
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

2-2009 

Integrated cognitive architectures: A survey Integrated cognitive architectures: A survey 

Hui-Qing CHONG 

Ah-hwee TAN 
Singapore Management University, ahtan@smu.edu.sg 

Gee-Wah NG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Computer and Systems Architecture Commons 

Citation Citation 
CHONG, Hui-Qing; TAN, Ah-hwee; and NG, Gee-Wah. Integrated cognitive architectures: A survey. (2009). 
Artificial Intelligence Review. 28, (2), 103-130. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5220 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5220&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Artif Intell Rev (2007) 28:103–130
DOI 10.1007/s10462-009-9094-9

Integrated cognitive architectures: a survey

Hui-Qing Chong · Ah-Hwee Tan · Gee-Wah Ng

Published online: 20 February 2009
© Springer Science+Business Media B.V. 2009

Abstract This article aims to present an account of the state of the art research in the field of
integrated cognitive architectures by providing a review of six cognitive architectures, namely
Soar, ACT-R, ICARUS, BDI, the subsumption architecture and CLARION. We conduct a
detailed functional comparison by looking at a wide range of cognitive components, includ-
ing perception, memory, goal representation, planning, problem solving, reasoning, learning,
and relevance to neurobiology. In addition, we study the range of benchmarks and applica-
tions that these architectures have been applied to. Although no single cognitive architecture
has provided a full solution with the level of human intelligence, important design principles
have emerged, pointing to promising directions towards generic and scalable architectures
with close analogy to human brains.

Keywords Integrated cognitive architectures · Soar · ACT-R · ICARUS · BDI ·
Subsumption architecture · CLARION

H.-Q. Chong
School of Chemical and Biomedical Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798, Singapore
e-mail: ch0015ng@ntu.edu.sg

A.-H. Tan (B)
School of Computer Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798, Singapore
e-mail: asahtan@ntu.edu.sg

G.-W. Ng
DSO National Laboratories, 20 Science Park Drive, Singapore 118230,
Singapore
e-mail: ngeewah@dso.org.sg

123



104 H.-Q. Chong et al.

1 Introduction

An integrated cognitive architecture can be defined as a single system that is capable of
producing all aspects of behaviour, while remaining constant across various domains and
knowledge bases (Newell 1990; Anderson et al. 2004). This system would consist of many
modules (or components) working together to produce a behaviour. These modules contain
representations of knowledge, memories for storage of content and processes utilizing and
acquiring knowledge. Integrated cognitive architectures are often used to explain a wide range
of human behaviour, and to mimic the broad capabilities of human intelligence (Anderson
et al. 2004; Langley and Choi 2006).

Research on integrated cognitive architectures is interdisciplinary by nature, spanning the
fields of artificial intelligence, cognitive psychology, and neurobiology. Over the past decades,
many cognitive architectures have been proposed and steadily developed, based on different
approaches and methodologies. However, despite that integrated cognitive architectures has
been an important research area, there is a lack of formal reviews on the subject domain.

An early survey by Wray et al. (1994) provided an introduction to 12 cognitive architec-
tures, covering the subsumption architecture, ATLANTIS, Theo, Prodigy, ICARUS, Adaptive
Intelligent Systems, A Meta-reasoning Architecture for ‘X’, Homer, Soar, Teton, RALPH-
MEA, and Entropy Reduction Engine. The survey made comparison based on the properties
of the architectures, capabilities of the agents, environmental consideration, generality, psy-
chological validity, and efficiency. However, the references used by the authors of this website
were dated before 1992. In addition, the authors simply made comparison by describing the
criteria, followed by a list of architectures displaying each property.

Köse (2000) perhaps presented the most comprehensive survey of all in terms of a wide
coverage of architectures and the capabilities compared based on autonomous mobile robots.
However, this article was written in 2000 and therefore missed the many new development in
the recent years. For instance, ICARUS describes a problem solving module explicitly Lang-
ley and Choi (2006), yet Köse stated that problem solving capability was absent in ICARUS.

Stollberg and Rhomberg (2006) gave a detailed overview of Soar, BDI and others, as
well as comparison of these architectures based on goal types and resolution techniques.
Though the number of aspects compared was limited, the authors made functional compar-
isons between the architectures, rather than just stating whether each feature compared had
been well addressed in the architecture.

The latest review by Vernon et al. (2007) included an overview of various cognitive archi-
tectures, such as Soar, ICARUS, ACT-R and others, as well as a comparison of the architec-
tures. However, they only compared if the different aspects had been strongly addressed in
the design of the architectures.

Among all prior surveys, only Stollberg and Rhomberg (2006) had made functional com-
parisons of the various architectures. However, they had merely focused on the aspect of goal.
In this article, we aim to fill the gap of the prior surveys by providing a detailed comparison of
a selected group of cognitive architectures. Instead of simply stating if specific functions are
strongly addressed in the design, our comparison shall be at the mechanism level, describing
how the architectures differ from one another in realizing the functions.

While it is clearly impossible for the article to include all existing research and individuals,
who have contributed significantly to the topic, we aim to cover a good mix of the systems
that are representative of a diverse range of approaches and disciplines. Figure 1 shows the six
cognitive architectures that we study, namely Soar, ACT-R, ICARUS, BDI, the subsumption
architecture, and connectionist learning with adaptive rule induction on-line (CLARION),
roughly classified according to their roots and emphases.

123



Integrated cognitive architectures 105

Fig. 1 An overview of the six cognitive architectures

Soar (Laird et al. 1986a, b, 1987; Lehman et al. 2006), based on the physical symbolic
hypothesis (Newell 1990), is one of the earliest and most extensively developed AI architec-
tures in the history. ACT-R (Anderson et al. 2004) (also with a long history) and ICARUS
(Langley and Choi 2006) (a relatively recent model) are cognitive systems developed with
the primary aim of producing artificial intelligence mimicking human cognition. While the
three architectures share many features of classical artificial intelligence, including symbolic
representation, production rule based inference, and means-end analysis for problem solving,
ACT-R and ICARUS are notably different from Soar by their strong emphasis of producing
a psychologically motivated cognitive model.

Belief-Desire-Intention (BDI) architecture (Bratman et al. 1988; Rao and Georgeff 1991)
is a popularly used framework, incorporating beliefs, desires and intentions, for designing
intelligent autonomous agents. Based on the studies of folk psychology and intentional sys-
tems, BDI has a special focus on intentions, representing an agent’s commitments to carry
out certain plans of actions (Georgeff and Ingrand 1989).

Coined as the new artificial intelligence, the subsumption architecture (Brooks 1999) is
notably different from the other cognitive architectures in its approach and design. The sub-
sumption architecture is behaviour based and thus does not contain any problem solving
or learning module. The idea of higher layers subsuming lower layers in the subsumption
architecture has its root from neurobiology.

CLARION (Sun and Peterson 1996, 1998; Sun et al. 2001; Sun and Zhang 2006) is a
hybrid model integrating both symbolic and connectionist information processing. The design
of CLARION is based on neural networks as well as cognitive psychology. As a result, it
is similar to ACT-R as both models are based on a combination of artificial intelligence,
cognitive psychology and some favour of neurobiology.

The rest of this article is organized as follows. Section 2 first presents a brief review of
the individual cognitive architectures, in terms of the underlying philosophy, architecture,
functions, and processes. Section 3 compares the six architectures in terms of eight cognitive
functions, covering perception, memory, goals, planning, problem solving, reasoning/infer-
ence, learning, and relevance to cognitive neuroscience. Section 4 presents the benchmarks
and applications of the various architectures. The final section rounds up the review, dis-
cusses some interesting convergence in design principles, and suggests promising directions
for future research.

123



106 H.-Q. Chong et al.

Decision
Procedure 

Learning
Mechanism

Working Memory

Long Term Memories

Environment 

Perception Action

Procedural
Memory

Semantic
Memory

Episodic
Memory

Fig. 2 The Soar cognitive architecture (adapted from Lehman et al. 2006)

2 A review of six cognitive architectures

2.1 State, operator, and result (Soar)

Soar (Laird et al. 1986a, b, 1987; Lehman et al. 2006) has its root in the classical artificial
intelligence (Newell 1990) and is one of the first cognitive architectures proposed. The main
objective of Soar is to handle the full range of capabilities of an intelligent agent through a
general mechanism of learning from experience. Therefore, Soar incorporates a wide range
of problem solving methods and learns all aspects of the tasks to perform them (Laird et al.
1987). It is used for the understanding of the mechanisms required for intelligent behaviour
and the incorporation of the mechanisms to form a general cognitive architecture in classical
artificial intelligence (Laird et al. 1986a, b).

2.1.1 Architecture

Figure 2 illustrates the Soar architecture, consisting of the various memory structures and
a decision making mechanism linking perception to action. The memory structures pres-
ent in the Soar architecture include long term memory and working memory, which can
be considered as short term memory. Information from the environment is made available
in the working memory via perception, allowing appropriate actions to be chosen during
domain-independent problem solving. The external environment can also be influenced by
the architecture through the implementation of selected actions.

Knowledge is stored in the long term memory, which can be classified into procedural,
semantic and episodic memories. Procedural memory provides the knowledge of performing
tasks. Semantic memory stores general facts about the world and is considered as declarative
knowledge. On the other hand, episodic memory contains specific memory of an event expe-
rienced. Hence, both procedural and semantic memories are universally applicable, whereas
episodic memory is contextual specific. In instances whereby procedural knowledge is insuf-
ficient, semantic and episodic memories are employed as cues to aid in problem solving.

