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Self-Organizing Neural Architectures and
Cooperative Learning in a Multiagent Environment

Dan Xiao and Ah-Hwee Tan, Senior Member, IEEE

Abstract—Temporal-Difference-Fusion Architecture for Learn-
ing, Cognition, and Navigation (TD-FALCON) is a generalization
of adaptive resonance theory (a class of self-organizing neural
networks) that incorporates TD methods for real-time reinforce-
ment learning. In this paper, we investigate how a team of
TD-FALCON networks may cooperate to learn and function in
a dynamic multiagent environment based on minefield navigation
and a predator/prey pursuit tasks. Experiments on the naviga-
tion task demonstrate that TD-FALCON agent teams are able to
adapt and function well in a multiagent environment without an
explicit mechanism of collaboration. In comparison, traditional
Q-learning agents using gradient-descent-based feedforward
neural networks, trained with the standard backpropagation and
the resilient-propagation (RPROP) algorithms, produce a signifi-
cantly poorer level of performance. For the predator/prey pursuit
task, we experiment with various cooperative strategies and find
that a combination of a high-level compressed state representation
and a hybrid reward function produces the best results. Using
the same cooperative strategy, the TD-FALCON team also outper-
forms the RPROP-based reinforcement learners in terms of both
task completion rate and learning efficiency.

Index Terms—Multiagent cooperative learning, reinforcement
learning (RL), self-organizing neural architectures.

I. INTRODUCTION

KEY challenge of autonomous agents is to function
and adapt by themselves in a complex and dynamic
environment. In a multiagent system, the adaptation task is
particularly challenging. First of all, an agent is affected by
the actions of the other agents, and its action also affects the
environment and the other agents. Second, as agents continue
to learn, their behaviors change over time, and the environment
becomes highly dynamic. An agent must therefore be able to
predict the actions or to model the reasoning processes of the
others in some way.

A natural approach to both single-agent and multiagent learn-
ing is reinforcement learning (RL), as it enables an autonomous
agent to learn through interaction with the environment, based
on the consequences of actions, instead of explicit teaching.
Following the framework of a Markov decision process (MDP)
[1], an RL agent typically operates in a sense, act, and learn
cycle. In each cycle, the agent first obtains sensory input from
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its environment representing the current state (S). Depending
on the current state and its knowledge and goals, the agent
selects and performs the most appropriate action (A). Upon
receiving the feedback in terms of rewards (R) from the envi-
ronment, the agent learns to adjust its behavior in the motivation
of receiving positive rewards in the future. In situations where
the current state S is based on observations made by the agent
instead of absolute states, the problem becomes a partially
observable MDP (POMDP) [2].

This paper investigates how a class of self-organizing neural
networks, known as Fusion Architecture for Learning, Cog-
nition, and Navigation (FALCON) [3], can function as au-
tonomous agents that learn and function in a team through their
interaction with the environment. FALCON learns multimodal
mappings simultaneously across multiple-pattern channels, in-
volving states, actions, and rewards, in an online and incre-
mental manner. A specific class of FALCON models, called
temporal-difference-FALCON (TD-FALCON) [4], [5], learns
the value functions of the state-action space estimated through
TD algorithms [1]. A key advantage of TD methods is that they
can be used for multiple-step prediction problems, in which
the information on the correctness of an action can only be
available after several steps into the future. The learned value
functions are then used to determine the optimal actions based
on an action selection policy. To achieve high performance,
we adopt a hybrid action selection policy that initially favors
exploration and gradually leans toward exploitation in the later
stage of the learning process.

To investigate how TD-FALCON may operate in a multi-
agent setting, this paper conducts empirical studies based on
a multiagent minefield navigation task and a multipredators/
prey pursuit task. The former involves a number of autonomous
vehicles (AVs) learning to navigate through obstacles to reach
a stationary target (goal) within a specified number of steps [6].
The experimental results show that, using the TD-FALCON
model, the AVs adapt very well and learn to perform the task
rapidly despite the presence and the interference of the other
agents. In comparison, the same level of performance is not
attainable by traditional Q-learning agents based on multilayer
feedforward neural networks trained with the backpropaga-
tion (BP) algorithm [7] and the resilient-propagation (RPROP)
algorithm [8], [9] as the function approximator.

The pursuit task involves multiple agents pursuing a moving
target. This task calls for an explicit mechanism of cooperation,
as it requires the agents to surround the prey from all direc-
tions [10]. Our experiments show that the agents do not need
to have in-depth knowledge of the other agents’ underlying
models to accomplish the task successfully. Observing the

1083-4419/$25.00 © 2007 IEEE

Authorized licensed use limited to: Nanyang Technological University. Downloaded on October 20, 2008 at 01:19 from IEEE Xplore. Restrictions apply.



1568

environment and learning in a reactive manner enable the agents
to predict the possible actions of other agents and potential
outcomes of their own. In addition, our experiments on pursuit
games demonstrate that appropriate state representation and
cooperative strategies play a critical role in producing superior
performance while maintaining efficiency and scalability.

The rest of this paper is organized as follows. Section II
gives a retrospect of the state of the art on multiagent learning.
Section III provides a summary of the FALCON architec-
ture together with the associated value-function learning and
prediction algorithms. Section IV presents the TD-FALCON
algorithms, including the action selection policy and the value-
function-estimation mechanism. Sections V and VI report our
experiments on the multiagent minefield navigation task and
the multipredators/prey pursuit game, respectively. Section VII
concludes and highlights the future work.

