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a b s t r a c t

Simulator-based training is in constant pursuit of increasing level of realism. The transition from doc-
trine-driven computer-generated forces (CGF) to adaptive CGF represents one such effort. The use of
doctrine-driven CGF is fraught with challenges such as modeling of complex expert knowledge and
adapting to the trainees’ progress in real time. Therefore, this paper reports on how the use of adaptive
CGF can overcome these challenges. Using a self-organizing neural network to implement the adaptive
CGF, air combat maneuvering strategies are learned incrementally and generalized in real time. The state
space and action space are extracted from the same hierarchical doctrine used by the rule-based CGF. In
addition, this hierarchical doctrine is used to bootstrap the self-organizing neural network to improve
learning efficiency and reduce model complexity. Two case studies are conducted. The first case study
shows how adaptive CGF can converge to the effective air combat maneuvers against rule-based CGF.
The subsequent case study replaces the rule-based CGF with human pilots as the opponent to the
adaptive CGF. The results from these two case studies show how positive outcome from learning against
rule-based CGF can differ markedly from learning against human subjects for the same tasks. With a bet-
ter understanding of the existing constraints, an adaptive CGF that performs well against rule-based CGF
and human subjects can be designed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Continued reliance on manually crafted doctrine-driven com-
puter-generated forces (CGFs) for simulator-based training (Farm-
er, van Rooij, Riemersma, Jorna, & Moraal, 2003) is an untenable
and costly proposition (Bell & Waag, 1998) with diminishing
return. However, recent advancements made to variants of ma-
chine learning techniques (Tan, 2004; Teng, 2012) should allow
the doctrine-driven CGF to be adaptive to the varying competen-
cies of the trainees in the near future.

The works reported in Teng, Tan, Tan, and Yeo (2012b) and
Teng, Tan, Ong, and Lip (2012a) represent one such development
of intelligent and adaptive CGF for simulator-based training. A
commercial-grade simulation platform known as the CAE STRIVE™
CGF (CAE Inc., 2007) is used to model 1-v-1 air combat maneuver-
ing (ACM) scenarios. A self-organizing neural network based on a
fusion architecture for learning and cognition (FALCON) (Tan,
2004) is used by a Blue CGF to learn air combat maneuvers that
can out-maneuver a Red CGF. Using reinforcement learning (RL)
(Sutton & Barto, 1998), it improves on its choice of air combat
maneuvers based on feedback on the effect of the previous choices.

The CGF–CGF experiments reported in Teng et al. (2012b) uses
doctrine-driven CGF as the opponent to the adaptive CGF. Four sets
of initial conditions are used in round robin to illustrate the ability
to generalize and learn efficiently (Teng et al., 2012b). Subse-
quently, two blind CGF–Human experiments reported in Teng
et al. (2012a) used human pilots as the opponent to the adaptive
CGF. The adaptive CGF showed some amount of adaptation to score
a temporary advantage over the trainee pilots in the 1st CGF–Hu-
man experiment. Consequentially, the trainee pilots correctly
matched the desirable attributes to the adaptive CGF. Further val-
idation at the 2nd CGF–Human experiment by the veteran pilots
identify the need for more adaptive CGF.

This paper continues with the survey of the related works in
Section 2. This is followed by a brief introduction of the self-orga-
nizing neural network in Section 3. More in-depth presentation on
the use of the hierarchical doctrine are provided in Section 4. The
air combat simulation platform used is introduced in Section 5.
This is followed by the descriptions of the 1-v-1 ACM scenario in
Section 6. Details on how the CGF–CGF experiments and the
CGF–Human experiments are conducted are provided in Sections
7 and 8 respectively. This is followed by the comparisons of the
quantitative results from the CGF–CGF and the CGF–Human exper-
iments in Section 9. Direct comparisons of the qualitative assess-
ments by the human pilots are presented in Section 10. Last but
not least, Section 11 concludes this work and offers some implica-
tions and the suggested plans for this work.
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2. Related work

Expert systems are known to be used for military applications
such as advanced visual target recognition, autonomous tactical
vehicles and combat pilot aid systems (Gilmore, 1985) and combat
games (Ardema & Rajan, 1987). Earlier simulations of air combat
applied the concept of differential game (Grimm & Well, 1991). La-
ter on, artificial neural network (ANN) was being used for air com-
bat (Rodin & Amin, 1992). Competition-based learning of evasive
maneuvers of a plane from a missile was demonstrated using SAM-
UEL (Grefenstette, Ramsey, & Schultz, 1990). More recently, using
computer-generated forces (CGF) as sparring partners has gained
in popularity (Wray, Laird, Nuxoll, Stokes, & Kerfoot, 2005).

Separately, the Soar architecture was used to model complex
knowledge in the ’live’ air combat missions (Jones et al., 1999).
However, it is still incapable of expanding its knowledge as
available through this work. Subsequent extension of Soar with
reinforcement learning was demonstrated using a different prob-
lem domain (Nason & Laird, 2005). The use of agent-oriented ap-
proach to model fighter combat was also reported (Heinze,
Smith, & Cross, 1998). However, it was also reported that various
challenges such as the lack of cognitive credibility, the capture of
expert knowledge and other human factors remain unresolved. In
another work, the Adaptive Neuro-Fuzzy Inference System was
used to control the flight of unmanned air vehicles (UAVs) along
the pre-defined trajectories with just some instability under cer-
tain flight conditions.

A two-layer hybrid multi-agent architecture known as ACOM-
SIM was also used to model a cognitive agent that encompasses a
symbolic world model and a reactive agent that reacts to environ-
mental stimulations for asymmetric land combat (Cil & Mala,
2010). The development of mission-critical expert system re-
ported in Bloom and Chung (2001) is similar to the developmental
phase of this work. However, that work was conducted for the
auto-planning of air battle whereas this work explores the use
of self-organizing neural network to discover new knowledge
with the only initial participation of subject matter experts
(SMEs).

In addition, a Close Combat Tactical Trainer (CCTT) and the
Training Exercise Development System (TREDS) to schedule
manned simulator modules comprising of armored and mecha-
nized forces (McGinnis & Phelan, 1996). Together, the complete
system had improved unit readiness, resource utilization and save
cost through better training management. Another expert system
known as the Maneuver and Fire Support Planner (MFSP) was also
developed to evaluate operational plans (Pereira, Sanchez, & Rives,
1999). An agent known as the Plan Viewer (PV) and another agent
known as the Global Planner (GP) were created to allow command-
ers to manipulate military units and to generate automatic
knowledge-based simulation of the operational plan respectively.

BDI-based agent known as JACK was also used to create an
automated wingman (Wallis, Ronnquist, Jarvis, & Lucas, 2002).
The UAV is defined using JACK concepts such as goals, plans, world
events and maintenance conditions. Though use of BDI-based ap-
proach was effective, there was still some difficulty in the formula-
tion of tactical behaviors.