The working memory in Soar cognitive architecture houses all the knowledge that are
relevant to the current situation. It contains the goals, perceptions, hierarchy of states, and
operators. The states (and sub-states) give the information on the current situation. The opera-
tor provides the steps to apply during problem solving, while the goal directs the architecture

123



Integrated cognitive architectures 107

into the desired state. The content of the working memory, also known as working memory
elements, can trigger both the retrieval of relevant knowledge from the long term memory
into the working memory, and motor actions.

2.1.2 Functions and processes

Soar supports a number of problem solving methods. Through the means-ends analysis, the
system selects and applies operators to result in a new state that is closer to the desired state.
In order to bring the system closer to its goal, Soar implements a five-phase decision cycle,
constituting of input, elaboration, decision, application, and output. The main function of
the decision cycle is to choose the next operator to apply (Laird et al. 1986b, 1987; Lehman
et al. 2006).

Percepts are added into the working memory in the input phase for use during the elabo-
ration phase. Production rules are then matched with the working memory elements in order
to bring knowledge relevant to the current problem into the working memory. Meanwhile,
preferences are created to act as recommendations for selection of appropriate operators. The
elaboration phase continues till the firing of rules in the long term memory ceases, ensuring
that all knowledge relevant to the current situation are considered before a decision is made
(Laird et al. 1986a, b; Lehman et al. 2006). When the elaboration phase reaches a quiescence,
the decision cycle proceeds to the decision phase, wherein the preferences are evaluated. The
better of the suggested operators are chosen and applied during the application phase. A
motor action is then performed during the output phase as a result of applying the selected
operator.

An impasse is encountered whenever the procedural knowledge is inadequate for problem
solving (Laird et al. 1986a; Chong 2004). In Soar, there are four types of impasse: no-change,
tie, conflict, and rejection. The no-change impasse occurs when the elaboration phase enters
a quiescence without any suggestion, while the tie impasse refers to the situation whereby
no object is superior over the others. Cases in which two or more candidate objects are better
than each other result in the conflict impasse. The rejection impasse is encountered when all
operators are rejected.

Any impasse encountered provides an opportunity for Soar to learn from its experience.
The learning mechanisms proposed in the Soar architecture include chunking, reinforcement
learning, episodic memory, and semantic memory. A successful resolution of an impasse
results in the termination of a goal or subgoal, which in turn leads to formation of chunks.
The chunking mechanism enables new production rules to be added into the long term mem-
ory. These chunks are used whenever a similar situation is encountered, thereby avoiding the
same impasse and improving the performance of the agent in the future. Soar also receives
rewards from successes and punishments from failures, allowing the agent to undergo rein-
forcement learning. Any operator resulting in a reward upon an execution is given a positive
reinforcement, and such operators are more likely to be selected in the future. The episodic
and semantic memories store information on the agent’s past experiences, and therefore both
are used as additional cues to select applicable operators (Laird et al. 1986a; Lehman et al.
2006; Chong 2004).

2.2 Adaptive control of thought-rational (ACT-R)

The key motivation underlying ACT-R (Anderson et al. 2004) is to develop a model of human
cognition, using empirical data derived from experiments in cognitive psychology and brain
imaging. It provides a step by step simulation of human behaviour for detailed understanding

123



108 H.-Q. Chong et al.

Fig. 3 The ACT-R 5.0 model (adapted from Anderson et al. 2004)

of human cognition. In recent projects, ACT-R is also used in the prediction of activation
patterns in brain with the aid of functional Magnetic Resonance Imaging (fMRI).

2.2.1 Architecture

In this cognitive architecture, information from the external environment and knowledge
stored in the memories work conjunctively to select actions for execution to satisfy the
goal(s) of the agent. The four basic modules in the ACT-R architecture are the visual, man-
ual, declarative memory, and goal modules as illustrated in Fig. 3. The visual module is
needed for identifying objects in the visual field and can be further classified into the visual-
location and visual-object modules. The visual-location module is required for determining
the locations of objects, while the visual-object module aids in the recognition of the objects.
The manual module is used for the control of the hand actuators. Information from memories
can be retrieved via the declarative memory module, while the goal module keeps track of
the agent’s current goals, and enables the maintenance of the agent’s thought in the absence
of supporting external stimuli (Anderson et al. 2004).

All the above modules are coordinated through the central production system, which is
identified to be the basal ganglia in human brain. Production rules are implemented in the
central production system, corresponding to striatum, pallidum and thalamus, as well as
the associated connections with the various buffers. The response of the central production
system is limited by the amount of information available in the buffers of various modules.
Similarly, the modules can only communicate with the central production system through
the information present in the buffers. As a result, the system is not aware of all information
stored in the long term memory but only those that have been retrieved.

The goal buffer in ACT-R helps to keep track of one’s internal state during problem solving
and it has been identified that the dorsolateral prefrontal cortex (DLPFC) holds the role of a
goal buffer. On the other hand, the declarative memory retrieved from the long term memory

123



Integrated cognitive architectures 109

store is passed to the retrieval buffer, which is associated with the ventrolateral prefrontal
cortex (VLPFC). The manual buffer for controlling the agent’s hand is associated with the
motor and somatosensory cortical areas, which are the two areas in the brain that control and
monitor hand movement. The visual buffers in this model include both the dorsal ‘where’
path of visual system and the ventral ‘what’ system. The dorsal ‘where’ system is impor-
tant for locating the object, while the ventral ‘what’ system tracks visual objects and their
identities. The various buffers interact with one another and the central production system to
achieve cognition (Anderson et al. 2004).

2.2.2 Functions and processes

This model assumes a mixture of parallel and serial processing. Parallelism occurs within
each module as well as between different modules. For example, the declarative module can
execute a parallel search through many memories for retrieval. However, there are two levels
of serial bottleneck in this model. The first bottleneck is that the content of any buffer is only
limited to a single declarative unit of knowledge, known as chunks in this model. Hence,
either the retrieval of a memory or the encoding of an object can occur at a time. The second
bottleneck is that only a single production is fired in every cycle.

The knowledge in ACT-R can be stored in either procedural memory or declarative mem-
ory. Knowledge in declarative memory is represented as chunks, while knowledge in pro-
cedural memory is available in terms of production rules. In order to retrieve the necessary
knowledge for problem solving, chunks stored in the declarative modules are first activated.
A chunk is only retrieved when its activation level raises above a threshold level. Whenever
a production rule matches the chunk retrieved, the production rule is fired.

A learning mechanism being developed in ACT-R currently is production compilation.
Production compilation enables separate production rules to combine into one and allows
performing of action without the retrieval of declarative instructions (Anderson et al. 2004).

2.3 ICARUS

ICARUS (Langley 2004; Langley and Choi 2006) has its root in designing physical and
embodied agents, through integrating perception and action with cognition. This cognitive
architecture also aims to unify reactive execution with problem solving, combine symbolic
structures with numeric utilities, and learn structures and utilities in a cumulative manner.

The design for ICARUS has been guided by the following principles, which provide the
differentiation of ICARUS from other cognitive architectures: (1) Cognitive reality of phys-
ical objects; (2) Cognitive separation of categories and skills; (3) Primacy of categorization
and skill execution; (4) Hierarchical organization of long term memory; (5) Correspondence
of long term or short term structure; and (6) Modulation of symbolic structures with utility
functions.

2.3.1 Architecture

Figure 4 presents an overview of the ICARUS architecture, consisting of four main compo-
nents, namely the perceptual buffer, the conceptual memory, the skill memory, and the motor
buffer. The perceptual buffer is involved in the temporary storage of percepts. Conceptual
memory can be further classified into short term conceptual memory and long term concep-
tual memory. The short term conceptual memory, otherwise known as the belief memory,
contains the set of active inferences describing the relations among the objects perceived. On

123



110 H.-Q. Chong et al.

Fig. 4 The schematic diagram of ICARUS (adapted from Langley 2004)

the other hand, the long term conceptual memory consists of the known conceptual structures
describing objects or classes of the environmental situations. Similarly, the skill memory is
subdivided into short term skill memory and long term skill memory. All the skills that can
be executed by the ICARUS agent are stored in the long term skill memory, while the chosen
skill to be implemented is brought into the short term skill memory. The skill signals in the
motor buffer, read out from the short term skill memory, are then executed by the ICARUS
agent to bring about changes to its environment.

2.3.2 Functions and processes

The key processes in ICARUS include conceptual inference, goal selection, skill execution,
problem solving, and learning (Langley and Choi 2006). Conceptual inference is the mech-
anism responsible for matching the conceptual structures against the percepts and beliefs.
It is dependent on the content and representation of elements that have been stored in both
the short term and long term memories. The environment, in which the ICARUS agent is
situated, affects the perceptual buffer and thus the conceptual memory, leading to a repeat of
the conceptual inference that updates the description of the environment. In each cycle, the
agent retrieves the attributes of the perceived objects into the perceptual buffer and matches
them against the conceptual definitions in the long term memory. As a result, all elements that
are implied deductively by the percepts and the conceptual definitions are added to the belief
memory. Conceptual inference occurs in a bottom-up (data driven) manner, and is similar to
the elaboration phase in Soar (Langley 2004; Langley et al. 2004; Langley and Choi 2006).

Goals in ICARUS represent the objectives that an agent aims to satisfy. In order to achieve
the goals, the chosen skills within the long term skill memory are executed, thereby altering
the environment to bring the agent closer to its goals. ICARUS focuses on only one goal at a
time. Therefore in each cycle, only the highest priority goal not yet satisfied is attended to by

123



Integrated cognitive architectures 111

the ICARUS agent. The agent then selects the skills that are applicable to the agent’s current
belief and executes the skills chosen via the motor buffer.

