
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

3-2016 

Interactive teachable cognitive agents: Smart building blocks for Interactive teachable cognitive agents: Smart building blocks for 

multiagent systems multiagent systems 

Budhitama SUBAGDJA 

Ah-hwee TAN 
Singapore Management University, ahtan@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Computer and Systems Architecture Commons, and the Databases and Information 

Systems Commons 

Citation Citation 
SUBAGDJA, Budhitama and TAN, Ah-hwee. Interactive teachable cognitive agents: Smart building blocks 
for multiagent systems. (2016). IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems 
and Humans. 46, (12), 1724-1735. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5216 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5216&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


1

Interactive Teachable Cognitive Agents:
Smart Building Blocks for Multiagent Systems

Budhitama Subagdja and Ah-Hwee Tan, Senior Member, IEEE

Abstract—Developing a complex intelligent system by abstract-
ing their behaviors, functionalities, and reasoning mechanisms
can be tedious and time consuming. In this paper, we present
a framework for developing an application or software system
based on smart autonomous components that collaborate with the
developer or user to realize the entire system. Inspired by teach-
able approaches and programming-by-demonstration methods in
robotics and end-user development, we treat intelligent agents
as teachable components that make up the system to be built.
Each agent serves different functionalities and may have pre-built
operations to accomplish its own design objectives. However, each
agent may also be equipped with in-built social-cognitive traits to
interact with the user or other agents in order to adapt its own
operations, objectives, and relationships with others. The results
of adaptation can be in the form of groups or multiagent systems
as new aggregated components. This approach is made to tackle
the difficulties in completely programming the entire system by
letting the user teaches or exemplifies its components towards
the desired behaviors in the situated context of the application.
We exemplify this novel method with cases in the domains of
human-like agents in virtual environment and agents for in-house
caregiving.

Index Terms—Learning Systems, Cooperative Systems, Soft-
ware Engineering.

I. INTRODUCTION

Developing a system consisting of interacting elements may
require considerable efforts to specify how it behaves appro-
priately according to its desired properties. Commonly, the
system’s behavior and functionality are carefully considered
and designed before it is realized in the running context. This
issue is conventionally tackled by abstracting the problem and
the system using a programming or modeling language. In
most current software engineering practices, the abstractions
are constructed through coding processes which then the
desired system can only be separately executed or deployed.

Different engineering paradigms, like structured, functional,
or object orientation methodologies, offer means to manage
the intricacies by promoting modularity. Contemporary mod-
els like component-based, services-oriented architecture, and
cloud computing have also offered reusability and flexibility.
Another new paradigm considers multiple autonomous agents
working together in the system. They interact and commu-
nicate with each other in the same environment. Multiagent

B. Subagdja is with Joint NTU-UBC Research Centre of Excellence in
Active Living for the Elderly, Nanyang Technological University, Singapore
(e-mail: budhitama@ntu.edu.sg)

A.-H. Tan is with School of Computer Engineering, Nanyang Technological
University, Singapore (e-mail: asahtan@ntu.edu.sg)

This research is supported by the National Research Foundation, Prime
Minister’s Office, Singapore under its IDM Futures Funding Initiative and
administered by the Interactive and Digital Media Programme Office.

System [18] can be considered as a set of computational agents
each with its own objectives. They interact and communicate
with each other in the same environment.

Although the above approaches have offered encapsulation
that hides the developer from the intricate details letting one
to focus on more important matter, the assumptions are still
that the abstraction or program code are detached from the
running context.

In this paper, we present a radical approach of software
engineering in which the human user interacts directly with
smart components that make up the system in its running
context. The component can be considered as a situated
(semi-) autonomous agent that can be taught by the user
through instructions and examples. This approach is not just
simplifying the development process but also allowing it to be
conducted during its deployment. The system can be taught
through instructions or demonstration while it interacts with
the real user in the relevant context. Inspired by teachable
and programming by demonstration approaches like in smart
applications [12], [7] and robotics [2], the challenges to tackle
include how to deal with incompleteness, inconsistency, and
error-prone instructions or demonstrations provided by the
user. The uncertainty of the instructor intention requires the
learner to make guesses, inferences, predictions, or sometimes
ask for clarification which are also the common issues to tackle
in designing collaborative user interface [15], [12], [13].

The contributions provided in this paper are the software
framework for developing interactive multiagent systems al-
lowing end-users or non-technical experts to be dominantly
involved in the development process by teaching or instructing
each elementary unit (building block) that makes up the
system. The teachable feature is applied not just to serve the
user needs or tasks but also to allow a non-technical instructor
to specify how each component of the system behaves and
relates to each other. The instructor can communicate with
each component or a group of components directly in order
to instruct, inform, or ask something related to the tasks
or operations in hand at runtime. To simplify the process,
each component is attributed with intuitive mental notions
(e.g belief, desire, intention) and procedural knowledge (e.g
rules or plans) similar to BDI agent model [14] so that it
can be perceived as an autonomous agent that can reason and
understand the tasks by the instructor.

Parts of the novelty of the proposed approach include
embeddable capabilities of learning and teachable features to a
pre-existing domain level component with specific operations
and functionalities so that it can be associated with mental
notions of itself and other agents. Thus, the instruction can



2

be targeted to particular components so that they can reason
about and coordinate with each other. Similar notions are
used to represent users and instructors so that the teachable
features can handle multiple targeted end-users and collab-
orating instructors as well. Each component may also deal
with uncertainties in the instructions by pro-actively asking
the instructor for confirmation or clarification. It is worth
noting that the proposed framework does not emphasize the
intelligence capability of a single component to solve the
problem. Instead, the use of multiple components and their
interactions with the instructor and each other as a whole may
produce the solution to the complex domain problem.

As proofs-of-concept, we demonstrate how the framework
can ease the development of adaptive software or applications
in their actual runtime context. Simulations of virtual campus
and aging-in-place demonstrate that the components can be
taught to respond in various ways to different contexts of end-
user behavior in virtual environment.

This paper is organized as follows. Section II discusses
existing related works. Section III describes the proposed
framework and the mechanisms of the teachable components.
Section IV exemplifies the implemented models.

II. RELATED WORK

Teachable systems and applications for end user develop-
ment have been around for decades to enable a lay person
to demonstrate the process in accomplishing the tasks of
using the application [12], [7]. The system’s responses to
the demonstration can range from a shallow-level of macro-
recording to a deep generalization of the user actions. Usually,
software applications employing this feature are made to learn
procedures which are commonly performed manually by the
user.

Most of them are made as assisting agents that watch
the user interaction ”over-the-shoulder” while creating the
model of the user and the plan to accomplish the task. These
agents require a model of cognition to reason about the user
intention and the tasks taught to accomplish. Various types
of cognitive architecture (e.g SOAR [11], ACT-R [1], BDI
(Belief Desire Intention) framework [14]) have been used as
the reasoning engine that drives the reasoning processes of
the agents. Some of these cognitive models may also support
learning by generalizing the decisions and outputs to deal
with the unanticipated conditions. For example, in SOAR [11],
new production rules may be created that summarize the
processes that solve the impasse conditions. Other models
suggest adaptation of procedural knowledge or recipes in BDI
architecture through the execution of meta-level plans initiated
by similar impasse conditions [16] or by induction of decision
trees [8]. All these learning are assumed to be conducted
autonomously in which the agent decides when to learn and
to generalize knowledge by itself based on particular algo-
rithms or programmed knowledge. The reasoning processes
comprised in the learning still need to be described using a
particular symbolic representation or programming language,
even though the language itself can be generic, abstract, and
expressive for many different real situations.

