Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

6-2012

iIFALCON: A neural architecture for hierarchical planning

Budhitama SUBAGDJA

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Computer and Systems Architecture Commons, and the Databases and Information
Systems Commons

Citation

SUBAGDJA, Budhitama and TAN, Ah-hwee. iIFALCON: A neural architecture for hierarchical planning.
(2012). Neurocomputing. 86, 124-139.
Available at: https://ink.library.smu.edu.sg/sis_research/5222

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Neurocomputing 86 (2012) 124-139

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at SciVerse ScienceDirect

Neurocomputing

iFALCON: A neural architecture for hierarchical planning

Budhitama Subagdja™®, Ah-Hwee Tan

School of Computer Engineering, Nanyang Technological University, Singapore

ARTICLE INFO

Article history:

Received 13 June 2011

Received in revised form

25 November 2011

Accepted 17 January 2012
Communicated by N.T. Nguyen
Available online 24 February 2012

Keywords:

Hierarchical planning

Plan learning

Adaptive resonance theory

ABSTRACT

Hierarchical planning is an approach of planning by composing and executing hierarchically arranged
predefined plans on the fly to solve some problems. This approach commonly relies on a domain expert
providing all semantic and structural knowledge. One challenge is how the system deals with
incomplete ill-defined knowledge while the solution can be achieved on the fly. Most symbolic-based
hierarchical planners have been devised to allow the knowledge to be described expressively. However,
in some cases, it is still difficult to produce the appropriate knowledge due to the complexity of the
problem domain especially if the missing knowledge must be acquired online. This paper presents a
novel neural-based model of hierarchical planning that can seek and acquire new plans online if the
necessary knowledge are lacking. It enables all propositions and descriptions of plans to be computed
and learnt simultaneously as inherent features of the model rather than discretely processed like in
most symbolic approaches. Using a multi-channel adaptive resonance theory (fusion ART) neural
network as the basic building block of the architecture and a new representation technique called
gradient encoding, the so-called iFALCON architecture can capture and manipulate sequential and
hierarchical relations of plans on the fly. Case studies using blocks world domain and an agent in Unreal
Tournament video game demonstrate that the model can be used to execute, plan, and discover new
plans through experiences.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The ability to form and follow plans in an unanticipated condi-
tion is an important feature of an autonomous agent. Given a goal
condition, a planning agent comes up with a plan which is a
sequence of steps that lead from the starting condition to the goal.
Computationally, a direct approach to find a plan comprises search-
ing the state space of the problem using a search algorithm usually
handled in symbolic manners [1]. However, current models of
planning generally assume the availability of partial plans arranged
hierarchically as knowledge pre-given by a programmer or a domain
expert. This kind of approach is also known as hierarchical plan-
ning [2]. The hierarchical planner can be combined with learning
from experiences when plans are incomplete [3-7]. This approach
may relieve domain experts from crafting complete and correct
knowledge for the hierarchical planner.

When the planning and plans acquisition are online, situated,
and tightly coupled in a dynamic environment, the process becomes
more challenging. Some planning approaches have considered
learning-by-doing in which the definition or parameters of operators

* Corresponding author.
E-mail addresses: budhitama@ntu.edu.sg (B. Subagdja),
asahtan@ntu.edu.sg (A.-H. Tan).

0925-2312/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2012.01.008

are acquired by observation and practices on the run [8-10].
However, acquiring complex hierarchical structure of plans directly
from experiences while the agent is executing or searching for the
plans is still a major issue.

Different neural-inspired models or brain-like structures have
also been proposed as controllers of the planning processes [11,12].
These approaches still do not capture plans on the run nor flexibly
reuse them in different situations. Some other works on neural
networks for declarative memory and knowledge have already
considered both the biological plausibility and the representational
adequacy of reactive planning systems [13] and relating to the state-
space search method by demonstrating a simple backward chaining
process to search for a plan over the neural network structure [14].
However, the same issue of capturing hierarchical plans on the fly is
almost totally untouched.

This paper presents a new neural architecture for hierarchical
planning agents featuring learning to capture new plans on the run.
The proposed architecture is built to process and handle complex
representation like sequences and hierarchical structure which
adequately support many high level cognitive functions. The archi-
tecture is a composition of simpler multi-channel neural networks
as building blocks called fusion ART [15-17]. Unlike most conven-
tional neural network architectures such as multi-layered percep-
trons or associative networks, a fusion ART network is continually
processing information in cycles of categorizing, matching, learning,

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.01.008
mailto:budhitama@ntu.edu.sg
mailto:asahtan@ntu.edu.sg
dx.doi.org/10.1016/j.neucom.2012.01.008

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139 125

and dynamically allocating new neurons based on some adjustable
parameters. The proposed architecture, called iFALCON, combines
different fusion ARTs and can map symbolic descriptions into
weighted neural connections and uses the knowledge to autono-
mously find and capture a solution.

The model turns interacting pattern matching processes in the
neural network into a state-space search mechanism for planning.
As inherent in the neural network, the plans can be processed
simultaneously and learnt continuously rather than separately or
serially processed like in most symbolic-based approaches. Our
contributions to the current state-of-the-art can be described as
follows:

e We present a new neural encoding technique to represent
sequences and transient hierarchical structure as activation
patterns that can be learnt, matched, and read out (recall) in
the neural network supporting hierarchical planning processes
like plan retrieval, execution, and backtracking.

o We describe how different components of neural networks can
be combined to realize a hierarchical planning system that can
execute plans and expand subgoals to achieve the overall goal.

e We present an online search mechanism in the neural network
to discover alternative plans whenever an impasse condition
occurs or the applicable plan for the goal is unknown. This
includes the mechanism to capture the successful search
episode into a new plan.

e We also demonstrate how planning, learning, and execution
can seamlessly interleave with each other in continuous cycles
of activity using and forming the dynamic hierarchical struc-
ture of plans in the neural network.

The main objective of this paper is neither suggesting a new
ultimate planner that can produce optimal solutions nor provid-
ing the accurate picture of how a biological brain conveys
planning. Instead, the model is developed mainly to explore the
solutions for learning and adaptation in plan-based and planning
agents using a biologically-plausible mechanisms and structures.
Implementations and experiments have been conducted as proof-
of-concepts that iFALCON can be set up to solve a planning
problem as a hierarchical planner. The implementation of iFAL-
CON demonstrates that the planning can be improved over time
while new plans are discovered.

The rest of the paper is organized as follows. Section 2
discusses the process of planning and how plans can be repre-
sented and processed. Section 3 discusses how planning can be
represented in neural networks. The section describes the self-
organizing neural network model called fusion ART used as the
building block of the planning architecture. The section also
introduces iFALCON as the proposed planning agent architecture.
Section 4 shows the results from our implementation of the
architecture using the blocks world domain. It confirms that
iFALCON can follow plans as prior knowledge while invent and
learn new ones when the knowledge is insufficient. Section 5 also
demonstrate the use of iFALCON for controlling non-player
character (NPC) in a realtime first-person-shooter video game.
Section 6 presents the analysis of the performance of iFALCON
and explains current limitations of the proposed model and
discusses possible extensions to address them. Section 7 sum-
marizes and concludes the work with some discussion on further
use and development of the architecture.

2. Hierarchical planning

Planning is the process of finding a course of actions or a recipe
by taking a goal description, the current state of the environment

and available actions to come up with a plan so that if an agent
executes this plan in the right order starting from the initial state,
the specified goal will be carried out after the execution.

A plan can be defined to consist of preconditions that make the
plan applicable, the end results after its execution as the goal
conditions to achieve, and the sequence of actions to follow.

Definition 1. A plan 7w is a tuple 7= <{Pz,GrAz> in which
Pre2% Gre2% and A, e2”. A proposition peS and a step of
action a; € 4.

Given a finite set of plan (plan repository) I1, mwe Il can be
selected for execution if it is applicable at the current moment
and the end results fulfils the goal conditions to achieve.

Definition 2. Given P2 the current state of affair and Ge2°
the goal conditions to achieve, a plan 7 e IT can be selected for
execution if Pr =P and G, 2G.

A classical approach of planning can be applied to find a new
plan if no applicable plan can be found directly in /1. With goal G
and initial state P, a forward-chaining search can be conducted by
firstly selecting an applicable plan 7; (Pr,) and appending the
actions Ay, , of another plan 7; ¢ such that P, , = G, iteratively
until a plan 7; is appended in which P, = G, ,. On the other hand,
a backward-chaining approach can also be applied by firstly
selecting m; wherein G, =2 G and iteratively A, _, is inserted at
the beginning of A, wherein G, , 2 Py, until 7, that G, 2 Pr,,,
and Pn, =P.

The basic forward or backward search method may be
impractical for agents situated in a complex dynamic environ-
ment as the number of possible branches of alternatives in any
state may be intractable. Different techniques like heuristic-
guided search [19,20], and hierarchical planning [2] are usually
employed to deal with the complexity.

In hierarchical planning [2] (it is often known also as Hier-
archical Transition Network), plans are selected and composed
hierarchically from a memory storage or repository by employing
non-primitive actions to carry out subplans during execution. The
approach can take less computational efforts as it does not have
to search all possible sequences but focus only options as
prescribed by subplans [21,22]. The issue is no longer to find
the right sequence to achieve the goal, but to choose the right goal
(deliberation) and the right plan (means-end reasoning) at the
right moment as parts of the execution.

The non-primitive action usually corresponds to an instruction
to achieve a subgoal in which a new goal is posted so that the
execution process will start the deliberation to reconsider the
goal and if necessary starting the means-end reasoning to select a
plan to achieve it.

Definition 3. A non-primitive subgoal action a; e 4 will expand
the current step of action into actions Ay, in which P, , =P and
Gr,, 2G. P and G’ are the current state of affair and the new

. . G .
subgoal as described by the non-primitive @, respectively.

The application of subgoal actions in a plan may also produces
a transient structure of selected plans and goals pending achieve-
ments. In some agent architectures (e.g. PRS [23], BDI agent [24])
this structure is called intention structure. The hierarchical struc-
ture of plans allows the process of finding the solution to achieve
the goal to interleave with the action executions. The expansion
of a subgoal can be directly followed by a primitive action that
directly changes the environment.

