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a b s t r a c t

This paper presents a self-organizing neural architecture that integrates the features of belief, desire,

and intention (BDI) systems with reinforcement learning. Based on fusion Adaptive Resonance Theory

(fusion ART), the proposed architecture provides a unified treatment for both intentional and reactive

cognitive functionalities. Operating with a sense-act-learn paradigm, the low level reactive module is a

fusion ART network that learns action and value policies across the sensory, motor, and feedback

channels. During performance, the actions executed by the reactive module are tracked by a high level

intention module (also a fusion ART network) that learns to associate sequences of actions with context

and goals. The intention module equips the architecture with deliberative planning capabilities,

enabling it to purposefully maintain an agenda of actions to perform and to reduce the need of

constantly sensing the environment. Through reinforcement learning, plans can also be evaluated and

refined without the rigidity of user-defined plans. We examine two strategies for combining the

intention and reactive modules for decision making in a real time environment. Our experiments based

on a minefield navigation domain show that the integrated architecture is able to learn plans efficiently,

achieve good plan utilization, and combine both intentional and reactive action execution to yield a

robust performance.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Neural network models have been applied widely to the
problems of pattern classification and signal processing. However,
they have found to be much less successful in modelling high
level cognitive functions of human brain. The main obstacles
encountered include the difficulty of achieving deliberative
functions using neural networks and the lack of an architectural
framework for integrating the low level functionalities of neural
models into high level intelligence.

Derived from folk psychology, belief, desire, and intention
(BDI) is a popularly used framework for human modelling and
logical reasoning [1]. BDI systems encode goal directed beha-
viours by using plans derived from expert knowledge about the
task domain. An abstract plan consists of an ordered set of
subgoals or actions that an agent should execute with little
sensory feedback from its environment, together with an overall
goal which that plan achieves if execution completes successfully.

A traditional limitation of BDI architectures, however, is the
lack of learning ability. In most cases, plans and capabilities are
predefined by developers or captured from human experts.

In view of their complementary strengths, there have been
great interests in hybrid architectures that integrate high level
symbolic systems, such as BDI systems with various types of
machine learning algorithms. Some examples of hybrid systems
include CLARION [2], BDI with standard Q-learning [3], BDI with
decision tree induction [4], and ACT-R with sequence learning [5].
Among these hybrid systems, temporal difference learning using
gradient descent based function approximator has been most
commonly used. However, the gradient descent methods learn by
making small error correction steps iteratively. In addition, there
is the issue of instability as learning of new patterns may erode
the previously learned knowledge. Consequently, the resultant
systems may not be able to learn and operate in real time.

To address the above limitations, Tan et al. [6] presented a
hybrid architecture called BDI-FALCON that integrates BDI
components, namely desire and intention, with a reinforcement
learning system known as temporal difference—fusion architec-
ture for learning and cognition (TD-FALCON) [7,8]. TD-FALCON is
a three-channel fusion Adaptive Resonance Theory (ART) network
[9] that incorporates temporal difference methods [10,11] into
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Adaptive Resonance Theory (ART) models [12,13] for reinforce-
ment learning. By inheriting the ART code stabilizing and dynamic
network expansion mechanism, TD-FALCON is capable of learning
cognitive nodes encoding multi-dimensional mappings across
multi-modal input patterns, involving states, actions, and re-
wards, in an online and incremental manner. It has displayed
superior learning capabilities, compared with gradient descent
based reinforcement learning systems in various benchmark
experiments [8,14].

Using belief–desire–intention as the system’s framework, the
BDI-FALCON architecture extends a low level reinforcement
learner TD-FALCON into a deliberative reasoner. Specifically, the
intention module equips the system with deliberative planning
capabilities, by enabling it to purposely maintain an agenda of
actions to perform. This is useful in complex environment
wherein reactive responses are not adequate. Performing with a
plan also reduces the need for an agent to repeatedly sense the
environment and may therefore improve efficiency.

Although the BDI-FALCON system illustrates the feasibility and
benefits of integrating features of BDI with reinforcement
learning, the architecture still adopts a symbolic implementation
of the desire and intention modules. As such, the intention
module has a limited learning capability and tends to generate a
large number of plans, leading to substantial overhead in plan
selection and evaluation. In addition, the strict plan matching
requirement results in a poor plan utilization, resulting
BDI-FALCON to frequently fall back on the reactive TD-FALCON
for action selection. Therefore, there is limited improvement in
system efficiency in terms of reducing the number of sensing.

In this paper, we present a fully connectionist architecture,
known as cBDI-FALCON, that realizes the features of BDI, namely
desire and intention, as well as reinforcement learning. In contrast
to our prior work of BDI-FALCON [6], the intention module in the
cBDI-FALCON is also modelled as a fusion ART neural network [9].
Doing so enables plans to be learned and updated through
reinforcement learning according to the outcomes of their use in a
natural way. In addition, when the confidence value of a plan
drops below a certain threshold, it can be pruned from the system.
The resultant reduction in the number of plans can thus further
improve plan utilization and the system’s performance.

Besides the intention and reactive modules, the desire module
in the architecture is also modelled as a one-channel fusion ART
network. The overall design philosophy is thus aiming towards a
unified framework by using a principled set of computational
processes for supporting both intentional and reactive behaviour.
This unified view allows one to look at the intention and reactive
modules at an angle that avoids the over-specialization of the
computational processes for supporting the high level and low
level cognitive functionalities. In theory, the computations in the
system can be executed in parallel using neural networks,
enabling the potential of speeding up [15].