II. RELATED WORK

The focus of this paper is on cooperative multiagent learn-
ing, whereby multiple agents cooperate to solve a given task
jointly and/or to maximize certain utility function through their
interactions [11]. Generally, there are two key approaches to
cooperative learning, namely, stochastic search and RL. Sto-
chastic search operates by searching through the solution space
and selecting from randomly generated candidate solutions,
as in the field of evolutionary computation (EC). Typically, a
fitness-oriented procedure is used to refine the multiple agents’
behaviors [11], [12]. EC is computationally intensive, and thus,
it is not commonly used in real-time applications [13]. This
paper, on the other hand, adopts the approach of RL, a paradigm
wherein an agent perceives the current state of the environment
and takes actions according to the rewards or penalties received
in a real-time manner [14], [15].

A. Multiagent RL

Classical RL methods involve learning one or both of the
following functions, namely, policy function, which maps each
state to a desired action, and value function, which associates
each pair of state and action to a utility value. For learning value
function, a popularly used method is Q-learning [16], which
is a temporal-difference method to estimate the accumulative
future rewards (or costs) of performing an action in a given
state. Under standard Q-learning, an agent must establish a
table to store each tuple of state, action, and () values. Such
a requirement causes a scalability problem for large and/or
continuous state and action spaces. In a multiagent system, an
agent needs to keep track of its environment, as well as the other
agents, aggravating the scalability problem.

To tackle the scalability problem of multiagent Q-learning,
many approaches based on function approximation have been
proposed. Kose e al. [17] used cerebellar-model articulation
controller for function approximation and state generalization
in robot soccer games because of its efficiency in learning and
operation. Kononen [18] proposed a gradient-based method,
which is a combination of value-function approximation and
direct-policy gradient with the value-and-policy-search frame-
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work. However, as Yang and Gu [19] pointed out, multiagent
Q-learning with function approximation can be very unstable.
Since there is no way to store all the patterns, learning new
patterns may erase the previously learned knowledge. In addi-
tion, most function-approximation methods rely on slow and
iterative learning, which is not effective to cope in a real-time
environment.

The TD-FALCON system, as described in this paper, can
also be viewed as a function-approximation approach to
Q-learning. However, by inheriting the fast and stable learning
characteristics from adaptive resonance theory (ART) models,
TD-FALCON is able to learn the ()-value function in a much
faster pace, while retaining the learning stability.

B. Multiagent Cooperative Strategies

Multiagent cooperative strategies can be broadly classified
into team learning and concurrent learning [11]. Team learning
involves a single learner to carry out the learning behaviors of
all the agents. The centralized team learning algorithm requires
all resources and information to be collected by a single learner,
and thus, the communication load is increased in an inherently
distributed system [20].

Using concurrent learning, each agent is equipped with a
learner to do the learning simultaneously [21]. Concurrent
learning generally involves three main considerations, namely,
reward assignment [22], dynamics of learning [23], and model-
ing of other agents [24].

Reward assignment can be in the forms of global rewards
[25], local rewards [26], and/or observational reinforcement
rewards [27]. Using global rewards, a team payoff is distributed
equally among all the learners. Using local reward, the reward
of each agent is purely based on its own behavior. Using
observational reinforcement reward, an agent gains its rewards
by observing and imitating other agents’ behaviors.

In terms of learning dynamics, there are generally two sce-
narios, namely, fully cooperative [28] and general-sum game
[29]. In a fully cooperative scenario, the rewards received by
agents are correlated, and so, increasing one agent’s reward
implies increasing other agents’ rewards. In the case of the
general-sum game, increasing an agent’s reward does not nec-
essarily result in increasing the reward of the whole team. Such
a scenario may lead to highly noncooperative situations.

In terms of modeling other agents, there are zero-level
modeling agents, one-level modeling agents, two-level mod-
eling agents, and so on [30]. Generally, a zero-level agent
does not consider whether any of its teammates is performing
any learning activity. A one-level agent models its teammates
as zero-level agents, and in general, an N-level agent mod-
els its teammates as (N — 1)-level agents. Although higher
level agent models appear to be more powerful, prior studies
[31]-[33] have found that the simplest zero-level agents can
have better performance than one-level and two-level agents.

Existing works on multiagent systems have explored the
various combinations of reward assignment, dynamics of learn-
ing, and agent modeling. For example, Littman [34] proposed
a minimax Q-learning algorithm to update the V' values in
two-player zero-sum stochastic games. Tan [35] showed that
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Fig. 1. FALCON architecture.

cooperative agents using the minimax Q-learning algorithm
can significantly outperform independent agents. However, the
minimax Q-learning is limited to exactly two agents with
diametrically opposed goals. For general sum stochastic games,
Hu and Wellman [36] proposed the Nash—Q algorithm to update
the V' values based on some Nash equilibrium. Unfortunately,
the solution is restricted to only two players and to the con-
dition that the other agent learns the same Nash equilibrium.
Agogino and Tumer [37] proposed QUICR-learning to divide a
global reward into many agent-specific rewards in a large-scale
multiagent system. The proposal has two properties: 1) agents
increasing their agent-specific rewards tend to increase the
global reward and 2) an agent’s action has a great influence
on its agent-specific reward. The disadvantage is that QUICR
is based on TD(0), which depends on immediate rewards.