The hierarchical approach requires an applicable (partial) plan
to be available or known so that each subgoal can be expanded.
Otherwise, the agent cannot do anything unless an external

126 B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

planning process is applied or a learning mechanism is conducted
to add the collection of partial plans at runtime. One of the issue
to be tackled in this paper is to combine the hierarchical planning
approach with the classical search approach whenever an
impasse condition occurs in which no plan for a certain goal
can be found. The paper also includes the solution on how a new
discovered sequence of actions from the search process can be
retained so that it can be reused at a later time. We suggest a
neural network architecture that can solve these problems in
hierarchical planning.

3. Neural network planning

In a symbolic form, a state or a condition can be expressed as a
conjunction of logical propositions. The set of propositions
expressing the state can also be represented as a vector suitable
for neural networks.

Definition 4. An input (state) vector I = (I,I,...,I;) represents a
state s e S wherein [; is a real value and 0 <I; < 1. A proposition p
can be associated with a subset of I or p< L.

A vector I can be used as an input (or output) to the neural
network. As a state description (e.g. perception), I can be fully
specified in which each proposition is assigned with a particular
value (e.g. 1 or O to reflect binary logic, or a real value if fuzzy
logic is applied instead). However, in a symbolic approach, not all
propositions may be specified or some values may be unknown
but can be omitted from the specification.

The state vector I above can also be made to compromise
unspecified values by applying complement coding [25].

Definition 5. Complement coding is applied to the input vector I
by augmenting each element I; with its complement I; = 1—I; such
that a proposition p; corresponds to a pair (I;,I;). Both I; and I; are
elements of L

This encoding approach offers more expressive power to
represent a proposition and supports generalization. One direct
way to generalize a proposition is by setting an equal pair of the
complemented values at their extreme. For example, a pair (0,0)
might mean do not-know value condition and (1,1) would mean
do not-care condition. It is also possible to express a range
of values beyond a specific boolean or analog value. When
I; # 1-I;, the corresponding p; becomes less specified so that
(I;,I)=I;=p;>1-I;. This feature of generalization will be
explained further later in this paper.

3.1. Fusion ART: the building blocks

The proposed model in this paper is based on fusion ART [16]
neural network which can be viewed as a derivation of adaptive
resonance theory (ART) neural network [26] extended with
multiple input fields or channels. The mechanisms and basic
principle of ART network have been suggested to be pervasive
in many areas in the brain [27]. The mechanism is based on the
view that learning comprises classification and expectation apart
from the knowledge update. As shown in Fig. 1(i) the basic ART

F Category field
2 o o o o o o o
w.
gt —
Input field

network consists of two neural fields: input field and neural field
connected with bi-directional weighted connections.

Two complementary processes are employed: bottom-up
classification and top-down matching. The bottom-up process
categorizes the input pattern through a competitive activation by
employing a winner-take-all strategy. The top-down matching,
then, expects and judges the familiarity of the input pattern based
on the degree to which it fits with the current selected category.
The two processes can be said to resonate with each other if a
matching category is found so that one process reinforces and is
reinforced by the other. If the input pattern does not meet the
matching criteria of the top-down process, the current category is
reset and the bottom-up categorization continues until a match-
ing category is found. Unsupervised learning is employed when a
resonance occurs by updating the connection weights between the
input vector and the matching category. However, as one impor-
tant feature of ART, a new category node is allocated if no
matching category can be found so that the network can grow
dynamically for every novel patterns encountered.

In this way, the learning in ART network can be fast but stable
by avoiding catastrophic interference between prior learnt knowl-
edge and novel patterns. As another useful feature of ART, the
level of generalization and discrimination against novel patterns
is controllable by adjusting the vigilance level of the matching
criteria either offline or dynamically at runtime. Learning, classi-
fication, and matching are not conducted separately in different
phases. Instead, the pattern matching and learning are integrated
parts of the execution cycles in the overall network activity.

The proposed planning model makes use of several multiple
channel ARTs (fusion ARTs) as building blocks. As shown in
Fig. 1(ii), Fusion ART extends the original ART model by employ-
ing multiple input fields or channels [16]. By employing multiple
input (output) channels, the ART network can also be enhanced to
comprise different learning schemes like supervised and reinfor-
cement learning in addition to the basic unsupervised learning.
Various types of multi-channel ART has been used to realize rule-
guided agents that employ online reinforcement learning [15-17].
For example, FALCON [15] employs reinforcement learning by
configuring the input fields to act as input state, output action, and
reward feedback so that it learns actions policy based on external
evaluative feedback.

Similar to its original predecessor, fusion ART network
employs the iterative resonance search process to find a matching
category. However, each input field applies independent para-
meters which enables it to process different input modalities.
Depending on the task domain, a fusion ART network may also
apply different types of vector encoding on its different input
fields. Some fields may apply complement coding to prevent
category proliferation and enable generalization [25], but the
others may not.

In what follows, how fusion ART categorizes, predicts, and
learn patterns will be formulated and explained in more detail.

Definition 6. F’{ and F, are the kth input (output) field and the
category field of fusion ART (Fig. 1) respectively fork=1, ..., n. Let
xk = (xk,xk, .. xk) be the activity vector of F¥ receiving the input
vector I¥ and y = (y,,y5.y,) is the activity vector of F,. Let w]’.‘

(ii)

F Category field
2 o o [S) [S) [S) [S) c>Y_/
1 2 n
! . W' .
Fl/*w Y ;@Aw’ Y ________ /A T
Input field 1 Input field 2 Input field n

Fig. 1. (i) ART neural network and (ii) fusion ART architecture.

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139 127

be the weighted connection vector associating the jth node in F,
(jth element of y) to elements of x* in F’l‘.

The dynamic of fusion ART depends on several parameters,
each is assigned to different input (output) fields.

Definition 7. F’}< is associated with choice parameter ok >0,
learning rate f“e<[0,1], contribution parameter y*e[0,1], and
vigilance parameter p* €0, 1].

For each channel k, o¥ >0 and y* €[0,1] regulate the node
activation level in F, during the bottom-up activation after the
presentation of vector x¥ in F’{. The vigilance parameter p* [0, 1]
sets the level of tolerance for value differences during the top-
down matching process. The Learning rate parameter ,8" €[0,1]
sets the rate of the weighted connections change during learning.

The dynamics of fusion ART can be considered as continual
cycles consisting of some basic operations

Definition 8. Choice function T; returns the activation value of
category j such that

; _
Tj=> 7 7ak+|v‘é{‘)

where the fuzzy AND operation A is defined by (paq),=
min(p;,q;), and the norm | - | is defined by |p| =}";p; for vectors
p and q.

Definition 9. Template matching m¥ is the matching value or
similarity of category j with the input x¥ such that
\x"/\wj’F\

K
mi=_——__J° 2
J XK (2)

Given the input vector, the ART network search and select a
category J of F, field that fits with resonance condition.

Definition 10. A node J of F, field is in resonance condition if and
only if

T; = max{T; : vk,m > p¥, for all F, category j} 3)

Given the selected node J, learning takes place by modifying
the weight vector wy.

Definition 11. Template learning modifies the weights associated
with category J such that

k(new)
Wi

(] ﬁk)wl<(old)+ﬁ (X /\Wk(Old)) (4)

The corresponding weight vector of the chosen F, node J can be
readout into the input field F¥ such that xkmew) =wy. Depending
on the domain problem, the readout may also be the fuzzy AND of
their original values and their corresponding weight vectors such
that Xk(new) — xk(old) ijk'

If no existing F, category can be found in resonance condition
with the current input, a new category is recruited to represent
the current input pattern. This implies that the ART network can
grow to accommodate the incoming stream of different input
patterns. The growth rate of the categories depends on how much
the incoming patterns differ from one another and is adjustable
through adjusting the vigilance parameters (p*). Lower vigilance
may tolerate differences more than the higher one and hence lead
to a slower growth.

Fusion ART can also support generalization of activation
values by applying complement coding as described above. The
generalization can be achieved by adjusting the vigilance parameter

0¥ so that slightly different input patterns will still activate the same
category. As in complement coding, the value of a stored attribute or
proposition can be paired so that the ART can generalize the value as
a range of values.

Definition 12. Let I¥ be the’mput vector for F",I"e[O 1]. I¥ is
augmented with 1 such thatl; =1-— I{‘. The activity vectorlxk of F"
thus augments the input vector I¥ with its complement T" which

are learnt as a w" Let (WU, ;j) be the corresponding pair of wj’.‘.
The value of the connection becomes less specified when

wi #1 —wk i
Lemma 1 For the pair (wi,wj) of wyf described above if
w" #1— w,]. any corresponding complemented input pair (Iu. u) will
have a maxtmum matchmg value or always in resonance as long as

k k
Wuzluzl w

Proof. Let the pair (xg,”‘)_(l,],). It is clear that if xf <1 w
then)?fj sw Thus, (xf;,_u)/\(wu,_fj) (x{;,_u) such that template

matchlngm" XK AwE]/|xK] = [x¥|/|xk] =1, O

3.2. Representing sequences and hierarchical relationships

The standard configuration of fusion ART can only learn and
categorize patterns that occur simultaneously or assumed to be
occurred at the same time and no information about time or the
order of the incoming patterns. A suitable way to capture
temporal patterns has actually been suggested in some early
works of the ART neural network model. Grossberg has proposed
item and order working memory model in which the temporal
order is encoded in the relative activity of different node popula-
tions [28]. The idea is that successive item categories that are
activated through time can be sequentially stored in working
memory as a temporally evolving spatial pattern of activity across
working memory cells. At a later time, the sequence can be
reproduced by rehearsing the largest activities earliest and
suppressing the item that has just been rehearsed one at a time.
The activation value of each category multiplicatively modifies
the activity of all previous items. The item and order principle has
also been used in STORE (Sustained Temporal Order Recurrent)
network to mimic the behavior of working memory [29] and
recently in LIST PARSE suggesting its pervasiveness in various
brain areas [27]. As a part of the proposed model, the fusion ART
is extended to associate and group pattern occurring across time.
A similar technique with the item and order model can also be
applied to fusion ART for dealing with sequential and hierarchical
patterns. However, instead of multiplications, the proposed model
employs a temporal encoding technique called gradient encoding
to retain and process temporal order of neural activations which
simplifies the original item and order using simple constant
increments (decrements) to determine the activation values.