Most, if not all, of teachable applications with cognitive
models mentioned above are made to be able to adapt with
the needs of a single user. In this case, the main assumption
is that there is only a single intelligent agent handling all
the processes of learning from the user and the applications
of all the learnt knowledge. Consequently, all computational
and adaptation burdens must be handled by a single entity of
computational agent. Moreover, the goal of the learning (or
demonstration) is mainly to help or support the tasks of the
end-user.

In robotic domain, programming by demonstration has been
considered to be the approach beyond learning for a particular
task. Since a robot may include a complex intertwining set
of operations, demonstrating a robot requires more variations
of interactions and mechanisms [2]. In contrast to teachable
software or applications, the aim of a demonstrable robot is
usually to aid the development of the robot behavior rather
than to help the end user to accomplish the tasks. Beyond
a single agent that ”watches over-the-shoulder”, robotic pro-
gramming by demonstration has been considered to include
multiple robots to be taught simultaneously in a coordinated
fashion [6], [3]. In this case, the robots must identify the
instructor intention and coordinate with each other to realize
the desired objectives. The current multi-robots learning still
adopts the autonomous learning that the user or external
human interventions must be minimal. Although it can relieve
the user from extensive involvements in the development
process, letting agents learn by themselves may also produce
undesirable effects. Given that incoming information or exam-
ples may be incomplete or erroneous, it is useful to let the user
know about the actual conditions internally so that user can
react to it and fix the problem immediately. Instead of relying
on itself, the agent may get help from the user or a human
participant.

In online and interactive programming by demonstration,
the robot may also provide feedback in terms of social cues to
help the developer to understand the internal state of the robot
without looking at the specific trace of its running program.
For example, one approach employs emotive cues on the
robot’s embodiment to indicate the condition of learning [4]
(e.g thinking, confused, excited) so that the teacher may adapt
his/her teaching strategy when needed. Active Learning (AL)
approach can also be employed to let the robot use different
types of queries asked at the right context [5].

The proposed teachable framework in this paper adopts a
similar objective to most demonstrable robotics approaches
that the teaching-learning process is to simplify and ease the
development of robots behavior but to employ it in software
or application development. We employ BDI model to let
the components in the system predict and anticipate the user
intention from instructions and provide meaningful feedbacks
regarding the development. The instructions can be targeted
to particular components or groups of component while they
are predicting the user’s intention and inferring the operations
to learn. This approach lets the whole system to be developed
through a collaborative process among the smart components
and the user.



3

III. AGENT ARCHITECTURE AND TEACHABLE
FRAMEWORK

In this section, we describe the teachable framework which
includes the software architecture, learning mechanism, and
protocols. A teachable component is a wrapper object that
encloses a domain-specific object or service that may interact
directly with the domain environment. It encapsulates all
methods and functionalities related to the task domain.

A. Agent Architecture

A teachable component is an active instantiation of a run-
ning object or program that can be customized or reconfigured
by the user at runtime. The component may sense and take
action on its domain environment autonomously. However, the
user may communicate with the component to instruct or teach
new tasks on the run. A domain specific object is enclosed
within the component to serve some prescribed functionalities.
Over time, the object may become more autonomous that
some operations may be initiated or suppressed when certain
conditions or events occur.

Figure 1(i) illustrates the teachable wrapper as an agent. As
a part of the teachable component, agent façade controls the
operations and execution of the domain object. It may receive
status update or feedback from the domain object as a result
of an operational call or control. It also makes the component
teachable by the user (developer) and is able to communicate
with other agents.

The façade maintains a collection of data structures repre-
senting BDI [14] mental notions (belief, desire, intention, and
schema). The agent also maintains a finite trace of events and
actions in episodic buffer. The trace facilitates learning and
keeps the dialogs with the user and other agents in context.
Figure 1(ii) shows the internal architecture of the agent façade
with all the data structures. It receives all incoming events
of the domain specific object. It can also access possible
actions produced by the domain object to manipulate or update
the state of the domain environment. In this way, the façade
knows every signal received and every action initiated by the
domain object. On the other hand, the façade may control
the domain object by initiating an action directly without the
corresponding events to trigger. It may also suppress or halt
the execution initiated by the domain object.

Event and Assertion Representation

An event or action can be stated as an assertion. An assertion
consists of attributes each specifies a condition that holds at
a moment. An assertion P � tp1, .., pmu is a set of attributes
and P P V in which V is the set of all possible assertions.
Attribute pi P P can be expressed as pi � pηppiq : vppiqq
wherein ηppiq is the name or identifier of pi and vppiq is
the value or content of pi. For example, pi can be expressed
as page : 50q to represent an attribute specifying that age is
50. vppiq can be a number or a text data. An attribute can
also recursively be a list of assertions. This nested attributes-
values representation make the assertion expressive enough to
describe situations in the world and internal states of agents.

To measure how much an assertion implies or contained by
another, implicative match mP can be defined such that, given
two different assertions Pi and Pj , mP can be measured as
follows

mP pPq, Prq �

°N
k�1 }vpp

q
kq}.p1� |δpvppqkq, vpp

r
kqq|q°N

k�1 }vpp
q
kq}

, (1)

wherein |v| is the absolute value of v and }vppq} is the total
value or magnitude of attribute p. For a number-typed attribute
p, it can be simply written as }vppq} � vppq. However, a differ-
ent type of value may require a different way to evaluate. The
magnitude of a text or string attribute can be equivalent to its
number of characters or word. δpvppqkq, vpp

r
kqq above measures

the difference between vppqkq and vpprkq. For number-typed
values, the difference can be δpvppqkq, vpp

r
kqq � vppqkq�vpp

r
kq.

For text or string attributes, it can be based on the number
of characters co-occured in both assertions with similar order.
When the assertion consists of nested attributes, the difference
and the total value can be measured recursively.

The implicative match enables one assertion to be evaluated
in an inexact manner to know whether it implies another or not.
One assertion can be defined to approximately imply another
for a certain matching treshold such that

Pqñ̃ρPr � mP pPq, Prq ¥ ρ. (2)

In this case, ρ is the vigilance parameter or the match-
ing threshold that Pq can be considered to (approximately)
imply Pr. For example, Pqñ̃1Pr holds when both Pq and
Pr have the same assertion as tsubject : "user01", age :

25, gender : "female"u1. Pqñ̃1Pr still holds when Pq � tsubject :

"user01", age : 25u. With a smaller ρ, a small discrepancy may
still be tolerated, so that, for instance Pqñ̃0.75Pr still holds
when age : 20 is in Pq .

Given two different but similar assertions Pq and Pr, their
values can be generalized by the function GenpPq, Prq such
that

GenpPq, Prq � tpzk : vppzkq Ð genppqk, p
r
kqu (3)

genppqk, p
r
kq �

$&
%

vppqkqu if vppqkq � vpprkq
? if vppqkq � vpprkq
null prk R Pr,

(4)

where ”?” is a don’t-care condition that the attribute will
always match (and be bounded) with any value of implicative
match. The null value indicates the omission of the corresond-
ing attribute from the generalized set. For example, if Pq =
ta : 10, b : 5, c : 15u and Pr = ta : 10, b : 3u , then GenpPq, Prq =
ta : 10, b : ”?”u.

The generalization function GenpPq, Prq enables learning
a new assertion based on the generalization of two different
assertions (Pq and Pr).

