reports the cross-sectional correlations of the factors.

Panel A: Summary statistics

Mean t-stat Std Skew Kurt AC(1) SR

MKTHXZ 0.51 2.51 4.61 −0.58 5.11 0.08 0.39
ME 0.31 2.20 3.14 0.64 9.02 0.03 0.34
I/A 0.44 5.33 1.87 0.12 4.91 0.06 0.82
ROE 0.57 4.85 2.62 −0.75 8.01 0.10 0.75

MKT 0.53 2.57 4.61 −0.55 5.00 0.08 0.40
SMB 0.23 1.71 3.08 0.43 7.48 0.03 0.26
HML 0.39 2.96 3.01 −0.03 5.54 0.14 0.46
CMA 0.37 4.25 2.00 0.35 4.74 0.12 0.66
RMW 0.29 2.87 2.25 −0.44 14.4 0.18 0.44

Panel B: Correlation matrix
MKTHXZ ME I/A ROE MKT SMB HML CMA RMW

MKTHXZ 1.00 0.25 −0.37 −0.19 1.00 0.25 −0.32 −0.39 −0.24
ME 1.00 −0.12 −0.31 0.25 0.98 −0.07 −0.01 −0.38
I/A 1.00 0.06 −0.36 −0.15 0.69 0.90 0.10
ROE 1.00 −0.18 −0.38 −0.09 −0.09 0.67
MKT 1.00 0.25 −0.32 −0.39 −0.23
SMB 1.00 −0.11 −0.05 −0.39
HML 1.00 0.70 0.15
CMA 1.00 −0.03
RMW 1.00
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Table 2
Mean-variance spanning tests

This table reports the results of testing whether factors in FF5 can be spanned by the HXZ four factors. W is
the Wald test under conditional homoskedasticity, We is the Wald test under the i.i.d. elliptical distribution,
Wa is the Wald test under the conditional heteroskedasticity, J1 is the Bekerart-Urias test with the Errors-in-
Variables (EIV) adjustment, J2 is the Bekerart-Urias test without the EIV adjustment, and J3 is the DeSantis
test. All of the six tests have an asymptotic Chi-Squared distribution with 2m degrees of freedom, where
m is the number of non-benchmark factors. As a comparison, the last column reports the GRS statistics of
Gibbons, Ross, and Shanken (1989). The p-values are reported in the parentheses.

W We Wa J1 J2 J3 GRS

FF5 224.6 103.2 126.5 75.7 73.3 173.6 0.62
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.69)

CMA 23.2 12.9 15.4 12.4 12.4 16.7 0.13
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.72)

RMW 97.2 41.1 49.9 22.1 21.9 37.9 0.23
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.63)
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Table 3
Summary statistics of anomalies.

This table reports the summary statistics of anomaly long-short spread returns, which are from Novy-Marx
and Velikov (2016) and used in this paper as non-benchmark risky assets in portfolio allocation. Sharpe
ratios (SRs) are reported in annualized terms. α , t-stat, and R2 are based on HXZ and FF5, respectively.
Average represents the average absolute value of the statistics in the same column. Panel A includes
anomalies of return-on-book equity (Return-on-book equity), Value-momentum combo, idiosyncratic
volatility (Idiosyncratic volatility), momentum, and return-on-market equity (Size). Panel B includes
anomalies of accruals, net issuance (rebal.:A), investment, gross margins, Value-momentum-profitability
combo, industry momentum (Industry momentum), industry relative reversals (Industry relative reversals),
high-frequency combo (High-frequency combo), seasonality, and industry low volatility (Industry low
volatility).