Whenever the agent is unable to find an applicable skill to achieve its current goal upon
reaching an impasse, it employs means-ends analysis as its problem solving strategy. Means-
ends analysis involves the decomposition of a problem into subgoals. An applicable skill path
is selected for each subgoal. After accomplishing a subgoal, the agent returns to the parent
goal, before selecting another skill path for the next subgoal.

ICARUS is similar to Soar in terms of learning, since both architectures learn from
impasse. The difference is that ICARUS retrieves information from the goal stack to select
applicable skill, while Soar uses task-dependent knowledge to solve an impasse. Skill learn-
ing in ICARUS occurs as a result of problem solving whereby a skill is learnt when the agent
is able to execute the action successfully.

2.4 Belief-desire-intention (BDI)

BDI is based on the Dennett’s theory of intentional systems (Dennett 1987) and the theory
of human practical reasoning (Bratman et al. 1988). Originally developed as a system that
can reason and plan in a dynamic environment, BDI meets real-time constraints by reducing
the time used in planning and reasoning. BDI is designed to be situated, goal directed, reac-
tive, and social. This means a BDI agent is able to react to changes and communicate in their
embedded environment, as it attempts to achieve its goals. Mechanisms for responding to new
situations or goals during plan formation for general problem solving and reasoning in real
time processes are also included in BDI systems (Georgeff and Ingrand 1989; Sardina et al.
2006). BDI agents are typically implemented as Procedural Reasoning System (PRS). Later
implementations of BDI architectures are also largely based on PRS (Guerra-Hernandez et al.
2004; Sardina et al. 2006).

2.4.1 Architecture

Figure 5 shows the schematic of the BDI architecture, consisting of the main components
of beliefs, desires, and intention, together with an interpreter. Having its origin in Computer
Science, BDI adopts a database for storing beliefs and plans. Beliefs are facts about the
world as well as inference rules that may lead to acquisition of new beliefs. The beliefs are
updated by the perception of the environment and the execution of the intentions (Georgeff
and Ingrand 1989; Guerra-Hernandez et al. 2004).

Plans refer to sequences of actions that a BDI agent can perform to achieve one or more
of its intentions. It is a type of declarative knowledge containing ideas on how to accomplish
a set of given goals or react to certain situations. A plan consists of a body and an invocation
condition. The body of a plan comprises of possible courses of actions and procedures to
achieve a goal, while the invocation condition specifies the prerequisites to be met for the plan
to be executed, or to continue executing. A plan can also consist of subgoals to achieve, and
an execution of the plan may create new subgoals, leading to the formation of goal-subgoal
hierarchy (Sardina et al. 2006).

Desires, also known as goals, are the objectives that a BDI agent aims to accomplish.
The usage of the term goal in this architecture is only restricted to non-conflicting desires.
Conflicts among desires are also resolved using rewards and penalties (Dastani et al. 2001).
A goal is said to be successfully achieved when a behaviour satisfying the goal description
is executed.

123



112 H.-Q. Chong et al.

Fig. 5 The BDI architecture in dMARS specification (adapted from Guerra-Hernández et al. 2004)

Intentions are the actions that the agent is committed to perform in order to achieve the
desires. Thus, it contains all the tasks chosen by the system for execution. Each intention is
implemented as a stack of plan instances, and is only considered as executable if the context
of the plan matches with the consequence of the beliefs.

2.4.2 Functions and processes

A system interpreter manipulates the components of the BDI architecture described above.
In each cycle, it updates the event queue by the perceptual input and the internal actions to
reflect the events observed, followed by the selection of an event. New possible desires are
then generated by finding relevant plans in the plan library for the selected event. From the
set of relevant plans, an executable plan is then selected and an instance plan is thus created.
The instance plan is pushed onto the existing intention stack (when the plan is triggered
by an internal event such as another plan) or a new intention stack (when the plan is trig-
gered by an external event). The BDI agent interacts with its environment either through its
database when new beliefs are acquired or through actions performed during the execution
of the intention. The interpreter cycle repeats after the intention is executed. However, the
acquisition of a new belief or goal may lead to an alteration of plans and cause the agent to
work on another intention (Dastani and van der Torre 2002).

The BDI architecture integrates means-ends reasoning with the use of decision knowl-
edge in its reasoning mechanism. It is however notable that the system performs means-ends
reasoning and planning in the context of existing intentions. A special feature of the BDI
architecture is that once it is committed to a process of achieving goals, it does not consider
other pathways although they may be better than the one chosen. In this way, the architecture
is able to cut down its decision time.

An active goal in the BDI architecture is dropped once the system recognizes the goal
as accomplished or cannot be readily accomplished. Only when all attempts at achieving a
goal by trying all applicable plans have failed before the goal can be labelled as “cannot be
readily accomplished” (Georgeff and Ingrand 1989).

123



Integrated cognitive architectures 113

The original BDI architecture does not have the mechanism of learning. However, there
have been recent attempts to include learning mechanisms into BDI systems. For exam-
ple, Norling (2004) extended BDI for learning recognition primed decision making. A table
lookup version of Q-learning was adopted to learn reactive rules for path finding in a grid
world. More recently, Subagdja and Sonenberg (2005) further extended the BDI architecture
to incorporate learning by generating and testing hypothesis for the purpose of formulating
plans. At the multi-agent level, Guerra-Hernandez et al. (2004) expanded the BDI architec-
ture to incorporate learning in multi-agent systems using a first order method called induction
of decision tree.

2.5 The subsumption architecture

The subsumption architecture represents a “new” approach to artificial intelligence derived
from behaviour-based robotics. In view that classical artificial intelligence often has the prob-
lems of extensibility, robustness, and achieving multiple goals, The subsumption architecture
was proposed as an incremental and bottom-up approach to deal with these problems (Brooks
1999). The subsumption architecture decomposes a problem in terms of the behaviours exhib-
ited by the robots instead of the stages of information flowing within the controller as in a
traditional AI design. Conversely, some researchers believed that traditional cognitive archi-
tectures would be useful for higher cognitive functions, while the subsumption architecture
was only meant for reflexive tasks (Hartley and Pipitone 1991).

2.5.1 Architecture

Figure 6 depicts the subsumption architecture, comprising of a hierarchy of “simple” behav-
iour-based modules organized into layers (levels of competence). Subsumption allows all
layers to access the sensor’s data and multiple (simple) behaviours to operate in parallel.
Each layer is capable of controlling the system by itself, unlike classical artificial intelligent
agents. Each level of competence displays a behaviour to pursue a particular goal and a higher-
level layer tends to subsume the underlying layers. The lower layers work like fast-adapting
mechanisms, allowing the agent to react quickly to changes in its environment. In contrast,
the higher layers control the system towards the overall goals. Consequently, the lower level
behaviours are the results of the reactions towards the environment, while the higher level
behaviours are driven by the aim to pursue the primary goals. In order to achieve a higher
level of competence, a new layer of control can be simply added without altering existing
layers (Brooks 1999; Nakashima and Noda 1998; Toal et al. 1996). The layered design of the
architecture is thus analogous to a biological nervous system, wherein new sections of brain
are developed for new functions, but old sections are still preserved to perform their original
tasks (Brooks 1991; Bryson et al. 2005).

The layered-based design of the subsumption architecture also allows for easier imple-
mentation. Specifically, each module of the system can be tested and debugged until flawless
before proceeding to the next higher level. This type of incremental, bottom-up approach of
the model ensures the workability of the system and also simplifies the debugging process.
The architecture is also able to cope with noise due to imperfect sensory information or
unpredictability in the environment. By designing multiple distributed layers of behaviour
into the system, the possibility of system collapse due to a drastic change in environment
is reduced. This allows the system’s performance to degrade gradually, rather than failing
completely when facing non-ideal inputs.

123



114 H.-Q. Chong et al.

Fig. 6 The subsumption architecture (adapted from Brooks 1999)

2.5.2 Functions and processes

It is notable that symbolic processing is absent in the subsumption architecture. There is
no explicit representation of knowledge and therefore there is no matching of rules. The
subsumption architecture is also free from a central control (Brooks 1999). The layers in the
architecture are driven by the data collected, with no global data or dynamic communication.
This implies that the system is being reactive via implementing an activity as a consequence
of events. As such, the perception of the system is said to be tightly coupled to the action
within each layer.

The layers are also expected to react quickly in order to sense the rapid changes in the
environment. Therefore, the communication between the layers occur in one direction only,
resulting in minimal interactions between the layers. However, as mentioned earlier, the
higher layers can suppress the inputs and inhibit the outputs of the lower layers, leading to an
adjustment in the behaviour for the purpose of fulfilling the overall goal (Butler et al. 2001;
Brooks 1999; Amir and Maynard-Zhang 2004).

2.6 Connectionist learning with adaptive rule induction on-line

With its root in connectionist systems (i.e. neural networks), CLARION is a hybrid architec-
ture that incorporates both implicit and explicit memories for reasoning and learning (Sun
et al. 2001). Procedural knowledge (implicit memory) can be gradually accumulated with
repeated practice, and subsequently applied to practiced situations of minor variations. To
deal with novel situations, declarative knowledge is required to guide in the exploration
of new situations, thereby reducing time for developing specific skills. It also unifies neu-
ral, reinforcement and symbolic methods to perform on-line, bottom-up learning. Hence,
CLARION is able to react in a dynamically changing environment without any preexisting
knowledge installed into the architecture (Sun and Peterson 1996, 1998).