BDI Mental Representation

Belief

The Belief data structure can be considered as a collection of
assertions believed to hold or happen. For example, a belief

1The curve brackets for attributes are omitted for brevity



4

Teachable Component/Agent

Agent façade

Domain Object/

Service

control

User as

Instructor Agent

Agent façade

Domain Component/

Service

control status update/

feedback

Other

agents

Environment

Interact

Agent façade

Belief Desire

Intention Schema

Episodic Bu er

controller

Domain Object

(i) (ii)

event 1

event m

event

event

action 1

action min
p
u
t 

e
v
e
n

t o
u
tp

u
t a

c
tio

n

ev
en

t 
m

on
it

or

in
itia

te
/su

p
p
re

ss

action feedbackinternally generated events

Interact

Interact

Interact

Interact

Fig. 1. The Agent wrapper and its relationship with the user, other agents,
and the environment

assertion tstart : 10.30, location : "corridor"u may denote that
the agent believes that starting at time 10.30, the location is
in "corridor". It is retrospective when 10.30 indicates time
in the past or it may be predictive if it is in the future.
The assertion may also describe the action or operation con-
ducted including its parameters or arguments. For example,
tdo : ”walk”, distance : "5", unit : "step"u indicates that the agent
has just walked 5 steps. The belief assertion may also be
associated with another individual agent or group including
the description of other mental states. For example, tbelief :

tdo : ”walk”, distance : "5", unit : "step"u, agent : r”agent-01”su

denotes the agent believes that another agent agent-01 believes
it has just walked 5 steps. Here, the walk action is not
about its own action but the action of the other (agent-01).
The agent attribute refers to the group of agents having the
corresponding mental notion. In the example above, agent is a
singleton referring to a single agent (agent-01). As illustrated
in Figure 1(ii), the information about all known agents are
maintained in Groups so that the agent’s assertions may refer
to another agents as well.

Desire

The Desire data structure consists of assertions each represents
something not held yet or still wanted to be achieved. For
example, a desire assertion tdo : ”walk”, distance : "5", unit :

"step"u means that the agent has a desire to walk 5 steps,
though it does not happen yet. The agent will no longer have
the same desire when the assertion is already believed (or
held in the belief data structure) . Just like in belief, a desire
assertion may refer to another agent’s (or group’s) mental
states.

Intention

The intention structure can be represented in two forms as
follows:

 rule-based intention with attributes specifying triggering
conditions and the actions that will be initiated or exe-
cuted when triggered. The general structure is as follows:
ttrigger-cond : t  trigger attributes ¡u,

actions : t  actions that follows ¡uu.
 plan-based intention with attributes specifying the desired

condition to achieve, precondition that makes it applicable

(or executable), and the actions sequence to execute. Its
general structure is as follows:
tgoal : t  conditions to achieve ¡u,

precond : t  pre-conditions ¡u,

actions : t  actions to execute when applicable ¡uu.
An incomplete assertion of intention (e.g a rule assertion

without the trigger attribute or a plan goal without actions) will
initiate a search process or reasoning to complete the assertion.
For example, when tgoal : tlocation : ”classroom”uu is put in the
intention, a search process will be initiated to find the actions

part (e.g through means-end reasoning, or asking the instructor
to inform or to teach the actions). In this case, the assertion
of intention may contain actions specification for immediate
execution or desired conditions pending achievement. The
actions attribute may have a structure as follows:
tactions : t sequence : r  action 1 ¡, ...,  action n ¡s u to represent
a sequence. The actions will be executed one after another in
consecutive order. The sequence attribute is changing when the
next action to execute is unfolding and the previously executed
actions is removed.

Schema

Similar to intention, the schema repository consists of rules
and/or plans. A schema assertion can be a generalized or
abstracted version of assertions in intention. In other words,
an intention is an instantiation of a schema as a recipe for
actions. Given Pi as an assertion of intention instantiated from
a schema assertion Ps, it holds that Psñ̃1Pi. In this teachable
framework, the target of learning are new updated schemas.
A plan-based schema may be selected and instantiated as an
intention when its goal attribute is implied by a desire selected
in the intention and its precondition implies those in belief.

Deliberation and Execution Cycle

As a BDI agent, all the data structures are continually
interpreted and updated in a deliberation cycle [14]. It consists
of basic operations such as belief updating, generating options
to achieve, deliberation by weighing the options, means-end
reasoning and execution control. The continual interpretation
suggests that operations included in the execution cycle above
are conducted concurrently. A step of operation or control
may wait and require another operation to finish. However,
independent operations can be executed concurrently. This
also allows incoming input to be received and processed
asynchronously.

Let B, D, I, Π, and M be the collection of belief,
desire, intention, schema, and episodic buffer respectively
corresponding to the structures in Figure 1(ii). Algorithm 1
shows the abstract pseudo-code of the adapted deliberation
cycle. Belief B is updated based on events from the
environment and other related agents (E and EA). In general,
the execution loop goes through the normal cycle of basic
operations in the deliberation cycles as mentioned above.



5

Algorithm 1: Extended BDI Deliberation Cycle

1 WHILE True
2 Receive events EA (from agents A) and/or E (from domain environment)
3 B Ð belief_updatepBpoldq, E, EAq /*belief update */
4 D1 Ð optionspD,B, Iq /* options generation */
5 D Ð filterpD1,B, Iq /* filter options and deliberation */
6 I Ð planningpB,D, I,Πq /* means-end reasoning */
7 I1 Ð executepIq /* execute I and return all intentions that end (I1) */
8 Mpnewq Ð append_episodepM,B,D1,D, I, I1, E, EA, tq

The façade may receive both the component’s domain-
specific and the agent’s domain independent events to update
its belief. As shown in Algorithm 1, the belief_update function
can make some changes to the belief set B based on the
received domain-related events (E) and events about the other
agents (EA). The events E and EA enable the agent to not
just perceive the environment but also identify or recognize
other agents’ intentions. Other functions like options, filter,
planning, and execute generate information and control the
execution as mentioned above.

The planning function selects the applicable plans that match
with the selected desire (D) and based on the criteria that
goalpPplanxq ñ̃ρd Pd and Pb ñ̃ρb precondpPplanxq wherein
goalpPplanxq, precondpPplanxq, Pd P D, and Pb P B are the
goal attribute of the selected plan assertion Pplanx , precon-
dition attribute of Pplanx , a desire assertion, and a belief
assertion respectively.

One distinction in the execution cycle is the append_episode

function that keeps all the generated information on the record
in episodic buffer. Time point t is used as an argument in the
function to indicate the timing and so the sequential order in
the execution loop.

Besides the domain level actions, which is expressed as
tdo :  action name ¡, ...u, there are generic meta-level actions that
can be initiated by the agent façade as shown in Table I to
update the data structures above and to control the execution.
Each new information generated or updated like the events,
belief B, possible options D1, desire D, intention I, execution
status I 1, and schema Π can be updated directly through the
meta actions. By the meta actions, rule-based or plan-based
intentions (and schemas) can also be inserted on-the-fly to
update the data structures and control the execution as above.
In this case, schemas can be made not just for domain level
actions but also for learning and reasoning processes.

B. Interactive Learning
Most aspects of the components’ behavior can be taught

by the user on the run. Through the user interactive dialogs
and demonstration, the component, as an agent, can acquire
new behaviors by updating the schema. An agent follows
what is instructed, but the agent may ask the instructor for
confirmation or for more information.