To combine planned and reactive capabilities, we have
developed two strategies, known as the follow-through and the
re-evaluation strategies to coordinate the output produced by the
intention and reactive modules. We have conducted extensive
experiments to analyse the behaviours of the integrated archi-
tecture, in terms of plan utilization, system efficiency, and the
overall success rates. To evaluate the system’s performance
empirically, we have chosen a minefield navigation task, similar
to the one developed at the Naval Research Laboratory (NRL) [16].
The task involves an autonomous vehicle (AV) learning to
navigate through obstacles to reach a stationary target (goal)
within a specified number of steps. Our experimental results
show that the integrated neural architecture is able to combine
intentional and reactive action execution, leading to improvement
both in terms of task completion performance and efficiency.

The rest of the paper is organized as follows. Section 2 presents
a brief review of the related works on hybrid systems. Section 3
introduces the fusion ART network model [9], together with its
learning and prediction algorithms. Section 4 presents the cBDI-
FALCON architecture and its three main components, namely the
desire module, the intention module, and the reactive module.
Section 5 reports our case study on the minefield navigation
problem. The final section provides a discussion of the results
achieved and highlights the outstanding issues.

2. Related works

Hybrid systems integrating high level capabilities, such as
planning, and low level reactive modules involving learning has
been an active research area. Sun described a two-level model,
known as CLARION [2], for learning reactive plans and extracting
plans from reinforcement learners. The first three layers of the
bottom level form a backpropagation network learning and
computing Q-values. The fourth layer (the top level with only
one node) determines probabilistically the action to be performed
based on a Boltzmann distribution. Given a specific problem
scenario, plans can be generated on the spot using a beam search
strategy that chains up actions with optimal Q-values at each step
[17]. A key strength of the approach is the capability to perform
probabilistic planning. This is useful in environments where an
action may lead to non-deterministic outcomes. The plan
extraction process however assumes that the next state after
performing each and every action can always be determined
beforehand. In addition, plans are extracted on-the-fly and the
system does not consider the use of a plan library as in BDI
systems.

Using a goal-directed (top down) approach, Wallis discussed
the notion of goal-tagged activities [18], that achieved planning by
low-level adherence to high-level goals without the need for
explicit symbolic representation. This was achieved by the
chaining of implicitly goal-encoded activities (which are reactive
modules similar to plans in the BDI sense).

Plan learning is akin to the topic of sequence learning, wherein
simple recurrent networks (SRN) [19,20] has been extensively
applied. In view that SRN performs implicit learning through the
use of recurrent connections, Lebiere and Wallach proposed a
sequence learning model of ART-R [5], where the mappings
between sensory stimuli and target actions were encoded as
chunks explicitly. The model however relies on a set of
productions to encode the procedure knowledge of making
declarative chunks. The approach is thus symbolic and it is not
clear how such procedure knowledge can be learned from the
environment.

Working from the BDI perspective, Heinze et al. [21] demon-
strated the synergistic coupling of a machine learning architec-
ture (CLARET) with a BDI top-layer to achieve plan recognition
of aircraft. CLARET was used to recognize spatial trajectories
of aircraft and other observable objects, and the BDI layer
processed these observations with higher-level, goal-directed
reasoning. Guerra-Hernandez et al. [4] expanded the BDI
architecture to incorporate learning in multi-agent systems
using a first order method called induction of decision tree.
Another extended BDI architecture was proposed by Norling [3]
for human modelling by incorporating cognitive processes of folk
psychology for recognition primed decision making. A standard
table lookup version of Q-learning was adopted to learn reactive
rules for path finding in a grid world. Subagdja and Sonenberg
[22] further extended BDI architecture to incorporate learning,
through the generation and testing of hypothesis for formulating
plans.

A.-H. Tan et al. / Neurocomputing 73 (2010) 1465–14771466
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As a precursor to our work, Karim et al. [23] proposed a hybrid
system consisting of a high level BDI system and a low level
reactive FALCON [24], in which BDI-styled plans were learned out
of FALCON’s reactive action execution. The Plan Generation
System (PGS) used a strategy to build plans by appending actions
as the system performs. The hybrid architecture was originally
illustrated on a minefield navigation domain and was subse-
quently expanded and applied to a multi-agent predator–prey
domain [25].

The approach presented in this paper is similar to that of PGS
presented by Karim et al. [23,25]. However, in our integrated
architecture, the desire and intention modules are also modelled
as self-organizing neural networks. Consequently, we offer a
whole new set of plan learning, selection and evaluation
algorithms based on neurally plausible processes, and expand
the analysis significantly by experimenting with various strate-
gies for integrating the intentional and reactive learning modules.

3. Fusion ART

Fusion Adaptive Resonance Theory (ART) [9] employs a multi-
channel architecture (Fig. 1), comprising a category field F2

connected to a fixed number of (K) pattern channels or input
fields through bidirectional conditionable pathways. The model
unifies a number of network designs, most notably Adaptive
Resonance Theory (ART) [26–29], Adaptive Resonance Associative
Map (ARAM) [30,31] and Fusion Architecture for Learning,
COgnition, and Navigation (FALCON) [24,8,14], developed over
the past decades for a wide range of functions and applications.
The network dynamics of fusion ART based on the fuzzy ART
operations [32] is summarized as follows.