In another work, a fuzzy multi-criteria decision making method
was first used to determine the importance weights of evaluation
criteria (Wang & Chang, 2007). Using the synthesized ratings of
candidate aircraft, TOPSIS was applied to obtain a crisp overall per-
formance value of the candidate aircraft for making the final deci-
sion. Their proposed expert system helped them to identify the
best-performing training aircraft. Separately, the Tactical Deci-
sion-Making Under Stress (TADMUS) (Smith, 2004) was developed
to support recognition-primed decision making and explanation-
based reasoning. It was evaluated to be better at identifying decep-
tive threats than the crew members. A more recent work applies
Case-Based Reasoning and Bayesian Belief Networks (BBNs) to cre-
ate a smart decision support system (SDSS). It is used for the
assessment of critical success factors (CSFs) in military decision-
making (Louvieris, Gregoriades, & Garn, 2010). The BBNs are used
to quantify the relative strength of the CSFs.

Of similar objectives to this work, behaviors of the fighter pilots
during air combat are mined using three behavior prediction pat-
terns was proposed (Yin, Gong, & Han, 2011). Data structures are
defined for each of these behavior prediction patterns. Subse-
quently, behaviors of the fighter pilots are mined in three phases
using the behavior mining algorithm. Experimental results illus-
trated the effectiveness of the proposed fighters behaviors mining
method.

3. The self-organizing neural network

Based on the adaptive resonance theory (ART) (Carpenter &
Grossberg, 1987), the self-organizing neural network that derives
from FALCON is capable of learning incrementally in real time. As
a function approximator, it generalizes on the vector patterns
without compromising on its prediction accuracy. Action policies
are discovered through real-time interactions with the environ-
ment using reinforcement learning (Tan, Lu, & Dan, 2008). The va-
lue of applying the action choices on the states is estimated using a
temporal difference method known as Q-Learning (Watkins & Day-
an, 1992).

3.1. Structure and operating modes

Structurally, the FALCON network (Tan, 2004) has a two-layer
architecture (see Fig. 1), comprising of an input/output (IO) layer
and a knowledge layer. The IO layer has three input fields, namely
a sensory field Fc1

1 for accepting state vector S, an action field Fc2
1 for

accepting action vector A, and a reward field Fc3
1 for accepting re-

ward vector R. The category field Fc
2 in the knowledge layer stores

the committed and uncommitted cognitive nodes. Each cognitive
node j has three fields of template weights wck for k = 1, . . . ,3.

FALCON has three modes of operation – INSERT, PERFORM and
LEARN. It operates in the PERFORM mode to decide on action
choices for the states. It operates in the LEARN mode to learn the
effect of these action choices on the states. It operates in the INSERT
mode to assimilate domain knowledge into itself (Teng & Tan,
2008; Teng, Tan, & Tan, 2008). The Fusion ART algorithm outlined
in Algorithm 1 is used to find a winning cognitive node J to serve
the purpose of these three modes of operation.

Fig. 1. The FALCON architecture.
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Algorithm 1. The fusion ART algorithm

Require Activity vectors xck and all weights vector wck
j

1: for each Fc
2 node j do

2: Code Activation: Derive choice function Tc
j using

Tc
j ¼

X3

k¼1

cck
xck ^wck

j

��� ���
ack þ wck

j

��� ���

where the fuzzy AND operation (p ^ q)i �min (pi,qi), the
norm k.k is defined by jpj �

P
ipi for vectors p and

q,ack 2 [0,1] is the choice parameters, cck 2 [0,1] is the
contribution parameters and k = 1, . . . ,3

3: end for
4: repeat
5: Code Competition: Index of winning cognitive node J is

found using

J ¼ arg max
j

Tc
j : for all Fc

2 node j
n o

6: Template Matching: Check whether the match functions
mck

J of cognitive node J meet the vigilance criterion

mck
J ¼

kxck ^wck
J k

kxckk P qck

where qck 2 [0,1] for k = 1, . . . ,3 are the vigilance
parameters

7: if vigilance criterion is satisfied then
8: Resonance State is attained
9: else
10: Match Tracking: Modify state vigilance qc1 using

qc1 ¼min mck
J þ w;1:0

n o

where w is a very small step increment to match function
mck

J

11: Reset: mck
J ¼ 0:0

12: end if
13: until Resonance State is attained
14: if operating in LEARN/INSERT mode
15: Template Learning: modify weight vector wck

J using

wckðnewÞ
J ¼ ð1� bckÞwckðoldÞ

J þ bckðxck ^wckðoldÞ
J Þ

where bck 2 [0,1] is the learning rate
16: else if operating in PERFORM mode
17: Activity Readout: Read out the action vector A of

cognitive node J using

xc2ðnewÞ ¼ xc2ðoldÞ ^wc2
J

Decode xc2(new) to derive recommended action choice a
18: end if

3.2. Incorporating temporal difference method

Outlined in Algorithm 2, a temporal difference (TD) method is
used to estimate the value functions of state-action pairs Q(s,a)
(Tan et al., 2008). Using feedback from the environment on the per-
formed action a selected using Algorithm 1, the Q-value Q(s,a) is
estimated using a TD formula. This estimated Q-value is used as
the teaching signal to FALCON to learn the association of the cur-
rent state s and the performed action a.

Algorithm 2. TD-FALCON algorithm

1: Initialize FALCON
2: Sense the environment and formulate a state

representation s
3: Choose to explore at a probability of �
4: if Exploration then
5: Use Exploration Strategy (Teng and Tan, 2012) to select an

action choice a
6: else if Exploitation then
7: Use Direct Code Access (Tan, 2007) to select an action

choice from existing knowledge
8: end if
9: Use action choice a on state s for state s0

10: Evaluate effect of action choice a to derive a reward r from
the environment

11: Estimate the Q-value function Q(s,a) following a temporal
difference formula given by DQ(s,a) = aTDerr

12: Present S,A and R for Learning
13: Update the current state s = s0

14: Revise � using Line 4–14 of Algorithm 3
15: Repeat from Step 2 until s is a terminal state

Iterative value estimation: The temporal difference method
incorporated into FALCON is known as the Bounded Q-Learning
(Tan et al., 2008). It estimates the value of applying action choice
a to state s iteratively. The updated Q-value function Q(s,a)(new) is
estimated using

Qðs; aÞðnewÞ ¼ Qðs; aÞðoldÞ þ aTDerrð1� Qðs; aÞÞ;

where a 2 [0,1] is the learning parameter and the TDerr is the tem-
poral error term which is derived using

TDerr ¼ r þ cmax
a0

Qðs0; a0Þ � Qðs; aÞ;

where c 2 [0,1] is the discount parameter and the maxa0Qðs0; a0Þ is
the maximum estimated value of the next state s0 and r is the imme-
diate reward value. In this work, the immediate reward r is derived
using

r ¼
PP

pjpspPP
psp

;