Instruction Protocol

Figure 2(i) shows the general protocol of interaction be-
tween the instructor and the agent. The messages exchanged

TABLE I
FAÇADE META-LEVEL ACTIONS

Action name Description
insert P insert assertion P to a data structure
remove P remove P from a data structure
stop P stop P from execution, drop it from intention, and post an event

indicating that P is stopped
halt P pause the execution of P and set the intention status to paused
resume P resume the execution of P and remove the paused status
fail P stop P from execution, drop it from intention, and post an event

indicating the failure of P
success P stop P from execution, drop it from intention, and post an event

indicating the success of P

between the two are as follows:
 From the instructor to the agent: instruct message tells

the agent to perform some actions; inform message tells
the agent about information or a fact to believe or as
a response to a question asked by the agent; and ask
message indicates an inquiry to ask for information about
why, who, when, where, or what known or believed by
the agent.

 From the agent to the instructor: inform message tells the
instructor about particular information or as a response
to the instructor question; and ask message indicates an
inquiry from the agent regarding an instruction or activity
conducted by the agent. The agent can be asking for
confirmation whether something is true (agreed) or not,
asking the instructor to choose from multiple choices, or
asking for help to accomplish a task.

Instructor
Teachable

Agentinstruct

inform
ask

inform
ask

(i) (ii)

Fig. 2. (i) general protocol of instruction for teachable agent; (ii) continual
generations of self-options and others’ options in the façade execution cycle.

An event can be represented as an assertion or as a set
of attributes. Attribute named event-type indicates its kind
of event. The event may also include source and destination

attributes to indicate respectively which agent (or group) the
event is originated and which one it is sent to. For example,
{event-type:"domain-input", destination:["agent01"], event:{

weather:"cloudy", temperature: 27}} is an event indicating an
update in the domain environment sent to the agent (agent01)
about the current weather condition (weather:"cloudy") and
the temperature (temperature:27). The example does not
include the source attribute since it is assumed that the event
is coming from the environment as implied by its type of
attribute.

Instructor Intervention and Disruption

As shown in Figure 2(ii), the agent façade continually
generate options regarding its own states and the other agents’
reflecting Algorithm 1. When the user instructs the agent to



6

do some actions, the user intervenes the running deliberation
and the control process. The interventions may disrupt the on-
going process of deliberation and execution, especially when
they constitute changes to mental data structure (e.g inserting,
changing, removing items in B, D, I, Π, or events). Due to
the incomplete or erroneous message in the intervention, the
instruction may not be correctly interpreted or false response
can be generated to a disruption. For any event received from
or about another agent, there are several possibilities regarding
the meaning or intention in the message as follows:

1) The instructor just instructs the agent to do something
without requiring it to learn anything. It can be a wrong
or false instruction made by a mistake. It may also be
made just for immediate testing or something irrelevant
to learning.

2) The instructed action should be learnt but the whole
presentation is due to complete since it may be a part of
a long presentation sequence and the current instruction
may still be on-going.

3) The instructed action is made as a response to a former
particular condition or situation.

4) The instructed action updates or corrects a currently on-
going actions or intentions.

5) The observed or informed action from another agent
(or the instructor) is received as the action to follow
or imitate.

The façade must detect a disruption when the user gives
an instruction to the agent. The kind of disruption may range
from simply an interruption that may halt an on-going planned
execution temporarily to an intention that potentially keeps the
agent from achieving another existing one. Once a disruption
is detected, the agent may ask the instructor for confirmation
or clarification while indicating the potential implications.

Besides user interventions, disruptions can be sourced from
the internal deliberation cycles like failures in searching for
the applicable schema or in executing actions. Different types
of disruptions can be defined as external or internal disruptions
as follows:

1) External disruption is coming from an external source
of the agent like the instructor message, domain envi-
ronment, or other agents communication that modifies
(insert, remove, or update) B, D1, D, I, I 1, or Π. Dif-
ferent types of disruption event include mutual exclusive
(mx), contradictory (contra), insertion (insert),
and similarity (similar) indicating conflicting actions,
contradictory assertions, insertion of a new assertion Pi
(Bpoldq ñ̃1 B Y Pi), and a similarity (or a difference)
between a new incoming assertion with an existing one
in the corresponding intention or schema respectively.

2) Internal disruption is coming from the internal process of
deliberation cycle. Different types of internal disruption
include failed planning and failed execution indicating
that no matching applicable plan can be found for
desire assertions D� that D� � D and there are failed
intentions I� that I� � I respectively.

A disruption is indicated as a disrupt type event.
The disruption message contains not just the main

incoming event description (event attribute) but may
also include the current disrupted or affected assertion.
For example, {event-type:"disrupt", distype:"contra",

event:{event-type:"instruct", event:{do:"insert", belief:{

weather:"sunny"}}}, affected:{belief:{weather:"rainy"}}

indicates a possible contradiction when the agent is instructed
to make belief that the current weather is sunny while currently
it believes that it is rainy instead.

Algorithm 2: Interactive Learning Cycle

1 WHILE True

2 FOR every external disruption event ε P E Y EA
3 inform the instructor about the disruption, and ask for a response
4 WAIT until the instructor responds with event εi
5 IF εi is an instruction to perform an action
6 ask what cause the choice of the instructor action
7 inform the instructor possible causes based on similar rule schemas Π�

8 WAIT until the instructor responds with event ε1i
9 IF ε1i indicates a selection of π� P Π�

10 generalize actionspπ�q Ð Genpactionspπ�q, actionspεiqq
11 ELSE IF ε1i indicates an assertion Pπx as the cause of action in εi
12 generate rule π1 with Pπx as the trigger, and actionspεiqq as the actions
13 insert the new schema Πnew Ð π1 Y Π
14 ELSE IF the instructor indicates the actions are not finished yet
15 append the action to the sequence as actionspεiqq
16 ELSE BREAK

17 FOR every internal disruption event ε� P E Y EA
18 IF ε� indicates a failed planning for D�

19 ask the instructor to show how to achieve the goal in ε� by actions π�p
20 REPEAT
21 indicate all applicable π�

1
P Π, in which goalpε�qñ̃ρgoalpπ

�1 q
22 WAIT until the instructor responds with event ε�

i

23 IF ε�
i

is instruction to do action Pα
24 append Pα to π�p
25 IF ε�

i
indicates a selection to π�

1
as a plan to achieve goalpε�q

26 generalize goalpπ�q Ð Genpgoalpπ�q, goalpε�qq; BREAK
27 IF ε�

i
indicates a selection to π�

1
as an intermediate goal for goalpε�q

28 append goalpπ�
1
q to π�p

29 IF ε�
i

is instruction to follow or imitate agent i
30 append observed action P iα of agent i as its own action to π�p
31 UNTIL goalpε�q is achieved or the instruction is dropped/canceled
32 IF goalpε�q is achieved
33 IF goalpε�q is achieved by another agent j (j can be the instructor)
34 append asking j to achieve goalpε�q as a step in π�p
35 set goalpπ�p q Ð goalpε�q; Πpnewq Ð π�p Y Π; BREAK

36 IF ε� indicates a failed execution of planned actions in I�
37 ask what is the cause that make the plan in ε� failed
38 inform the instructor possible preconditions based on similar plan schemas
39 WAIT until the instructor responds with event ε�

i

40 IF ε�
i

indicates a condition that the plan in ε� can be applicable
41 modify the plan schema in ε� with the condition in ε�

i
as the precondition

Learning Schemas

Learning can be initiated by inserting a new intention to ob-
tain information for generating schemas so that the disruption
may be resolved and the computational burden to obtain and
resolve the issues may be reduced in a similar situation in the
future. Since the mechanism in the BDI architecture allows
several intentions or goals to be active in parallel, the learn-
ing intention enables learning to be conducted concurrently
with the main deliberation cycle. Consequently, the teaching
process can be continuous and interactive as well while the
domain specific tasks are conducted simultaneously.