The TD-FALCON systems presented in this paper employ
a concurrent-learning strategy. In terms of reward assign-
ment, we employ a hybrid reward mechanism in the predator/
prey pursuit task, combining individual and team payoffs. In
terms of dynamics of learning, we focus on a fully cooperative
scenario, in which all agents cooperate to maximize their gains.
In the aspect of modeling other agents, TD-FALCON systems
adopt the zero-level model, meaning that an agent regards other
agents’ behaviors as part of the dynamic environment.

III. FALCON ARCHITECTURE

The FALCON is an extension of ART networks [38], [39]
for learning multimodal pattern mappings across multiple-input
channels. For RL, the FALCON makes use of a three-channel
architecture, consisting of a sensory field Ff! for representing
the current state, an action field F? for representing the avail-
able actions, a reward field F3 for representing the values of
the feedback received from the environment, and a cognitive
field F for learning cognitive nodes, each of which encodes a
relation among the patterns in the three input channels (Fig. 1).
We describe how the FALCON can be used to predict and learn
value functions for RL as follows.

Input vectors: Let S = (s1,S2,...,5,) denote the state
vector, where s; indicates the sensory input i. Let A =
(a1,as,...,a,) denote the action vector, where a; indicates
a possible action i. Let R = (r,7) denote the reward vector,
where r € [0,1] and 7 (the complement of r) is given by 7 =
1 — r. Complement coding serves to normalize the magnitude
of the input vectors and has been found effective in ART
systems in preventing the code proliferation problem [40].

Activity vectors: Let x°* denote the Ff* activity vector for
k = 1to 3. Let y*© denote the F¥ activity vector.
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Weight vectors: Let wgk denote the weight vector associated

with the jth node in Fy for learning the input patterns in F} ok,
Initially, all F'§ nodes are uncommitted, and the weight vectors
contain all ones.

Parameters: The FALCON’s dynamics is determined by
choice parameters a°* > 0 for k = 1 to 3; learning-rate pa-
rameters 3% € [0, 1] for k = 1 to 3; contribution parameters
vk € [0, 1] for k = 1to 3, where 22:1 % = 1; and vigilance
parameters p°* € [0,1] for k = 1to 3.

The dynamics of FALCON for learning and predicting value
functions, based on fuzzy ART operations [41], is described in
the following sections.

A. Predicting Value Functions

In the predicting mode, FALCON receives input values in
one or more fields and predicts the values for the remaining
fields. Upon input presentation, the input fields receiving values
are initialized to their respective input vectors. Input fields not
receiving values are initialized to N, where N; = 1 for all .
For predicting value functions, only the state and action vectors
are presented to FALCON. Therefore, x*! = S, x°2 = A, and
x3 =N.

The predicting process of FALCON consists of three key
steps, namely, code activation, code competition, and activity
readout, which are described as follows.

Code activation: A bottom-up propagation process first takes
place in which the activities (known as choice-function values)
of the cognitive nodes in the F¥ field are computed. Given the
activity vectors x°!, ..., x3, the choice function T7 of each Fy
node j is computed as follows:

3 ck ck
c ck |X /\Wj
= e .

where the fuzzy AND operation A is defined by (p A q); =
min(p;,¢;), and the norm |.| is defined by |p| =), p; for
vectors p and q.

Code competition: A code competition process follows un-
der which the F¥ node with the highest choice function value is
identified. The system is said to make a choice when, at most,
one F5 node can become active after code competition. The
winner is indexed at .J, where

T§ = max {T : forall F5 node j} . (2)

When a category choice is made at node J, yj =1 and
yj = O forall j # J. This indicates a winner-take-all strategy.

Activity readout: The chosen F§ node J performs a readout
of its weight vectors to the input fields F* as

Xck:(new) — Xck:(old) A ch]k:. (3)

Finally, the reward vector R associated with the input state

vector S and the action vector A is given by R = x3.
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B. Learning Value Functions

For learning value functions, the state, action, and reward
vectors are presented simultaneously to the FALCON. There-
fore, x°' =S, x2 = A, and x> = R. Under the learning
mode, the FALCON performs code activation and code com-
petition (as described in the previous section) to select a winner
J based on the activity vectors x°!, x°2, and x°3. To complete
the learning process, template matching and template learning
are performed as described below.

Template matching: Before code J can be used for learning,
a template-matching process checks whether the weight tem-
plates of code J are sufficiently close to their respective input
patterns. Specifically, a resonance occurs if, for each channel £,
the match function m;?k of the chosen code .J meets its vigilance
criterion

ck __ |Xc}C A W3k|

m = > pek. 4)

[xk[

When a resonance occurs, the template learning ensues, as
defined as follows. If any of the vigilance constraints is violated,
mismatch reset occurs in which the value of the choice function
T7 is reset to —1 during the input presentation. The search
process then continues to select another F5 node J until a
resonance is achieved.

Template learning: Once a node J is selected for firing,
for each channel £, the weight vector ch-k is modified by the
following learning rule:

Wik(ncw) _ (1 _ l@ck)wik(‘)ld) + 6Ck (Xck A ij(OId)> e

For an uncommitted node .J, the learning rate 3 is typically
set to one. For committed nodes, BC’“ can remain as one for fast
learning or below one for slow learning in a noisy environment.

Node creation: Our implementation of FALCON maintains
one uncommitted node in the F field at any one time. When
the uncommitted node is selected for learning, it becomes com-
mitted and a new uncommitted node is added to the Fy field.
FALCON, thus, expands its network architecture dynamically
in response to the input patterns.