3.3. Self-regulating action exploration

The self-regulating action exploration approach outlined in
Algorithm 3 (Teng, Tan, & Tan, 2012c) modifies the �-Greedy meth-
od with linear �-decay schedule to regulate exploration with re-
spect to the learning process. Exploration is similarly performed
with a probability of � where � 2 [0,1]. The difference is that an
interval success rate / derived using / ¼ ws

wn
where ws is the number

of successful trials within wn training iterations is used to revised �
as 1 � / after every N w training iterations.
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Algorithm 3.Self-RegulatingAction Exploration (SRE)

1: Initialize �0;N 0;N d

2: Initialize h using

h ¼ �0

N dN 0

where �0 is the initial value of �, N 0 is the initial number
of training iterations and N d determine the number of
training iterations after � = 0

3: Set N ¼ N 0

4: for n = 0 to N do
5: if ðn mod NwÞ – 0 then
6: Linearly decay � using h
7: Tracks N p

8: else if ðn mod NwÞ � 0 then

9: Derive k using N p

Nw

10: Revise � using

�new ¼ f ð1� kÞfjð1� kÞ þ ð1� jÞ�oldg

where j 2 [0.0,1.0] is the �-adaptation rate and f(x) is a
step function such that

f ðxÞ ¼
1 when x > 0
0 when x 6 0

�

11: Derive N r using

N r ¼
�new

N dh
� �new

N dh
modN w

� �
þN w

12: Update N using N e þN r where N e denotes the
elapsed training iterations

13: Reset N p

14: end if
15: end for

Subsequently, � is linearly decayed over the next N w training
iterations using an �-decay rate d. Such an approach gradually in-
creases exploitation of the learned action policies within N w train-
ing iterations. Using this approach, the effectiveness of the learned
action policies to the states is continually evaluated.

4. Use of doctrine

In this work, doctrine refers to a collection of domain knowl-
edge for performing specific task. Fig. 2 illustrates how the doctrine
is used to extract the domain knowledge, the state space S and the
action space A. It is also indicated that the hierarchical doctrine
will have to be flattened before it can be used. Details on how it
can be flattened and used for the extraction of domain knowledge,
state space S and action space A are already presented in Teng
et al. (2012b).

4.1. Knowledge representation

In many real-world problem domains, it is inefficient to
consider continuous-valued attributes by its values. Range-based
consideration of attribute is seen as a more robust approach to

handle continuous-valued attributes. Information on the possible
bindings of the relevant attributes can be acquired from the exist-
ing doctrine or included under the advice of the SMEs.

An attribute a in the antecedent of an IF-THEN rule is always
bounded to either a value or a range. Each binding of attribute a
is taken to be an atomic unit with Boolean outcome. It may be ex-
pressed using a � h � x where a is the attribute, h represents the
binding operator and h 2 { =,–,6, <,>,P} and x may either be a va-
lue or a range and x 2 {any possible values of attributea}.

Using inequalities such as <,6, >,P as the binding operator re-
laxes the binding of the attributes leading to a more generalized
treatment of the attributes. For example, an expression such as
1000 < range < 2000 is much more compact as compared to the di-
rect encoding of 1001 possible values of the attribute range. Fur-
thermore, the negation of an attribute binding can be expressed
in a compact manner. For example, :(1000 < range) is actually
equivalent to 1000 P range.

4.2. The hierarchical structure

The domain knowledge whose knowledge representation
scheme is presented in Section 4.1 has a hierarchical structure
illustrated in Fig. 3. It has an inverted tree-like structure where
the root node is at the topmost level. The final outcome of the deci-
sion-making process is found at the leaf nodes.

Each node in Fig. 3 contains several propositional rules arranged
in similar tree-like structure. The consequent of higher level rules
is used in the antecedent at lower level rules. The consequent of
the lowest level rules of these nodes points to a lower level node
of the outer rule hierarchy.

A small number of attribute–value bindings are considered at
the antecedent. The consequent of the rules at the inner rule hier-
archy has different types of attribute–value bindings. Such scat-
tered definition of the domain knowledge is not suitable for use
by FALCON. Therefore, a flattening procedure is included to provide

Fig. 2. Use of the doctrine for extraction of domain knowledge, state space and the
action.

Fig. 3. A doctrine with a hierarchical structure.
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an alternative representation of a semantically-equivalent set of
domain knowledge.

4.3. The flattening procedure

A chain of rules is formed dynamically each time a decision is
made. The idea is to substitute the consequent found in the ante-
cedent of the lower level rules by the antecedent at the higher level
rules. It becomes non-trivial when rules at the same level have to
be broken up when there is disjunctive relation at the antecedent
and have to simplified using De Morgan’s Law before they are
linked to rules at the adjacent levels. The Flattening procedure of
the hierarchical doctrine is represented as Algorithm 4 (Teng
et al., 2012b).

Algorithm 4. Flattening of Hierarchical Doctrine

1: Form chains of rule sets according to the hierarchical rule
structure

2: for each rule set within each rule set chain do
3: repeat
4: Split Rules with Disjunctive Relation

a _ b! c � a! c and b! c

5: Apply De Morgan’s Law on Antecedents

:ða _ bÞ � :a ^ :b

:ða ^ bÞ � :a _ :b

6: until antecedent of all rules has the following format

a ^ b . . . ^ z

7: Link rules with Antecedent-Consequent Dependencies

a! b and b! c � a! c

8: Repeat Line 5 for rules with antecedent of :ða ^ bÞ format
9: end for
10: return Flattened Doctrine

The Flattening procedure in Algorithm 4 satisfies three condi-
tions required by FALCON to process propositional rules as pat-
terns. The first condition is for rules that map the necessary
conditions to the final action choices because the cognitive nodes
in the category field Fc

2 do not establish the dependency relation-
ship among themselves. Due to the specific formulation of the
choice function Tc

j and the match function mck
J , the second condi-

tion is for the propositional symbols of the antecedent with only
conjunctive relationship. Thirdly, antecedent with compounded
knowledge structure such as :ða ^ bÞ or :ða _ bÞ has to be simpli-
fied using De Morgan’s Law because FALCON is incapable of han-
dling such compounded knowledge structure.

4.4. Extraction of state space and action space

Details on how the state space S and action space A are ex-
tracted from the flattened doctrine can be found in Section IV-B
of Teng et al. (2012b). Outstanding issues on the extraction of

the state space and action space are addressed separately in the
following paragraphs.

State space: Using the proposed approach, the state space S is
formed using only the propositional symbols. Each propositional
symbol is a higher level representation of the raw sensory informa-
tion sensed from the operating environment. Unlike the raw sen-
sory information commonly represented using discrete or analog
values, a propositional symbol can only be either asserted or unas-
serted. Consequentially, the number of propositional symbols for
each attribute may vary in accordance to the complexity level of
the tasks. However, only one of the propositional symbols of the
attribute can be asserted at any one time.

This approach constrains the decision-making and learning
tasks on the choice of attributes, the possible values of these attri-
butes and the relationship between these attributes and the values.
This means the resolution of S of the adaptive agent is constrained
to match that of the non-adaptive agent. In this case, the strength
of the adaptive agent is on the ability to learn states represented
using unfamiliar combinations of the propositional symbols.