7

Some domain independent rules can be constructed to
learn rule-based schemas, but some other may be designed
to acquire plan-based schema on-the-fly. As a schema, a
learning rule can be made to trigger a sequence of actions
allowing it to engage a long dialog or conversation with the
user.

To simplify the matter, the overall learning rules are de-
scribed as abstract execution cycles in Algorithm 2. In the
algorithm, the learning process is considered as interactive
processes between the learner and the instructor. When the
event indicating disruptions or unanticipated conditions is
received, the agent informs the potential issue to the instructor
and asks for more advices to guide the resolution. Based on
the instructor feedback, new rules or procedures can be learnt.
A rule-based schema can be learnt by asking the instructor
about what cause the action chosen by the instructor to resolve
the disruption (as shown in Algorithm 2 line 3 to 16). On
the other hand, when no matching schema can be found
for a particular selected desire (as a condition initiating the
disruption event), the instructor can teach the agent the series
of actions to perform to achieve it (Algorithm 2 line 18 to
35). Similarly, when a plan execution fails, the instructor may
respond by informing the agent the condition that should be
held to prevent the failure (Algorithm 2 line 36 to 41) so that
it can be used as the precondition attribute of the learnt plan-
based schema.

Learning a schema may include generalization of attributes.
In Algorithm 2, a selection of a similar schema as informed by
the agent will be followed by generalization of the correspond-
ing schema. For example, generalization of actions (line 10) is
conducted after the selection (line 9). Another generalization
is on the goal of a plan-based schema (line 26).

Fig. 3. (i) teaching agents to interact with multiple users; (ii) collaborative
teaching by instructor and other participants.

When asked for advices, the instructor may also perform
something or letting another agent to achieve the goal. In this
case, the agent may socially learn by adding a step of action
to ask for help from another more capable agent (or from the
instructor) in the schema. As shown in Algorithm 2, when the
goal is observed to be achieved by another agent (line 33),
asking the other agent to achieve the goal (line 34) will be
learnt as an action step in the schema. Learning the action
steps to take to achieve the goal may also be based on the
imitation or copying another agent’s actions.

Algorithm 2 (line 29 to 30) shows that the agent may be

instructed to imitate the actions of another agent rather than
generating the action by itself. However, the effectiveness
of this imitative action depends highly on the specific im-
plementation of the domain level component. The capability
of observing and recognizing the actions and intentions of
another agent or component is assumed to be domain specific.
However, the capability to recognize the activity from other
agents may still be learnt at the façade level through user
instructions.

By associating an agent’s identity with an attribute of
an assertion, an agent can learn to associate its tasks with
another’s. This also enables the teaching-learning process to
conduct in its social context that other parties may also interact
with. As exemplified further in the next section, it allows the
instructor to teach the agent on-the-run to interact with or to
serve another user. It is worth noting that since the learning
cycle as shown in Algorithm 2 is realized as intentions, the
actual process is conducted concurrently with the main BDI
cycle and other domain level processes.

IV. SCENARIOS AND CASE STUDY

As proofs-of-concept, the teachable framework is applied
to two different domains of application. The first domain
is the teachable human-like NPCs (Non-Player Characters)
in NTU Co-Space wherein the framework is exemplified as
an approach of developing autonomous NPCs that roam and
interact with user avatars in a custom-built virtual reality
environment. It is to exemplify the interactive incremental
process of learning that the component (as an agent) acquires
new rules and plan-based schemas from the user instructions.
The second domain is the aging-in-place simulation in which
several agents act as in-house caregivers by providing advices
and recommendations to the user in daily living. This second
domain demonstrates the acquisition of rules or knowledge
to deal with exceptions. The framework is exemplified based
on scenarios that show a domain expert teaching the agents
to collectively and cooperatively advise and persuade the
occupant towards well-being and healthier lifestyle.

A. NTU Co-Space

NTU Co-Space is a multi-user online virtual environment
representing a real actual place in the world including events
happening in it (in this case the NTU campus) [9]. The user
may explore the environment by controlling a human-like
avatar to roam the environment and perform certain tasks.
Inside the virtual environment, the user may meet and interact
with other users’ avatars. However, it is also possible to
encounter a number of (semi-) autonomous human-like NPC
(Non-Player Character) each with its own personality, agendas,
and tasks to perform [10].

To develop autonomous behaviors of the NPCs, the teach-
able framework can be applied so that rules and procedural
schemas can be instructed at runtime. In the NTU Co-Space,
the instructor can take over the control of the NPCs movements
and actions. The instructor can also select any object in the
virtual environment (e.g by mouse pointing and clicking) to
obtain the options of what can be done with or to the object



8

for selection. For example, when the instructor makes the NPC
select an object (e.g coin) in the enviroment, the user interface
shows the options of possible actions that can be applied to it.
The instructor can also observe the agent’s mental state and
may enter a command directly in a command line interface
while performing some actions in the environment. Figure 4(i)
shows the user interface in NTU Co-Space for monitoring
and control of the agent. When an object is selected, a dialog
is opened showing the options like in Figure 4(ii). Similarly,
when another agent (or another user) is selected, options will
be displayed (Figure 4(iii)) but with more elaborated items to
select.

NTU Co-Space is implemented using Unity 3D game
engine2. The parallelism aspect in the framework is made
possible by the inherent feature of Unity 3D framework in
which different scripting modules and game assets can have
independent execution cycles.

In what follows, scenarios and illustrative examples in the
use of the framework in NTU Co-Space will be explained
from simple navigational tasks to complex interaction and
collaboration.

Simple Navigation Task

Scenario 1: Simple Navigation Task

Scene 1: The instructor selects a desired location for the agent (the user points
and mouse-clicks a location in the environment to set it as a desired
condition of the agent)

Scene 2: Agent-1 selects the desire, finds a schema to achieve it, and execute
the intentions

Scene 3: Agent-1 moves towards the goal location (based on the intention
selected)

Scene 4: the instructor intervenes the journey by turning the agent’s orientation
following the side of an obstacle

Scene 5: A disruption event fires, Agent-1 informs the user: ”achieving at
desired location is disrupted by following-object-side.”

Scene 6: The instructor continues following the pole side
Scene 7: Agent-1 asks the instructor ”why did you instruct me to

following-object-side?”
Scene 8: The instructor selects the obstacle object building-part so

that the agent perceives it and associates it with the reason of
following-object-side action (disruption)

Scene 9: Generate rule schema and learn {trigger-cond:
{object-type:
"building-part",...}, actions:
{do: "following-object-side",...}

................. .........................................................
Scene 10: Agent-1 has a desire to be at frontdesk and an intention to move

towards it
Scene 11: Agent-1 moves towards frontdesk as the goal location
Scene 12: In the middle of the path textttAgent-1 updates its belief that

{object-type: "building-part",...} is detected
Scene 13: learnt schema with {object-type:"building-part",...} fires

and Agent-1 executes "following-object-side" to move
around the obstacle before continuing the move towards the goal

The first scenario (Scenario 1) shows a simple use of the
teachable framework to develop a rule-based schema. This
scenario illustrates how a new rule-based behavior schema
can be acquired through a combination of interaction and
instruction. In particular, the user wants to make the NPC de-
velops a schema for avoiding obstacles supporting the existing
navigation strategy to move from one place to another. Moving
in a straight line towards the destination may fail since there

2http://unity3d.com/

can be objects or obstacles along the way potentially blocking
the straight path (Figure 5). The agent needs a mechanism to
avoid the obstacles.