IV. TEMPORAL-DIFFERENCE—FUSION ARCHITECTURE
FOR LEARNING, COGNITION, AND NAVIGATION

The general sense—act-learn algorithm of TD-FALCON is
summarized in Table I. Given the current state s and a set of
available actions .4, the FALCON network is used to predict the
value of performing each available action. The value functions
are then processed by an action selection strategy (also known
as policy) to select an action. Upon receiving a feedback (if
any) from the environment after performing the action, a TD
formula is used to estimate the value of the next state. The value
is then used as the teaching signal for FALCON to learn the
association from the current state and the chosen action to the
estimated value.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007

TABLE 1
GENERIC DYNAMICS OF THE TD-FALCON

1. Initialize the FALCON network.

2. Given the current state s, for each available action a in the action
set A, predict the value of the action Q(s,a) by presenting the
corresponding state and action vectors S and A to FALCON.

3. Based on the value functions computed, select an action a from
A following an action selection policy.

4, Perform the action a, observe the next state s', and receive a
reward r (if any) from the environment.

5. Estimate the value function Q(s,a) following a TD formula
given by AQ(s,a) = aTD,,,.

6. Present the corresponding state, action, and reward (Q-value)
vectors (S, A, and R) to FALCON for learning.

7. Update the current state by s=s’.

Repeat from Step 2 until s is a terminal state.

A. Action Selection Policy

To achieve a balance between exploration and exploitation,
we adopt an e-greedy strategy, which selects an action of the
highest value with the probability of 1 — €, where € is a constant
between zero and one, or takes a random action otherwise [42].
With a fixed e value, the agent always explores the environment
with a constant level of randomness. But in practice, it is ben-
eficial to have a higher € value in the initial stage to encourage
the exploration of new paths and a lower ¢ value in the later
stage to optimize the performance by exploiting familiar paths.
A decayed e-greedy policy is thus proposed to gradually reduce
the value of € over time. The decay rate d. is, typically, inversely
proportional to the complexity of the environment as problems
with a larger input and action space require a longer time to
explore.

B. Value-Function Estimation

One key component of TD-FALCON (Step 5) is the iterative
estimation of the value function ((s,a) using a temporal-
difference equation

AQ(Sa Cl) = aTDg¢;y (6)

where « € [0,1] is the learning parameter, and TDg,, is a
function of the current Q value predicted by the FALCON, and
the @) value newly computed by the TD formula. Using the
Q-learning rule, the temporal-error term is computed by

TDerr = 7 + ymaxy Q(s',a’) — Q(s,a) @)

where r is the immediate-reward value, v € [0,1] is the dis-
count parameter, and max, Q(s’,a’) denotes the maximum
estimated value of the next state s’. The update rule is applied
to all states that the agent goes through. With value iteration,
the value function Q(s, a) is expected to track and converge to
r + ymax, Q(s',a’) (of which the value is also moving) over
time. To ensure that all input values are bounded between zero
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Fig. 2. Multiagent minefield navigation simulator.

and one, a scaling term is incorporated to form the bounded
Q-learning rule, which is given by

AQ(s,a) = aTDeyr (1 — Q(s,0a)) . )

The AQ term is then used to compute a new () value, which
is given by

Q™ (s,a) = Q(s,a) + AQ ©)
which, in turn, is encoded into the reward vector for the
FALCON as

R = (Q(“W)(s, a),1 — Qv (s, a)) . (10)

V. MINEFIELD NAVIGATION TASK

Minefield navigation has been used in studies of cogni-
tive models [6], [43] as an evaluation task. In the minefield
navigation task, a number of AVs navigate through a minefield
to a randomly selected target position (Fig. 2). In each trial,
the AVs start at randomly chosen positions in the field. The
objective of the game is for the AVs to reach the target position
in a specified time frame without hitting a mine or colliding
with each other. During a trial, the mines remain stationary. A
trial ends when each individual AV reaches the target (success),
hits a mine (failure), collides with each other (failure), or runs
out of time (failure).

A. State Representation

Minefield navigation with mine avoidance is not a trivial
task. As the configuration of the minefield is generated ran-
domly and changes over trials, an agent needs to learn strategies
that can be carried across experiments. In addition, the agent
has a rather weak sensory capability with only a 180° forward
view based on five sonar sensors. For each direction ¢, the sonar
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signal is measured by s; = 1/(1 + d;), where d; is the distance
to an obstacle (that can be either a mine or the boundary of
the minefield) in the ¢th direction. Other input elements of
the sensory (state) vector include the range and the bearing
of the target from the current position. By using observations
instead of physical locations, our formulation of the minefield
navigation problem is based on the POMDP. In each step, the
system can choose one of the five possible actions, namely,
moving left, moving diagonally left, moving straight ahead,
moving diagonally right, and moving right.

In a multiagent environment, the minefield navigation task
becomes more challenging. First, agents have to avoid colli-
sions with each other as a collision results in failures of both
colliding agents. Second, as agents are nonstationary, an agent
needs to predict the movement of its neighboring agents to
avoid collisions. For the purpose of monitoring the other agents,
each agent adds a separate set of five sonar sensors to its
sensory representation, because agents and mines have different
characteristics and should be tracked separately. Without the
additional sonar sensors, our initial experiments produce poor
results.

The complexity of learning in the multiagent minefield
navigation problem is determined by the dimension of the
sensory(state) and action space. The state—action space is given
by S x A x B, where S = [0, 1] is the value range of the
ten sonar signals, A is the set of available actions, and B =
0,1,...,7 is the set of possible target bearings. With a con-
tinuous state—action space, traditional RL systems would have
a scalability problem. Even if the sonar signals are simply
binary, there are still at least 2'° * 5 % 8 (approximately 40 000)
possible combinations of states and actions.