Input vectors: Let Ick
¼ ðIck

1 ; I
ck
2 ; . . . ; I

ck
n Þ denote the input vector,

where Ick
i A ½0;1� indicates the input i to channel ck. With

complement coding, the input vector Ick is augmented with a
complement vector I

ck
such that I

ck

i ¼ 1-Ick
i .

Activity vectors: Let xck ¼ ðxck
1 ; x

ck
2 ; . . . ; x

ck
n Þ denote the Fck

1 activity
vector. Let y denote the F2 activity vector. Upon input pattern
presentation, xck ¼ Ick.

Weight vectors: Let wck
j denote the weight vector associated

with the j th node in F2 for learning the input patterns in Fck
1 .

Initially, F2 contains only one uncommitted node and its weight
vectors contain all 1-s.

Parameters: The fusion ART’s dynamics is determined by choice
parameters ack

Z0, learning rate parameters bckA ½0;1�, contribu-
tion parameters gckA ½0;1� and vigilance parameters rckA ½0;1� for
each of the input field k for k¼ 1; . . . ;K.

As a natural extension of ART, fusion ART responds to incoming
patterns in a continuous manner. It is important to note that at
any point in time, fusion ART does not require input to be present
in all the pattern channels. For those channels not receiving input,
the input vectors are initialized to all 1s. The fusion ART pattern
processing cycle comprises of five key stages, namely code

activation, code competition, activity readout, template matching,
and template learning, as described below.

Code activation: Given the activity vectors xc1; . . . ;xcK , for each
F2 node j, the choice function Tj is computed by

Tj ¼
XK

k ¼ 1

gck
jxck4wck

j j

ackþjwck
j j
; ð1Þ

where the fuzzy AND operation 4 is defined by ðp4qÞi �
minðpi; qiÞ, and the norm j:j is defined by jpj �

P
ipi for vectors p

and q.
Code competition: A code competition process follows under

which the F2 node with the highest choice function value is
identified. When a category choice is made at node J, yJ ¼ 1; and
yj ¼ 0 for all ja J. This indicates a winner-take-all strategy.

Template matching: Before the node J can be used for prediction
and learning, a template matching process checks that the weight
templates of node J are sufficiently close to their respective input
patterns. Specifically, resonance occurs if for each channel k, the
match function mck

J of the chosen node J meets its vigilance
criterion:

mck
J ¼
jxck4wck

J j

jxckj
Zrck: ð2Þ

If any of the vigilance constraints is violated, mismatch reset
occurs in which the value of the choice function TJ is set to 0 for
the duration of the input presentation. The search process then
selects another F2 node J until a resonance is achieved.

Template learning: Once a resonance occurs, for each channel
ck, the weight vector wck

J is modified by the following learning
rule:

wckðnewÞ
J ¼ ð1-bck

ÞwckðoldÞ
J þbck

ðxck4wckðoldÞ
J Þ: ð3Þ

When an uncommitted node is selected for learning, it becomes
committed and a new uncommitted node is added to the F2 field.
Fusion ART thus expands its network architecture dynamically in
response to the input patterns.

4. The integrated architecture

cBDI-FALCON is a hybrid architecture that integrates compo-
nents of belief–desire–intension (BDI) architecture, namely the
desire module and the intention module, with a reactive module
subsuming a simplified version of the belief module. The three
key modules, each realized as a fusion ART network, and their
interrelation are shown in Fig. 2.

Desire module: The desire module maintains an explicit
representation of the agent’s goals. By matching the defined goals
with the corresponding current state attributes, the desire module
computes how well the system has progressed towards the
desired goals. The computed degrees of goal attainment in turn
serve as reward signals to the feedback field of the reactive
module and the evaluation field of the intention module.

Reactive module: The low level reactive learning module is a
TD-FALCON model that interacts with the environment through
the sensory, motor, and feedback channels. Based on the goals
defined in the desire module and the sensory inputs received from
the environment, the reactive module performs reinforcement
learning so as to acquire a set of action and value policies that
enables the agent to achieve its goals.

Intention module: The intention module maintains the plan set
and supports the key processes of plan learning, plan selection,
plan execution and plan evaluation. Given a set of active goals and
the current sensory inputs, the plan selection process identifies
the most applicable plan to perform. During the plan execution,Fig. 1. The fusion ART architecture.
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the action sequence of the adopted plan is extracted and
performed through the motor channel of the reactive module.
The execution of plans thus enables an agent to perform a series
of actions without the need of going through the typical sense-
act-learn cycle for each action. This could potentially lead to
saving in computation cost and enable the system to be more
resilient in a challenging environment, wherein external signals
may not be available all the time. Through a simple form of
reinforcement learning, the plan evaluation process adjusts the
confidence value of each adopted plan according to the outcome
that it leads to.

As mentioned above, each of the three modules can be
implemented as a fusion ART network. The detailed algorithms
and processes are described in the following sections.

4.1. The desire module

The desire module is a one-channel fusion ART network that
consists of an input field Fd

1 for representing the current goal state
activities, and a cognitive field Fd

2 for encoding the goal state
vectors of the active goals. The desire module maintains and
manages the agent’s goals. It also handles the function of goal
attainment evaluation. Specifically, each committed node in the
Fd

2 field is used to encode the target state of an active goal. The
goal state vector xd is typically a part of or can be derived from
the state vector S represented at the sensory field of the reactive
module.