HXZ FF5
SR α t-stat R2 α t-stat R2

Panel A: Anomalies that can be explained by HXZ but not FF5
Return-on-book equity 0.47 0.00 0.01 0.76 0.56 3.91 0.68
Value-momentum combo 0.61 0.03 0.14 0.29 0.46 2.32 0.31
Idiosyncratic volatility 0.29 0.19 1.02 0.73 0.47 2.71 0.77
Momentum 0.56 0.18 0.59 0.29 1.17 4.86 0.52
Size 0.73 0.27 1.39 0.45 0.69 3.43 0.37

Average 0.53 0.13 0.63 0.50 0.67 3.45 0.53

Panel B: Anomalies that cannot be explained by HXZ or FF5
Accruals 0.28 0.38 2.80 0.23 0.31 2.27 0.19
Net issuance 0.88 0.45 3.53 0.25 0.41 3.55 0.35
Investment 0.61 0.30 2.31 0.27 0.33 2.79 0.33
Gross margins 0.02 0.34 2.69 0.34 0.33 2.78 0.38
Value-momentum-profitability combo 1.01 0.89 4.35 0.27 1.23 6.66 0.36
Industry momentum 0.45 0.74 2.59 0.05 0.95 3.47 0.08
Industry relative reversals 0.70 0.95 4.80 0.16 0.74 4.16 0.28
High-frequency combo 1.36 1.32 7.44 0.02 1.38 7.96 0.01
Seasonality 0.69 0.88 4.70 0.09 0.88 4.84 0.09
Industry low volatility 1.07 0.92 5.90 0.13 0.89 5.93 0.16

Average 0.71 0.72 4.11 0.18 0.75 4.44 0.22
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Table 4
Predictive means and standard deviations of anomalies.

This table reports the predictive means (in percentage) and standard deviations of the anomaly long-
short spread returns from Novy-Marx and Velikov (2016) and different benchmark factors in HXZ and FF5,
respectively. ω is the confidence level the investor places in the HXZ or the FF5 model.

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: Predictive means of anomalies that can be explained by HXZ but not FF5
Return-on-book equity 0.70 0.25 0.70 0.36 0.70 0.48 0.71
Value-momentum combo 0.87 0.45 0.87 0.55 0.87 0.66 0.88
Idiosyncratic volatility 0.41 0.19 0.46 0.30 0.51 0.41 0.62
Momentum 1.04 0.24 1.07 0.47 1.10 0.70 1.16
Size 0.86 0.46 0.92 0.63 0.98 0.79 1.11
HML 0.33 0.37 0.34 0.37 0.35 0.37 0.37
CMA 0.36 0.38 0.36 0.38 0.37 0.38 0.38
RMW 0.26 0.29 0.27 0.29 0.27 0.29 0.29
I/A 0.44 0.35 0.44 0.37 0.44 0.39 0.44
ROE 0.58 0.19 0.58 0.29 0.58 0.39 0.58
SMB 0.31 0.31 0.31 0.31 0.31 0.31 0.31
MKT 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Panel B: Predictive means of anomalies that cannot be explained by HXZ or FF5
Accruals −0.07 −0.02 0.01 0.05 0.09 0.12 0.26
Net issuance 0.40 0.41 0.49 0.49 0.58 0.58 0.76
Investment 0.31 0.26 0.37 0.33 0.43 0.40 0.55
Gross margins −0.27 −0.26 −0.20 −0.19 −0.13 −0.12 0.02
Value-momentum-profitability combo 0.71 0.37 0.89 0.64 1.07 0.90 1.43
Industry momentum 0.18 −0.04 0.33 0.17 0.48 0.37 0.78
Industry relative reversals 0.10 0.21 0.30 0.38 0.50 0.55 0.90
High-frequency combo 0.35 0.21 0.63 0.52 0.90 0.83 1.45
Seasonality 0.06 0.03 0.25 0.22 0.43 0.41 0.80
Industry low volatility 0.29 0.26 0.48 0.46 0.68 0.66 1.07
HML 0.33 0.39 0.35 0.39 0.36 0.39 0.39
CMA 0.36 0.37 0.36 0.37 0.36 0.37 0.37
RMW 0.26 0.29 0.27 0.29 0.27 0.29 0.29
I/A 0.44 0.34 0.44 0.37 0.44 0.39 0.44
ROE 0.57 0.18 0.57 0.28 0.57 0.37 0.57
SMB 0.23 0.23 0.23 0.23 0.23 0.23 0.23
MKT 0.53 0.53 0.53 0.53 0.53 0.53 0.53
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Table 4 (continued)