Definition 13. In gradient encoding, the value of the selected
category J in a category field is set to t such that y; =7, and 7 is
updated so that t(W) =cOd r, or t0ew) —Od_, where
0<t<1, 0<v<1. Given that y; =7, wherein t is the relative
time point and j, is the category selected at t, if Tgo>1 and
Tey1=T—v OF T,,1 =0 whenever 7,—v <0, then y reflects the
relative order of category selection (primacy gradient) such that
Vii> Vi Vi, > > Vi e Ifto<O0and 1, 1 =Tc+vorte =1
whenever 7;+v > 1, then y reflects the relative reverse order of
category selection (recency gradient) such that y; >y; >
yj[Z > >yjr n'

Fig. 2 shows different types of sequential ordering in gradient
encoding compared with the standard winner-take-all activation.

128 B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

02 o4
=5 d—_|>\‘ P

e

t, - t, e t - t

Fig. 2. (i) Winner-take-all activation; (ii) recency gradient activation pattern, and (iii) primacy gradient activation pattern.

recall F4 FILO l - activate
P 7 s s
activate 121 Wi _W,- (FIFO) Y3
J
Fz Plans Sequerjcer F3
b .
wh c g a
J L w p w,
b 3 . g a
L X, x| F¢ x{ | U Xy
- - - p— T T
Beliefs O Critic Desires Action £, -
P - achieve
‘ ‘ mismatch
u Perception Goal v Action Taught
I . A action
_— — T
(- Environment)
- I

Fig. 3. iFALCON architecture.

The analog pattern formed following the gradient encoding can
directly be learnt and grouped as a category using the same
mechanism of resonance search cycle in fusion ART. The sequen-
tial pattern can be considered as the input to a fusion ART
network. In the proposed planning architecture described next,
some connected layers of fusion ARTs employ gradient encoding
in their category field allowing another fusion ART to learn the
sequential patterns.

3.3. iFALCON: a plan-based neural network

iFALCON is a neural architecture that arranges and groups
different fusion ART networks to emulate the process of planning
and plan execution. As shown in Fig. 3, iFALCON consists of four
input (output) fields and three category fields. F2, F&, F¢, and F¢
denote beliefs, desires, critic, and action fields respectively. The
beliefs field corresponds to the state of the environment and is
continuously updated by the incoming perception. The desires
field represent the goal to be achieved and can be set up
externally at the beginning of the planning to achieve the domain
objective. The critic reflects the difference between the values in
beliefs and desires. The critic value may activate the resonance
search in F, or F4 to select a plan or restore the last condition
pending achievements respectively. The action field represents
the action to take at a moment to update the environment. As
parts of the hierarchical planning system, the activation of achieve
node corresponding to an abstract action in F{ activates the
resonance search in F4 and F, to initiate the subgoal expansion.

As shown in Fig. 4, iFALCON can be seen as a composition of
three different interconnected fusion ART modules. The structure
and characteristics of each module can be explain as follows:

e Plan repository is a fusion ART module to store and retrieve
plans. A node j in the category field F, corresponds to a plan

description ; and is connected to nodes in F§, F%, F{, and F; via
connections w]” (the precondition Py,), wg (the postcondition
Gr) wy (the critic value), and wf (the body Ag,) respectively as
the mam attributes of a plan. Selectlng an appllcable plan to
achieve the goal corresponds to the resonance search to select
a node j in F, in a winner-take-all manner given the goal and
the current situation as vector x§ and x2. A new plan will be
stored or inserted automatically if the search can not find any
existing match.

e Actions controller is a fusion ART module to transiently store
and replay actions according to their order of presentations.
A node t in F; is connected to nodes in F§ and F{ via connec-
tions wf (the subgoal for the abstract action) and w¢ (the
action) respectively. Nodes activations in F; (y§) follow the
primacy gradient as described previously.

e Working memory is a fusion ART module to transiently store
and reproduce the status of the planning process. A node i in F, is
connected to nodes in F> and Fs via connections wf (the selected
plan) and w; (the state of the actions sequence) respectively.
Nodes activations in F4 (y}) follow the recency gradient as
described previously. Each selection is given an activation value
in an increasing order. To restore the status of the plan and the
sequence, the maximum node in F, is selected and readout.

As a fusion ART network, each module is attached with
parameters that usually assigned to input (output) fields (o%, y¥,
ok, and [3" in which k refers to the label of the corresponding the
input or output field). The parameters are also assigned With the
mdex of the corresponding category field such that oc}‘ y" p and
,Bf where f corresponds the label of the category ﬁeld For
example, parameters for the goal field in the plan repository
module (F, category field) are of, y5, p§, and f5.

3.4. Mapping hierarchical plans to neural networks

A plan can be directly encoded to the neural network of
iFALCON by mapping propositions, action symbols, and the action
sequence in the plan attributes into their corresponding neural
connections in the plan repository and action controller modules.
It is also possible to apply a supervised learning method by
presenting possible inputs, goals, actions, and outcomes as learn-
ing samples in the appropriate order. Given plan 7, several steps
can be pursued to encode 7 into the neural network as follows:

1. The patterns representing P, and G, are presented to Fﬁ’ and F§
as vectors x? and x§ respectively in which a node j is then
selected and activated in F, based on the resonance search.

2. For all actions in A, the pattern representation of each action
is subsequently presented to F{ as vector x¢ and F% as vector x§

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

129

Working Memory

F, o)y,
n 5
vy L Wil Ero) gy

Sequencer I

/
/

i
FILO).

N F, (li /
vy _W," w; (FIFO) »

J Sequerjcer /F? N
y 3
\l{ a N
N
A Wi,
N
g e - Fe
X 1 X, 4 il N
e - - N
2 Beliefs Desires 7 Action N
s . v
Y iFALCON \ N
N
! s FIFO
z s p \ (FIFO))5
F, Plans w', " v \ Sequerjcer F3
FFo) I3 \ . .
w! W w, w,
j j Sequencer I, \
Fhxy x| F x§ FY \ X, L Xy L
Beliefs Critic Desires Desires Action

Plan Repository

Actions Controller

Fig. 4. iFALCON consists of a number of interconnected fusion ART modules.

Fig. 5. Simple blocks world.

for a subgoal (achieve) action while activating a node t in F3
following the primacy gradient.

3. Based on the selected plan node j in F,, the sequential pattern
of actions in F3 is associated with the plan so that WJF =y5.

As an illustration, consider a simplified blocks world domain
like in Fig. 5 in which the target is to stack blocks from one
configuration (a state s; or s,) to a different configuration (the
goal). The domain can be made to use the following propositions:
A_On_B, B_On_A, Clear_A, Clear_B, A_On_Table, and B_On_Ta-
ble which means that block A is on block B, block B is on block A,
block A is clear, block B is clear, block A is on the table, and block
B is on the table respectively. The domain also use symbols of
actions as follows: Putdown_A, Putdown_B, Stack_A_On_B,
Stack_B_on_a, and Achieve. The symbols for actions are
assumed to be self-explained (e.g. Putdown_a means put block
A down to the table and stack_a_on_B refers to stacking block A
on block B). The Achieve action is the subgoal action.

For example, given a symbolic description of a simple plan or
an operator (consisting of a single action) as follows:

{goal: [B_On_Tablel,
pre: [-B_On_Table, Clear_B],
body: [Putdown_B]}

The goal, pre, body are the goal, preconditions, and the
sequence of actions respectively. The minus (‘-’) sign in the
description means negation of the proposition. This plan descrip-
tion can be mapped into its corresponding neural connections in
iFALCON as illustrated in Fig. 6 following the encoding steps
describe above. A connection with a solid line represents 1 (a
positive proposition) in the complement coding scheme. A dashed
line represents O or a negative proposition. Other connections are

not shown which correspond to do-not-care condition for those
employing complement coding or to a zero value for normal
encoding. The critic and its encoding in F{ is omitted for
simplification.

A plan may consist of a sequence of actions rather than just a
single step. For example, given a symbolic description of a more
generic plan to solve the above blocks world problem as follows:

{goal: [A_On_B],
pre: [],
body: [{achieve: [On_A_Tablel}, Stack_A_On_Bl}

Applying the encoding steps above, the plan description can be
mapped into its corresponding neural connections as illustrated in
Fig. 7. It shows that the sequence is expressed as graded weights
following the gradient encoding scheme. For a subgoal action, the
connections comprise the desires field (F§) besides action (F%).

3.5. Plan selection and execution

When all plans are encoded properly as neural connections, it
is possible to start the deliberation and execution cycles. The
main operations for the basic hierarchical planning processes in
iFALCON can be described as follows:

e Goal monitoring is the comparison between input vector X2 as
the current situation P and X as the goal to achieve G. The
comparison is conducted by applying mg = |x§ AX3|/|x$| = p©
wherein p¢ is the vigilance parameter for goal evaluation. The
planning continues only if mg < p¢. Otherwise, it finishes or
backtracks to its parent (super plan) in the hierarchy. The critic
vector x§ is updated with the value m.

e Plan selection is selecting a plan as a category in F, (plan
repository) through a resonance search based on x% (the
current situation P), x§ (the goal G), and x§ as the critic. y§ is
then updated with the action sequence readout from the
selected plan in F.

e Plan execution performs the steps in the plan body through
cycles of reading out and resetting the maximum activations in
y5 given the selected plan in F, while the action in x{ is
carried out.

e Subgoaling temporarily stores the current plan (y5) and actions
(y5) by a resonance search to select a category in F4 following
the recency gradient and replaces the current goal (x§) with

130 B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

FZ

/
/
/

s

[¢) [¢) [6) e} [¢) [¢]
A_On_B B_On_A Clear A Clear_B On_Table_AOn_Table

[0 [e) [e) [e) [e) [¢)
A_On_B B_On_A Clear_A Clear_B On_Table_AOn_Table,

[¢) O [e) [¢] [e)
Putdown_A Putdown_B Stack_A_On_B Stack_B_On_A Achieve|

F F{

Fi

Fig. 6. Mapping a symbolic plan to the neural network.