During system initialization, the active goal target vectors are
presented to the desire module for encoding. Using a procedure
similar to the rule insertion algorithm [33], the goal target vector
of each goal j is encoded by a weight vector wd

j associated to the
Fd

2 node j.
During performance, after sensing the environment and

extracting the goal state vector xd derived from the current state
vector S, the goal attainment function Ad computes the match

value between the goal state vector xd and the goal target vectors
wd

j , where 1r jrN and N is the number of active goals, with
respect to the norm of each individual goal target vector.
Specifically, given the current goal state vector xd, the overall
goal attainment can be calculated as

Ad ¼
YN

j ¼ 1

jxd4wd
j j

jwd
j j

; ð4Þ

where jpj �
Pn

i ¼ 1 pi and ðp4qÞi ¼minðpi; qiÞ. The goal attainment
value can then used as the internal reward signal (r) to the
reactive module for reinforcement learning and to the intention
module for plan evaluation.

4.2. The reactive module

The reactive module is a TD-FALCON model [7,8,14], imple-
mented as a three-channel fusion ART model. It consists of a
sensory field Fr1

1 for representing the current state, a motor field
Fr2

1 for representing the available actions, a feedback field Fr3
1 for

representing the estimated payoff for performing a given action in
a particular state, and a cognitive field Fr

2 for encoding the
relations among the activity patterns across the three input
channels. Due to the space constraint, only a brief summary of the
TD-FALCON dynamics is given below. Please refer to [8] for a full
description of the algorithm.

TD-FALCON incorporates Temporal Difference (TD) methods to
estimate and learn value functions of action-state pairs Q ðs; aÞ that
indicates the goodness for a learning system to take a certain
action a in a given state s. Such value functions are then used in
the action selection mechanism, also known as the policy, to select
an action with the maximal payoff. The TD-FALCON model used in
this paper employs a direct code access procedure [33] as shown
in Table 1. Given the current state s, TD-FALCON first decides
between exploration and exploitation by following an action

Intension

)fc(ecnedifnoC)G(tegraTlaoGContext (C) Action Sequence (E)

Context Field Goal Field Action Sequence Field Evaluation Field

State (S) Action (A) Reward (R)

Sensory Field Motor Field Feedback Field

BELIEF

DESIRE

Goal State

Input Field

Fig. 2. A schematic architecture of cBDI-FALCON.
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selection policy. For exploration, a random action is picked. For
exploitation, TD-FALCON searches for an optimal action through a
direct code access procedure. Upon receiving a feedback from the
environment after performing the action, a TD formula is used to
compute a new estimate of the Q value of performing the chosen
action in the current state. The new Q value is then used as the
teaching signal for TD-FALCON to learn the association of the
current state and the chosen action to the estimated Q value.

4.3. The intention module

In a typical BDI system, plans are stored in a plan library or
repository. Each plan p can be represented as a three-tuple of
context, goal, and actions as follows:

p¼/C;G; ES; ð5Þ

where C serves as the context of executing the plan, G refers to the
goal which the plan is supposed to achieve, and E is the sequences
of steps in carrying out the plan.

In our intention module, plans are learned and encoded via a
four-channel fusion ART network consisting of a cognitive field Fi

2

and four input fields. The input fields are namely the context
field Fi1

1 for representing the current state, the goal field Fi2
1 for

representing the target states, the action sequence field Fi3
1 for

representing the sequence of actions to be performed under a
selected plan, and the evaluation field Fi4

1 for representing the
estimated payoff (or confidence) of using the plan. Each node in
the cognitive field Fi

2 encodes a plan associating a sequence of
actions to achieve a given target goal state from the current state.

Input vectors: Let C denote the input context vector to Fi1
1 ,

where C is typically a part of or can be derived from the state
vector S, acting as a context in which the plan is applicable. Let G
denote the input goal vector to Fi2

1 . Let E denote the input action
sequence vector to Fi3

1 . Let cf denote the input confidence vector
to Fi4

1 .
Activity vectors: Let xik denote the Fik

1 activity vector. Let yi

denote the activity vector of Fi
2.

Parameters: The fusion ART’s dynamics is determined by choice
parameters aik

Z0, learning rate parameters bikA ½0;1�, contribu-
tion parameters gikA ½0;1� and vigilance parameters rikA ½0;1� for
each pattern field F ik

1 .
The key processes in the intention module include plan

selection, plan execution, plan evaluation, and plan learning.
The detailed algorithms, as summarized in Table 2 and depicted
using the flowchart in Fig. 3, are described as follows.

Plan selection: The plan selection process follows the code
selection strategy as used in fusion ART systems. Given the
activity vectors initialized by xi1 ¼ C, xi2 ¼G, xi3 ¼ E¼ ð1; . . . ;1Þ,
and xi4 ¼ cf ¼ ð1;0Þ, for each Fi

2 node j, the choice function Ti
j is

computed by

Ti
j ¼

X4

k ¼ 1

gik
jxik4wik

j j

aikþjwik
j j
: ð6Þ

A code competition process follows under which the Fi
2 node

with the highest choice function value is identified.
Plan matching: Before the winning plan can be adopted, a

matching process takes place to ensure that the selected plan is a
good match according to the template matching criteria. Speci-
fically, resonance occurs if for each channel k, the match function

mik
J of the chosen node J meets its vigilance criterion:

mik
J ¼
jxik4wik

J j

jxikj
Zrik: ð7Þ

If any of the vigilance constraint is violated, a mismatch reset
occurs and the intention module becomes inactive. Otherwise, the
system adopts the selected plan and interprets it for execution as
described below.