123



Integrated cognitive architectures 115

Implicit
Representation

Implicit
Representation

Explicit
Representation

Explicit
Representation

Top Level 

Bottom Level

Action-
centered 

Subsystem 
(ACS) 

Non-action-
centered 

Subsystem 
(NACS)

Environment 

Perception Actions

Fig. 7 The CLARION architecture (adapted from Sun et al. 2005)

2.6.1 Architecture

As shown in Fig. 7, the CLARION architecture consists of two levels: a top level containing
prepositional rules and a bottom level (reactive level) containing procedural knowledge. The
top level comprises of explicit symbolic mechanisms and the bottom level uses subsymbolic
neural mechanisms. Procedural knowledge can be acquired through reinforcement learning
in a gradual and cumulative fashion, while declarative knowledge is acquired through rule
extraction by trials and errors. The architecture consults both the rules and the Q-values
computed, combining their recommendations in a weighted sum, in order to select the most
appropriate action to perform at each step.

It is generally accepted that declarative knowledge is explicit, while procedural knowledge
is implicit. As a result, declarative knowledge is usually accessible but procedural knowl-
edge is not. However, there may be exceptions. Thus, the CLARION architecture includes
non-action-centered subsystem (NACS) and action-centered subsystem (ACS). NACS con-
tains mostly declarative knowledge, whereas ACS contains mainly procedural knowledge.
The top level of NACS is a general knowledge store (GKS) and contains explicit representa-
tion. On the other hand, an associative memory networks (AMN) forms the bottom level of
NACS, which consists of implicit representation. In ACS, explicit action rules are stored in
the top level. These rules are either provided by the agent’s external environment or extracted
from information in the bottom level. The bottom level of ACS comprises of implicit decision
networks, which can be trained by reinforcement learning (Sun et al. 2005; Sun and Zhang
2006).

Besides ACS and NACS, CLARION further consists of two other subsystems, namely
the motivational subsystem for guiding the agents overall behavior by forming goals; and
the meta-cognitive subsystem as the main controller managing the processes of the other
subsystems so as to provide structured behavior.

123



116 H.-Q. Chong et al.

2.6.2 Functions and processes

In view that people often use similarities between objects in determining the outcomes of
inductive reasoning, CLARION includes both rule-based and similarity-based reasoning to
mimic human reasoning. Reasoning takes place in CLARION through comparing a known
chunk with another chunk. When the similarity between two chunks is sufficiently high, an
inference regarding the relations between them can be made. While the comparison of chunks
gives rise to similarity-based reasoning, the usage of chunks during reasoning constitutes to
rule-based reasoning. The process of reasoning in CLARION can also occur iteratively to
allow all possible conclusions to be found. In iterative reasoning, the conclusion reached at
each step can be used as a starting point for the next step. The overall outcome is to select the
appropriate course of action for the agent to react to its environment (Sun and Zhang 2006).

Learning in CLARION can be differentiated between implicit learning or explicit learning.
Implicit learning can be considered as learning procedural skills, and explicit learning takes
place by learning those rules as declarative knowledge. Learning of procedural knowledge at
the bottom level occurs through the reinforcement learning paradigm, which works by mak-
ing adjustments to the probability of selecting a particular action. When an action receives
a positive reinforcement, the chance of selecting the action increases; otherwise, the chance
of selection decreases. The learning processes employed in CLARION are through neural
mechanisms, such as multi-layer neural networks and backpropagation algorithm, which are
used to compute Q-values. When the situation becomes better due to an action performed,
the Q-value of the action raises, and thus increases the tendency of performing that action.

Learning of rules in the top level takes place by extracting knowledge from the bottom
level. Upon the successful execution of an action, the agent extracts a rule corresponding
to the action selected by the bottom level and adds it to the rule network. The agent in turn
removes more specialized rules in the rule network and keeps the general rules. The agent
then tries to verify the rules learnt via applying them in the subsequent interactions with its
environment. If the performed action results in an unsuccessful attempt, the rule is modified
to be more specific and exclusive of the current situation. In contrast, a successful attempt
enables a rule to be generalized, making it more universal in application (Sun and Peterson
1996, 1998).

3 Functional comparison

In this section, we compare the six architectures based on the cognitive functions that they
support. This is notably not an easy task, especially when each architecture places emphases
on different aspects of cognition and may not use a consistent set of terminologies.

3.1 Perception

As shown in Table 1, all six architectures identify some forms of perception as the input
module to the system. For example, a Soar agent stores the information from the external
environment directly into its working memory. The perceptual input can be from a simulation
programme, video camera or feedback from a robot (Lehman et al. 2006). In ACT-R, the
perceptual information from the environment enters the visual module and is made avail-
able to the central production system via the visual buffer (Anderson et al. 2004). ICARUS
perceives objects in its environment through its perception buffer (Langley and Choi 2006).

123



Integrated cognitive architectures 117

Table 1 Realization of perception in the six cognitive architectures

Architecture Means of perception

Soar Perceptual input stored directly as part of the working memory

ACT-R Perception stored in visual module and made available through visual buffer

ICARUS Perceptual stored in perceptual buffer as part of conceptual memory

BDI Perception mapped to events stored in event queue

Subsumption Perception is available through sensors

CLARION Perceptual input represented as dimension/value pairs

In the BDI architecture, perception is available in the form of events stored in the event
queue. An event can be an acquired/removed belief or any sensory input received from the
environment. Multiple items can be present in an event queue, and each item consists of an
event paired with either a failed plan or a currently executed plan (Guerra-Hernandez et al.
2004; Sardina et al. 2006). An event queue supports a time-ordered sequence of events to
be processed by a system. It thus involves a temporal dimension comparing to a buffer that
contains a snapshot of the current situation or a single chunk of knowledge (Anderson et al.
2004).

The subsumption architecture has been widely used for building robots. The system per-
ceives the environment through its sensors, which may be sonar or visual sensors, such as
CCD cameras (Brooks 1991, 1999). The input into CLARION is a series of dimenion/value
pairs describing the state of the world. It consists of the objects in the environment, as well
as the items in the working memory and the current goal(s).

3.2 Memory

As presented in Table 2, all systems except the subsumption architecture make use of both
short term memory and long term memory explicitly. In Soar, short term memory, also known
as working memory, contains information received from the environment and all rules relevant
to the current situation. Long term memory in Soar can be procedural, declarative (seman-
tic) or episodic and is realized through the production rule system (Nuxoll and Laird 2004;
Lehman et al. 2006). Short term memory in ACT-R is available to the architecture through
the buffers. Whereas Soar suggests a centralized working memory containing preferences,
perception, states, sub-states, etc., ACT-R uses a distributed memory system, wherein the
goals, beliefs, sensory, and motor signals are situated in distinct buffers (Anderson et al.
2004). Similar to that of Soar, the production rules in ACT-R are stored in the procedural
memory. However, whereas the chunks in Soar refer to acquired knowledge from the chunk-
ing mechanism, the chunks in ACT-R are knowledge stored in the declarative memory. The
CLARION architecture also contains working memory as a temporary information storage to
facilitate decision making (Sun et al. 2001). However, the prepositional rules are stored in the
declarative knowledge (top level), while the bottom level contains the procedural knowledge
(Sun and Peterson 1996, 1998). Thus, the long term memory representation in CLARION
differs from those of Soar and ACT-R, wherein the rules are stored as procedural knowledge.

The short term memory in ICARUS takes the form of belief memory updated through a
conceptual inference process as well as short term skill memory (Langley and Choi 2006).
Although ICARUS does not refer to declarative and procedural memories explicitly, its

123



118 H.-Q. Chong et al.

Table 2 Implementation of memory functions in the six cognitive architectures

Architecture Representation Working memory Long term memory

Soar Symbolic Contains perceptual input,
states, and production rules
relevant to current situation

Contains procedural,
declarative (semantics),
and episodic memory

ACT-R Symbolic Contains goal, perception,
relevant knowledge, and
motor action in the various
buffers

Contains declarative
knowledge in declarative
module and procedural
knowledge in production
system

ICARUS Symbolic Consists of perceptual buffer,
belief memory, and short
term skill memory

Procedural knowledge stored
in long term skill memory,
declarative knowledge in
long term conceptual
memory

BDI Symbolic Belief as working memory Plans as long term memory

Subsumption No explicit
representation

No explicit working memory Heuristics within each layer

CLARION Symbolic +
subsymbolic

As temporary information
storage

Procedural at bottom level
Declarative at top level

conceptual memory can be considered as declarative memory and the skill memory as pro-
cedural memory.

In BDI, the beliefs and facts about the world are stored in the database as symbolic rep-
resentation of the world perceived. A database contains both the plan library and the agent’s
beliefs. As a result, the database represents a more permanent form of storage of knowledge
than buffers (Georgeff and Ingrand 1989). It is believed that different types of databases can
be used for various agent systems, depending on the design of the agent. A plan comprises
of both declarative and procedural knowledge. The declarative knowledge is made available
in the plan library as plan rules, which specify the conditions a given plan can be applied to
achieve the agent’s intentions. The procedural knowledge defines the actions to be undertaken
when the plan is carried out (Wooldridge 1996).

In contrast to the others, the subsumption architecture does not model any knowledge of
the world explicitly, since it does not engage in any higher cognitive function. As a result, it
does not refer to explicit memory structure (Brooks 1999).