[} [€) [6) [¢] [¢) [}
A_On_B B_On A Clear A Clear B On_Table AOn_Table,

F§ F{

[¢)
Putdown_A Putdown_B Stack_A_On_B Stack_B_On_A Achieve

Fig. 7. Mapping a symbolic plan consisting multiple steps to neural networks.

the subgoal readout from the current action. A successful
subgoal will be followed by backtracking in which y3, y5, and
x§ are subsequently readout from the maximum category in F4
and F,.

Based on Definitions 8-10, it implies that a plan is selected
through resonance search based on the similarity of its precondi-
tions, critic, and postconditions to the current situation, goal, and
the expected critic value. To select a plan, the criteria for the critic
value can be set to maximum or 1 which also means that the plan
selected will have the maximum match value between the
perceived situation and the goal. y¥ and of parameters place
different weights to the importance of different input fields.
A larger 7% can mean a more important input field as a cue or
criteria to select a plan. o, on the other hand, regulate the
activation values to ensure that each element is normalized or
0<yh<1.

The plan to be selected is the one with the highest choice
function that matches with the current situation and goal. The
template matching described above implies that a plan 7; with
the highest activation value will be selected if Pn P and G, <G.

Lemma 2. Given that each proposition in the current situation P, the
goal G, the plan precondition Py, and postcondition G, correspond
to an element (or a complementary pair) in X2, x§, w’l’j, and w‘fj
respectively, the plan m; will always have the highest match value as
long as Pn P and Gr, <G.

Proof. P, <P implies that xl{/\wll’jlel’ and so G, <G implies
that x{ Aw§; =x5. If P, =P, mP =xb/x} =1 or the match value is
maximum. The same thing holds between the postcondition and
the goal. O

It also follows that based on mg = |x% AX2|/|x¢| = p¢, goal G is
always achieved whenever P2 G.

To illustrate the mechanism of iFALCON in executing plans,
Fig. 8 shows the trace of execution during a plan execution episode
for the blocks world domain. Assuming the plans like illustrated in
Figs. 6 and 7 have been encoded in the network. Five execution
cycles are shown to solve the blocks world problem as shown in
Fig. 5. The trace includes the process of subgoaling and backtracking.

At the beginning (Fig. 8(i)), the goals and the current situation
are compared based on the match function above (step 1). If the
match value is still below vigilance p¢, the plan selection process
starts and the sequence of actions of the selected plan are readout
to the sequencer field (Fs;) for execution (steps 2-3). The plan
execution process follows by reading out and resetting the max-
imum category node in F3 to the corresponding input fields while
the readout pattern in the action field is carried out (steps 3-4).
However, as the first step of actions is an achieve (subgoal) action,
the plan and the sequence are stored in working memory and the
subgoal overrides or replaces the current goal afterwhile the plan
repository and the sequencer field are reset (steps 5-7).

Based on the new subgoal, another goal monitoring, plan
selection, and execution continue until the main goal is achieved
(Fig. 8(ii)-(v)). When the achieved goal is a subgoal, backtracking
is conducted by reading out the maximum category node in F4 to
restore the parental plan and action sequence in the hierarchy as
vy, and y§ respectively (Fig. 8(iii)). The example shows that
iFALCON is functional as a hierarchical planning system as long
as plans to solve the problem domain are sufficiently provided.

3.6. Online planning and learning

The basic execution cycle described above still assume that the
available knowledge (plans) are complete without the chance that
the agent make mistakes. The process can not deal with the
situation when no plan can be found to solve the current goals. To
handle the lack of knowledge or insufficient knowledge, there are
several features that should be added to the basic hierarchical
planning model as follows:

e Failure detection. This feature is to identify if no plan can be
found to achieve the current goal or the selected plan fails to
achieve the goal. In iFALCON this detection function can be
achieved by checking whether F; field has any activation or
not after the resonance search is conducted to select a plan in
F,. A failure of the plan execution can also be detected if
mg < p° but there is no activation in F; (y§ =0). It should be
noted that a category node F, is always selected either as an
existing plan category or as a new allocated one if no existing
plan can be found.

e Hypothesis generation. When a plan failure has been detected,
another plan can be hypothesized as a way around or an
intermediary solution. This can be done by compromising the
criteria to select a plan 7’ and taking G, as the hypothetical
subgoal to be appended or inserted as a new action step. The
sequence of hypothetical actions can be stored temporarily to
be tested further as a part of the process of searching for a
novel solution. One way to compromise the criteria used in our
model is by lowering p% so that another applicable plan that
may not fully achieve the current goal can still be selected.

e Plan capture. If the hypothetical actions eventually achieve the
goal, a new plan for those actions can be learnt or stored in the

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

(i) (if)

131

. (iii) .

Working Working Working
memory memory Memory
store memao 2 restore
7.reset,, I /{ ‘\Py\h I I I / Sl;
Plans Plans Plans
Greadoy] Seduencer 3 readon] Seduencer Sequencer
2.selegt plan

2.selegf p\an eddout ézt readout
E]IV
? (no

achieve

[beliefs] <« [desires]

é4 readout § readout
‘e\lefs keswe‘

Putdown_B 1.match?
(YES)

goal

Working Working
I Memory I Memory
|
Plans Sequencer Plans Sequencer
¢ 4.readout
beliefs] -
1.match? Stack_A_On_B 1.match?
(no) .I (YES)
= Al Al
1B %
s Vi Vi
goal goal

Fig. 8. The execution trace of solving a simple blocks world problem based on the basic hierarchical planning algorithm of iFALCON. Five cycles of execution are required to

achieve the goal from the initial state s;.

plan repository. The hypothetical actions as the results of
the search process can be identified by checking whether a
successful achievement of a plan still have a maximum
activation value in F; field or not. The maximum activation
in the sequence after a successful attempt to achieve the goal
means that a sequence of actions has just been transiently
stored as the hypothesis.

Every time no plan can be found from the resonance search, a
new empty plan is allocated automatically as an inherent feature
of fusion ART to solve the given problem goal. Further search
processes can be conducted by firstly storing the new plan and
find an intermediate solution with a reduced vigilance factor for
the goal. By gradually reducing the goal vigilance p$, a plan T
may be selected with a relaxed criteria such that Pn, <P and
Gr, N G. It can also be said that |Gy, N G| = [x] Awf;|/[xF].

Lemma 3. Given a plan m; and let |G, NG|™ be the number of
intersecting propositions between postcondition G, and the current
goal G so that wj can be selected, the goal vigilance p% is proportional
to the number of propositions or p§oc|Gr NG|™.

Proof. Given the template matching criteria |x§ Aw$|/|x§| > p$
for G it is straightforward that the norm |x§ /\w‘fj\ to make 7; to
be selected is proportional to pf, and [x} AW oc |G NG|. DO

By reducing the goal vigilance p%, an applicable plan 7; can still
be selected although only a lesser number of propositions can
satisfy the goal. The postcondition of 7; becomes the subgoal to be
appended to the hypothetical sequence. The process continues
iteratively and recursively to test each step of hypothetical action
until the goal or the subgoal is achieved and new actions can be
learnt.

Algorithm 1 illustrates the overall execution cycles of iFALCON.
The basic goal monitoring, plan selection, plan execution, subgoal-
ing, and backtracking can be depicted in the algorithm in line 3,
lines 14-16, line 31-36, lines 32-34, and lines 7-10 respectively.
Failure detection, hypothesis generation, and plan capture pro-
cesses can be depicted in line 17, lines 18-29, and lines 4-6

respectively. The algorithm shows that the execution of the plan,
the search for a novel solution, and the learning to capture the
new plan can be interleaved under the main execution loop of the
system execution. The critic attribute (wj‘) is modified based on
the critic (matching) value (line 6 and line 18). A high critic value
(mg > 0) indicates that the plan is just created for learning or failed
to achieve the goal.

Algorithm 1. iFALCON execution cycles.

1 WHILE True

2 Perceive the environment and update F®

3 IFmg= % > p9 [* the goal matches with the beliefs */

1

4 IF max(y%) > 1 /* a new sequence has just been formed */

5 wf(“ew’ =(1-p4)w5(°ld)+[3 (v%) /* learn the sequence */

6 wj("e‘”) (1=BHWV+ B{(x§) [* learn the critic */

7 IF max(y}) > 0 /* some plans are pending achievements */

8 readout F, and F3 from node i (max) in F4; reset node i

10 readout F§ from node j (max) in F,

11 ELSE Finish

12 ELSE

13 IF max(y5) < 0 /* no plan is activated or selected */

14 select F, node j by resonance search

15 Ve 1ys 0, m#j

16 readout F§ and F; from node j in F,

17 IF max(y3) < 0 [* no existing plan can be found */

18 wJ‘(“eW) (1-55)wc(°ld)+ B(X§) [* learn the critic */

19 select F4 node i by resonance search (recency
gradient)

20 REPEAT /* the start of the forward chaining
hypothesis */

21 pEew) — pgld_5 1+ gradually reducing p */

22 select F, node j by resonance search

23 UNTIL existing j is found

24 readout F§ and F; from F, node j (max)

132
25 set action pattern in F{ to subgoal (achieve) action
26 readout F, and F3 from node i (max) in F4
27 resonance search F; with F§ and F{(primacy gradient)
28 Wi = (1= Hwi D + B (¥3): ¥5 = 0
[* store the hypothesis; reset plan field */
29 set p§ back to normal (default)
30 ELSE /* there is an action in F3 pending execution */
31 readout F{ from F; nodet (max)
32 IF the selected action in F{ is a subgoal action (achieve)
33 select F4 node i by resonance search (recency
gradient)
34 readout Fﬁ’ from node t in Fs; reset F»
35 reset node t in F3
36 Execute the action based on F{

To illustrate the process, Fig. 9 shows the trace of execution
with the features of hypothesis generation and plan capture. The
task use is the same as the one shown in Fig. 8. However, the plan
shown in Fig. 7 is not available. Instead, some primitives are
provided as follows:

{goal: [B_On_Tablel, {goal: [A_On_Tablel,

pre: [-B_On_Table, pre: [-A_On_Table,
Clear_B], Clear_B],

body: [Putdown_B1} body: [Putdown_Al}

{goal: [A_On_B], {goal: [B_On_A]l,

pre: [A_On_Table, pre: [B_On_Table, Clear A],
Clear_B],

body: [Stack_A_On_B]} body: [Stack_B_On_Al}

Following Algorithm 1, six execution cycles are required to
solve the blocks world to reach the goal state from the initial state
s1 as shown in Fig. 5. The trace includes the hypothesis generation

(ii)

Working

Memory | 7.restore

3.readout

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

by reducing the vigilance parameter of p% to find any intermedi-
ate step. The example also shows how the planning episode can
be captured as a new plan. In the example, the process involving
the critic is omitted for simplicity. Hypothesis generation starts
whenever no plan can found to achieve the given goal (steps 3-8
in Fig. 9(i) and steps 2-8 in Fig. 9(iv)). The new plan can be learnt
if the goal achievement still leaves the complete sequence
activation in the sequencer (step 5 in Fig. 9(vi)).