Plan execution: A readout process first takes place, under which
the action sequence, denoted by xi3ðnewÞ, and the corresponding
confidence value, denoted by xi4ðnewÞ, of the selected plan J can be
obtained by

xi3ðnewÞ ¼ xi3ðoldÞ4wi3
J ð8Þ

and

xi4ðnewÞ ¼ xi4ðoldÞ4wi4
J ; ð9Þ

respectively.
Plan execution then reads out an action at a time from the

action sequence field (i.e., xi3). The encoded actions of the adopted
plan are then executed through the motor channel of the reactive
module.

Plan evaluation: When an adopted plan leads to a positive
outcome, the confidence of the plan is increased. On the other
hand, if the adopted plan leads to a negative outcome, the
confidence is reduced accordingly. Specifically, the confidence of
plan j (cj) is updated using the following formula:

Dcj ¼ dð1-cjÞr-dcjð1-rÞ; ð10Þ

Table 1
The reactive module based on TD - FALCON with direct code access.

1. Initialize the FALCON network.

2. Sense the environment and formulate the sensory state s.

3. Following an action selection policy, choose between exploration and

exploitation.

If exploring, take a random action.

If exploiting, identify the action a with the maximal Q(s,a) value by

presenting the state vector S, the action vector A¼ ð1; . . .1Þ, and the reward

vector R¼ ð1;0Þ to FALCON.

4. Perform the action a, observe the next state s0 , and receive a reward r

(if any) from the environment.

5. Estimate the revised value function Q ðs; aÞ following a Temporal Difference

rule DQ ðs; aÞ ¼ aTDerr ð1-Q ðs; aÞÞ, where TDerr ¼ rþgmaxa0Q ðs0 ; a0Þ-Q ðs; aÞ, of

which r is the immediate reward value, gA ½0;1� is the discount parameter,

and maxa0Q ðs0 ; a0Þ denotes the maximum estimated value of the next

state s0 .

6. Present the state, action, and reward (Q-value) vectors (S, A, and R) to

FALCON for learning.

7. Update the current state by s¼ s0 .

8. Repeat from Step 3 until s is a terminal state.

Table 2
The intention module based on four-channel fusion ART with direct code access.

1. Initialize the 4-channel fusion ART network.

Formulate goal vector G representing the target goal state.

2. Formulate context vector C, which can be a part of the sensory vector S.

3. Select a plan p with the maximal confidence by presenting the context

vector C, the goal state vector G, the action sequence vector E¼ ð1; . . .1Þ,

and the confidence cf ¼ ð1;0Þ to the 4-channel fusion ART.

4.1. When a plan is selected, carry out plan p according to the action sequence

vector.

Observe the final state s0 , and receive a reward r (if any) from the

environment.

Estimate the revised confidence of the plan following the equation.

Present context vector C, goal state vector G, action sequence vector E,

and confidence vector cf to fusion ART for learning.

A plan with a lower confidence than the threshold is removed from the

repository.

4.2. If no plan is selected, the intention module produces no action output.

When the reactive module discovers a sequence of actions leading to a

goal state, present context vector C, goal state vector G, action sequence

vector E, and confidence vector cf to the intention module for learning of

new plan.

5. Repeat from Step 2 until the goal state is reached.
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where d is the plan confidence learning rate and r is the reward
signal evaluated by the desire module.

Upon the estimation of the new confidence, the context vector
C, the goal state vector G, the action sequence vector E, and the
confidence vector cf ¼ ðcj;1-cjÞ are presented to fusion ART for
learning. When the confidence value of a plan drops below a
certain threshold, the plan can be pruned from the intention
module.

Plan learning: When the intention module is inactive, the
actions performed by the reactive module is recorded by the
intention module in the action sequence field. If and when
the reactive module discovers a (new) sequence of actions that
leads to a target goal state, the input vectors C, G, E, and cf ¼ ð1;0Þ
are presented to the intention module for learning.

4.4. Integrating intentional and reactive action execution

With the presence of both deliberative and reactive capabil-
ities, a strategy is needed for combining the action sequences and
the actions selected by the intention module and the reactive
module respectively. We experiment with two strategies, namely
the ‘‘follow-through strategy’’ and the ‘‘re-evaluation strategy’’ as
follows:

Follow-through strategy: As illustrated in Fig. 3, the simplest
strategy is to adopt a follow-through strategy. After a plan is
selected for execution, the action sequence of the plan is exe-
cuted from the beginning to the end. In other words, the agent
follows through the entire sequence of actions before it performs
another round of sensing again. The behaviour of the overall
cBDI-FALCON system with the follow-through strategy can be
summarized into the key steps as shown in Table 3. This
represents a bold agent.

Re-evaluation strategy: Alternatively, a cautious agent can be
modelled using a re-evaluation strategy. This strategy is similar to
the follow-through strategy, except that an extra step of sensing is
performed half-way through the execution of the plan. This
enables the agent to evaluate the current plan for its usability by
comparing the next action (from the action sequence) with the
action selected by the FALCON’s direct access method. The
adopted plan continues if the next action of the plan coincides
with the action selected by the reactive module.