Action space: Using the proposed approach, the action choices of
A are extracted from the consequent of the resultant propositional
rules from the flattening process described in Section 4.3. Though it
is possible to act on several aspects of the operating environment
at each state, the scope of this work is limited to respond using just
one type of action choice. This approach simplifies the tasks of dis-
covering action policies during exploration and reduces the model
complexity. However, it still turns out to be a fairly non-trivial task
to identify the action choices effective to the states.

4.5. Encoding and insertion of domain knowledge

The flattened doctrine is comprised of single-layer propositional
rules that can be used by FALCON as domain knowledge. Earlier
works have demonstrated the insertion of domain knowledge for
toy problem domains such as minefield navigation task (MNT)
(Teng et al., 2008) and the Mission-On-Mars (MoM) problem do-
main (Teng & Tan, 2008). The insertion of professionally specified
doctrine was also demonstrated for the ACM problem domain
(Teng et al., 2012b).

The foci in these works are on the approaches used and the
resultant effect of inserting domain knowledge into FALCON on
the learning efficiency and the model complexity. Similar to those
works, domain knowledge defined using propositional rules are
translated into vector pattern for insertion into FALCON. The focus
of the presentation is on the knowledge representation and the
specific encoding scheme used.

5. The air combat simulation platform

Combination of a suite of commercial-grade simulation soft-
ware and an own implementation of the Cognitive Engine are used
in client–server configuration to simulate the 1-v-1 ACM scenarios.
The Cognitive Engine is implemented as the client-side module
while a suite of commercial-grade simulation software is used at
the server side. Brief introduction to the components at the server
side, the client side and the communication interface are provided
here.

5.1. The server side

Collectively known as the CAE STRIVE™ CGF studio, the main
components at the server side are the wire-frame display of the
three-dimensional flight path (see Fig. 5), the flight canvas of the
studio (see Fig. 4) and the entity properties panel (see Fig. 6). Dur-
ing simulation, the activities of the CGFs can be observed using the
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flight canvas. Real-time flight parameters of the selected CGF in-
clude the absolute position expressed as GPS coordinates, the alti-
tude, the air speed and the heading during flight can also be
monitored using the studio. These parameters are used to config-
ure the initial conditions of the CGFs prior to flight.

The three-dimensional ACM display (3D display) shown in Fig. 5
illustrates the altitudinal differences and the absolute positions in
three-dimensional airspace of the CGFs. The flight trajectories of
the CGFs drawn using colored dotted lines are cleared at fixed time
interval. The 3D display can also be rotated and scaled to follow the
flight trajectory with greater clarity.

Seen in Fig. 6, more detailed information on the CGF are avail-
able through the entity properties panel (properties panel). The
top panel shows all the entities together with a salient collection
of real-time parameters. As observed, missiles and flares launched
by the CGFs are also shown in the top panel. The bottom panel of
the properties panel provides access to all the parameters of the se-
lected entities. It includes information on the flight maneuver the
CGF is currently executing, the doctrine it is attached with, a large
collection of flight controls and also the designated role of the se-
lected CGF in a team (if formed).

5.2. The client side

An own implementation of a Cognitive Engine known as DSOC-
A-STRIVE™ is used as the client. It includes the model layer, com-
munication layer and the simulation layer. The model layer is an
implementation of FALCON as an entity agent. This agent entity
implements the basic sensory, actuation and decision-making
mechanisms. The sensory and actuation mechanisms bring infor-
mation into and out of FALCON respectively. The decision-making
mechanism is used to decide on air combat maneuver, firing of
weapons and the launching of flares at different time interval.
The simulation layer includes the data logging and dissemination
mechanism and the mechanism to implement iterative execution
of the simulation. The communication layer facilitates the interac-
tion with the human users and also with the server.

The entire simulation routine is controlled using the graphical
user interface (GUI) of DSOCA-STRIVE™ illustrated in Fig. 7. Main
panels of the GUI include the feedback panel, the server control pa-
nel, mission control panel, the CGF information panel and the sim-
ulation control panel. The mission control panel affects a particular
training iteration (mission) while the controls at the simulation
control panel dictate the entire simulation. Other than observing
the dogfights between the CGFs using the flight canvas of the
CAE STRIVE™ CGF studio manager at the server side, real-time

feedback on the status of the simulation process and also from
own CGF are also available at the Feedback panel seen in Fig. 8.

5.3. Client–server communication

The client–server configuration is set-up as illustrated in Fig. 9
using commercial-grade High Level Architecture interface known
as CAE ICON™. In this work, the server and client are run using sep-
arate terminals linked using cross-linked Ethernet cable. Parts of
the CAE ICON™ interface are installed at the server and client to
implement the communication interface. From Fig. 9, the server
forwards three types of information to the client. The server

Fig. 4. The flight canvas of CAE STRIVE™ CGF Studio.

Fig. 5. Three dimensional view of the both CGFs.

Fig. 6. The entity properties of CAE STRIVE™ CGF studio.

Fig. 7. The client-side Graphical User Interface of DSOCA-STRIVE™.
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forwarded information such as the CGF’s own parameters (Enti-
tyParameters), parameters of the flight maneuver (EntityACMPa-
rameters) and the relative parameters with respect to the other
CGF (RelativeParameters) through the CAE ICON™ interface. On
the other hand, the client forwards information such as the se-
lected air combat maneuver, the weapon to be fired and the flare
to be launched through CAE ICON™ to the server.

6. 1-v-1 air combat scenario

Based on the classical 1-v-1 pursuit-evasion problem in three-
dimensional airspace (Ardema & Rajan, 1987), the scenario is
implemented using the simulation platform presented in Section 5.
Unlike (Grefenstette et al., 1990) where tactical plans are learned,
learning of air combat maneuvers is conducted in real time using
reinforcement learning. As illustrated in Fig. 10, a Red CGF and a
Blue CGF are tasked to out-maneuver each other in a dogfight.

Similar scenarios are used for the CGF–CGF experiments re-
ported in Teng et al. (2012b) and the CGF–Human experiments re-
ported in Teng et al. (2012a). The similarities include using the
same type of aircraft model for the CGFs and the human pilots.
Both aircrafts are initialized to begin flying at the same altitude
and the same air speed. All CGFs select their choice of air combat
maneuvers using the rule-based knowledge from the same doc-
trine. The CGFs and the human pilots are able to engage each other
using the same number of missiles and flares. The same set of con-
straints for the launching of missiles and flares are maintained for
the CGFs and the human pilots.

6.1. The state space

For this work, a total of 15 simple and composite attributes are
extracted from the ACM doctrine to form the state space S. A com-
posite attribute is made up of two or more simple attributes such
as the composite attribute (mVtt–mVt) is made up of mVtt and
mVt simple attributes. With reference to Fig. 11, the extracted state
space includes relative parameters such as range and angular posi-
tion, own entity ACM parameters such as current maneuver,

maneuver lock status and own entity parameters such altitude
and air speed. These are specified in the form of propositional sym-
bols such as those seen in Table 1.