4. Case study: blocks world

To test the model, iFALCON has been applied to the blocks world
domain extended from the one used as an example in the previous
section. Here, three blocks are used instead of two. To evaluate the
model, two types of plan are applied as initial plans: primitives and
a control plan. A primitive is a plan consists of only a single step of
action as a basic rule that model the environment. A control plan is a
more complex strategy with a sequence of several actions to achieve
the goal. There are twelve different primitives and one control plan
used in the experiment. The propositions used in the domain are
also simplified. Propositions in the form of x_on_y are omitted.
Instead, they are substituted with the equivalent more basic
propositions like Clear_x or on_Table_y. For example, with three
blocks A, B, and C, the proposition A_on_B can be substituted
with a conjunction of several basic propositions such that
AOnB<(ClearAA—AOnTableA—ClearBACOnTable). This sim-
plification can reduce the number of input nodes and neural
connections to make it scalable without changing the meaning of
the expressions.

4.1. Testing configuration

To evaluate the model, two cases are formulated as follows:
(1) a blocks world planner with complete pre-given plans (both
primitive and control plans) and (2) a planner with learnt
incomplete plans (primitives only). Each configuration is tested

(iii)

— B
Working \l\//lvgrr::(';;g
Memory Yy

I ‘/Z.restorN

| SequencIeT‘

Plans | 5. readoth Sequencer > Sequencer| | Plans |
2.select pta
2.select pjan 4b. seleet p\ “select action ellefs <> [dosires 4 .readout .readout
beliefs . 1.match? -
Achieve (no) Putdown_B 1.match?
|§’ 6.set achieve gi B" P (YES)
W (Bl 4arelaxed LT goal VIiEg ‘E"
vigilance s
5, goal : S goal
(|V) Working (V) (VI) Working
Memory \[\/Xg::cl)nrg Memory
. I ‘/2 restoR
Sequencer | Plans m Sequencer
2.select pta we|gm>
“Seleckaction i - 4 readout’/ desires
- 3a.relaxed 1.match? 7 FINISH!
- ’gjeswes | vigilance Achieve (52 (no) — Stack_A_On_B 1(¢EtSCh
1. T:é():h ABV IV 4 match?
al 5.setachieve 5, A5 (YES)
ﬁ? qosl VoY
goal

goal

Fig. 9. The execution trace of solving a simple blocks world problem based on the hierarchical planning with search and learning algorithm of iFALCON. Six cycles of
execution are required to achieve the goal from the initial state given only primitive actions. At the end, a new plan is learnt with two consecutive subgoals.

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139 133

to achieve the goal from twelve different initial blocks configura-
tions (Fig. 10). The control plan used in the experiment can be
described symbolically as follows:

{goal: [Clear_A, -A_On_Table, -Clear_B,
-B_On_Table, -Clear_C, C_On_Table],
pre: [1,
body: [{achieve: [Clear_C, C_On_Tablel}, {achieve:
[-Clear_C, -B_On_Tablel},

{achieve: [-Clear_B, -A_On_Tablel}l}

Each iFALCON plans configuration is applied to reach the goal
from every block configuration. Different configurations may
produce different numbers of steps. A random choice mechanism
is applied to the internal mechanism of decision so that when
more than one node have the same maximum values, a plan node
is selected at random. Consequently, the choices may be different
even for the same configuration.

The network parameters o, y, 5, and p for all fields are set to
1 except for pj=0.8 and ﬂ’f =0 allowing the plan selection to
select previously failed plan but still close to the main goal and
keeping the existing precondition to the same values for the
entire process. The increment (decrement) factor ¢ for both 7 of F3
and F, are 0.1. p¢ = 0.85 for goal monitoring.

The test looks at the use of plan execution with the state-space
search planning but without the online plan capture capability.
For each block configuration and two different types of initial
plans, the architecture is tested to achieve the goal configuration.
Fig. 11 shows the average number of steps for each initial blocks
configuration from 100 independent trials with no plan capture
capability. The figure also shows the number of failure from 100
trials in the planning configuration in which only primitives are
pre-given. The graph also shows the maximum and minimum
steps taken for each configuration. The result shows that when
control plans are available all blocks configuration can be solved
for every trial. Few configurations require relatively many steps
(configurations 7 and 4) with some degree of variability. This

[B][8]

c l:> B 1_ 2 3 4 _é_‘ 6
1 o C C Al
A A CV mmE @ [B]
[CTAJCIA]B[A] [B| B

start g(}al 7 8 9 0 11 12

Fig. 10. The goal and different initial blocks configurations.

80

-3
=]

Action steps / trials
N
o

~
o

Initial Blocks Configuration

] Average steps with complete plans
[Average steps with primitives only
| Number of failures

Fig. 11. Average number of steps and failures from 100 independent planning
trails with complete plans and primitives only without plan capture capability.

indicates that in certain cases, the control plan is not sufficient
and the planner must search for alternative solutions. Using the
complete set of plans, the goal can be achieved in three steps at
minimum.

On the other hand, when only primitives are available, some
configurations may fail (configurations 3, 5, 6, and 7). However, in
most of the trials they eventually can reach the solution even
though so many steps are taken. In 100 trials, maximally five are
failed (in blocks configuration 6). In a case where the solution is
straightforward (blocks configuration 8), it takes only a single
step of action in primitives only planner instead of three like in
the complete plans configuration which indicate that the control
plan used is not optimal for all initial configurations. The result
shows that iFALCON as a neural network architecture can be used
as a hierarchical planning system that finds solutions even though
the knowledge is incomplete.

4.2. Results and further tests

To evaluate the learning capability, another test is conducted
using consecutive trials (plans learnt from previous trials are
retained) to see whether it learns plans that can be useful to
subsequent runs within the same configuration. Table 1 presents
the results from 30 runs of 30 consecutive trials for each block
configuration and each type of initial plans. The table shows the
maximum and minimum number of steps from 30 consecutive
trials that successfully achieve the goal. It also shows whether a
performance improvement is indicated during the consecutive
trials. A configuration is marked as ‘indicated’ if there is an
increase or convergence of performance (reduction of the number
of steps to achieve the goal) in consecutive trials. If there is an
indication of improvement, the table also shows the maximum
reduction or difference in the improvement. The number of
achievement failures occur in 30 runs is also presented for each
configuration.

The experiment reveals that when the control plan is included,
most block configurations can be solved. There are cases in two
configurations that the agent still fails to achieve (12 cases in
configuration 6 and 8 cases in configuration 11). The failures can
still happen due to the initial plans that are actually unsuitable
when applied to those particular configurations.

However, the two configurations reveal that performance
improvements can be made by learning new plans. In configura-
tion 6, there is a case in which the number of steps is reduced by
five after learning is conducted in a previous trial. In configuration
11 the number of steps is reduced by seven. The improvement
indication, however, does not imply that the learning does not
take place in other configurations. In fact, most configurations
that have the same number of steps to achieve the goal also have
cases involving plan capture at the first trial. The learnt plans
makes the agent follows the same plans across different con-
secutive trials.

In one case, when the complete plans are applied as the initial
configuration, the first trial can capture a new plan which can be
mapped into its symbolic description as follows:

{goal: [C_On_Table, Clear_C],

pre: [-B_On_Table, -C_On_Table, A_On_Table, -
Clear_C, Clear-B, -Clear-A],

body: [{achieve: [B_On_Table, Clear_C]l}, {achieve:
[C_On_Table, Clear-Al}l,

critic: [11}

The sample learnt plan above indicates that the plan is created
to achieve a subgoal in the control plan. It implies that the

134 B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

Table 1
Results of blocks world with learning.

Initial block conf. With prior primitives + control plans

With prior primitives plans only

Number of steps Improvement indicated Failures Number of steps Improvement indicated Failures
Min Max Improved Max diff. Min Max Improved Max diff.
1 4 4 5 12
2 5 5 9 9
3 3 3 30
4 2 2 30
5 3 3 30
6 3 8 Indicated 5 12 30
7 2 2 30
8 3 2 1
9 3 3 3 11 Indicated 4 28
10 3 3 30
11 4 11 Indicated 7 8 30
12 4 4 5 31 10

learning takes place only when necessary to plan or solve certain
tasks. The learnt plan is automatically assigned with a critic
attribute indicating that it can successfully achieve the goal.

On the other hand, when only primitives are provided initially,
the result is not as good as when the complete plans are provided.
Table 1 reveals that only 3 (configurations 1, 2, and 8) out of 12
configurations successfully achieve the goal without failures.
Moreover, there are seven configurations that totally cannot be
solved. Only few cases in one configuration (configuration 9)
indicate performance improvement. Interestingly, there is a con-
figuration in which the application of merely primitive plans
becomes superior such as configuration 8. It takes only one step
to solve the problem compared with the minimum three steps by
its complete plans counterpart for the same configuration.