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel C: Predictive standard deviations of anomalies that can be explained by HXZ but not FF5
Return-on-book equity 5.30 5.36 5.30 5.35 5.30 5.33 5.30
Value-momentum combo 5.01 5.07 5.01 5.06 5.01 5.04 5.00
Idiosyncratic volatility 7.53 7.55 7.53 7.54 7.52 7.53 7.52
Momentum 7.30 7.39 7.29 7.37 7.29 7.34 7.27
Size 5.36 5.42 5.35 5.40 5.34 5.37 5.31
HML 3.06 3.05 3.06 3.05 3.06 3.05 3.06
CMA 2.03 2.02 2.03 2.02 2.03 2.02 2.02
RMW 2.30 2.28 2.30 2.28 2.29 2.28 2.29
I/A 1.90 1.92 1.90 1.92 1.90 1.91 1.90
ROE 2.64 2.71 2.64 2.70 2.64 2.68 2.64
SMB 3.09 3.09 3.09 3.09 3.09 3.09 3.09
MKT 4.69 4.70 4.69 4.70 4.69 4.70 4.69

Panel D: Predictive standard deviations of anomalies that cannot be explained by HXZ or FF5
Accruals 3.27 3.27 3.26 3.27 3.26 3.26 3.25
Net issuance 3.12 3.12 3.10 3.10 3.08 3.08 3.05
Investment 3.19 3.19 3.18 3.18 3.17 3.17 3.15
Gross margins 3.26 3.26 3.26 3.26 3.26 3.27 3.27
Value-momentum-profitability combo 5.17 5.22 5.13 5.16 5.09 5.11 5.01
Industry momentum 6.24 6.25 6.22 6.23 6.21 6.22 6.18
Industry relative reversals 4.63 4.63 4.60 4.60 4.58 4.58 4.53
High-frequency combo 4.04 4.05 3.97 3.98 3.90 3.91 3.77
Seasonality 4.21 4.21 4.18 4.19 4.16 4.17 4.12
Industry low volatility 3.67 3.67 3.63 3.63 3.59 3.59 3.51
HML 3.06 3.03 3.06 3.03 3.05 3.03 3.05
CMA 2.02 2.01 2.02 2.01 2.01 2.01 2.01
RMW 2.28 2.26 2.28 2.26 2.28 2.26 2.28
I/A 1.88 1.91 1.88 1.91 1.88 1.90 1.88
ROE 2.63 2.71 2.63 2.70 2.63 2.68 2.63
SMB 3.09 3.10 3.09 3.10 3.09 3.10 3.09
MKT 4.64 4.64 4.64 4.64 4.64 4.64 4.64
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Table 5
Optimal allocations (in-sample) for investing in anomalies that can be explained by HXZ but not FF5.

This table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance Bayesian
investor with relative risk aversion equal to 3. c is the maximum value of risky positions that can be
established per dollar of wealth. ω is the confidence level the investor places in HXZ or FF5. The risky
assets include five anomalies that can be explained by HXZ but not FF5, five factors in FF5, and investment
and profitability factors in HXZ. Also reported are the certainty-equivalent return (CER, in % per year), and
annualized Sharpe ratio of the portfolio’s return with respect to the given predictive distribution.

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = ∞ (without margin requirement)
Return-on-book equity 0.0 0.0 −16.8 −16.1 −33.7 −32.6 −67.7
Value-momentum combo 0.0 0.0 −15.4 −14.7 −30.9 −29.9 −62.1
Idiosyncratic volatility 0.0 0.0 13.7 13.1 27.5 26.6 55.2
Momentum 0.0 0.0 10.3 9.9 20.7 20.1 41.6
Size 0.0 0.0 17.7 16.9 35.5 34.4 71.3
HML 0.0 −70.9 12.8 −41.3 25.7 -11.2 51.7
CMA 0.0 577.8 28.7 463.7 57.5 350.3 115.6
RMW 0.0 376.7 −2.9 281.7 −5.7 186.5 −11.5
I/A 597.3 0.0 560.9 105.0 524.9 213.6 454.1
ROE 416.5 0.0 403.3 84.8 390.4 172.5 365.6
SMB 238.2 161.3 255.6 194.2 273.4 229.4 309.8
MKT 180.6 187.6 189.2 192.2 198.2 198.5 216.6