3.3 Goals

Goals are critical in all architectures, as the objectives to be fulfilled by an agent. Table 3
summarizes the goal mechanisms of the six cognitive architectures. In most architectures, a
goal is represented by a target state that an agent wants to achieve. Soar further treats goals
as a type of objects in the centralized working memory, which can be altered in each decision
cycle. The goals can be divided into subgoals whenever an impasse is encountered, leading
to the creation of the goal-subgoal hierarchy (Laird et al. 1986a).

In ACT-R, goals are stored in the intentional module and are available to the central pro-
duction system via the goal buffer (Anderson et al. 2004). A goal can be decomposed into
subgoals and the new goals are added into the goal stack in ACT-R. A goal is subsequently
removed from the goal stack once it is accomplished (Anderson and Schunn 2000).

Whereas ICARUS takes a simple approach of maintaining goals in the goal memory
(Langley and Choi 2006), BDI has a much more elaborated treatment of goals as desires.

123



Integrated cognitive architectures 119

Table 3 Goal representation in the six cognitive architectures

Architecture Goal representation

Soar Goals represented as states in working memory Support goal-subgoal hierarchy

ACT-R Goals stored in the intentional module and made available through the goal buffer

ICARUS Goals placed in the goal stack Support goal-subgoal hierarchy

BDI Non-conflicting goals as desires Support goal-subgoal hierarchy

Subsumption Multiple goals across modules in different layers Allow multiple and parallel goal processing

CLARION Goals stored in a goal structure, such as goal stack or goal list

Table 4 Problem solving in the
six cognitive architectures

Architecture Mechanism for problem solving

Soar Decision procedure for selecting appropriate
operators; Means-ends analysis

ACT-R By activation of chunks in Bayesian framework and
production rule firing when chunks match with rules

ICARUS Means-ends analysis by searching and backtracking

BDI Means-ends analysis

Subsumption No explicit problem solving mechanism

CLARION Combination of Q-values calculated in the bottom
level and rules in the top level to choose the course
of actions

BDI also supports a goal life cycle, maintaining the distinction among active goals, inactive
goals, accomplished goals, abandoned goals, and unattainable goals (Georgeff and Ingrand
1989). In addition to defining goals as target states, some BDI architectures also incorpo-
rate perform goals, which only require certain activities to be performed regardless of the
outcome. In other words, as long as the specified activity is executed, a perform goal is
considered as accomplished (Braubach et al. 2005).

The subsumption architecture is different from the other architectures as it allows multiple
goals to be processed in parallel. This is made possible as each layer works to achieve its
goal(s) independently, although the higher layers can subsume the goals of lower layers.
For example, consider a robot system, wherein the goal of the first (lower) layer is to avoid
object and the goal of the second (higher) layer is to wander around. Whenever the robot
remains stationary to avoid colliding with any obstacle, the second layer subsumes the output
behaviour and requests the robot to wander around. As each layer operates independently,
multiple goals can be active and pursued at any one time (Brooks 1991, 1999).

In CLARION, a motivational subsystem creates and stores goals using a goal structure,
which can be a goal stack or a goal list (Sun 2003). Whereas the goal stack works in a similar
way as other architectures, the goals in a goal list can be accessed randomly and they compete
with each other to be the current goal.

3.4 Problem solving

Problem solving refers to the capability of searching for a solution, when an agent does not
know how to move from a given state to a goal state. Table 4 compares the problem solving
mechanisms of the six cognitive architectures.

Problem solving in ACT-R occurs via the activation of chunks in the declarative memory
and the retrieval of knowledge from the procedural memory. Soar implements the decision

123



120 H.-Q. Chong et al.

Table 5 Planning in the six
cognitive architectures

Architecture Mechanism for planning

Soar Decision cycle selects appropriate actions, bringing
system closer to goal

ACT-R Planing by creating subgoals

ICARUS Planning through instantiation of skills

BDI Predefined plans stored in the plan library

Subsumption Implicit planning by task decomposition

CLARION Planning by beam search in the Q-value space

procedure to select the appropriate operator using preferences created during the elaboration
phase. The selected operator is then applied to perform a motor action to advance in a problem
space (Lehman et al. 2006). In addition, Soar makes use of means-ends analysis to aid in
problem solving (Laird et al. 1986a), by reducing the differences between the current state
and the goal state. ICARUS uses a similar version of means-ends analysis, which places goals
in the goal stack and searches for applicable skills using a backtracking strategy (Langley
and Choi 2006).

The BDI architecture combines means-ends analysis with decision making to select the
best plan to implement (Guerra-Hernandez et al. 2004; Georgeff and Ingrand 1989). The
subsumption architecture does not have any explicit problem solving mechanism. Specifi-
cally, the actions executed by the agent are reflexive in nature, rather than being chosen via
a problem solving mechanism (Brooks 1999).

The problem solving mechanism for CLARION has not been explicitly outlined in the
literatures reviewed. However, CLARION combines recommendations from the top and bot-
tom levels to decide on appropriate reactions (Madden and Howley 2003). The process of
searching for appropriate actions may be considered as a form of problem solving.

3.5 Planning

Table 5 compares the six architectures in terms of their planning capabilities. Planning can
be viewed as the generation of action sequences to achieve a given goal. It can also be con-
sidered as making choice of the course of actions to pursue (Georgeff and Ingrand 1989).
Soar does not have a strong emphasis on planning. However, by following the second defi-
nition, the decision cycle in Soar can be seen as a planning mechanism, whereby the actions
are selected based on preferences to reach a goal (Laird et al. 1986a). Similarly, there is no
detailed description of planning in the ACT-R model, although it is mentioned that subgoals
are created leading to a sequence of actions to perform in a plan during the problem solving
process (Anderson et al. 2004).

Different from Soar and ART-R, planning is explicitly employed in ICARUS through
the instantiation of skills, which is the top-down selection of skills applicable to the current
beliefs for execution (Langley and Choi 2006).

In BDI, plans are stored in the plan library and intentions are plans committed by the
agent for execution1. Each plan comprises of possible courses of action and information
on situations for initiating and/or continuing its execution (Guerra-Hernandez et al. 2004;
Georgeff and Ingrand 1989).

1 It is interesting to note that ACT-R contains an intentional module, which actually stores the goals of the
architecture.

123



Integrated cognitive architectures 121

Table 6 Reasoning and
inference in the six cognitive
architectures

Architecture Mechanism for reasoning/inference

Soar Rule matching to bring relevant knowledge into working
memory; Elaboration phase to create preferences

ACT-R Probabilistic reasoning

ICARUS Boolean match of conceptual clauses,
bottom-up and data driven

BDI Procedural reasoning system

Subsumption Absence of reasoning mechanism

CLARION Integrate rule-based reasoning and
similarity-based reasoning

An explicit planning mechanism is absent in the subsumption architecture. Instead, plan-
ning within the architecture is implicit by decomposing a given task into multiple processes
across layers, each can be activated with the appropriate sensory inputs. The activated pro-
cesses then combine to produce the required behaviours for achieving the overall goal. Nev-
ertheless, the behaviours of the subsumption agents are still mainly reactive in nature (Brooks
1991, 1999).

In CLARION, Q-values are used in a method known as beam search for selecting a
sequence of actions during the formulation of a plan. The actions are selected such that the
probability of achieving a given goal is the highest (Sun and Sessions 1998; Sun and Zhang
2006).

3.6 Reasoning/inference

Table 6 presents the reasoning or inference mechanisms in the six cognitive architectures.
Both Soar and ACT-R architectures are built on production systems and thus they use pro-
duction rules for reasoning. When a production rule matches with the current state, the rule
execution leads to an action (Laird et al. 1986a; Lehman et al. 2006; Anderson et al. 2004).
Soar has an additional reasoning mechanism, known as elaboration. During the elaboration
phase, the relevant knowledge is brought into the working memory and preferences are cre-
ated, giving suggestions to which operators to choose (Laird et al. 1986a). In contrast, ACT-R
uses probabilistic reasoning in the matching of production rules, after activating the relevant
chunks in the declarative knowledge (Anderson et al. 2004; Sun and Zhang 2006). ICARUS,
on the other hand, uses conceptual inference, which occurs in a bottom up, data driven man-
ner. Concepts in ICARUS are represented as Boolean structure, which are matched in an all
or none manner (Langley and Choi 2006).

The BDI architecture makes use of the procedural reasoning system (PRS), which is used
to select the appropriate plans for goal satisfaction (Georgeff and Ingrand 1989). Again, a
reasoning system is absent in the subsumption architecture (Bryson et al. 2005; Nakashima
and Noda 1998). CLARION combines both similarity-based and rule-based mechanisms to
mimic the process of human reasoning. This works by comparing the similarities between
chunks as part of the inference process (Sun and Zhang 2006).

3.7 Learning

The learning mechanisms employed in the six architectures are summarized in Table 7. All
architectures discussed contain some form of learning, except the behaviour-based subsump-
tion architecture, wherein all the behaviours produced in reaction to the environmental cues
are pre-wired into the design of the architecture (Brooks 1999; Hartley and Pipitone 1991).