When only primitives are provided, one trial captures a new
plan which can be shown in a symbolic description as follows:

{goal: [-B_On_Table, C_On_Table, -A_On_Table,
-Clear_C, -Clear_B, Clear-A],
pre: [-B_On_Table, -C_On_Table, A_On_Table,
-Clear_C, Clear_B, -Clear_A],
body: [{achieve: [Clear_A, B_On_Tablel}, {achieve:
[-B_On_Table, -Clear_Cl},

{achieve: [-A_On_Table, -Clear_Bl}1,
critic: [11}

The learnt plan above indicates that a reasonable plan can be
learnt by chance from a set of primitives. The resulting plan above
is also comparable to the control plan used in this experiment.

To confirm that the agent actually learns, some improvement
must be indicated when the system runs to do the tasks over
time. In that case, another experiment is conducted to reveal the
characteristics of learning in iFALCON. The experiment looks
at how well it achieves the goal continuously from a series of
different varying initial block configurations (12 possible config-
urations) using the complete set of plans configuration.

In a single problem solving episode, a block configuration is
selected at random. The experiment runs 20 independent trials
over 500 consecutive series of problem solving episodes. For each
trial, four values are measured:

e Number of execution cycles required to achieve the goal in a
single episode. This includes both the number of action steps
and the number of processing cycles to do with deliberation,
subgoaling, and backtracking.

e Number of action steps taken to achieve the goal which
includes only the action that changes the state of the environ-
ment (the state of the blocks) in a single episode.

e The difference between the number of action steps taken with
the optimal number of steps that can be applied for that
particular block configuration in a single episode.

e The number of plans learnt in a single episode.

Fig. 12(i) shows the trends of the average number of execution
cycles and action steps taken in the overall series of episodes.
Fig. 12(ii) shows the trends of the average difference between the
number of action step and the optimal action possible. It also
shows the average number of plans learnt in the overall series of
episodes.

Fig. 12(i) and (ii) indicates that in continuous series of episodes
of 12 randomly selected different configurations, the performance
of the network does not converge. The trace of execution reveals
that the source of the problem is in the failures of solving block
configuration 11 which also indicated in the previous results.
When the system fails to achieve the goal in one episode starting
with block configuration 11, some plans learnt may deteriorate
the performance of achieving the goal in other episodes. For
example a plan 7y, created in an episode initiated by configura-
tion 11 can be as follows:

{pre: [-A_On_Table, -Clear_A, -B_On_Table, Clear_B,
C_On_Table, -Clear_C],

body: [{achieve: [Clear_A, B_On_Tablel}, {achieve:
[-A_On_Table, -Clear_Bl}1,

goal: [-A_On_Table, -Clear_B],

critic: [11}

The learnt plan above can lead the agent to take wrong steps.
In block configuration 1, (initially (-A_on_Table, -Clear_a,
-B_On_Table, Clear_B, ‘C_On_Table’, ‘-Clear_C’)), the
learnt plan above will be selected at the beginning instead of the
control plan. This can happen as the main goal G still match with
the plan precondition G, such that G=gy,. Consequently, the
main goal will never be achieved even though G, is satisfied.
This faulty plan influences all episodes that begin with some
configuration that match with the precondition and the goal of
the plan. This condition also reveals one of the weaknesses of the
current hypothesis generation step in iFALCON in which the
subgoal generated are still bounded to the postcondition of an

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

(ii)

135

(i)

execution cycles - action steps —— plans learnt - action steps
35
J e A Foeel WAL " o
o~ VAN VA,
e Y - PN
30 WS
L]
254/
(7] .
@ S s
O 20 2
> 1S
o =}
2
%] c
a3 =
%}
O 15 Q. .
» Q 4
7] =
»n
104
2
5
o ; . e : — — 0 — = - T T T o
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
episodes episodes

Fig. 12. (i) The trend of average over 20 trials of the number of execution cycles and action steps needed to solve a problem for 500 episodes and (ii) the trend of average
over 20 trials of the average difference between the number of action step and the number of optimal actions possible, and the average number of plans learnt in the

overall series of episodes for 500 episodes.

(i)

25

execution cycles action steps

20

steps/cycles

o T

T T T T T T T T T
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

episodes

(ii)

plans learnt Diff. with optimum

steps/number

a T T o= T T T T T T T
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

episodes

Fig. 13. (i) The trend of average over 20 trials of the number of execution cycles and action steps needed to solve a problem for 500 episodes (excluding block configuration
11) and (ii) the trend of average over 20 trials of the average difference between the number of action step and the optimal action possible, and the average number of
plans learnt in the overall series of episodes for 500 episodes (excluding block configuration 11).

pre-existing plan. A faulty initial plan description may impair the
goal monitoring process.

When the configuration 11 is taken out from the list of initial
block configuration, the performance improves and converges.
Fig. 13(i) shows the trends of the average number of execution
cycles and action steps without block configuration 11. Fig. 13(ii)
shows the trends of the average difference between the number
of action step and the optimal action possible, and the average
number of plans learnt without block configuration 11.
Fig. 13(i) and (ii) shows that all tested aspects improve over 500
episodes starting from 11 initial block configurations. Both
number of action steps taken and the execution cycles (including
steps taken for reasoning) are decreased and converged after
about 125 consecutive episodes. However, the solutions in aver-
age can still not reach the optimal (in average, it eventually stays
at one step difference with the optimal solution). These less than
optimal solutions are found because the control plan used as the
main guide for execution and learning is actually not optimal for
all blocks configuration. This is indicated in the result that after
about 200 consecutive episodes, no more learning is conducted

although the average number of steps is still greater than the
optimal.

The results indicate that the quality of planning and learning is
sensitive to the pre-existing knowledge and the initial task
configuration. A wrong choice to start with may also lead the
agent to further learn the inappropriate knowledge to solve the
task. However, the experiment also shows that iFALCON can learn
plans as explicit descriptions and execute them accordingly.
It also clearly indicates that it plans and learns at the same time
when the knowledge to solve a particular problem is not
available.

5. Case study: Unreal Tournament NPC

We have also applied iFALCON in a more realistic real time
situation in which the planning architecture is used as a part of a
non-player character (NPC) agent inside the Unreal Tournament
(UT) realtime first-person shooter video game [18]. The main
objective of implementing this second domain is to simply

136 B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

demonstrate that iFALCON can execute and capture plans on the
run when the environment is continuous and dynamic. Given
some initial plans which may be incomplete, we investigate
whether an iFALCON agent can capture more plans from experi-
ences which may be useful for the agent to accomplish its
mission. Compared with the previous domain of blocks world,
this domain requires a planning agent to run continuously to
accomplish its tasks while learning new plans. On the other hand,
blocks world employs discrete tasks or episodes of problem
solving.

In UT, the NPC agent is resided in a 3D virtual environment
where there are some objects to collect that may be useful for its
task. There can be weapons, ammunitions, armours, health
boosters and other objects that the agent can discover and collect
while being engaged in a battle situation with other NPCs or
players using weapons to attack or defend.

5.1. Domain modeling

In this UT domain, the NPC agent is made to accomplish a
mission which may involve following a sequence of objectives.
The mission applied is to continuously collecting certain objects
resided in the environment which must be done in a certain
order. The mission is given explicitly as goals and plans inserted
as neural activations and connections. This simple task is set
simply to test that the architecture can work as both both plan
executor and plan generator at the same time.

The particular mission employed as a test case is to let the NPC
agent to collect a flak cannon (weapon) first followed by collecting a
rocket launcher while it may be engaged in a battle situation with
other NPCs. The cycle of weapons collection continues after the
second target (collect the rocket launcher) is achieved. The mission
iteration can be made possible because an item collected inside the
UT environment will be re-spawned in the same location for several
seconds after being collected. Based on the same goals and the
context, the mission will eventually be re-enacted. To navigate
around the environment, the NPC can travel from one navigation
point to another. A navigation point is an pre-existing landmark in
the environment that the NPC can sense and locate.

Based on the information provided by UT and the particular
mission setup, there are 17 propositions that can be used to
characterize the beliefs or perception of the agent about its
surroundings and itself. Each proposition can have either a binary
value or a real value between 0 and 1. Table 2 shows the list of
propositions and their descriptions. All propositions in the table
are binary valued except healthLevel and those in the last row.

Table 2
Perception proposition symbols.

sStraight, sUp, sDown, sLeft, and sRight are real valued
between zero and one.

The values of the propositions can be mapped into a vector and
becomes the input pattern for the F’l’ field of iFALCON. The input
field employs complement coding so that each proposition is
represented as a pair of values allowing do not-care condition.
Some values of propositions can be updated accordingly when-
ever there is a change in the environment. However, some
propositions do not have direct correspondences to properties
of the environment. missionAcc, gotLauncher, gotFlak, and
toMove indicate some instant values that hold only for a short
time. For example, the condition gotLauncher can only be true
when the agent just picks up the rocket launcher but the value
only lasts momentarily. To deal with it, those propositions or
values are held a bit longer in a memory buffer when the
corresponding messages received so that the iFALCON cycle can
still have time to process the values.

Besides perception, the vector of the action field is also
mapped into a command that can be sent out for execution. The
action field is competitive so that only a single node is active at
one time. Table 3 shows the corresponding propositions of the
action field and their descriptions (achieve action for subgoaling
is omitted from the table for simplification).

Based on the structure of input/output fields of iFALCON for UT
NPC domain, it is indicated that initially the agent does not have
any knowledge nor representation about locations or positions of
objects and itself in the environment. The experiment looks at
whether iFALCON can generate and capture plans reflecting
positions of objects relative to the agent and the task at hand.

5.2. Testing configuration

Initially, some predefined plans are inserted into the network.
The prior plans in symbolic forms can be described in Table 4. The
initial plans show that the agent will try to get a flak cannon
followed by a rocket launcher in order to accomplish the mission
(missionAcc). But it is also shown that the plans are still
incomplete. There is no predefined plan for achieving the condi-
tion that a rocket launcher nor a flak cannon is reachable. Thus,
although the agent knows how to move to the launcher or the
cannon, it still must figure out how to make them reachable while
it tries to accomplish the mission. The agent may be building up a
certain form of map consisting of plans.