CER 40.7 27.4 40.8 28.3 41.2 31.0 42.6
Sharpe ratio 1.56 1.28 1.57 1.30 1.57 1.36 1.60
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Table 5 (continued)

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel B: c = 2 (with margin requirement)
Return-on-book equity 19.8 0.0 18.7 0.0 17.6 6.8 3.5
Value-momentum combo 37.3 12.6 34.3 29.6 31.3 40.2 19.8
Idiosyncratic volatility 0.0 6.5 0.0 14.5 0.0 14.4 12.1
Momentum 12.4 0.0 16.4 0.0 20.4 0.0 31.0
Size 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HML 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CMA 0.0 44.7 0.0 16.6 0.0 0.0 0.0
RMW 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROE 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SMB 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MKT 61.0 72.5 61.2 78.5 61.4 77.1 67.2

CER 9.0 6.2 9.1 6.6 9.2 7.3 9.5
Sharpe ratio 0.93 0.75 0.93 0.75 0.92 0.79 0.91
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Table 6
Optimal allocations (in-sample) for investing in anomalies that cannot be explained by the HXZ or FF5.

This table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance Bayesian
investor with risk aversion equal to 3. c is the maximum value of risky positions that can be established
per dollar of wealth. ω is the confidence level the investor places in HXZ or FF5. The risky assets include
10 anomalies from Novy-Marx and Velikov (2016) that cannot be explained by either HXZ or FF5, five
factors in FF5, and investment and profitability factors in HXZ. Also reported are the certainty-equivalent
return (CER, in % per year), and annualized Sharpe ratio of the portfolio’s return with respect to the given
predictive distribution.

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = ∞ (without margin requirement)
Accruals 0.0 0.0 23.9 22.8 50.9 49.2 117.1
Net issuance 0.0 0.0 34.9 33.3 74.4 71.9 171.1
Investment 0.0 0.0 15.4 14.7 32.8 31.6 75.3
Gross margins 0.0 0.0 20.3 19.4 43.3 41.8 99.6
Value-momentum-profitability combo 0.0 0.0 28.5 27.1 60.6 58.5 139.3
Industry momentum 0.0 0.0 6.0 5.7 12.8 12.4 29.5
Industry relative reversals 0.0 0.0 34.0 32.4 72.4 69.9 166.4
High-frequency combo 0.0 0.0 50.8 48.4 108.3 104.5 248.8
Seasonality 0.0 0.0 27.8 26.5 59.2 57.1 136.0
Industry low volatility 0.0 0.0 44.8 42.7 95.4 92.1 219.3
HML 0.0 −39.2 3.4 −26.5 7.2 −13.2 16.5
CMA 0.0 531.3 19.7 421.1 41.9 313.8 96.3
RMW 0.0 357.2 −5.6 265.2 −11.9 172.3 −27.4
I/A 598.0 0.0 504.5 49.2 417.6 106.2 269.5
ROE 396.6 0.0 379.0 74.9 371.4 161.6 395.8
SMB 201.5 127.2 184.9 127.1 172.4 131.8 163.7
MKT 178.2 182.7 157.7 160.0 140.1 140.7 116.1

CER 37.8 24.5 41.3 28.4 52.5 41.4 105.4
Sharpe ratio 1.51 1.21 1.57 1.31 1.78 1.58 2.52
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Table 6 (continued)