123



122 H.-Q. Chong et al.

Table 7 Learning in the six cognitive architectures

Architecture Mechanisms for learning

Soar Chunking for creation of new production rules

Reinforcement learning for updating reward of each rule

Episodic and semantic memory to aid in decision making

ACT-R Production compilation for combining multiple production rules into one

ICARUS Skill learning

BDI Q-learning, top–down induction of decision tree
Learning from interpretations

Subsumption Absence of learning mechanism
Reactions to environment pre-wired into each module

CLARION Q-learning at bottom level (procedural knowledge) and rule extraction at top
level (declarative knowledge)

Soar employs chunking as a general learning mechanism. When an impasse is encoun-
tered, a subgoal is created. Upon the successful resolution of the impasse, a chunk is created
and added into the production memory as new knowledge (Laird et al. 1986a). Another
learning mechanism incorporated into Soar is Q-learning, which is a classical reinforcement
learning method (Watkins and Dayan 1992). The architecture experientially learns an esti-
mation of the long term rewards of performing an action in a given state and applies this
estimation in the selection of actions (West et al. 2005). Another two learning mechanisms
used in Soar are episodic memory and semantic memory, which are recordings of specific
events in episodes and non-contextual knowledge respectively. These two forms of memories
are important in the resolution of impasse, enabling rule acquisition through chunking and
reinforcement learning (Lehman et al. 2006).

Likewise in ICARUS, learning occurs when an impasse is reached. This allows the for-
mation of new skills/knowledge that can be used for similar situations in the future (Langley
and Choi 2006). Learning takes place in the form of production compilation in ACT-R. This
mechanism is somewhat similar to chunking in Soar. It involves a combination of various pro-
duction rules into one, eventually leading to performance without the retrieval of instructions
from the declarative memory (Anderson et al. 2004).

Although traditional BDI does not consider learning as part of the architecture, many
learning methods, such as Q-learning, decision trees, and learning from interpretations, have
been shown to work with BDI systems (Guerra-Hernandez et al. 2004).

As a hybrid system, learning in CLARION takes place at both the top and bottom layers.
Learning of procedural knowledge in the bottom level of CLARION is by multi-layer neural
networks and Q-learning, whereas learning of rules in the top level occurs through extracting
rules from the bottom level (Sun and Peterson 1996, 1998). This implies that CLARION
also differentiates between implicit learning (in the bottom level) and explicit learning (in
the top level). This dual-process approach is notably absent in other cognitive architectures.

3.8 Relevance to neurobiology

Having their roots in artificial intelligence and cognitive psychology, Soar, ICARUS, and BDI
do not make explicit references to neural anatomy (Table 8). In contrast, the ACT-R architec-
ture makes extensive references of its components to specific regions in human brains. Most

123



Integrated cognitive architectures 123

Table 8 The relevance of the six
cognitive architectures to
neurobiology

Architecture Relevance to neurobiology

Soar No reference to brain anatomy

ACT-R Used for prediction of brain activation pattern
Modules and production system are mapped to

various brain regions
ICARUS No reference to brain anatomy

BDI No reference to brain anatomy

Subsumption No reference to brain anatomy
Layered design is analogous to biological

nervous systems
CLARION Based on neural networks but no reference to

brain anatomy

notably, the central production system and the memory modules in ACT-R are mapped to the
basal ganglia and the various cortical areas respectively (Anderson et al. 2004).

Although CLARION is based on a hybrid neural architecture, there is no reference to
specific neural substrates for its modules. Similarly, the subsumption architecture does not
claim any significant biological connection, although its layered design is said to be consis-
tent with that of a human nervous system. Most notably, the addition of new layers is similar
to the development of new brain sections for new functions, leaving existing parts unaltered
(Brooks 1991).

4 Benchmarks and applications

As shown in Table 9, all the six cognitive architectures reviewed have been applied to a wide
variety of cognitive tasks and real-life applications. As one of the oldest models, Soar has
been used in many problem solving tasks, including Eight Puzzle, the Tower of Hanoi, Fifteen
Puzzle, Think-a-dot and Rubik Cube. Recently, the Soar team has also developed the Eater’s
World, a task that requires the agent to make decisions of which directions to move (Nuxoll
et al. 2004; Nuxoll and Laird 2004). The Eater’s World tests the agent’s navigation skills in
response to its environment, with rewards in the form of food and bonus food.

More importantly, Soar has been used by US Army, Navy, and Air Force to develop robots
and software for the purposes of modelling, simulations, and control. For instance, TacAir-
Soar and RWA-Soar are developed as training models for human pilots. Soar MOUTBOT is
used for military operations on land (Lehman et al. 2006). Soar has also been applied in the
form of embodied conversational agents (ECA). Some specific systems developed include
Soar Training Expert for Virtual Environment (STEVE) and Mission Rehearsal Exercise
(MRE). The former is a virtual agent, designed for teaching the operation and maintenance
of the gas turbine engines on naval ships (Rickel and Johnson 2000). On the other hand, MRE
is developed to teach leadership skills for dealing with high stake social dilemmas through
the use of virtual human technology (Swartout et al. 2006).

Ever since its development, ACT-R has been used as a framework for various cognitive
tasks, such as the Tower of Hanoi, memory for text or lists of words, language comprehen-
sion, and communication. Other applications of ACT-R architecture include aircraft control
as in the Anti-Air Warfare Coordinator and predictions of activation patterns in brain imaging
studies (Anderson et al. 2004). In addition, ACT-R has been applied to develop education
software, for predicting the students’ areas of difficulties so that appropriate help can be

123



124 H.-Q. Chong et al.

Ta
bl

e
9

B
en

ch
m

ar
ks

an
d

ap
pl

ic
at

io
ns

So
ar

A
C

T-
R

IC
A

R
U

S
B

D
I

Su
bs

um
pt

io
n

C
L

A
R

IO
N

Pu
zz

le
s

an
d

co
gn

iti
ve

ta
sk

s
To

w
er

of
H

an
oi

,E
ig

ht
Pu

zz
le

,F
if

te
en

Pu
zz

le
,T

hi
nk

-a
-d

ot
,

R
ub

ik
C

ub
e

To
w

er
of

H
an

oi
,

M
em

or
y

of
te

xt
,

L
an

gu
ag

e
co

m
pr

eh
en

si
on

,
C

om
m

un
ic

at
io

n

To
w

er
of

H
an

oi
,P

eg
So

lit
ai

re
,

M
ul

ti-
co

lu
m

n,
su

bt
ra

ct
io

n

To
w

er
of

H
an

oi
To

w
er

of
H

an
oi

,S
er

ia
l

re
ac

tio
n

tim
e

ta
sk

,
G

ra
m

m
ar

le
ar

ni
ng

,
A

lp
ha

-b
et

ic
al

ar
ith

em
at

ic
E

C
A

,t
ra

in
in

g
an

d
di

ag
no

si
s

O
pe

ra
tio

n
an

d
m

ai
nt

en
an

ce
of

en
gi

ne
s,

le
ad

er
sh

ip
tr

ai
ni

ng

M
us

eu
m

gu
id

e,
di

ag
no

si
s

of
sp

ac
e

sh
ut

tle
s

C
om

m
an

d
co

nt
ro

la
nd

vi
rt

ua
lg

am
es

Ta
cA

ir
-S

oa
r,

R
W

A
-S

oa
r,

M
O

U
T

B
O

T
fo

r
U

S
m

ili
ta

ry
,E

at
er

’s
W

or
ld

A
ir

cr
af

tc
on

tr
ol

In
-C

ity
dr

iv
in

g,
Po

le
ba

la
nc

in
g

Fa
ct

or
y

pr
oc

es
s

co
nt

ro
l,

B
us

in
es

s
pr

oc
es

s
m

an
ag

em
en

t

T
ru

ck
in

’
G

am
e,

ai
rp

la
ne

co
nt

ro
l

M
az

e
an

d
m

in
efi

el
d

na
vi

ga
tio

n,
pr

oc
es

s
co

nt
ro

l

R
ob

ot
ic

s
R

ob
ot

ic
s

fo
r

U
S

m
ili

ta
ry

N
av

ig
at

io
n,

ob
st

ac
le

av
oi

da
nc

e,
ro

bo
t

so
cc

er

123



Integrated cognitive architectures 125

provided. ACT-R has also been used in the investigation of human-computer interactions,
such as ACT-R versus human player in scissor-article-stone. West et al. (2005) show that ACT-
R is able to capture significant portion of cognitive functions involved in human game playing.

Similar to Soar and ACT-R, ICARUS has been applied to many cognitive tasks, including
the Tower of Hanoi, multi-column subtraction, and peg solitaire. Other key domains, which
have been studied to date, include in-city driving and pole balancing (Langley 2004).

BDI was originally designed for the diagnosis of the reaction control system (RCS) in
the NASA’s space shuttles (Georgeff and Ingrand 1989). It has also been applied to the
problems of factory process control and business process management (Guerra-Hernandez
et al. 2004). The implementations of the BDI architecture include procedural reasoning sys-
tem (PRS), dMARS, JACK, 3APL, Jason, JADEX, JAM, AgentSpeak(L), and UM-PRS.
Besides performing cognitive tasks, such as the Tower of Hanoi, BDI has also been applied
as embodied conversational agents through the creation of Max. As a guide in a public com-
puter museum, Max is able to make small talk conversations with the visitors, while providing
information about the museum (Kopp et al. 2005).

The subsumption architecture was originally proposed as a new robot design (Brooks
1991, 1999) and has since been extensively applied. Unlike other cognitive architectures,
this type of behaviour-based robots does not require any complex mathematical computation
built into the robots. Many robots with different levels of navigation abilities have been built,
including Allen that avoids both static and dynamic obstacles while wandering randomly;
Herbert with the additional capability of stealing empty soda cans; and Tom and Jerry that
are capable of heading towards distant places. Other robots that have been designed with
the subsumption architecture are Seymour with vision ability; Genghis, a six-legged walking
robot, and ToTo that navigates as if it has a built-in map (Brooks 1991, 1999). There are also
attempts to incorporate the subsumption architecture into software design, such as “reactive
accompanist”. A reactive accompanist is a computer that can accompany unfamiliar melo-
dies with musicians in real time without any knowledge of music theory or any form of rules
(Bryson et al. 2005). The subsumption architecture is also employed in multi-agent systems,
such as soccer match in RoboCup (Nakashima and Noda 1998).