B. Reward Scheme

Our initial experiments are based on a 16 x 16 minefield
containing ten mines. In each trial, every individual AV repeats
the cycles of sense, act, and learn, until it reaches the target, hits
a mine, collides with another AV, or exceeds 30 sense—act—learn
cycles. A reward of 1 is given when the AV reaches the target,
and a reward of 0 is given when the AV hits a mine or collides
with another AV. Under the immediate reward scheme, at each
step of the trial, an immediate reward is estimated by computing
a utility function U = 1/(1 4 r4), where rg4 is the remaining
distance between the current position of the AV and the target
position. In the delayed-reward scheme, no reward is given until
the trial ends. When the AV runs out of time, a final reward is
computed by using the utility function based on the remaining
distance from the AV to the target.

C. Experimental Results

All AVs are based on the TD-FALCON with bounded
Q-learning and use the same set of parameter values: choice
parameters o°® = 0.001 and learning-rate parameters 3°% =
1.0 for k = 1,2, 3; contribution parameters v°! = 2 = 0.5,
73 = 0.0; and baseline-vigilance parameters p°t = 0.5, p? =
0.2, p° = 0.5. For TD learning, the learning rate « is fixed
at 0.5, the discount factor + is set to 0.95, and the initial Q)
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Fig. 4. Normalized steps of the TD-FALCON teams averaged at 100-trial intervals on the minefield navigation task. (a) Immediate reward. (b) Delayed reward.

values are set to 0. For action selection, the decayed e-greedy
policy is used with € initialized to 0.6 and decayed at a rate
of 0.002.

Each AV learns from scratch based on the feedback signals
received from the environment. We run the experiments for
3000 trials. In each trial, the initial locations of the AVs,
the location of the target, and the locations of the mines are
randomly set. The success rate of a team in a trial is determined
by the percentage of the AVs that reach the target position
within the specified time in the trial.

Fig. 3 illustrates the performance of the TD-FALCON agent
teams consisting of one, two, four, and eight AVs in terms of
success rates averaged at 100-trial intervals within 3000 trials.
We can see that the success rates of TD-FALCON teams in-
crease rapidly right from the beginning. By the end of 500 trials,
almost all teams can achieve more than 90% success rates.
Nevertheless, teams with fewer agents produce slightly better
results due to the lower chance of collision. In addition, teams
with immediate rewards work better than those with delayed
rewards. Given the same number of agents, the success rates
with immediate rewards are on average of 3% ~ 5% higher
than those with delayed rewards.

To quantitatively evaluate how well the AVs travel from the
starting positions to the targets, we define a measure called
normalized step, which is given by step,, = step/sq, where step
is the number of sense—act—learn cycles taken to reach the target

and s is the shortest distance between the starting and target
positions. A normalized step of one means that the AV has taken
the optimal (shortest) path to the target.

Fig. 4 depicts the normalized steps taken by the
TD-FALCON agent teams consisting of one, two, four, and
eight AVs averaged at 100-trial intervals. With just one agent,
the normalized step converges to almost one after 1000 trials.
Note that the normalized step values can seldom be ones, as
detours are unavoidable when mines are on the optimal paths.
In general, with more AVs in the system, the paths are always
less than optimal as the agents need to avoid collision with
the mines, as well as with each other. However, teams with
immediate rewards work slightly better than their counterparts
with delayed rewards. After 3000 trials, the four-AV team with
immediate rewards achieves a normalized step of 1.95, whereas
the four-AV team with delayed rewards takes a normalized step
of 2.34.

Fig. 5 illustrates the average number of cognitive nodes
learned by each agent in the TD-FALCON agent teams con-
sisting of one, two, four, and eight AVs averaged at 100-trial in-
tervals. We observe that the numbers of nodes in all agent teams
increase linearly over the learning trials. However, teams with
more AVs tend to create a larger number of cognitive nodes,
due to the more complex and dynamic environment. Generally,
teams with immediate rewards learn a much smaller number
of cognitive nodes. After 3000 trials, teams with immediate
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Fig. 6. Success rates of the BP teams averaged at 5000-trial intervals on the minefield navigation task. (a) Immediate reward. (b) Delayed reward.

rewards generate about 700 nodes only, whereas teams with
delayed rewards generate about 1000 nodes.

D. Comparing With BP-Based Reinforcement Learners

To put the performance of the TD-FALCON in perspective,
we further conduct experiments to evaluate the performance
of a traditional RL system, using the standard Q-learning rule
and a multilayer feedforward neural network trained with the
gradient-descent BP algorithm as the function approximator.
We have chosen the BP algorithm as the benchmark of com-
parison, as it is by far one of the most commonly used function
approximators and has been successfully applied to a similar
navigation problem [7]. To enable a fair comparison, the BP
learner also makes use of the same action selection module
based on the decayed e-greedy policy.

The BP learner employs a standard three-layer perceptron
architecture to learn the value function with a learning rate of
0.25 and a momentum term of 0.5. The input layer consists
of 18 nodes representing the five sonar-signal values, eight
possible target bearings, and five selectable actions. The output
layer consists of only one node representing the value of
performing an action in a particular state. A key issue in using a
BP network is the determination of the number of hidden nodes.

We experiment with a varying number of nodes empirically and
obtain the best results with 36 nodes.