Start

Initialize the system
Set goal

Formulate context

Select plan

Good plan found?

Execute plan

Receive reward

Evaluate plan

End

Learn new plan

Goal achieved?

Intention
Execution

Y

N

Y

Goal achieved?
N

Y

N Track
Reactive Module

Fig. 3. The system flow of the intention module.

Table 3
Dynamics of the cBDI-FALCON agent with the follow-through strategy.

1. Initialize the agent’s system state in the desire, intention, and reactive

modules.

In particular, initialize the goal state vector G.

2. Sense the environment and formulate sensory vector S and context

vector C.

3. Present the input vectors to the intention and reactive modules

simultaneously.

4.1. Intention Execution:

If the intention module finds a good plan, adopt the sequence of actions

encoded.

When the action sequence is completed, obtain feedback, compute goal

attainment function, and perform plan learning.

If not end of trial, go to step 2.

4.2. Reactive Execution:

When the intention module is inactive, adopt the action selected by the

reactive module and record the selected action into the action sequence

vector.

After performing the action, obtain feedback, compute the goal

attainment function for reactive learning.

If end of trial and a goal state is reached, the intention module is

activated for learning of new plan.

If not end of trial, go to step 2.
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The overall behaviour of the system is similar for the two plan
adoption strategies. In contrast to the traditional sense-act-learn
cycle, the system now performs a sensing and follows either a
plan selected from the intention module or an action selected by
the direct code access procedure of the reactive module. The
preference of following a plan is higher than that of executing an
action selected by the low level reactive module for any trial in
the experiments. This principle is consistent with the one used for
the behaviour of the Subsumption architecture [34], wherein the
outputs of high level modules subsume those of low level
modules. After performing a plan, evaluation of plan proceeds
within the intention module. When a suitable plan is not
identified, the intention module becomes inactive and the system
falls back on the reactive module to select the next action. When a
new sequence of actions leading to a goal state is discovered by
the reactive module, it is learned as a new plan by the intention
module.

5. Case study on minefield navigation

The minefield navigation task (Fig. 4) requires an autonomous
vehicle (AV) starting at a randomly chosen position in the field to
navigate through the minefield to a randomly selected target
position in a specified time frame without hitting a mine. A trial
ends when the system reaches the target (success), hits a mine
(failure), or runs out of time.

Minefield navigation and mine avoidance is a non-trivial task.
As the configuration of the minefield is generated randomly and
changes over trials, the system needs to learn strategies that can
be carried over across experiments. In addition, the system has a
rather coarse sensory capability with a 1801 forward view based
on five sonar sensors. For each direction i, the sonar signal is
measured by si ¼ 1=di, where di is the distance to an obstacle
(that can be a mine or the boundary of the minefield) in the i

direction. Other input attributes of the sensory (state) vector
include the range and the bearing of the target from the current
position. In each step, the system can choose one out of the five
possible courses of action, namely MoveLeft, MoveFrontLeft,
MoveFront, MoveFrontRight, and MoveRight.

5.1. Goal representation and matching

In contrast to traditional reinforcement learning agents which
have no explicit representation of goals, the cBDI-FALCON

architecture provides an explicit implementation of goals and
goal attainment evaluation. For the minefield problem, we define
two main goals as follows.

� Goal 1: Agent reaches the target.
� Goal 2: Agent maintains its life value at the maximum.

Based on the two goals defined, the goal target vectors consist
of two key attributes, namely distance indicating the remaining
distance towards the target and life indicating the energy level of
the agent. Using complement coding, the goal state vector xd can
thus be defined as

xd ¼ ðD;D; L; LÞ;

where D and L are the normalized values of the remaining
distance and the life value, with D and L as their complements
respectively.

For goal 1, the corresponding goal target vector has a value of 0
for the first element, indicating that the desired remaining
distance to the target is zero. The second element, as the
complement of the first value, is set to 1. The rest of the elements
not relevant to the goal are set to 0. Similarly for goal 2, the goal
target vector assigns a value of 1 for the third element, indicating
a maximum life value. The other elements are set to 0. The two
goal target vectors are thus given by

wd
1 ¼ ð0:0;1:0;0:0;0:0Þ

and

wd
2 ¼ ð0:0;0:0;1:0;0:0Þ: ð11Þ

In each reaction cycle, the states of the goal attributes can be
obtained as follows: The distance to the target can be retrieved
through the sensory input signals supplied by the maze. The life
value is initialized to the user defined value and decremented by a
certain value each time the agent runs into a mine. The raw values
of distance and life are then normalized to the range of [0,1]
before assigning to the goal state vector. By matching the goal
state vector and the goal target vectors, the degree of goal
attainment is computed using the goal attainment function
(Eq. (4)) as described in Section 4.

Based on degree of goal attainment computed internally, we
experimented cBDI-FALCON and compared its performance with
that of the original TD-FALCON using reward signals provided
externally. The experimental results are obtained by averaging
over 30 runs consisting of 3000 trials each. Referring to Fig. 5, we
can see that cBDI-FALCON using the degree of goal attainment
computed by its desire module achieves the same level of

Fig. 4. The minefield navigation simulator.
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Fig. 5. The success rates of cBDI-FALCON over 3000 trials using reward signal

generated internally.
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performance as its counterpart using external rewards. More
importantly, the desire module has enabled the cBDI-FALCON
system a flexible way of defining and switching goals as well as a
higher level of self-awareness than a pure reinforcement learner
that reacts purely based on external reward signals.