Similar to the blocks world domain, the network parameters «, 7,
f, and p in this domains are set to 1 except p{ =0.8, /)"1’ =0, and
¢ =0.1. However, p¢ = 0.95 is used to make the goal monitoring less
tolerating as each goal proposition is characterized by a specific

Proposition Description

missionAcc Signals the completion of the NPC mission

gotLauncher Signals the NPC that a rocket launcher is just obtained

gotFlak Signals the NPC that a flak cannon is just obtained

farWeapon Indicates whether a weapon is reachable or not

farHealth Indicates whether a healthkit is reachable or not

farCollect Indicates whether another type of collectible item is reachable or not
farEnemy Indicates whether another player is seen or not

farNavpoint Indicates whether there is a reachable navigation point
farLauncher Indicates whether a rocket launcher is reachable or not

farFlak Indicates whether a flak cannon is reachable or not

healthLevel Indicates the bot’s health level

toMove Signals the bot when the bot has just arrived at a navigation point

sStraight, sUp, sDown, sLeft, sRight

Distance sensor values (between 0 and 1) for five corresponding directions

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

Table 3
Action proposition symbols.

Proposition Description
mov2Navpoint Triggers the bot to move to another reachable predefined navigation point
lookforNavLeft Starts the bot to rotate to the left until it finds any reachable navigation point
lookforNavRight Is the same as lookforNavLeft but to the right direction
move2Weapon Triggers the bot to move to and collect a reachable weapon
move2Health Triggers the bot to move to and collect a reachable healthkit
move2Collect Triggers the bot to move to and collect any other reachable collectible item
move2Launcher Triggers the bot to move to and collect a reachable rocket launcher
move2Flak Triggers the bot to move to and collect a reachable flak cannon
shootEnemy Triggers the bot to shoot any player seen by the bot

Table 4

Prior plans in the UT NPC.

{goal: [gotFlak],

pre: [-gotFlak],

body: [{achieve: [-farFlak]},
{do: [move2Flak]l}],

critic: [1.01},

{goal: [gotLauncher],

pre: [gotFlak],

body: [{achieve: [-farLauncher]},
{*do’: ['move2Launcher’]}],

critic:[1.01},

{goal: [toMove],

pre: [-farNavpoint],

body: [{do: [move2Navpoint]}],
critic: [1.0]},

{goal: [-farNavpoint],

pre: [farNavpoint],

body: [{do: [lookforNavRight]}],
critic: [1.01}

{goal: [-farNavpoint],

pre: [farNavpoint],

body: [{do: [lookforNavLeft]}],
critic: [1.01},

{goal: [farEnemy],

pre: [-farEnemy, healthLevel=1.0],
body: [{do: [shootEnemy]}],
util:[1.01},

{goal: [farEnemy],

pre: [-farHealth],

body: [{do: [move2Health]}],
util: [1.01},

{goal: [missionAcc],
pre: [],
body: [{achieve: [gotFlak]},
{achieve: [gotLauncher]}],
util: [1.01}

event or signal. iFALCON is evaluated under continuous realtime
situation. However, unlike the previous domain, this UT Gamebot
agent is only tested for its ability to execute plans and the possibility
that any plan can be captured as a result of the planning and
learning capability driven by the algorithm. The overall performance
or improvement as produced by learning is not evaluated.

In that case, the UT NPC agent is tested in a single instance of
the game only. The bot runs to accomplish its task in a UT game
instance for about 15 min while the number of items collected
and the plans captured are recorded.

5.3. Results

After 824 ticks (1 tick is 100 interaction cycles or about 1 s) the
agent can accomplish the mission 6 times, and get 13 items in the
right order (get the flak cannon first followed by getting the
rocket launcher). It is indicated that the agent has followed the
initial plans as no false attempt is conducted (e.g. the agent tries
to pick up another flak cannon though it is just taken previously).

The NPC has also captured many new plans although most of
them consist of only a single step of action. Some plans produced
are also redundant (a plan captured is very similar to another one
already learnt previously) as the basic Algorithm 1 still does not
have a mechanism to avoid redundancy. The high level vigilance
(p =1) for most input fields also contribute to the large number of
plans created as some input attributes comprise real values.
In this section we only show a few number of plans captured
after cycles of runs.

137

Some plans captured that bridge the gap of the missing plans

are as follows:

LEARNT PLAN 1:
{pre: [-missionAcc, -gotLauncher, -gotFlak,
farWeapon, farHealth,

farCollect, farEnemy, -farNavpoint,
farLauncher, farFlak,

healthLevel=1.0, -toMove, sStraight=1.0,
sUp=0.85,

sDown=0.12, sLeft=1.0, sRight=0.98],
critic: [1.07,
body: [{achieve: [toMovel}, {achieve: [toMove]l}l,
goal: [-farFlak]

}

LEARNT PLAN 2:
{pre: [-missionAcc, -gotLauncher, gotFlak, -
farWeapon, farHealth,

farCollect, farEnemy, -farNavpoint,
farLauncher, farFlak,

healthLevel=1.0, -toMove, sStraight=0.78,
sUp=1.0,

sDown=0.12, sLeft=0.89, sRight=1.0],
critic: [1.0],
body: [{achieve: [toMovel}, {achieve:
[-farNavpoint]},

{achieve: [toMovel}, {achieve: [toMovel}l,

138 B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139

goal: [-farLauncher]

}

LEARNT PLAN 3:
{pre: [-missionAcc, -gotLauncher, -gotFlak,
farWeapon, farHealth,

farCollect, farEnemy, farNavpoint, farLauncher,
farFlak,

healthLevel=1.0, -toMove, sStraight=1.0,

sUp=1.0,

sDown=0.12, sLeft=1.0, sRight=1.0],
util: [1.07],
body: [{achieve: [-farNavpoint]}, {achieve:
[toMovel},

{achieve: [toMovell}l,
goal: [-farFlak]
}

From the tested game instance, the agent can learn sequences of
subgoals ranging from one to four steps. The precondition of a plan
characterizes the situation that the particular plan is applicable. The
learnt symbolic plans above include attributes or propositions invol-
ving real values to represent sensor reading and health level in the
plan preconditions (sStraight, sUp, sDown, sLeft, sRight,
healthLevel). These real values are the features of the architecture
that may not be available in its resembling symbolic models.

To some extent, the plans captured may be reasonable and
consistent with the task domain. For example in the learnt plan
3 above, the sequence is started with a subgoal of finding a
navigation point before performing a movement action (toMove)
which is still make sense in that case.

Overall, the UT NPC case study has indicated that iFALCON can
function as a plan executor and plan generator simultaneously in
a continuous realtime domain. Despite the overall performance,
the efficiency, and the consistency of the learnt plans, the
architecture can capture plans that can be useful and meaningful
if the domain model and the initial knowledge are also designed
and set up appropriately.

6. Discussion

Some interesting aspects of the neural network model pre-
sented in this paper are the approach of realizing the state-space
search mechanism and the representation of sequential or hier-
archical relationships as a transient structure in the neural net-
work. These features of planning are rarely addressed by neural
networks. This paper has demonstrated that the approach can
successfully realize a fully functional hierarchical planning that
can learn by capturing planning episodes on the fly. However, as a
planner, the model suggested in this paper is still limited in some
ways. At this stage, the correctness and completeness criteria of
the plan discovered are still omitted. As mentioned in the previous
section, there are some conditions in the case study that can lead
the planning to dead-ends, especially when the hypothesis gen-
eration and the plan capture are involved. There are several
possible solutions to this condition which will be discussed below.

An important capability for a planning system is to detect a state
that leads to a dead end. A common approach in planning is to
identify a circular situation in which one action may lead to a state
that has been visited previously during the planning. In the current
model of iFALCON, this capability has been addressed partially in
which plans that have been selected previously will simply not be
selected in the next round of the resonance search. However, the
effectiveness of this approach depends on the complexity of the
problem. As all applicable plans have been selected, the filter is

simply refreshed and all plans become unrestricted for selection so
that the problem remains. An alternative solution is to check whether
the same subgoal action has been selected in the sequencer field F3
during the subgoal insertion in the plan capture cycle. This can be
realized as a part of the resonance search to select and activate a
subgoal action to capture the subplan. If the same subgoal has been
selected before, the search can resume to find another plan.

The approach of hindering the circular situations may not be
the most effective method to deal with the complexity of the
problem. The current adopted naive forward chaining method in
the plan search may not be suitable to handle large branching
options towards the solution. Based on the current model and the
algorithm of iFALCON, it is also possible to apply a backward
chaining search method besides the basic forward one. As opposed
to the forward chaining search, the beliefs field Ftl’ can be gradually
decreased to find an alternative plan so that the search moves
backward from the goal to the possible plan that can make the
goal achievable. Instead of directly replay the selected alternative
plan like in the forward method, the backward search just stores
the selected alternative plan if any to the working memory and
replaces the beliefs field F’l’ with the content of desires (F§). This
approach requires the perception input to be blocked temporarily
for the next round of the execution cycle. In this way, it is not only
just backward-chaining can be realized in iFALCON, but it can also
be combined with forward-chaining method so that if no plan that
can directly achieve the goal is available, the forward-chaining
search takes over to just select any plan that is applicable.

Another limitation in the current iFALCON model of learning is
that generalized postconditions in pre-existing plans constrain
postconditions of the plans learnt or captured. This condition may
impair further learning processes in a longer term as indicated in
the results of the blocks world experiment. One way to solve this
problem is to let the hypothetical subgoal and the postcondition
of the learnt plan to be made more specific by merging the values
of the readout postcondition and the current perceived situation.
Further learning process can also be made to generalize the
postcondition through the template learning process.

Another interesting aspect of iFALCON is the use of critic field.
Beyond the similarity measure between the goal and perception,
an interesting improvement is to extend the critic field to include
different values like cost, length, risk, reward and even emotional
factor. This extension may integrate some cognitive aspects to the
planning domain.