To teach the agent the avoidance strategy, the instructor
can take over the control intervening the on-going execution
(Scene 4). The intervention creates disruption that initiates the
agent’s attention to the actions taken over by the instructor
(detected as following-object-side by the agent in
Scene 5). As a part of the interactive learning strategy, the
agent asks the reason of that particular intervention to the user
(Scene 7). Based on the user response, a new rule (schema) can
generated as in Scene 9. Based on the learnt schema, the agent
will execute the same action following-object-side
the next time it encounters building-part to avoid the
obstacle (Scene 12-13).

Fig. 5. Teaching simple navigation task scenario in NTU CoSpace.

Interactive Planning

The second case (Scenario 2) demonstrates the teachable
feature for developing inter-agent activities beyond learning
the internal schema. In this scenario, a group of two NPCs
is taught to interact and serve an approaching player, as an
avatar (left-hand side of Figure 6a). Both NPCs have different
capabilities and particular knowledge to interact with the
player.

Scenario 2: Interactive Planning

Scene 1: Player1 approaches Agent1 and Agent2
Scene 2: Player1 asks : ”I want to go to the thesis section in this library?”
Scene 3: Agent1 replies Player1 request : ”You may go there”, and insert

the intention to make Player1 at location thesis-section
Scene 4: An internal disruption event of Agent1 fires, Agent1 fails to find a

matching schema for the desire
Scene 5: Agent1 asks the instructor. ”How can I make Player1 at location

thesis-section ?”
Scene 6: The instructor asks Agent2 to make Player1 at location

thesis-section
Scene 7: Agent2 sets the intention to make Player1 at location

thesis-section, finds a matching schema, and initiates the in-
tention execution

Scene 8: Agent2 asks Player1: ”Follow me!”, and move to the intended
location while Player1 follows

Scene 9: Eventually Agent2 and Player1 arrive at location
thesis-section

Scene 10: Agent1 receives the event that Player1 is at location
thesis-section indicating the desire has been achieved

Scene 11: Agent1 appends the action to ask Agent2 to make Player1 at
location thesis-section as the step of action to in the schema to
achieve the same goal

The scenario demonstrates group reliance in planning. Here,
it is assumed that only Agent1 as a virtual librarian NPC can
interpret the user inquiry (Figure 6) as shown in Scene 2 and 3.
It adopts the predicted goal of the user to be at the particular



9

Fig. 4. (i) Third-person control view of the virtual character by the user. Information about mental state of the agent can continuously be monitored and a
command can be initiated at runtime. (ii) Options menu showing what actions can be applied regarding the selected object (coin object) (iii) Options menu
showing what actions can be applied regarding the selected agent (Nicole). The selection can be made through the menu or typing the command in command
line.

location (thesis-section) as shown in Scene 3. Since
no schema is available to directly achieve the player goal,
Agent1 asks the instructor for possible actions to achieve
it. However, the instructor responds the inquiry by asking
Agent2, instead, to realize the goal (Scene 6). In this case,
Agent1 is taught by the instructor to ask for help from
another agent in the group. In this case, Agent2 is asked
by Agent1 to respond according to the user needs (Scene
9-11). This feature of learning delegating actions is the part
of the learning mechanism as shown in Algorithm 2 line 32
to 33.

The scenario above demonstrates the learning to delegate
some tasks to another agent. This approach of learning can also
be useful when the system includes multiple users letting the
agents learn directly from the real context of the system use.
In this second scenario, however, only a single agent learns
even though the schema learnt involves another agent.

Fig. 6. Teaching serving player avatar through interactive planning.

Group Learning

When several agents are grouped together, they may behave
like a single entity but with more complex goals and contexts
than any individual. When the user asks a group of agent
to achieve a goal, the outcomes may likely be very different
when the same request is given to a single agent. For example,
the desire of Agent1 to be at location West_Lobby may
only make Agent1 move to the location (if the right schema
is available) or ask the instructor for help. The instructor
can just control the agent to navigate to the location as
described in Algorithm 2 line 21 to 34. However, if the
desire is given to the group so that, for example, Agent1,

Agent2, Agent3, Agent4, and Agent5 altogether must be
at location West_Lobby, each member would try to make
every other member to be at the same place besides itself.
Some members in the group can be instructed to pursue their
actions (Agent1 and Agent5 in Scene 4) but some others
may be made to imitate others letting them learn from each
other (Scene 6). In the end, all members learn from each other
(Scene 9).

Scenario 3: Group Learning

Scene 1: The instructor set the group (consisting of Agent1, Agent2, Agent3,
Agent4, and Agent5) to have desire to be at location West_Lobby

Scene 2: Internal disruptions fire from all members of the group since no exact
matching schema can be found to achieve the goal; every member
informs the user about the disruption

Scene 3: Agent1 and Agent5 indicate plan schemas that can bring (only) one-
self to be at West_Lobby but not together with the other members

Scene 4: The instructor select the partially match schemas and let Agent1 and
Agent5 execute them

Scene 5: Agent1 and Agent5 execute the schemas and move to the location
West_Lobby

Scene 6: The instructor instruct Agent2, Agent3, and Agent4 to follow
(imitate) Agent1 and Agent5

Scene 7: All members arrive at the destination location West_Lobby
Scene 8: Agent1 and Agent5 generalize their goal schemas to include all

members of the group
Scene 9: Other members learn the schemas to be at West_Lobby together

Fig. 7. Teaching collaboration among members of the group.

This scenario demonstrates the imitative learning of agents
in the group. However, in this domain, it is assumed that all
teachable agents are implemented in the same way and have



10

the same capability to recognize other agents activities.

The scenarios from the NTU Co-Space case study above
suggest that teaching can be conducted in both level of internal
process within a single agent and at a group level to learn
interdependencies among different agents in the group. The
user may start with some sketches of initial grouping of
components which can either be internal activity states or
entire agents. However, the internal ones may anytime be
created, removed, or replaced by the execution mechanism of
the agent architecture. In the level of individual agents, the
components or modules are persistent and may instantiate for
the entire system lifetime.

One important feature of the framework as shown in the
scenarios above is teaching the agents to serve or interact
with the target end users directly at runtime in the situated
environment as illustrated in Figure 3(i). When the deployed
system will be used by or interacting with different users, this
model of agents as trainees enables the learning by instruction
to be conducted in the proper context.

B. Teachable Caregiving Agents for Ageing-in-Place

We also apply the framework for developing coordination
mechanisms of multiple assistive agents in a simulated smart-
home environment in the domain of in-house caregiving for
elderly (Aging-In-Place) [17]. The virtual home environment
is built with a virtual elder occupant residing as the subject.
The virtual occupant is initially built to follow a routine habit
of daily task. Four computational agents are included in this
case. Two agents collect data from the virtual environment and
produce beliefs about the subject’s activity of daily living. The
other two are health-caring agent and butler agent that concern
the subject’s health (physical and mental) and quality of daily
life (happiness, emotion, and social) respectively.