The subsumption architecture has also been applied in Truckin’ simulation game. The
objective of the game is to ensure a steady flow of goods from the producers to the con-
sumers through the trading by the retailers and the truck agents played by the architecture
(Butler et al. 2001). Hartley and Pipitone (1991) have also attempted to use the subsumption
architecture in airplane control.

CLARION has been used in both the simulation of navigation and cognitive tasks. Sun
and Peterson (1996, 1998) report the use of CLARION for navigation in simple mazes,
as well as complex minefield navigation, wherein the agent has to navigate an underwater
vessel through a minefield to reach a given target location. The cognitive tasks using CLAR-
ION include serial reaction tasks, artificial grammar learning tasks, process control tasks,
alphabetical arithmetic tasks, and the Tower of Hanoi (Sun and Zhang 2006).

Considering all the domains studied, it appears that the Tower of Hanoi and maze navi-
gation tasks have been used across most architectures. In particular, the Tower of Hanoi has
long been regarded as the classic paradigm for behaviour studies of goal manipulations and
has been used as the benchmark cognitive task for testing many cognitive architectures. Maze
navigation is also popularly chosen as one of the benchmark tasks simply because mobility
is a key function of autonomous agents. In addition, navigation evaluates the architecture’s
reactivity to the environment, which is an essential aspect of intelligence. It is also notable
that navigation can be carried out readily in the subsumption architecture, which is less likely
to be used for cognitive tasks such as the Tower of Hanoi.

123



126 H.-Q. Chong et al.

5 Conclusions

The ultimate goal of studying integrated cognitive architectures is to build coherent systems
that display a wide range of functions robustly across different problem settings. This is
the path towards understanding human cognition and developing systems with human level
intelligence. In this article, we have reviewed six representative cognitive architectures and
made comparison based on their functionalities and modules.

An integrated cognitive architecture should be applicable across different problem
domains. Though the existing architectures have been increasingly applicable to many tasks,
there remains a challenge to build one system capable of solving all types of problems in a
real environment. For example, although some existing architectures have shown promising
results in their computational modelling of the brain, the parameters defined in the compu-
tational models are based on empirical evidences, and therefore the models are only valid
within the specific experimental ranges. Hence, it would be better if the architectures were
applicable to universal situations so that the agent is able to solve problems in all kinds of
novel situations, and not just confined to test situations.

In addition, many cognitive architectures focus on achieving the cognitive functions and
give little emphasis to their biological validity. Although most cognitive architectures contain
modules, such as problem solving, learning, and memory for storing knowledge, which are
key processes and components in the human brain, they make little reference, if at all, to
brain anatomy. The only significant attempt to do this is ACT-R. In this aspect, it appears that
ACT-R has presented a relatively more balanced approach, by covering most basic functions
of human cognition and identifying the modules in its architecture in an extensive scale to
specific regions of human brains.

5.1 Converging design principles

All cognitive architectures surveyed in this article contain certain features which make them
unique. They however do bear important similarities in their principles and approaches. Spe-
cifically, problem solving, reasoning/inferencing, and learning are essential components of
most cognitive systems, with the exception of the subsumption architecture.

One fundamental construct found in many cognitive architectures is the use of short term
working memory, production rules and a decision process. The use of short term working
memory is critical to hold the relevant input from the environment and the knowledge from
the long term memory for the selection of appropriate actions. Most cognitive architectures
rely on short term memory, which is known as working memory in Soar, memory buffers in
ACT-R and short term conceptual memory in ICARUS. All cognitive architectures except
the subsumption architecture also make use of some forms of rules to aid in selecting the
appropriate courses of action. For instance, the rules in CLARION are stored in the top level
of the architecture, while the production rules in ACT-R are available as procedural knowl-
edge. The decision processes in Soar, ACT-R and ICARUS are also similar, which involve
the selection of skills/actions based on the desired goals and the information available in the
short term memory.

Most of the architectures, in particular, Soar, ACT-R, ICARUS, and CLARION, make
a distinction between declarative and procedural knowledge. While declarative knowledge
contains the facts and inference rules required for reasoning, procedural knowledge encodes
the sequences of action to perform in response to specific situations. One promising addition
to some of the architectures, such as CLARION, is the inclusion of other forms of memory,

123



Integrated cognitive architectures 127

for instance, episodic memory. These additions would enhance the system complexity and
are more likely to capture the features of human cognition. After all, we make use of various
types of memories and processes to reason, function, and learn.

5.2 Promising research trends

With the high level of interests and extensive amount of work done in the field of inte-
grated cognitive architecture, we expect to see more exciting results in the next one to two
decades. To conclude this article, we highlight four research trends below, which in our
opinion are promising in the advancement of the state of the art. Many of these directions,
especially interaction-based learning and biologically-inspired cognitive architectures, are
being actively pursued as we speak.

(1) Real-time embodiment: A cognitive agent needs to be situated. Some of the architec-
tures such as BDI, the subsumption architecture and CLARION are designed to remain
responsive even in a dynamic environment, therefore enabling situatedness. These archi-
tectures are able to sense changes in the environment, as well as respond rapidly to the
changes. Although most cognitive architectures include a vision or perceptual buffer,
none has been integrated with a machine vision system. There has been much pro-
gress made in the field of computer vision. We are eager to witness the development of
truly embodied intelligent systems, that are capable of sensing and interacting with the
environment in real time, just like human beings.

(2) Interaction based learning: Related to the issue of embodiment, a cognitive agent should
be able to learn and function in a real-time dynamic environment. Under the notion of
embodied cognition (Anderson 2003), an agent acquires its intelligence through inter-
action with the environment. Reinforcement Learning (Sutton and Barto 1998; Si et al.
2004) is a field that has received intensive research effort, but has not been incorporated
into many cognitive architectures in a major and principled manner. In recent years, a
family of self-organizing neural models, known as fusion Adaptive Resonance Theory
(fusion ART), has been steadily developed (Tan 2004, 2007; Tan et al. 2007). By expand-
ing the original ART model consisting of a single pattern field into a multi-channel
architecture, fusion ART unifies a number of network designs supporting a myriad
of interaction based learning paradigms, including unsupervised learning, supervised
learning and reinforcement learning. A specific instantiation of fusion ART, known as
Temporal Difference-Fusion Architecture for Learning and Cognition (TD-FALCON),
has shown to produce competitive learning capabilities, compared with gradient descent
based reinforcement learning systems (Xiao and Tan 2007; Tan et al. 2008). Such models
may provide a promising approach to designing cognitive systems for functioning and
learning in real-time environment.

(3) Evaluation: Although the various architectures have been applied to a wide range of
benchmarks and applications, their implementations, with the exception of Soar, are
generally not available in the public domain. As such, it is difficult to compare the
capabilities of the various architectures across common tasks. In addition, there is a
lack of standard benchmarks and problem domains for comparing the various systems
side by side at the system level. To date, Robocup and in-city driving are some of the
best known domains for such purposes. However, the tasks are still specific and success
could be achieved through customized designs in place of generic principles. As such,
it is essential to have a collection of general domain tasks, each demanding a variety of
cognitive functionalities, based on which the various architecture can be evaluated.

123



128 H.-Q. Chong et al.

(4) Biologically-inspired architectures: One key objective of developing integrated cogni-
tive architectures is to mimic and explain human cognition. It is thus meaningful for
a good architecture to fulfil both biological and psychological validity. As of today,
most cognitive architectures have already displayed psychological validity. For exam-
ple, ACT-R has originally been a computational model based in psychology findings.
Soar and ICARUS have also attempted to show that they contain features that coincide
with psychological findings. However, despite that some architectures, such as ACT-R,
have made references to specific brain regions, very few have restricted themselves
to use only neurally plausible mechanisms for implementing their functions. Indeed,
while powerful constructs, like problem solving and goal-subgoal hierarchy, have been
available for a long time, little is known how to achieve the same level of capabilities
in a biological based architecture. The answer to this question could well be the key to
the next generation integrated cognitive architectures.

Acknowledgments This survey work is supported in part by the DSO National Laboratories and Nanyang
Technological University under the DSO-Undergraduate Research Experience on Campus (DSO-URECA)
programme. The authors thank the anonymous reviewers for the useful comments and suggestions.

References

Amir E, Maynard-Zhang P (2004) Logic-based subsumption architecture. Artif Intell 153:167–237
Anderson M (2003) Embodied cognition: a field guide. Artif Intell 149:91–130
Anderson J, Schunn C (2000) Implications of the ACT-R learning theory: No magic bullets. Adv Instr Psychol

5:1–34
Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An intergrated theory of the mind.