7. Conclusion

This paper has presented a model of hierarchical planning
system realized as a self-organizing neural network architecture.
The model explains how plans can be mapped into a composi-
tion of multi-channel adaptive resonance theory networks. The
model uses a new kind of temporal activation encoding to represent
sequences and to handle hierarchical processing structure. The
encoding technique allows sequences to be grouped and processed
resembling the structure and operations of plans. The model
emulates the processes involved in an intentional agent architecture
by seamlessly integrating deliberation and plan execution as a single
unit of activation cycles. Furthermore, based on the principle of
adaptive resonance theory, planning and learning can be integrated
as parts of the activation cycles.

The neural planning model has been implemented and tested
to solve the blocks world problem. Beyond a static plan-based
executor, the experiment confirms the capability of planning and
learning to explore and capture new solutions. However, the test
also reveals that the quality of planning and learning is sensitive
to the availability of the appropriate prior knowledge. More

B. Subagdja, A.-H. Tan / Neurocomputing 86 (2012) 124-139 139

in-depth studies are required to obtain the complete picture of
the characteristics of the plan learning so that initial plans and
network parameters can be setup more effectively.

Some aspects of the model are not yet fully exploited at the
current stage. The application of the critic attribute of the plan and
more general mechanisms to handle options and alternative plans
deserve completion so that the model can be improved to deal with
more different types of domain and environment. The experiments
conducted with the current implementation are still limited to plans
involving binary representation or just specific analog values. More-
over, the current problem domains are still not reflecting the
generalization feature of the fusion ART process. The feature would
enable iFALCON automatically identifies key features of the state
and preconditions and simplifies the plan generated. It is also
possible to learn a range of values besides a specific value using
the fuzzy operations involved in the matching and learning process.

The experiment conducted has indicated the potential of integrat-
ing a myriad of reasoning and learning mechanisms for systems
accomplishing certain tasks. The proposed neural model comprises
bi-directional pathways of activations which make it possible to
select a plan or activating a sequential pattern from different direc-
tions so that the plan can also be selected based on the presentation
of action sequences rather than triggered by goals. Although the
model and the experiment are still designed for a single agent
domain, it is possible to extend the model to deal with more complex
issues involving multiple agents like plan recognition or learning by
imitation. In the future, it is also possible to build a society of neural
network agents employing and constructing social norms.

In any case, the proposed model can bridge two different
approaches of building planning agents. Top-down formal sym-
bolic approaches can be integrated with bottom-up non-symbolic
processes to accomplish a single task domain. Both directions can
support and enrich each other to realize a system that ultimately
deliberate, plan, and learn.

Acknowledgement

This research is supported by the Singapore National Research
Foundation & Interactive Digital Media R&D Program Office, MDA,
under research grant NRF2008IDM-IDM004-037.

References

[1] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice,
Morgan Kaufman, Amsterdam, 2004.

[2] E.D. Sacerdoti, The nonlinear nature of plans, in: Proceedings of the Fourth
International Joint Conference on Artificial Intelligence (IJCAI-75), 1975,
pp. 206-218.

[3] L. Spalazzi, A survey on case-based planning, Artif. Intell. Rev. 16 (1) (2001)
3-36.

[4] T. Zimmerman, S. Kambhampati, Learning-assisted automated planning:
looking back, taking stock, going forward, Al Mag. 24 (2) (2003) 73-96.

[5] O. llighami, D.S. Nau, H. Munoz-Avila, D.W. Aha, Learning preconditions for
planning from plan traces and htn structure, Comput. Intell. 4 (2005)
388-413.

[6] C. Hogg, H. Munoz-Avila, U. Kuter, HTN-MAKER: learning HTNs with minimal
additional knowledge engineering, in: Proceedings of the Twenty-third AAAI
Conference on Artificial Intelligence, 2008.

[7] C. Hogg, U. Kuter, H. Munoz-Avila, Learning hierarchical task networks for
nondeterministic planning domains, in: [JCAI-09, 2009.

[8] X. Wang, Planning while learning operators, in: Proceedings of the Third
International Conference on Artificial Intelligence Planning Systems, AAAI
Press, 1996, pp. 229-236.

[9] S.W. Bennet, G.F. Dejong, Real-world robotics: learning to plan for robust
execution, Mach. Learn. 23 (2-3) (1996) 121-161.

[10] M. Beetz, Concurrent Reactive Plans: Anticipating and Forestalling Execution
Failures, Lecture Notes in Computer Science, vol. 1772, Springer, Berlin, 2000.

[11] R. Sun, Duality of the Mind: A Bottom-up Approach Toward Cognition,
Lawrence Erlbaum, Mahwah, 2002.

[12] G. Baldassarre, A modular neural-network model of the basal ganglia’s role in
learning and selecting motor behaviours,]. Cogn. Syst. Res. 3 (2002) 5-13.

[13] L. Shastri, D.J. Grannes, S. Narayanan, J.A. Feldman, A connectionist encoding
of parameterized schemas and reactive plans, in: G. Kraetzschmar, G. Palm
(Eds.), Hybrid Information Processing in Adaptive Autonomous Vehicles,
Springer Verlag, Berlin, 1997.

[14] M. Garagnani, L. Shastri, C. Wendelken, A connectionist model planning via
back-chaining search, in: Proceedings of Cognitive Science 2002, Lawrence
Erlbaum, Mahwah, 2002, pp. 345-350.

[15] A.-H. Tan, FALCON: a fusion architecture for learning, cognition, and learning,
in: Proceedings, International Joint Conference on Neural Network
(JCNN’04), 2004, pp. 3297-3302.

[16] A.-H. Tan, G.A. Carpenter, S. Grossberg, Intelligence through interaction:
towards a unified theory for learning, in: International Symposium on Neural
Networks (ISNN) 2007, vol. 4491, Lecture Notes in Computer Sciences,
Nanjing, China, 2007, pp. 1098-1107.

[17] A--H. Tan, N. Ly, D. Xiao, Integrating temporal difference methods and self-
organizing neural networks for reinforcement learning with delayed evaluative
feedback, in: IEEE Transactions on Neural Networks, vol. 9, 2008, pp. 230-244.

[18] D. Wang, B. Subagdja, A.-H. Tan, G.-W. Ng, Creating human-like autonomous
players in real-time first person shooter computer games, in: Proceedings of
the Twenty-first Annual Conference on Innovative Applications of Artificial
Intelligence (IAAI'09), 2009, pp. 173-178.

[19] B. Bonet, H. Geffner, Planning as heuristic search, Artif. Intell. 129 (1-2)
(2001) 5-33.

[20] J. Hoffman, B. Nebel, The FF planning system: fast plan generation through
heuristic search, J. Artif. Intell. Res. 14 (2001) 253-302.

[21] M.E. Bratman, Intention, Plans and Practical Reason, Harvard University
Press, Cambridge, 1987.

[22] M.E. Pollack, The uses of plans, Artif. Intell. 57 (1) (1992) 43-68.

[23] F. Ingrand, M. Georgeff, A. Rao, An architecture for real-time reasoning and
system control, IEEE Expert 7 (6) (1992) 34-44.

[24] A.S.Rao, M.P. Georgeff, BDI agents: from theory to practice, in: Proceedings of
the First International Conference on Multi-agent Systems (ICMAS-95), San
Francisco, 1995.

[25] G.A. Carpenter, S. Grossberg, D.B. Rosen, Fuzzy ART: fast stable learning and
categorization of analog patterns by an adaptive resonance system, Neural
Networks 4 (1991) 759-771.

[26] G.A. Carpenter, S. Grossberg, Adaptive resonance theory, in: M. Arbib (Ed.),
The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge,
MA, 2003, pp. 87-90.

[27] S. Grossberg, L. Pearson, Laminar cortical dynamics of cognitive and motor
working memory, sequence learning, and performance: toward a unified
theory of how the cerebral cortex works, Psychol. Rev. 115 (2008) 677-732.

[28] S. Grossberg, Behavioral contrast in short-term memory: serial binary
memory models or parallel continuous memory models? J. Math. Psychol.
3(1978) 199-219.

[29] G. Bradski, G.A. Carpenter, S. Grossberg, STORE working memory networks
for storage and recall of arbitrary temporal sequences, Biol. Cybern. 71 (1994)
469-480.

Budhitama Subagdja is a research fellow in School of
Computer Engineering (SCE), Nanyang Technological
University, Singapore. He received his PhD from
the Department of Information Systems, the University
of Melbourne, Australia. He finished and obtained
his undergraduate and master degree in computer
science from the Faculty of Computer Science,
University of Indonesia. Before he joined NTU, he worked
as a research assistant and a lecturer in the University of
Indonesia. He was also a postdoctoral fellow at the
University of Melbourne after finishing his PhD. His
current research interests include planning, reasoning,
and learning mechanisms in autonomous agents and
biologically inspired cognitive architecture for intelligent agents.

Ah-Hwee Tan is an associate professor and the head of
Division of Software and Information Systems at the
School of Computer Engineering (SCE), Nanyang Tech-
nological University. He was the founding director of
Emerging Research Laboratory, a research center for
incubating new interdisciplinary research initiatives.
Dr. Tan received a PhD in cognitive and neural systems
from Boston University, a Bachelor of Science (First
Class Honors) and a Master of Science in computer and
information science from the National University of
Singapore. Prior to joining NTU, he was a research
manager at the A*STAR Institute for Infocomm
Research (IR), spearheading the Text Mining and
Intelligent Agents research programmes. His current research interests include
brain-inspired intelligent agents, cognitive and neural systems, machine learning,
knowledge discovery and text mining.

	iFALCON: A neural architecture for hierarchical planning
	Citation

	iFALCON: A neural architecture for hierarchical planning
	Introduction
	Hierarchical planning
	Neural network planning
	Fusion ART: the building blocks
	Representing sequences and hierarchical relationships
	iFALCON: a plan-based neural network
	Mapping hierarchical plans to neural networks
	Plan selection and execution
	Online planning and learning

	Case study: blocks world
	Testing configuration
	Results and further tests

	Case study: Unreal Tournament NPC
	Domain modeling
	Testing configuration
	Results

	Discussion
	Conclusion
	Acknowledgement
	References