ω = 1 ω = 0.75 ω = 0.5 ω = 0
HXZ FF5 HXZ FF5 HXZ FF5 All

Panel B: c = 2 (with margin requirement)
Accruals 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Net issuance 0.0 26.6 0.0 34.3 0.0 0.0 0.0
Investment 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gross margins 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Value-momentum-profitability combo 33.1 3.6 54.8 30.6 51.7 42.3 33.7
Industry momentum 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Industry relative reversals 0.0 0.0 0.0 0.0 0.0 0.0 0.0
High-frequency combo 0.0 0.0 4.3 3.1 30.7 37.5 66.3
Seasonality 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Industry low volatility 0.0 0.0 0.0 0.0 0.0 0.4 0.0
HML 0.0 25.6 0.0 1.2 0.0 0.0 0.0
CMA 0.0 11.3 0.0 0.0 0.0 0.0 0.0
RMW 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROE 39.4 0.0 13.8 0.0 0.0 0.0 0.0
SMB 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MKT 55.0 65.8 54.3 61.6 35.3 39.7 0.0

CER 7.4 5.9 8.4 6.8 10.3 9.1 15.6
Sharpe ratio 0.88 0.75 0.89 0.80 1.10 0.99 1.62
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Table 7
Out-of-sample CER for investing in anomalies that can be explained by HXZ but not FF5.

This table reports the out-of-sample CER (in % per year) for a mean-variance Bayesian investor with
risk aversion equal to 3. c is the maximum value of risky positions that can be established per dollar of
wealth. ω is the confidence level the investor places in HXZ or FF5. The risky assets include five anomalies
from Novy-Marx and Velikov (2016) that can be explained by HXZ but not FF5, five factors in FF5, and
investment and profitability factors in HXZ. We randomly sample (with replacement) T + 300 returns of
the risky assets and use the first T to calculate the portfolio weights, which are used to the remaining 300
observations for calculating the out-of-sample CER. The procedure is repeated 1,000 times; average CERs
are shown.

ω = 1 ω = 0.75 ω = 0.50 ω = 0
T HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = ∞ (without margin requirement)
60 14.8 −4.0 10.9 −0.7 −3.6 −8.0 −90.1

120 29.3 14.0 27.9 18.9 22.5 18.9 −4.6
240 35.2 21.1 34.8 26.7 32.6 29.3 21.8
360 37.3 23.3 37.2 29.2 35.9 32.5 29.6
600 38.7 24.9 38.8 30.8 38.2 34.7 34.8

Panel B: c = 2 (with margin requirement)
60 6.3 4.6 6.4 5.4 6.5 5.9 6.2

120 7.5 5.6 7.7 6.5 7.7 7.1 7.5
240 8.7 6.5 8.9 7.6 8.9 8.4 8.7
360 9.2 6.8 9.4 8.1 9.4 8.9 9.2
600 9.6 7.3 9.8 8.8 9.9 9.5 9.8
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Table 8
Out-of-sample annualized Share ratio for investing in anomalies that can be explained by HXZ but not FF5.

This table reports the out-of-sample Sharpe ratio for a mean-variance Bayesian investor with risk aversion
equal to 3. c is the maximum value of risky positions that can be established per dollar of wealth. ω is the
confidence level the investor places in HXZ or FF5. The risky assets include five anomalies that can be
explained by HXZbut not FF5, five factors in FF5, and investment and profitability factors in HXZ. We
randomly sample (with replacement) T + 300 returns of the risky assets and use the first T to calculate
the portfolio weights, which are used to the remaining 300 observations for calculating the out-of-sample
Sharpe ratio. The procedure is repeated 1,000 times; average Sharpe ratios (annualized by multiplying

√
12)

are shown.