6.2. The action space

A set of 13 air combat maneuvers are used to form the action
spaceA. Specifically, there is one neutral maneuver, three offensive
maneuvers and nine defensive maneuvers. The adaptive CGF learns
to select air combat maneuvers effective to the situations. The exe-
cution of these air combat maneuvers is pre-programmed. The fir-
ing of missile and the launching of flare are not included as part of
the action space because they are implemented as doctrine-driven
behaviors.

6.3. Evaluative feedback

Use of feedback on the effect of action choices to the states is a
signature approach in reinforcement learning. Selected reward
attributes are monitored to provide intermediate reward ri at the
intermediate states and terminal reward rt at the terminal states.
Some details on how the intermediate reward ri and the terminal
reward rt are formulated are provided in this section.

Intermediate reward: The intermediate reward ri communicates
the effect of the action choices to the intermediate states. Selected
reward attributes such as the CGF’s proximity to the weapon

Fig. 8. The feedback panel of DSOCA-STRIVE™.

Fig. 9. An illustration of the client–server set-up between the AI terminal and
Simulator terminal.

Fig. 10. Illustration of own CGF (Blue CGF) firing missile at the opponent (Red CGF).
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this article.)

Fig. 11. The extracted state space.

Table 1
Samples of the propositional symbols in the state space.

No. Type Sample

1 Boolean wOk = TRUE
2 Float (>) Abs(mTA) > 135�
3 Float (<) mVtt �mVt < 50
4 Float (6) mEnergyRatio 6 0.85
5 Float (P) Altitude P 4500
6 String (–) mManeuver – Weave
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engagement zone (WEZ) of its opponent (dWEZ), the energy ratio
of own CGF to its opponent (eRatio) and the threat level to own
CGF with respect to its opponent (tLevel).

With reference to Fig. 12, the WEZ is an area around the oppo-
nent where air-to-air weapon can be fired with high hit probability
of own CGF. Therefore, it is calculated using the proximity to oppo-
nent, target aspect (TA) angle and the antenna train angle (ATA)
illustrated in Fig. 14 to ensure own CGF is outside of it. The ATA
is the angular direction of the position of opponent with respect
to current heading of own CGF whereas TA is the angular direction
of the position of self with respect to the current heading of the
opponent.

From Fig. 13, own CGF is less vulnerable when ±0� 6 ATA 6 ±90�
and more vulnerable when ± 90� < ATA 6 ± 180�. Therefore, own
CGF need to select action choice at time n leading to ATA
(n) < ATA (n � 1), TA (n) > TA (n � 1),ATA (n) ? 0� and TA
(n) ? 180�.

The energy ratio eRatio is derived using the energy level of both
CGF derived using H þ V2

2G where H is the altitude (in feet), V is the
air speed and G is the acceleration due to gravity (32.2 ft/s3). The
threat level tLevel is derived using a set of heuristics to determine
how threaten own CGF is by the opponent.

After deriving dWEZ,eRatio and tLevel, the intermediate ri is
subsequently derived using

ri ¼ xwezdWEZþxratioeRatioþxthreattLevel

where xwez,xratio and xthreat are the weights of the respective re-
ward attributes and the intermediate reward ri 2 [0.0,1.0].

Terminal reward: The terminal reward rt communicates the ob-
served effect at the terminal states to the learning model. The ter-
minal reward function is dependent on the number of observable
outcomes at the terminal state. In this case, the three observable
terminal outcomes and the terminal rewards are presented in
Table 2.

The allocated value is aimed at giving a sense of desirability to
each of these terminal outcomes. Therefore, from Table 2, the elim-
ination of the opposing CGF (HasKill) is the best outcome while the
elimination of own CGF (IsKill) is the worst outcome at the terminal
state. A neutral outcome considered to be better than the worst
outcome is assigned a value between the best and the worst out-
come. It is used to estimate the value of choosing an air combat
maneuver at the terminal states using the Bounded Q-Learning
method.

7. The CGF–CGF ACM Experiments

The CGF–CGF ACM experiments are conducted using the simu-
lation platform described in Section 5. The purpose of the experi-
ments is to investigate the autonomous learning of air combat
maneuvers during 1-v-1 dogfights in real time. For the experi-
ments, the hierarchical doctrine used to drive the non-adaptive
CGF is inserted into FALCON as the domain knowledge.

Four different initial positions illustrated in Fig. 15 are used in a
round robin fashion in the experiments. This is to illustrate how
FALCON is able to generalize learning to more than one initial con-
ditions within the same session of reinforcement learning. The
experimental results are collected from a session of reinforcement
learning using these four sets of initial conditions. Each plotted
data point in the plots is an average of 10 consecutive raw data
points. This gives a total of 12 data points from a reinforcement
learning process with 120 training iterations. The parameters usedFig. 12. An illustration of the Weapons Engagement Zone (WEZ) of the Adversary.

Fig. 13. An illustration of the vulnerability of CGF.

Fig. 14. Illustrations of the Antenna Train Angle (ATA) (left) and the Target Aspect
(TA) (right) angular information.

Table 2
Terminal reward for 1-v-1 air combat maneuver.

No. Outcome Terminal reward

1 Eliminated Red CGF 1.0
2 Time-out of training iteration 0.5
3 Killed by Red CGF 0.0
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for the CGF–CGF ACM experiments can be found in Teng et al.
(2012b).

7.1. Performance measures

The performance measures for the air combat maneuver is clo-
sely tied to the terminal states. Specifically, the performance mea-
sures in Table 3 records the number of occurrences of each types of
the terminal state during the simulation.

A favorable convergence of learning process is characterized by
high percentage of HasKill which implies low percentage of IsKill
and EqualMatch. However, in states where elimination of the oppo-
nent are difficult to achieve, high percentage of EqualMatch will be
the next best outcome. For the experiments, the 1-v-1 air combats
time-out in two minutes.

8. The CGF–Human ACM experiment

The CGF–Human ACM experiment was conducted to determine
how the adaptive CGF perform against human pilots as its oppo-
nent. It is clear that such an arrangement is bound to increase
the difficulty of learning air combat maneuvers against the Red
CGF by several orders of magnitude. However, it had to be con-
ducted to complete the study on the use of adaptive CGF for simu-
lator-based training.

8.1. The human pilots

Two groups of pilots from different air force organisations are
invited for the CGF–Human experiments. The first group of pilots
comprises of two trainee pilots and the second group of pilots com-
prises of three veteran pilots. Such an arrangement allows a broad-
er assessment of the CGFs.

Trainee pilots: The first group of participants are trainee pilots in
their 20s. They had completed their basic military training stint
and were undergoing vocational flight training on specific aircraft
type. They had no prior experience using the commercial-grade
simulation platform used in this work. However, almost all of them
have some flying experience in some game-like flight simulators.
Studies have shown that this can be translated to improved perfor-
mance when it comes to actual flight (Gopher, Well, & Bareket,
1994).