Referring to Fig. 6, we can see that the TD-FALCON
evidently outperforms the BP learner in terms of success
rates. For example, under the immediate-reward scheme, the
four-AV BP teams achieves a success rate of around 67%
after 100000 trials, while the success rate of the four-AV
TD-FALCON team after only 3000 trials is 98%. A similar
set of performance figures is observed for experiments using
the delayed-reward scheme. It is also noticeable that the suc-
cess rates of the BP teams significantly decrease from 95%
with a single agent to 50% with eight agents. In contrast, the
TD-FALCON teams can adapt well and maintain the high
success rates as the number of agents increases.

In terms of learning speed, the TD-FALCON agent teams
also learn much faster than the BP reinforcement learners.
For example, under the immediate-reward scheme, the four-AV
BP team takes more than 75 000 trials to achieve their peak per-
formance. In contrast, the four-AV TD-FALCON team achieves
its peak within just 500 trials. For the experiments with delayed
rewards, the same performance difference is also observed. This
indicates that TD-FALCON is more than 100 times (over two
orders of magnitude) faster than the BP learner in terms of
learning efficiency.
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Fig. 7. Success rates of the RPROP teams averaged at 1000-trial intervals on the minefield navigation task. (a) Immediate reward. (b) Delayed reward.

E. Comparing With RPROP-Based Reinforcement Learners

To further validate the performance of TD-FALCON, we
repeat our experiments of the gradient-descent-based reinforce-
ment learners, by replacing the standard BP algorithm with
the RPROP algorithm [9], [44]. RPROP updates the weights
by using the signs of two succeeding derivatives instead of
the magnitudes of the derivatives. Compared with standard BP,
RPROP is believed to have the advantages of faster learning,
lower computation cost, higher robustness in parameter choice,
and faster convergence rate.

Similar to the BP learner, the RPROP learner also uses
the same action selection policy and a three-layer Perceptron
architecture to learn the value function with a learning rate of
0.25. We conduct empirical experiments and obtain the best
performance of RPROP teams with 21 hidden units.

As shown in Fig. 7, although RPROP shows a marked
improvement over the BP algorithm, its success rates are still
significantly lower than those of the TD-FALCON. For ex-
ample, under the immediate-reward scheme, the four-AV BP
teams obtain 67% success rate after 100000 trials, whereas
the four-AV RPROP team can achieve 74.2% success rate
after 40000 trials. However, the success rate of the four-AV
TD-FALCON team is 98% after only 3000 trials. Similar to the
BP teams, the success rates of the RPROP teams also signifi-
cantly reduce from 92.8% with one single agent to 64.3% with
eight agents under the immediate-reward scheme. In contrast,
the TD-FALCON can adapt well and maintain the high success
rates in a multiagent environments.

In terms of learning speed, RPROP indeed learns much faster
than the BP learners. However, it still does not match the
convergence speed of the TD-FALCON. For example, under the
immediate-reward scheme, the four-AV RPROP team achieves
its peak performance within 5000 trials. However, the four-
AV TD-FALCON team achieves peak success rates within only
500 trials. A similar set of performance figures is observed for
experiments using the delayed-reward scheme. This indicates
that, in terms of learning efficiency, the TD-FALCON is more
than 100 times (two orders of magnitude) and ten times (one
order of magnitude) faster than the BP learner and RPROP
learner, respectively.

To make a direct comparison, Figs. 8 and 9 collate the
success rates of BP, RPROP, and TD-FALCON with one and
eight agents, respectively, operating under the same conditions
for the first 3000 trials.

Referring to Fig. 8, under the immediate-reward scheme, the
TD-FALCON learner has a much higher success rate of well
above 90% after 3000 trials, compared with 17.6% of BP and
71.4% of RPROP. In addition, the TD-FALCON learner has
also a significantly lower normalized step of 1.158, compared
with those of the BP and RPROP learners. Experiments using
the delayed-reward scheme show similar results.

Referring to Fig. 9, with immediate rewards, the eight-AV
TD-FALCON team has a much higher success rate (95.0%)
after 3000 trials, compared with 5.7% of the BP team and
43.0% of the RPROP team. On the average, the TD-FALCON
team has a normalized step of 2.937, significantly lower than
those of both the BP and RPROP teams. Experiments using the
delayed-reward scheme, again, show similar results.

F. Scaling up the Navigation Task

To demonstrate the scalability of the TD-FALCON algo-
rithm, we further conduct experiments of the TD-FALCON
using a variety of minefield configurations listed as follows:

1) 16 x 16 minefield with
configuration);

2) 32 x 32 minefield with 20 mines;

3) 48 x 48 minefield with 30 mines;

4) 64 x 64 minefield with 40 mines.

Fig. 10 summarizes the success rates of the TD-FALCON
teams with four agents in the various minefield configurations.
We see that the TD-FALCON teams maintain a high success
rate despite the increase in the domain size. With immediate
rewards, the success rates after 3000 trials are 98% and 95% in
the smallest and largest fields, respectively. Similar results are
observed for the delayed-reward scheme.

Nevertheless, we note that the learning speed of
TD-FALCON teams gets slower as the minefield size
increases. With immediate rewards, the TD-FALCON teams
with four agents achieve the peak performance at 500 trials in

ten mines (original
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Fig. 8.

Performance of the TD-FALCON, BP, and RPROP teams with a single agent averaged at 100-trial intervals on the minefield navigation task. (a) Success

rates with immediate rewards. (b) Success rates with delayed rewards. (c) Normalized steps with immediate rewards. (d) Normalized steps with delayed rewards.

the smallest minefield but take up to 1000 trials in the largest
one. The same observation is made for the delayed-reward
scheme. The increase in learning time is attributed to the longer
time needed to explore in a larger minefield.