ω = 1 ω = 0.75 ω = 0.50 ω = 0
T HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = ∞ (without margin requirement)
60 1.34 0.98 1.32 1.07 1.24 1.08 1.06

120 1.45 1.11 1.44 1.22 1.38 1.26 1.24
240 1.51 1.19 1.51 1.32 1.48 1.38 1.38
360 1.54 1.22 1.54 1.36 1.52 1.43 1.44
600 1.55 1.25 1.56 1.39 1.55 1.47 1.50

Panel B: c = 2 (with margin requirement)
60 0.71 0.63 0.72 0.67 0.71 0.69 0.68

120 0.79 0.72 0.80 0.76 0.80 0.77 0.77
240 0.88 0.79 0.89 0.85 0.88 0.87 0.86
360 0.92 0.84 0.93 0.90 0.93 0.92 0.90
600 0.97 0.88 0.98 0.95 0.98 0.97 0.96
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Table 9
Out-of-sample CER for investing in anomalies that cannot be explained by either HXZ or FF5.

This table reports the out-of-sample CER (in % per year) for a mean-variance Bayesian investor with
risk aversion equal to 3. c is the maximum value of risky positions that can be established per dollar of
wealth. ω is the confidence level the investor places in HXZ or FF5. The risky assets include 10 anomalies
from Novy-Marx and Velikov (2016) that cannot be explained by eithr HXZ or FF5, five factors in FF5,
and investment and profitability factors in HXZ. We randomly sample (with replacement) T + 300 returns
of the risky assets and use the first T to calculate the portfolio weights, which are used to the remaining 300
observations for calculating the out-of-sample CER. The procedure is repeated 1,000 times; average CERs
are shown.

ω = 1 ω = 0.75 ω = 0.50 ω = 0
T HXZ FF5 HXZ FF5 HXZ FF5 All

Panel A: c = ∞ (without margin requirement)
60 11.3 −7.1 31.3 17.8 35.7 29.2 −146

120 25.9 10.8 49.5 38.8 63.8 58.5 13.8
240 31.7 17.7 56.6 46.6 75.1 69.8 66.3
360 33.9 20.0 58.9 48.9 78.3 72.9 80.7
600 35.4 21.6 60.5 50.7 81.0 75.5 91.6

Panel B: c = 2 (with margin requirement)
60 6.7 5.1 8.6 7.6 10.4 10.0 11.7

120 7.9 5.7 10.1 9.0 12.0 11.6 13.1
240 8.7 6.3 11.0 9.8 13.0 12.6 14.0
360 9.0 6.5 11.4 10.2 13.4 13.0 14.4
600 9.3 6.7 11.7 10.2 13.8 13.5 14.9
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Table 10
Out-of-sample annualized Share ratio for investing in anomalies that cannot be explained by either HXZ or
FF5.

This table reports the out-of-sample Sharpe ratio for a mean-variance Bayesian investor with risk aversion
equal to 3. c is the maximum value of risky positions that can be established per dollar of wealth. ω is the
confidence level the investor places in HXZ or FF5. The risky assets include 10 anomalies from Novy-Marx
and Velikov (2016) that cannot be explained by either HXZ or FF5, five factors in FF5, and investment and
profitability factors in HXZ. We randomly sample (with replacement) T + 300 returns of the risky assets
and use the first T to calculate the portfolio weights, which are used to the remaining 300 observations for
calculating the out-of-sample Sharpe ratio. The procedure is repeated 1,000 times; average Sharpe ratios
(annualized by multiplying

√
12) are shown.

ω = 1 ω = 0.75 ω = 0.50 ω = 0
T HXZ FF5 HXZ FF5 HXZ FF5 All

Panel C: c = ∞

60 1.28 0.91 1.62 1.38 1.78 1.65 1.76
120 1.39 1.04 1.81 1.62 2.03 1.94 2.06
240 1.45 1.11 1.91 1.76 2.18 2.13 2.25
360 1.47 1.14 1.94 1.81 2.24 2.20 2.33
600 1.49 1.17 1.98 1.85 2.29 2.26 2.41

Panel A: c = 2
60 0.85 0.72 0.99 0.94 1.13 1.11 1.21

120 0.97 0.79 1.11 1.07 1.25 1.26 1.35
240 1.04 0.84 1.18 1.15 1.33 1.35 1.46
360 1.08 0.87 1.21 1.19 1.38 1.41 1.52
600 1.12 0.89 1.23 1.22 1.43 1.48 1.58
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