Veteran pilots: The second group of participants are veteran
combat pilots who had served their country in actual air combat
missions as fighter jet pilots. Retired from regular services, they
are engaged as the SMEs to CAE™ Inc. Being the consultants to
the simulator products used in the CGF–Human experiment, they

are much more familiar with the handling of the simulated aircraft
than the trainee pilots.

8.2. Design of CGF–Human experiment

Though similar simulation configuration of the CGF–CGF exper-
iment (Teng et al., 2012b) is used for the CGF–Human experiment,
the participation of human pilots (Pausch, Crea, & Conway, 1992)
demands closer attention on the timing parameters involved in
the execution of the CGF–Human experiment. Some amount of
time is allocated as intermission to rest the human pilots while
they provide qualitative assessments of the CGFs they had flown
against.

Each training iteration during reinforcement learning is referred
to as a sortie and Tsortie refers to the duration of each sortie. A trial is
the consecutive execution of multiple sorties and Ttrial refers to the
duration of each trial. A session is comprised of multiple trials and
Tsession refers to the duration of each session. A cycle is a complete
execution of the session by each human pilot. The number of cycles
that can be completed in a day is denoted using Ncycle.

There are two groups of pilots and CGFs each. The first group of
human pilots denoted using Pnf refers to the set of pilots who has
not flown while the other group of human pilot denoted using Pf

refers to the set of pilots who has flown. The first group of CGF de-
noted suing Cnf(P) refers to the set of CGF that has not flown against
pilot P while the other group of CGF denoted using Cf(P) refers to
the set of CGF that has flown against pilot P. After each session, Cf(-
P) � C while Cnf(P) � ; is emptied. The next session commences
with Cnf(P) � C. After each cycle, Pf � P and Pnf � ;.

Several parameters need to be specified for the design of the
CGF–Human experiment. These parameters include the estimated
duration of each sortie Tsortie, the estimated duration of continuous
flying before fatigue Talert, the intermission between each trial TTR

and each session TSR and the agreed amount of flying time (in min-
utes) in a day by the pilots Tday. From our perspective, the main
concern is on the number of training iterations required before po-
sitive effect of learning can be observed. This is the desired number
of sorties N0sorties(CGF) for each CGF. On the other hand, in view of
their professional appointments, the pilots are concerned with
the amount of time they need to commit to the CGF–Human exper-
iment. Therefore, the calculated number of days TC�H for the CGF–
Human experiment have to be agreed before the experiment can
proceed.

As an illustration using a sample schedule shown in Table 4, a 3-
h orientation session is included for the pilots. The actual CGF–Hu-
man experiment may then commence after the lunch break. At
Session 1, pilot HP2 is tasked to fly against S-CGF while pilot HP1
participates in the trial as a co-pilot. After a trial of Nsortie sorties
and TTR minutes of intermission, pilot HP2 continues in the next
trial with L-CGF. A session of CGF–Human experiment is completed
after pilot HP2 has flown against S-CGF and L-CGF. Session 2 begins
after TSR minutes of intermission with pilot HP1 as the pilot and pi-
lot HP2 as the co-pilot. The actual choice of CGF is not known to the
pilot during the trials.

Fig. 15. An illustration of the four initial conditions used for the CGF–CGF
experiments.

Table 3
Performance measures for air combat maneuver.

No. Terminal State Descriptions

1 HasKill Blue CGF eliminates Red CGF
2 IsKill Blue CGF is eliminated by Red CGF
3 EqualMatch Blue and Red CGF survive the entire training iteration

Table 4
Sample schedule of CGF–Human experiment in a day.

Session Time Trial CGF Sortie Pilot/Co-Pilot

0 0900–1030 h Orient S-CGF 30 HP1/HP2
1035–1200 h Orient S-CGF 30 HP2/HP1

1 1400–1600 h Actual S-CGF 15 HP2/HP1
Actual L-CGF 15 HP2/HP1

2 1615–1815 h Actual L-CGF 15 HP1/HP2
Actual S-CGF 15 HP1/HP2
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8.3. The questionnaires

The quantitative results from the CGF–Human experiment re-
veals only the final outcome of the sortie. Qualitative assessments
are needed to capture aspects of the CGFs missed by the quantita-
tive results. Therefore, two sets of questionnaires are used to gath-
er qualitative assessments of the CGFs from the pilots after each
trial and session. The pilots are briefed on the approximate defini-
tion of the attributes and the different frequencies of occurrence to
ensure their qualitative assessments of the CGFs are conducted
using a similar level of understanding of the terms. Specifically,
the pilots were requested to assess the CGF on the following
attributes.

Predictable : CGF acts in a way that I can see a pattern to predict
the next move.

Intelligent : CGF is able to outsmart me with clever moves and
plans.

Skillful : CGF has good technique and skill in executing the
air combat tactics.

Challenging : CGF behaves in a way that stretches my resources
to the limit.

Adaptive : CGF is able to adjust and adapt to my actions
automatically.

Aggressive : CGF is tending or disposed to attack others.

Trial questionnaire: After each trial, the pilots are required to
complete a trial questionnaire comprising of the first five attributes.
Given that the requested attributes are qualitative in nature, the
pilots are requested to conduct their assessments using the follow-
ing perceived frequencies of occurrence: never, rarely, sometimes,
frequently, most of the time and always.

Session questionnaire: After each session, the pilots are also re-
quired to complete a session questionnaire. Unlike the trial ques-
tionnaire, the pilot ranks all the CGF types he had flown against
during that session using all six attributes. A CGF is ranked more
highly when it is showing more of the specific attributes in com-
parison to the other CGF. To avoid biasing their qualitative assess-
ments, the pilots are unaware of the actual identity of the CGFs
when they rank the CGFs.

8.4. Conducting the CGF–Human experiment

The CGF–Human experiments were conducted using the initial
conditions seen in Fig. 16. The physical set-up and the execution
procedures of the CGF–Human experiment are described here.
The specific handling of the CGFs during the CGF–Human experi-
ment is also included as part of the execution procedures.

Physical set-up: The CGF–Human experiment is conducted using
the flight training simulator set-up illustrated in Fig. 17. The phys-
ical set-up comprises of one unit of desktop workstation WS1, two
units of desktop computer DC1 and DC2 and a pair of joysticks to
simulate the HOTAS in the cockpit of a fighter jet. The joysticks
are connected to the desktop computer DC1 running the commer-
cial-grade simulator software known as CAE STRIVE™ CGF Studio.