VI. PREDATOR/PREY PURSUIT GAME

The predator/prey pursuit domain [10], [45] has been widely
used as a benchmark for multiagent systems. Many variants of
the pursuit domain exist with varied levels of complexity [46].
To create a challenging problem, our experiments employ eight
predators to capture a prey in a 16 x 16 field. The prey typically
starts at the center of the field, and the predators are distributed
at the edges of the field (Fig. 11). The rules of the game are
summarized as follows.

1) At each time step, each of the predators and the prey can
select any of the nine actions: to move in one of the eight
possible directions at the pace of one square or to remain
stationary. No predator or prey can go out of the game
field.

2) The predators attempt to encircle the prey and make it
unmovable. When the prey is completely surrounded by
the predators, the game ends successfully.

3) The prey moves at the same speed as the predators by
adopting the effective maximizing-distance escape strat-

egy [47], by which it selects an action that maximizes the
total distance from the predators.

4) When two predators collide or the prey reaches any side
of the game field, the game is deemed to have failed.
When a pursuit is not completed within 30 steps, it is also
considered as a failure.

A. State Representation

For the purpose of cooperation, an agent needs to be
aware of its surrounding agents. Using monolithic Q-
learning, the state space of each agent is increased with
the information of the other agents [34], [35], [48]. The
growth of the dimensionality of the state space for each
agent is exponential with respect to the number of agents,
leading to the problem of combinatorial explosion [49]. As
an illustration, consider a world with n predators and one
prey, the state of a predator ¢ can be represented by an n-tuple
(c1,¢2,...,cn), where ¢; represents the relative positions of the
prey to the predator ¢ and ¢;(j # ¢) indicates the relative
positions of the predator j with respect to the predator
i. For a pair of predators (or a predator and a prey),
the possible cases of relative positions between them
could be (2d+1)?, where d is the visual depth of a
predator. In our game field, d =15, so the number
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of possible states that a predator can have could be
N=(2d+1)?=(2x15+1)>=961. Since there are
eight sets of coordinates to track, the size of the state
space for a single predator balloons to S = N® = 9618 =
727,423,121,747,185,263, 828, 481.

1) All-Bearing Strategy: Similar to the minefield navigation
problem, our formulation of the predator/prey pursuit game also
follows the POMDP. Based on our analysis of the problem,
the optimal action of a predator depends on its bearing rather
than on its distance to the prey. This implies that the canonical
distance between the predators and the prey may not be strictly
required. Suppose that the bearing from the predator ¢ to the

prey is b%, where 0 < b’ < 7, the prey bearing vector B’ is

computed by
Bi 1,
77 {0,

and the other bearing vector B° is the concatenation of the
bearing vectors from the other predators to the prey. Consider-
ing bearing values for just eight directions, the combined state
vector translates to an 8 x 8 state space.

2) Center of Agent Team (CAT) Bearing Strategy: Instead
of representing the bearing of each agent, we introduce a

if j = b
otherwise

(11)
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Fig. 11. Layout of the pursuit game.

high-level concept called CAT and incorporate into the state
vector the bearing from the CAT to the prey. Whereas a typical
predator bearing vector consists of eight possible values, the
CAT bearing vector has an extra value denoting the situation
that the CAT coincides with the prey. Suppose that the bearing
from the CAT to the prey is b (where 0 < b < 8), the CAT
bearing vector B¢ is computed by

c L,

To avoid colliding with other predators, each predator is
equipped with an additional set of eight sonar inputs, one for
each direction. With complement coding, there is a total of
16 sonar values. To simplify the problem, we adopt binary sonar
inputs to detect the existence of predators in the immediate

if j = b°

otherwise. (12)

surrounding. The predator sonar vector S* = (ag, ay,...,as)
is given by
1, if j <8andd; =1
a;={ 0, if j < 8andd; > 1 (13)
1-— aj-8, lfj Z 8

where d;(0 < j < 7) is the distance between the predator and
another predator in the jth bearing.

Using the CAT bearing strategy, the complete state vector of
the predator i is thus given by (S?, B?, B¢). In total, the size of
the state space for each predator is 28 x 8 x 9 = 18432, much
less than the solution based on relative positions.

B. Reward Scheme

In a canonical TD-FALCON algorithm, an agent is not
aware of how its movement contributes to the entire team and
the outcome of the game. Previously, profit sharing [50] has
been used by averaging the rewards received by all the agents.
However, this approach fails to consider the specific situation
of each individual agent. In a successful trial, the prey is even-
tually immovable after being surrounded by the eight predators.
When this happens, the distance between each predator and
the prey is the minimum, and the CAT coincides with the prey.

1577

TABLE 1II
STATE VECTORS AND REWARD FUNCTIONS USED BY
THE VARIOUS COOPERATIVE STRATEGIES

Strategy ‘ State Representation ‘ Reward (rl) ‘
Non-cooperating | D = (so, s1) ﬁ

S'=(ap, a1, a15) | O if fail
Bl = (bg, b1, -, by)

All Bearing st— (ag, ay, -, a1s) m
B! = (by, b1, -, b7) 0 if fail
B° = (b, by, -+, b31)

CAT Bearing Si— (ao, a1, -+, a15) m
Bl = (b, b1+, b7) | Oif fail
B¢ = (co,c1, "+, ¢s)

When a predator is pursuing the prey, the distance between
them is decreasing, and the CAT is also approaching the prey.
Therefore, a predator makes a contribution to the overall task
by a move that reduces its distance to the prey and, at the
same time, gets the center closer to the prey. To incorporate
both the individual and team payoffs, the reward function of a
predator i is defined as r; = 1/(1 + d*)(1 + d¢), where d’ and
d¢ are the distances from the predator and the CAT to the prey,
respectively.