Note that in this work, we do not compare the performance of
cBDI-FALCON with other reinforcement learning systems. This is
in view that TD-FALCON has been shown to produce superior
learning capabilities, compared with many state-of-the art
gradient descent based reinforcement learning systems in various
benchmark experiments, including minefield navigation [8,14].

5.2. Plan learning and adoption

We set out to study how plans are learnt and used in the
minefield navigation task. By varying the values of the plan
vigilance parameter ri1, we evaluate the system in terms of
success rates and the number of plans created and utilized. The
experimental results are obtained by averaging over 30 runs of
3000 trials with the value of ri1 varying from 0.7 to 1.0. In all
experiments, the initial plan confidence is set to 1.0. We
experimented with cBDI-FALCON with and without plan pruning.
With plan pruning, the threshold for removing a plan is exactly
the same as the value of plan confidence vigilance ri4, which is

initialized to be 0.9. The fusion ART parameters in the intention
module are further set accordingly as: ai1 ¼ ai3 ¼ 0:1, ai2 ¼ ai4 ¼

0:001 and gik ¼ 1:0 for k¼ 1; . . . ;4.
As shown in Fig. 6, with a plan vigilance of 1.0, the system

performance is observed to be almost the same as the original TD-
FALCON system (without the use of plans). These results are
encouraging considering that prior experiments on the same
minefield domain using the PGS system [23] actually found a
slight degradation in performance, compared with the original
reactive FALCON system. In addition, when the re-evaluation
strategy is used with a plan vigilance of 0.99, the system
performance is still quite close to that of the original TD-
FALCON. In all experiments, we note that the success rates
of TD-FALCON and cBDI-FALCON do not improve further
significantly beyond 3000 trials. This is largely due to the
limitation of the AV’s coarse sensory capability and the epsilon-
decay schedule used in the action selection policy. The detailed
performance of cBDI-FALCON at the 3000th trial, in terms of
success rates, hit-mine rates and out of time rates, is summarized
in Fig. 7.

As the plan vigilance value decreases, we do notice a gradual
drop in the success rates of cBDI-FALCON, although the re-
evaluation strategy proves to be more resilient than the follow-
through strategy. With the follow-through strategy and a plan
vigilance of o0:99, the success rates of cBDI-FALCON drop to be
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Fig. 6. The success rates of cBDI-FALCON over 3000 trials using different plan vigilance values. (a) Follow-through without plan pruning. (b) Follow-through with plan

pruning. (c) Re-evaluation without plan pruning. (d) Re-evaluation with plan pruning.
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around 80%. In comparison, the success rates are around or above
85% at the 3000th trial for the re-evaluation strategy. The better
performance indicates that re-evaluation of adopted plans
enables cBDI-FALCON to affirm whether a selected plan can lead
to a positive outcome during runtime and helps to maintain a
more robust system performance.

Comparing cBDI-FALCON systems with and without the plan
pruning mechanism, we do not find a significant difference in
terms of the overall performance, although rule pruning seems to
help marginally when the plan vigilance is low. In contrast, the
effect of rule pruning is much more profound in terms of plan
utilization as described below.

To understand the system behaviour in learning and using
plans, we examine the number of plans learned in the above
experiments . As shown in Fig. 8(a), the number of plans learned
by the intention module is proportional to the plan vigilance
parameter value. This is not surprising as a high plan vigilance
increases the likelihood for existing plans to be rejected, raising
the chance of learning a new plan. In addition, the rate of
reduction seems to increase when the plan vigilance decreases,
though the reduction rate of the re-evaluation strategy is lower
than that of the follow-through strategy. For both strategies, rule
pruning on the whole helps to reduce the number of learned
plans, but the effect is only significant with a low plan vigilance
value.

We further study how the learned plans are used in making
decision by evaluating plan utilization rate, namely the percen-
tage of the plans used out of the entire population of plans learned

by the intention module. It is a measure of how extensive the
available plans are tapped. As shown in Fig. 8(b), the plan
utilization rate increases as the plan vigilance value decreases to a
certain value. This is expected as the plan vigilance parameter
determines the level of similarity a selected plan needs to be
applicable. A higher vigilance would mean a lower chance for the
plan to be used. As the plan vigilance decreases to a certain level,
the possibility for a selected plan to lead to failure also increases
(see Fig. 6), and thus the confidences for those plans are decreased
accordingly. As a consequence, a smaller number of plans would
be applicable. However, with the plan pruning strategy, plans
with a low confidence are removed from the network. As the
number of learned plans drops, the rate of plan utilization thus
increases as the plan vigilance decreases.

Based on the above results, the re-evaluation strategy
with a plan vigilance of 0.99 appears to produce the most
desirable result as it yields a comparable performance with the
original TD-FALCON in terms of success rates and at the same
time, provides a reasonable level of plan utilization at around 40%.

To examine the effect of realizing the intention module
using fusion ART, we compare cBDI-FALCON with the original
BDI-FALCON system [6] in terms of the number of the plans
learned and adopted. As shown in Fig. 9, for a comparable success
rate of around 90%, the BDI-FALCON system with a plan vigilance
of 0.8 generated around 2500 plans, which is more than double
the 1000 plans generated by cBDI-FALCON, and achieved a much
lower plan utilization rate of 10 to 15%. This clearly shows that
the full connectionist realization of the integrated architecture
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Fig. 7. The performance of cBDI-FALCON after 3000 trials using different plan vigilance values. (a) Follow-through without plan pruning. (b) Follow-through with plan

pruning. (c) Re-evaluation without plan pruning. (d) Re-evaluation with plan pruning.
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has improved upon the original system in terms of learning
efficiency and plan utilization.