From Fig. 17, DC1 is connected to the desktop computer DC2
running the cognitive engine in a client–server configuration illus-
trated in Fig. 9. The CAE ICON™ interface facilitates the communi-

cation between DC1 and DC2. DC1 is also connected to the desktop
workstation WS1 designated as the Image Generator (IG) for gen-
erating the Out-of-The-Window (OTW) view used by the pilots.
It can generate a multi-channel three-dimensional panoramic
OTW view of 100� horizontal and 56� vertical of the airspace. A
heads-up display (HUD) unit is superimposed onto the OTW view
to provide an artificial horizon, the altitude, the rate of climb, the
air speed, the G-meter and the compass heading of the aircraft.
The weapons aiming system is omitted from the HUD.

Execution procedures: A team comprising of the pilot, the co-pi-
lot and the support crews is necessary for the CGF–Human exper-
iment. The pilot does the actual flying of the simulated aircraft to
engage a CGF in 1-v-1 dogfights. Using the ACMD wireframe dis-
play and the CGFStudio Map in DC1, the co-pilot provides addi-
tional information such as the elevation and general position of
the opponent when it is out of the OTW view. In addition, the
co-pilot also records the number of missiles fired and the final out-
come of the sorties as the quantitative results of the CGF–Human
experiments.

The support crews comprising of the AI team and the simulator
team ensure the smooth execution of the CGF–Human experiment.
The simulator team is needed to make speedy recovery of the CGF–
Human experiment when there is any technical glitch. The pilot
flies against either the L-CGF or the S-CGF during a trial. On top
of not revealing the identity of the CGF to the pilots, the order of
appearance of the CGFs during the session is also randomized.
The AI team ensures the correct configurations are used for the tri-
als such that the same amount of experimental data is collected
from all the pilots with all the CGFs.

Both CGFs are inserted with the same doctrine prior to the
experiments. Only the L-CGF updates its knowledge base by learn-
ing its interactions with the human pilots. The AI team is required
to ensure the updated knowledge base is used for the subsequent
trials involving the L-CGF with any of the pilots. The AI team is also
required to ensure the correct set of initial conditions is used for
the trials when multiple sets of initial conditions are used.

The experiments: Two independent CGF–Human experiments
were conducted using the Trainee and the Veteran pilots. The pur-
pose of the experiments is to study, in comparison to a non-adap-
tive doctrine-driven CGF, how well the adaptive CGF can adapt
against the pilots in 1-v-1 air combat scenario and to also gather
qualitative assessments from the pilots on these two types of
CGF. Further details on the CGF–Human experiment can be found
in Teng et al. (2012a).

Fig. 16. Initial conditions used for the CGF–Human experiments involving the
trainee pilots (a) and the veteran pilots (b and c).

Fig. 17. The physical set-up of the CGF–Human experiment. It implements the
logical set-up illustrated in Fig. 9.
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9. Comparisons between CGF–CGF and CGF–Human
experiments

The presentation on the CGF–CGF experiments in Teng et al.
(2012b) and the CGF–Human experiments in Teng et al. (2012a)
are on how the respective CGF performs with respect to the specific
type of opponent. In contrast, the quantitative and qualitative re-
sults from these two types of experiments are compared directly
here. Specifically, three sets of direct comparisons of the quantita-
tive results from the CGF–CGF and the CGF–Human experiments
are presented here. The CGF–CGF experiments (LCGFvsSCGF) were
conducted between L-CGF and S-CGF while the CGF–Human exper-
iments were conducted by flying L-CGF and S-CGF against the Trai-
nee and Veterans separately. Changes to the initial conditions and
the number of training iterations were included to adapt to the
changing conditions at each experiments.

Results: The HasKill rates of these five configurations are com-
pared in Fig. 18. The L-CGF in the LCGFvsSCGF configuration is seen
improving on its HasKill rates over S-CGF to around 93% level from
the 45th training iteration. The LCGFvsTrainee and SCGFvsTrainee
configurations are seen having similar level of HasKill rates after
15 training iterations. However, L-CGF is able to improve on its
HasKill rates over Trainee for the next 30 training iteration. In com-
parison, the HasKill rates of SCGFvsTrainee drops by more than 10%
over the same duration. As the experiments progress, the HasKill
rates of LCGFvsTrainee and SCGFvsTrainee configurations are seen
falling. Notably, the HasKill rates of L-CGF over Trainee fall more
slowly than that of S-CGF. In sharp contrast, the HasKill rates of
L-CGF over the Veteran remain at the 0% level for almost the entire
duration of the LCGFvsVeteran configuration. Similarly, the HasKill
rates of S-CGF over the Veteran remain at 0% level until the 90th
training iteration. Subsequently, it remain unchanged at 6.67%
for the remaining training iterations.

The IsKill rates of these five configurations are compared in
Fig. 19. It can be seen that the IsKill rates of L-CGF in LCGFvsSCGF
falls quite consistently from around 88% to about 7% over 120
training iterations. The IsKill rates of L-CGF in LCGFvsTrainee have
also fallen slightly before raising from 45th training iteration. In
contrast, the fall in the IsKill rate of L-CGF in LCGFvsVeteran is only
observed after 75 training iterations. It then fluctuates around the
70% level for the remaining training iterations. The fluctuation of
IsKill rates of S-CGF in SCGFvsTrainee is less varied than that of
S-CGF in SCGFvsVeteran. In contrast, a significant drop in IsKill

rates of S-CGF in SCGFvsVeteran is observed at the 105th training
iteration.

From the comparison of EqualMatch rates of these five configu-
ration in Fig. 20, the EqualMatch rates of S-CGF in SCGFvsVeteran
spikes at the 105th training iteration. In contrast, the EqualMatch
rates of S-CGF in SCGFvsTrainee fluctuates below the 40% level.
Notably, the EqualMatch rates of L-CGF with Veteran raise from
0% only after 60 training iterations. In comparison, the EqualMatch
of L-CGF in LCGFvsTrainee stays above 20% for a large part of the
training process. Unlike all the other configurations, the Equal-
Match of L-CGF in LCGFvsSCGF raises to around 40% before falling
to 0% after 120 training iterations.

Discussions: The complementary performance measures of Has-
Kill, IsKill and EqualMatch presented in Section 7.1 are necessary to
analyze the performance of the CGFs. The objective of these analy-
ses is to show how differently L-CGF can adapt against the S-CGF
and against the human pilots comparing to S-CGF. For the
LCGFvsSCGF configuration, dip in the HasKill rates of L-CGF at
the 45th training iteration means that L-CGF eliminates S-CGF less
frequently. However, the gradual raise in the EqualMatch rates and
the gradual drop in the IsKill rates over the same duration also
mean that L-CGF has acquired knowledge that allow it to be more
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Fig. 18. Comparisons of the HasKill rates between the CGF–CGF and CGF–Human
experiments.

15 45 75 105 135
0

10

20

30

40

50

60

70

80

90

100

Is
Ki

ll 
R

at
e 

(%
)

Training Iteration

LCGFvsSCGF
LCGFvsTrainee
LCGFvsVeteran
SCGFvsTrainee
SCGFvsVeteran

Fig. 19. Comparisons of the IsKill rates between the CGF–CGF and CGF–Human
experiments.