When the predators successfully surround the prey, the above
reward function produces a value of one. However, when two
predators collide, a final reward signal of zero is given. Like-
wise, when the prey reaches the edge of the game field, a reward
of zero is provided to all the agents.

C. Experimental Results

We conduct three sets of comparative experiments to evaluate
the efficacies of the various cooperative strategies. The first set
of the experiments, involving teams of noncooperating agents
with relative positional information in the state representation,
provides the baseline performance for comparison. The relative
positional information is denoted as D = (sg, s1), where sg =
1/(1+d), s1 = 1 — sp and d is the distance from this agent to
the prey. The second set of the experiments involves the TD-
FALCON teams using the all-bearing cooperative strategy. The
last set of the experiments employs the TD-FALCON teams
using the CAT-bearing cooperative strategy. The sensory state
representations and the reward functions used in the various ex-
periments are summarized in Table II. All experiments use the
following parameter values: choice parameters a°* = 0.001,
learning rates 3°* = 1.0 (fast learning), baseline-vigilance
parameters p°* = 0.9 for k =1 to 3, initial exploration rate
€ = 0.6, decaying rate d. = 0.0004, Q-learning-rule learning
rate = 0.5, and discount parameter v = 0.01.

Fig. 12 shows that the cooperating TD-FALCON teams
have a clear performance advantage over their noncooperating
counterparts. After 6500 trials, the success rates of cooperating
teams reach 95%, compared with less than 85% success rates
achieved from noncooperating teams.
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Fig. 12.  Success rates of the TD-FALCON teams using the three strategies on
the pursuit game.
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Fig. 13. Number of steps taken by the TD-FALCON teams using the three
strategies on the pursuit domain.
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Fig. 14. Number of cognitive nodes learned by the TD-FALCON teams using
the three strategies on the pursuit domain.

Fig. 13 again illustrates the benefit of cooperation in terms
of the average number of steps taken by a predator team to
surround the prey. In spite of slight fluctuations, the trend
clearly shows that the cooperating teams are more efficient than
the noncooperating teams.

Fig. 14 compares the three strategies based on the number of
cognitive nodes created by each individual TD-FALCON agent.
We observe that the use of CAT bearing results in a significantly
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Fig. 15.  Success rates of the TD-FALCON and RPROP teams using the CAT
bearing strategy on the pursuit domain.
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Fig. 16.  Number of steps taken by the TD-FALCON and RPROP teams using
the CAT bearing strategy on the pursuit domain.

smaller number of cognitive nodes learned. The significant code
reduction is believed to be the result of the removal of the
relative positional information, as well as the bearings of other
agents, from the state vector.

D. Comparing With RPROP

To put the performance of the TD-FALCON in perspective,
we repeat the experiments using the same setting, with the
RPROP reinforcement learners. Fig. 15 shows the success rates
obtained by the RPROP team over 10000 trials averaged over
ten runs of experiments. We see that the RPROP team generally
takes a longer time to learn and yet achieves a significantly
lower success rate than that of the TD-FALCON. After 10 000
trials, the success rate of the TD-FALCON team is typically
above 95%. However, the RPROP team only achieves less than
50% success rate.

Fig. 16 shows the number of steps taken by the RPROP
team to capture the prey within 10 000 trials, averaged over ten
runs of experiments. It can be noticed that the RPROP team
takes more steps to capture the prey than the TD-FALCON
team. After 10000 trials, the TD-FALCON team takes only
19.50 steps to capture the prey on average, while the RPROP
team requires an average of 32.57 steps to fulfill the task.
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VII. CONCLUSION

Two critical issues in multiagent cooperative learning sys-
tems are scalability and dynamic coadaptation. By using a self-
organizing learning architecture, the TD-FALCON offers an
efficient solution to the scalability problem when dealing with
large and continuous state—action spaces. Specifically, its online
incremental learning capability enables an agent to adapt and to
operate in a real-time multiagent environment.

In our minefield experiments, we show that the TD-FALCON
systems can produce superior performance, in terms of suc-
cess rate, stability, and learning efficiency, in the presence
of other learning agents. Our experiments on the multiagent
predators/prey pursuit task indicate that appropriate coding of
state representation can greatly enhance the scalability of the
multiagent systems. In addition, high-level cooperative signals,
such as CAT, are effective in generating outstanding perfor-
mance with high efficiency and scalability.

The TD-FALCON can be seen as a function-approximation
method for temporal-difference learning. Although it has been
widely acknowledged that the convergence of Q-learning is
longer guaranteed with the use of function approximators, the
TD-FALCON has demonstrated superior performance in terms
of success rates and stability across our empirical experiments.

On the other hand, although the TD-FALCON has shown
encouraging results, the work reported here only marks the
beginning of our study into the multiagent domain. The cooper-
ative tasks that we have studied so far are standard benchmark
tasks. While they serve the purpose of evaluating and compar-
ing the performance of the TD-FALCON agents with alterna-
tive methods empirically, it remains a challenge to maintain
the robustness and adaptability of the TD-FALCON in more
complex real-world problems. Our future work will include the
development of more generic cooperative strategies that can
cope with a variety of complex and dynamic situations.
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