5.3. Plan analysis

Besides success rates and plan utilization, we are interested in
how an adopted plan may contribute to the outcome of a trial. At
a micro-level, within the set of those plans that lead to successes,
we identify how many of them directly lead to the target and how
many only contribute partially to a successful path. Consequently,
we categorize the types of contribution into four main classes as
follows.

1. Plans that directly lead to the target.
2. Plans that contribute partially to the succeeded path.
3. Plans that lead to hit-mine failure.
4. Plans that lead to timeout failure.

As the numbers of plans adopted in the two strategies may not
be the same, we compare the plan contribution in the following
experiments in terms of the percentages of the plans used.
Referring to Fig. 10, within the set of adopted plans, the two
strategies have very similar proportions of plans that directly lead
to the target but the re-evaluation strategy has a higher

percentage of plans with partial contribution towards the target.
Correspondingly, among the adopted plans, the re-evaluation
strategy has a lower percentage of time-out and hit-mine failures.
Therefore, the overall success rates of the re-evaluation strategy
are better than those of the follow-through strategy.

5.4. Plan efficiency

An important motivation of using plans is the reduction in the
frequency of periodic sensing as in the sense-act-learn cycles. In
this section, we compare the two strategies in terms of the
number of sensing needed. For the follow-through strategy, there
is only one sensing at the beginning of the plan selection process.
The sensory inputs are used to choose the most suitable plan for
the particular situation represented by those signals. After that,
there is no more sensing during plan execution until all actions in
the plan have been performed. For the re-evaluation strategy, one
sensing at the beginning of the plan selection process is needed in
the same way as the first strategy. In addition, another sensing is
required half-way through the plan’s execution.

As shown in Fig. 11(a), it can be observed that, compared to
original FALCON, both strategies introduce more steps leading to
success, with the follow-through strategy incurs the most number
of steps. However, both strategies reduce the average number of
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sensing, with the follow-through strategy incurs the least number
of sensing, as indicated in Fig. 11(b).

We further explore this aspect by varying the vigilance
parameter values. We observe that, a lower plan vigilance can
introduce more steps to reach the target. As shown in Fig. 11(c),
when the plan vigilance decreases from 0.99 to 0.90, the average
number of steps taken by cBDI-FALCON with the follow-through
strategy increases from 9.6 to 10.6. However, referring to
Fig. 11(d), when the plan vigilance decreases from 0.99 to 0.90,
the average number of sensing reduces from 7.3 to 6.5. This
implies that, if the agent is meant to be used in a highly noisy
environment, where external signals are not reliable or rarely
available, lowering the plan vigilance will enable the agent to
continue its operation by relying more on the intention module.

6. Conclusion

In view of the complementary strengths of BDI system and
machine learning system, hybrid architectures integrating them
are getting much research attention. A pure neural network
solution, as presented in this paper, has the advantages of parallel
processing, unified modelling, and efficient plan learning.

The intention module equips the proposed system with a
deliberative planning capability. It thus enables the system to
function in a more hostile and dynamic environment, where the

sense-act-learn cycle is not always applicable. Following plans
also reduces the need for periodic sensing and therefore improves
efficiency. We have experimented with two plan adoption
strategies, of which the re-evaluation strategy yields better
performance, in terms of higher positive contributions among
the adopted plans and better overall success rates. It is also
superior than the follow-through strategy in reducing the number
of sensing cycles.

More significantly, by learning and pruning plans using fusion
ART, we show that the number of plans can be significantly
reduced especially with a low plan vigilance. With a better plan
utilization, our experimental results also show that pruning does
not degrade the system’s performance in terms of task completion
rates.

Moving forward, there remain many challenges in the
intention module, especially on the aspects of plan representation
and learning. In the current implementation, a plan corresponds
to a path towards the target. Learning of exact paths however
limits the plan’s applicability to very specific situations. Also, due
to the space constraint of this paper, we have not worked out the
detailed mechanism for encoding temporal sequences using
neural activity patterns. Acquiring and executing abstract plan
representation through neural processes, as described in STORE
working memory model [35], is thus an important research
direction. Generalizing a plan into a higher level of abstraction
will also make the plans more versatile in handling a wider
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variety of circumstances and keep the size of the plan repository
small.

For the desire module, a more sophisticated goal representa-
tion will certainly enhance the agent’s performance in complex
problem solving. Specifically, goal-subgoal hierarchy is one
important feature that is missing from our current implementa-
tion. By the ability of decomposing a complex goal into simpler
subgoals, the latter can be achieved one at a time, laying the path
towards the achievement of the primary goal. The concept of goal
decomposition will enable the desire module to be more adaptive,
in the same way as the reactive and intention modules, by
allowing goals to be created, manipulated, and evaluated
dynamically.

Working towards self-organizing intentional agents, we have
since made progress in the modelling of intentional behaviour,
with goal decomposition and abstract plan execution, using self-
organizing neural models. Our recent works on intentional
planning agents have been reported in [36,37].
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