15 45 75 105 135
0

10

20

30

40

50

60

70

80

90

Eq
ua

lM
at

ch
 R

at
e 

(%
)

Training Iteration

LCGFvsSCGF
LCGFvsTrainee
LCGFvsVeteran
SCGFvsTrainee
SCGFvsVeteran

Fig. 20. Comparisons of the EqualMatch rates between the CGF–CGF and CGF–
Human experiments.
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challenging to S-CGF. This trend of positive learning continues to
allow L-CGF to score about 93% HasKill rate after 120 training
iterations.

Similarly, the HasKill rates of L-CGF in LCGFvsTrainee rise grad-
ually over the first 45 training iterations. The gradual decline in
HasKill rates is matched by a sustained EqualMatch rate for the
next 45 training iterations. However, given that the Trainees
adapted much more efficiency than L-CGF, the IsKill of L-CGF con-
tinues to increase as training progresses. Quite similarly, L-CGF in
LCGFvsVeteran configuration is much less able to eliminate the
Veteran. At best, it is able to learn positively enough to score some
amount of EqualMatch against the Veterans.

10. Comparisons of qualitative asssessments between trainee
and veteran pilots

Blind qualitative assessments of the CGFs under different set-
tings are made by the human pilots after they have flown against
it using the format presented in Section 8.3. For the qualitative
assessment to be blind, the identity of the CGFs is withheld from
the pilots. The qualitative assessment in Figs. 21 and 22 compares
the qualitative assessments of L-CGF and S-CGF by the trainee pi-
lots and the veteran pilots after each trial and each session.

Results: With reference to Fig. 21, the higher qualitative score
means more of the quality the CGF is assessed to have exhibited
during the trial. Therefore from Fig. 21, L-CGF is assessed by the
Trainees to be the least predictable, the most intelligent, skillful,
challenging and adaptive. In contrast, L-CGF is assessed by the Vet-
erans to be the most predictable, the least intelligent and skillful. L-
CGF is assessed by the Veterans to be of the same level of challenge
as the Trainees find their S-CGF. However, the Veterans did find L-
CGF more adaptive than the S-CGF they had flown against. In com-
parison, the Veterans assess S-CGF to be more predictable, less
intelligent, skillful and adaptive than the Trainees’ assessment of
S-CGF on those qualities. In contrast, the Trainees found their S-
CGF less challenging than the Veterans find their S-CGF.

The qualitative assessments of the CGFs in Fig. 22 may be inter-
preted in a similar way as those in Fig. 21. From Fig. 22, L-CGF was
assessed by the Trainees to be more predictable than S-CGF they
have flown against in the same session. This is in contradiction
to their assessment of L-CGF on the predictable quality using the
trial questionnaire seen in Fig. 21. Apart from that, the assessments
of L-CGF by the Trainees on all other qualities using the Session

questionnaires are consistent with their assessments of L-CGF
using the Trial questionnaires. Also from Fig. 22, the assessments
of L-CGF by the Veterans and the Trainees are consistent with
the qualitative assessments illustrated in Fig. 21. However, the Vet-
erans found their L-CGF to be more intelligent and as skillful and
challenging to the S-CGF assessed by the Trainees.

Discussions: As presented in Section 8.3, the Trial and Session
questionnaires are used to gather qualitative assessments on the
performance of the CGFs from the human pilots. The objective of
taking such an approach is to determine how consistent the human
pilots are in their qualitative assessments of the CGFs. From the
trial and session qualitative assessments of L-CGF, the Trainees
are more inclined to match the desirable attributes to L-CGF than
the Veterans. In contrast, the Veterans appear to have considered
S-CGF to have more of the desirable attributes in both qualitative
assessments. The differences in the qualitative assessments of L-
CGF by the Trainees and Veterans may be attributed to a similar
set of factors that account for the differences in the quantitative
outcome of the CGF–Human experiments.

Some inconsistencies in the qualitative assessments of L-CGF
and S-CGF by the Trainees and the Veterans are observed. Using
the Trial questionnaires, the Trainees considered L-CGF to be less
predictable than S-CGF but considered L-CGF to be more predict-
able than S-CGF using the Session questionnaires. The Veterans
considered L-CGF to be more adaptive than S-CGF they have flown
against using the Trial questionnaires but considered L-CGF to be
less adaptive than the same S-CGF using the Session question-
naires. They also considered L-CGF to be less predictable than S-
CGF in both qualitative assessments. This means the Veterans
agreed with the Trainees on how predictable L-CGF was through
their session qualitative assessments but not in their trial qualita-
tive assessments. The Veterans also agreed with the Trainees on
how adaptive L-CGF in their Trial questionnaires but not in their
Session questionnaires. Consequentially, the Veterans and the
Trainees had contrasting qualitative assessments of L-CGF on the
remaining attributes with respect to S-CGF.

11. Conclusion

The detailed presentation of our studies shows the CGF–CGF
experiments to be more trivial to the CGF–Human experiments
in terms of the ability to show positive learning by the adaptive
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Fig. 21. Comparison of the qualitative assessment of the CGFs using the trial
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CGF. Based on the quantitative results from the CGF–Human exper-
iments, the adaptive CGF is more effective in out-maneuvering the
trainee pilots than the veteran pilots. In both situations, the adap-
tive CGF turns out to be more challenging over time by scoring
higher EqualMatch rates against the human pilots. Subsequent
analysis of the qualitative assessments of the adaptive CGF by
the Trainees and Veterans offers some rather contrasting view-
points. Using blind questionnaire-based assessments, the Trainees
were able to match the desirable attributes to the adaptive CGF
whereas such qualities of the adaptive CGF were missed by the
Veterans.

The differences in qualitative assessments by the Veterans and
Trainees may be due, in part, to their ability to fly against the CGFs,
their professional background and the use of different scenarios.
The victories scored by the adaptive CGF may be attributed, in part,
to some inconsistencies of the human pilots during 1-v-1 dog-
fights. This is evident from the performance of the Trainees and
the Veterans against the doctrine-driven CGF. Despite of the incon-
sistencies, the human pilots are still able to eventually out-maneu-
ver the adaptive CGF. This may mean the adaptive CGF is still not
learning well and fast enough against the human pilots. Limita-
tions on how the adaptive CGF can respond to the human pilots
may also account for the negative performance outcome.

Further experiments on the CGF–CGF experiments shall include
getting the adaptive CGF to respond to states using fundamentally
different strategies such as being offensive and defensive at differ-
ent times within the same session. Integrating FALCON into a
broader cognitive architecture (Ng et al., 2010) may help in this as-
pect. Future work beyond 1-v-1 dogfight may involve formation
flying and coordinated air combat (Virtanen, Hämäläinen, & Matti-
la, 2006). In addition, future simulator-based training may have
adaptive CGF that can lead the trainees through different levels
of training. Just like the human instructors, such adaptive CGF will
have a sense of the skill level of the trainees and can moderate its
own responses in real time.
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