Psychol Rev 111:1036–1060
Bratman M, Israel D, Pollack M (1988) Plans and resource-bounded practical reasoning. Comput Intell

4(4):349–355
Braubach L, Pokahr A, Moldt D, Lamersdorf W (2005) Goal representation for BDI agent systems. In: Pro-

ceedings, 2nd international workshop on programming multiagent systems: languages and tools, pp 9–20
Brooks RA (1991) How to build complete creatures rather than isolated cognitive simulators. In: Proceedings,

architectures for intelligence, pp 225–240
Brooks R (1999) Cambrian intelligence: the early history of the new AI. MIT Press, Boston, MA
Bryson J, Smaill A, Wiggins G (2005) The reactive accompanist: applying subsumption architecture to soft-

ware design. Tech. rep., Department of Artificial Intelligence, University of Edinburgh
Butler G, Gantchev A, Grogona P (2001) Object-oriented design of the subsumption architecture. Softw Pract

Exper 31:911–923
Chong RS (2004) Architectural explorations for modeling procedural skill decay. In: Proceedings, sixth inter-

national conference on cognitive modeling
Dastani M, van der Torre L (2002) An extension of B DI CT L with functional dependencies and compo-

nents. In: Proceedings, 9th international conference on logic for programming, artificial intelligence, and
reasoning, pp 115–129

Dastani M, Hulstijn J, van der Torre L (2001) BDI and QDT: a comparison based on classical decision theory.
In: Proceedings, AAAI symposium, pp 16–26

Dennett D (1987) The intentional stance. MIT Press, Cambridge MA
Georgeff M, Ingrand F (1989) Decision-making in an embedded reasoning system. In: Proceedings, interna-

tional joint conference on artificial intelligence, pp 972–978
Guerra-Hernandez A, Fallah-Seghrouchni AE, Soldano H (2004) Learning in BDI multi-agent systems. In: Pro-

ceedings, 4th international workshop on computational logic in multi-agent systems. Fort Lauderdale, FL
Hartley R, Pipitone F (1991) Experiments with the subsumption architecture. In: Proceedings, IEEE

international conference on robotics and automation, pp 1652–1658
Köse H (2000) Towards a robust cognitive architecture for autonomous mobile robots. Master’s thesis,

Boǧaziçi University
Kopp S, Gesellensetter L, Krämer N, Wachsmuth I (2005) A conversational agent as museum guide—design

and evaluation of real-world application. Intell Virtual Agents 5:329–343

123



Integrated cognitive architectures 129

Laird J, Newell A, Rosenbloom P (1987) SOAR: An architecture for general intelligence. Artif Intell
33(1):1–64

Laird J, Rosenbloom P, Newell A (1986a) Chunking in Soar: The anatomy of a general learning mechanism.
Mach Learn 1:11–46

Laird J, Rosenbloom P, Newell A (1986b) Universal subgoaling and chunking: the automatic generation and
learning of goal hierarchies. Kluwer, Boston, MA

Langley P (2004) A cognitive architecture for physical agents. Retrieved 28 Oct 2006 from http://www.isle.
org/~langley/talks/icarus.6.04.ppt

Langley P, Choi D (2006) A unified cognitive architecture for physical agents. In: Proceedings, twenty-first
national conference on artificial intelligence, pp 1469–1474

Langley P, Arai S, Shapiro D (2004) Model-based learning with hierarchical relational skills. In: Proceedings,
ICML-2004 workshop on relational reinforcement learning

Lehman J, Laird J, Rosenbloom P (2006) A gentle introduction to soar, an architcture for human cogni-
tion: 2006 update. Retrieved 17 May 2007 from http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/
GentleIntroduction-2006.pdf

Madden M, Howley T (2003) Transfer of experience between reinforcement learning environments with
progressive difficulty. Artif Intell Rev 21(3–4):375–398

Nakashima H, Noda I (1998) Dynamic subsumption architecture for programming intelligent agents. In:
Proceedings, IEEE international conference on multi-agent systems, pp 190–197

Newell A (1990) Unified theories of cognition. Harvard University Press, Cambridge, MA
Norling E (2004) Folk psychology for human modelling: extending the BDI paradigm. In: Proceedings,

international joint conference on autonomous agents and multi-agent systems (AAMAS’04), pp 202–209
Nuxoll A, Laird J (2004) A cognitive model of episodic memory integrated with a general cognitive

architecture. In: Proceedings, sixth international conference on cognitive modeling, pp 220–225
Nuxoll A, Laird J, James M (2004) Comprehensive working memory activation in soar. In: Proceedings,

sixth international conference on cognitive modeling, pp 226–230
Rao AS, Georgeff MP (1991) Modeling rational agents within a bdi-architecture. In: Proceedings, second

international conference on principles of knowledge representation and reasoning. Morgan Kaufmann,
San Mateo, CA, pp 473–484

Rickel J, Johnson W (2000) Task-oriented collaboration with embodied agents in virtual worlds. In: Cassell
J, Sullivan J, Prevost S (eds) Embodied conversational agents. MIT Press, Boston, pp 95–122

Sardina S, de Silva L, Padgham L (2006) Hierarchical planning in BDI agent programming languages: a formal
approach. In: Proceedings, autonomous agents and multi-agent systems (AAMAS), pp 1001–1008

Si J, Barto AG, Powell WB, Wunsch D (eds) (2004) Handbook of learning and approximate dynamic
programming. Wiley-IEEE Press, New York, NY

Stollberg M, Rhomberg F (2006) Survey on goal-driven architectures, Tech. rep., DERI, Austria
Subagdja B, Sonenberg L (2005) Learning plans with patterns of actions in bounded-rational agents. In:

Proceedings, 9th international conference on knowledge-based and intelligent information & engineering
systems (KES’05), vol 3, pp 30–36

Sun R (2003) A tutorial on CLARION 5.0. Tech. rep., Cognitive Science Department, Rensselaer Polytechnic
Institute

Sun R, Peterson T (1996) Learning in reactive sequential decision tasks: the CLARION model. In:
Proceedings, IEEE international conference on neural networks, pp 1073–1078

Sun R, Peterson T (1998) Hybrid learning incorporating neural and symbolic processes. In: Proceedings,
IEEE international conference on fuzzy systems, pp 727–732

Sun R, Sessions C (1998) Learning to plan probabilistically from neural networks. In: Proceedings of IEEE
international conference on neural networks, pp 1–6

Sun R, Zhang X (2006) Accounting for a variety of reasoning data within a cognitive architecture. J Exp
Theor Artif Intell 18(2):169–191

Sun R, Merrill E, Peterson T (2001) From implicit skills to explicit knowledge: a bottom-up model of skill
learning. Cogn Sci 25(2):203–244

Sun R, Slusarz P, Terry C (2005) The interaction of the explicit and the implicit in skill learning: a dual-process
approach. Psychol Rev 112(1):159–192

Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, Cambridge, MA
Swartout W, Gratch J, Hill REH, Marsella S, Rickel J, Traum D (2006) Toward virtual humans. Artif Intell

Mag 27(2):96–108
Tan A-H (2004) FALCON: a fusion architecture for learning, cognition, and navigation. In: Proceedings,

international joint conference on neural networks, pp 3297–3302
Tan A-H (2007) Direct code access in self-organizing neural networks for reinforcement learning. In:

Proceedings, international joint conference on artificial intelligence (IJCAI’07), pp 1071–1076

123

http://www.isle.org/~langley/talks/icarus.6.04.ppt
http://www.isle.org/~langley/talks/icarus.6.04.ppt
http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf
http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf


130 H.-Q. Chong et al.

Tan A-H, Carpenter G A, Grossberg S (2007) Intelligence through interaction: towards a unified theory
for learning. In: Proceedings, international symposium on neural networks (ISNN’07), LNCS4491,
pp 1098–1107

Tan A-H, Lu N, Xiao D (2008) Integrating temporal difference methods and self-organizing neural networks
for reinforcement learning with delayed evaluative feedback. IEEE Trans Neural Netw 9(2):230–244

Toal D, Flanagan C, Jones C, Strunz B (1996) Subsumption architecture for the control of robots. In: IMC-13
Vernon D, Metta G, Sandini G (2007) A survey of artificial cognitive systems: implications for the autonomous

development of mental capabilities in computational agents. IEEE Trans Evol Comput 11(2):151–180
Watkins C, Dayan P (1992) Q-learning. Mach Learn 8(3/4):279–292
West R, Stewart T, Lebiere C, Chandrasekharan S (2005) Stochastic resonance in human cognition: ACT-R

versus game theory, associative neural networks, recursive neural networks, Q-learning, and humans.
In: 27th annual meeting of the cognitive science society

Wooldridge M (1996) A logic for BDI planning agents. In: Working notes, 3rd model age workshop: formal
models of agents

Wray R, Chong R, Phillips J, Rogers S, Walsh B (1994) A survey of cognitive and agent architectures.
Retrieved 28 Jan 2007 from http://ai.eecs.umich.edu/cogarch0/

Xiao D, Tan A-H (2007) Self-organizing neural architectures and cooperative learning in multi-agent
environment. IEEE Trans Syst Man Cybern B 37(6):1567–1580

123

http://ai.eecs.umich.edu/cogarch0/

	Integrated cognitive architectures: A survey
	Citation

	Integrated cognitive architectures: a survey
	Abstract
	1 Introduction
	2 A review of six cognitive architectures
	2.1 State, operator, and result (Soar)
	2.2 Adaptive control of thought-rational (ACT-R)
	2.3 ICARUS
	2.4 Belief-desire-intention (BDI)
	2.5 The subsumption architecture
	2.6 Connectionist learning with adaptive rule induction on-line

	3 Functional comparison
	3.1 Perception
	3.2 Memory
	3.3 Goals
	3.4 Problem solving
	3.5 Planning
	3.6 Reasoning/inference
	3.7 Learning
	3.8 Relevance to neurobiology

	4 Benchmarks and applications
	5 Conclusions
	5.1 Converging design principles
	5.2 Promising research trends

	Acknowledgments