In the simulation, the artificial occupant is made as an avatar
in which its behavior can be controlled manually by the user
or can follow a programmed script. The implementation of the
occupant’s avatar is similar to the NPCs in NTU Co-Space.
However, it also consists of an assembly of virtual assistant
agents each is designed to serve the user for different aspects
of caregiving. Different agents may take particular roles rang-
ing from updating perceptual information to persuading the
user. An agent by itself is fully functional as an application
which can be deployed independently. Two different persua-
sive agents have been implemented. Smart butler is a virtual
assistant resided in a mobile device (smartphone or tablet) that
focuses on daily activities, social connections, and sustainable
living. It mostly takes the role as a reminder and recommender
in relation to daily living and social events. On the other
hand, Virtual nurse is a virtual assistant running in a dedicated
computing device or personal computer displayed with human-
like appearance. It can communicate naturally with the user
using voice-based interaction. The main role of the nurse is
a healthcare advisor that gives advice and persuades the user
regarding choices of healthier lifestyle.

Figure 8 shows the multi-agent system for aging-in-place
wherein heterogeneous smart applications interact with each

other as assistant agents through the shared repositories. The
agents can be heterogeneous in which each one may have
particular specialties and capabilities. Each agent can work
independently to address a particular issue by monitoring and
interacting naturally with elderly. The domain also allows
collaborative instructions involving other parties of human
participants (Figure 3(ii)).

The teachable model is embedded into two of the agents
above that act as advisors. The domain expert can control
the agents in advising the occupant. Figure 8(ii) shows the
screenshot of the simulation with 3D virtual environment GUI
in a web browser (implemented with Unity 3D and HTML5).
Figure 8(ii) shows that the instructor can observe the options,
predictions, and scheduled intentions on the activity timeline
display. The domain expert can also interact directly with the
agents as an instructor using a natural language interface. In
the dialog, the instructor may indicate the selection of an agent
belief or intention by choosing the activity bar in the timeline.
The corresponding activity can be suppressed or modified on
the fly.

Here are example scenarios excerpted from the interaction
between the domain expert as the instructor and the advisor
agents in providing the appropriate advices to the virtual
occupant.

Rule Generalization

Scenario 4: Rule Generalization
Scene 1: virtualnurse advises the occupant to take a medicine: ”Hi, it’s

time for you to take the medicine”.
Scene 2: smartbutler believes: the occupant is less active.
Scene 3: smartbutler advises the occupant: ”It’s a good time to get some

fresh air. Going out perhaps?”.
Scene 4: The instructor selects the recent smartbutler advising action (by

selecting it in the timeline) and stops its operation.
Scene 5: smartbutler receives a disruption event about its the stopping

operation.
Scene 6: smartbutler asks the instructor: ”why did you stop my dialog

asking: ’It’s a good time to get some fresh air. Going out perhaps?’
to the occupant?”.

Scene 7: smartbutler indicates a similar rule that previously a dialog ’it’s
a good time to exercise now’ is stopped because virtualnurse
reminded the occupant to take the medicine.

Scene 8: The instructor selects the similar rule as indicated so that
smartbutler generalizes the rule and the association becomes
stopping advising any activity whenever virtualnurse reminds
her to take the medicine.

Scene 9: smartbutler asks the instructor: ”Do you mean IF I detect that
Virtual Nurse advise the occupant to take medicine, THEN I drop my
intention to recommend activity? (Yes/No)”.

Scene 10: The instructor responds by answering ’Yes’ and smartbutler learn
by generalizing the rule to suppress its recommendation.

This scenario demonstrates the generalization of actions
description based on a previously learnt rule in the context
of conflict detection and resolution. In Scenario 4, an advice
provided by smart butler is conflicting with the virtual nurse’s.
While virtual nurse is intending to let the occupant immedi-
ately take the medicine, smart butler suggests the occupant
to go out instead (Scene 3) which likely may cancel out the
intended effect of taking the medicine on time (Scene 1).

When the instructor stops the advising intention of smart
butler (Scene 5), a disruption event is generated leading smart
butler to question the reason of intervention to the instructor



11

Fig. 8. (i) Architecture of Multi-agent Smarthome system for Ageing-in-Place; (ii) GUI of simulation platform for ageing-in-place

(Scene 6). In the scenario, smart butler has previously learnt a
similar rule which is also resulted when the instructor stopped
its operation. As a general strategy for learning, smart butler
indicates this similarity to the instructor (Scene 7).

The conflict can be resolved by letting smart butler to
generalize its previously learnt rule on stopping the provision
of a specific advice given the same condition of the virtual
nurse activity (Scene 9). In this case, smart butler always
suspend or stop the advice provision to the occupant whenever
virtual nurse reminds the occupant to take the medicine.

Recognizing False Alarm

Scenario 5: Recognizing False Alarm

Scene 1: The occupant walks to the living room and lying down on the sofa.
Scene 2: smartbutler believes: occupant falls (agent detects lying pose as

fall condition); virtualnurse believes: occupant is on the sofa in
the living room (the agent can locate position more precisely in the
living room).

Scene 3: smartbutler opens a dialog with the occupant: ”are you okay sir?
are you hurt?”.

Scene 4: The instructor selects the recent smartbutler action (from the
timeline) and stops its operation so that the disruption event is received
by smartbutler.

Scene 5: Smart Butler ask the instructor: ”why did you stop my dialog asking:
’are you okay sir? are you hurt?’ to the occupant?”.

Scene 6: The instructor selects the belief of smartbutler (in the shared
timeline) that the occupant fell and remove it from the timeline (which
is again signaling a disruptive event to smartbutler).

Scene 7: Smart Butler asks the instructor: ”why did you remove my belief that
the occupant falls?”.

Scene 8: The instructor selects the belief of smartbutler (in the shared
timeline) that the occupant is on the sofa in the living room to indicate
the cause.

Scene 9: smartbutler associates the condition that virtualnurse be-
lieves that occupant is on the sofa in the living room with the removal
of belief that the occupant falls”.

Scene 10: smartbutler asks the instructor: ”Do you mean IF I detect that
smartbutler believes that the occupant is on the Sofa in the living
room, THEN I remove my belief that the occupant falls? (Yes/No)”.

Scene 11: The instructor responds by answering ’Yes’ and smartbutler learn
the new rule to update its belief.

In this scenario, the smart butler can be taught to suppress its
own belief (detecting fall based on the lying pose) based on the
other agent’s belief (Virtual Nurse) of the occupant’s location.
In this case, the functionality of the domain module can be

extended by incorporating beliefs or perception of another
agent in the domain.

The smart butler agent has a limited capability to identify
some critical conditions of the occupant. As shown in Scene
2, it concludes a fall condition only based on the occupant’s
pose. It may generate a false warning and potentially a false
response like in Scene 3.

The user can teach smart butler to suspend or cancel the
response like in Scene 4 which triggers a disruption event and
initiates the agent’s inquiry about the reason (Scene 5). Since
no more information from the sensors can be derived by smart
butler, the condition for cancelation can be the other agent’s
action. As shown in Scene 9, smart butler put the identification
of the occupant’s location by virtual nurse as a condition to
cancel the default response of a critical warning.

Cooperative Persuasion Dialog

In this scenario, the instructor can teach more than one
agents to cooperate in persuasion tasks. Smart butler may ask
for help to the instructor whenever it fails to achieve the goal
by itself. In Scene 3 Scenario 6, smartbutler asks the instructor
for help since there is no more schema for persuading the
occupant when the occupant is not interested. A cooperative
behavior can be taught by instructing virtual nurse (Scene 4)
to help smart butler by persuading the occupant (Scene 5) so
that virtual nurse may learn to start to help the smart butler
when it is asked for (Scene 8).

When virtual nurse successfully persuade the occupant,
smart butler may detect the condition (Scene 10) and ask the
instructor for confirmation to learn a new action to ask virtual
nurse for help (Scene 11).

The rule learnt by virtual nurse above is still specific to
the condition and intention of smart butler in the particular
scenario. However, when a similar situation happens (e.g the
occupant loses her interest to eat healthy food), the same rule
may be put as an option so that virtual nurse can learn to
always help smart butler whenever it asks for.



12

All scenarios on Ageing-In-Place domain show that relation-
ships and connectivity among the agents enable incremental
and scalable learning by a single component. Many agents can
be taught together not just to do domain tasks independently
but also to coordinate with each other. The agents can be
taught together as a team. In a similar setting, more than one
instructors may also be involved to teach the agents based on
the same principles. Each instructor may take the control of a
different agent while teaching it and collaborate with the other
instructors.

Scenario 6: Cooperative Persuasion Dialog

Scene 1: smartbutler advises the occupant to do exercise as it is detected
that the occupant has been sitting down too long: ”It’s a good time to
do a little stretching”.

Scene 2: The occupant does not follow what is advised and still sitting for long.
Scene 3: smartbutler can not find another plan to persuade the occupant

and asks others for help to make the occupant intend to do the workout.
Scene 4: The instructor instructs the virtual nurse to intend that the

occupant do the exercise.
Scene 5: virtual nurse knows how to motivate the occupant (has the

schema) and starts persuading her: ”do you know, working out for
few minutes can reduce the effect of....”.

Scene 6: virtual nurse receives disruptive event (instruction to insert an
intention) and asks the instructor ”why did you instruct me to make
the occupant intend to do the exercise?”.

Scene 7: The instructor selects the recent request for help by smartbutler.
Scene 8: virtual nurse asks the instructor: ”Do you mean IF I detect

thatsmartbutler ask for help to achieves that the occupant intend
to do exercise, THEN I intend that the occupant intends to exercise?
(Yes/No)”

Scene 9: The instructor responds ’Yes’ and virtual nurse learns the rule.
Scene 10: smartbutler detects that virtual nurse has persuaded the

occupant and the intention is achieved.
Scene 11: smartbutler asks the instructor: ”The schema to achieve that the

occupant intends to exercise includes asks virtual nurse to help
to achieve the occupant intends to exercise? (Yes/No)”.

Scene 12: The instructor responds ’Yes’ and smartbutler learns the plan.

V. CONCLUSION

We have presented a framework for developing situated
interactive systems wherein the components of the system can
be considered as autonomous agents that can be configured and
teachable by the user. The framework offers a methodology
of developing a system allowing end users or non-technical
experts to teach the components at runtime. Each teachable
component is an encapsulated set of domain level attributes
and actions but possessing generic mental attributes like be-
liefs, desires, and intentions. In every step of its execution
cycle, the teachable agent may indicate possible operations,
goals, and intentions letting the instructor to decide if some
intervention is necessary. During the learning, the agent may
also indicate possible rules or procedural schemas that can
be learnt based on similar knowledge that are pre-existing or
learnt in the past. The instructor can teach not just the domain
level operations but also ways to reason, to make decision,
and to relate with other agents (or other human participants).

We have exemplified the interactive learning processes in
our custom-built virtual characters in NTU Co-Space environ-
ment. The scenarios demonstrate how learning incrementally
acquire knowledge and how imperfect or incomplete instruc-
tion can be dealt with similarity matching and interactivity.
The framework has been applied to a virtual aging-in-place
environment wherein a virtual occupant and some persuasive

agents are teachable. The case study shows that the proposed
framework allows a caregiver, as the domain expert, to in-
tegrate diverse intelligent capabilities through teaching and
interactions. The scenarios also show that this instructional-
based learning can be applied beyond a single agent but can be
used to teach a couple or even a group of agents to coordinate
and perform some tasks together.

There are many outstanding aspects and issues deserve fur-
ther exploration and study. More comprehensive investigation
including user evaluation is necessary to get more complete
picture of the effectiveness of this approach for developing a
large scale system or application.

REFERENCES

[1] J. R. Anderson and C. Lebiere. The Atomic Component of thought.
Lawrence Erlbaum Associates, Mahwah, 1998.

[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming
by demonstration. In B. Siciliano, editor, Handbook of Robotics,
chapter 59, pages 1371–1394. Springer, 2008.

[3] M. Blokzijl-Zanker. Multi robot learning by demonstration (extended
abstract). In Proceedings of the eleventh International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012), pages
1207-1208, 2012.

[4] C. Breazel, M. Berlin, A. Brooks, J. Gray, and A. L. Thomaz. Using
perspective taking to learn from ambiguous demonstrations. Robotics
and Autonomous Systems, 54:385–393, 2006.

[5] M. Cakmak and A. L. Thomaz. Designing robot learners that ask
good questions. In Proceedings of the Seventh annual ACM/IEEE
international conference on Human-Robot Interaction (HRI’12), pages
17–24, 2012.

[6] S. Chernova and M. Veloso. Confidence-based multi-robot learning from
demonstration. International Journal of Social Robotics, 2(2):195–215,
2010.

[7] A. Chyper, M. Dontcheva, T. Lau, and J. Nichols, editors. No Code
Required: Giving Users Tools to Transform the Web. Morgan Kaufmann,
Amsterdam, 2010.

[8] A. G. Hernandez, A. E. Segrouchini, and H. Soldano. BDI multiagent
learning based on first-order induction of logical decision trees. In S. O.
N. Zhong, J. Liu and J. Bradshaw, editors, Intelligent Agent Technology:
Research and Development. World Scientific, New Jersey, pages 160–
169, 2001.

[9] Y. Kang, B. Subagdja, A.-H. Tan, Y.-S. Ong, and C.-Y. Miao. Virtual
Characters in Agent-Augmented Co-Space (Demonstration). In Proceed-
ings of the eleventh International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2012), pages 1465-1466, 2012.

[10] Y. Kang, A.-H. Tan, F.-H. Nah. Agent-based Virtual Humans in Co-
Space: An Evaluative Study. In Proceedings of 2012 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT 2012),
pages 59–66, 2012.

[11] J. E. Laird. The SOAR Cognitive Architecture. MIT Press, Cambridge,
2012.

[12] H. Lieberman, editor. Your Wish is My Command: Programming by
Example. Morgan Kaufmann, San Francisco, 2001.

[13] V. K. Mavromichalis and G. Vouros. Building intelligent collaborative
interface agents with the ICagent development framework. Autonomous
Agents and Multiagent Systems, 13:155–195, 2006.

[14] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In
Proceedings of the first International Conference on Multi-Agent Systems
(ICMAS-95), pages 312–319, 1995.

[15] T. Selker. COACH: A teaching agent that learns. Communications of
The ACM, 37(7):92–99, 1994.

[16] B. Subagdja, L. Sonenberg, and I. Rahwan. Intentional learning agent
architecture. Autonomous Agents and Multi-Agent Systems, 18(3):417–
470, 2009.

[17] D. Wang, B. Subagdja, Y. Kang, A.-H. Tan, and D. Zhang. Towards
intelligent caring agents for aging-in-place: Issues and challenges. In
Proceedings of 2014 IEEE Symposium on Computational Intelligence
for Human-like Intelligence (CIHLI 2014), pages 102–109, 2014.

[18] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley
Publishing, 2nd edition, Chichester, 2009.


	Interactive teachable cognitive agents: Smart building blocks for multiagent systems
	Citation

	tmp.1595529388.pdf.VSSOG

