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Creating Autonomous Adaptive Agents in a
Real-Time First-Person Shooter Computer Game

Di Wang, Member, IEEE and Ah-Hwee Tan, Senior Member, IEEE

Abstract—Games are good test-beds to evaluate AI methodolo-
gies. In recent years, there has been a vast amount of research
dealing with real-time computer games other than the traditional
board games or card games. This paper illustrates how we create
agents by employing FALCON, a self-organizing neural network
that performs reinforcement learning, to play a well-known
first-person shooter computer game called Unreal Tournament.
Rewards used for learning are either obtained from the game
environment or estimated using the temporal difference learning
scheme. In this way, the agents are able to acquire proper
strategies and discover the effectiveness of different weapons
without any guidance or intervention. The experimental results
show that our agents learn effectively and appropriately from
scratch while playing the game in real-time. Moreover, with the
previously learned knowledge retained, our agent is able to adapt
to a different opponent in a different map within a relatively short
period of time.

Index Terms—Reinforcement learning, real-time computer
game, Unreal Tournament, Adaptive Resonance Theory oper-
ations, temporal difference learning.

I. INTRODUCTION

ODERN video games have become a core part of the
entertainment world today. The rapidly growing global
game industry is valued about 78.5 billion US dollars in 2012,
approximately 62% of the global movie industry [1].
Traditionally, game developers tend to utilize scripting
techniques, finite state machines, rule-based systems, or other
such knowledge intensive approaches to model Non-Player
Characters (NPCs) [2]. These approaches often lead to two
major limitations. First of all, no matter how skilled the de-
velopers are and no matter how long the games have been play-
tested before release, the existence of unseen circumstances is
unavoidable [3]. In such situations, the decisions of the NPCs
are unpredictable and often undesired. As such, it is common
nowadays that popular games periodically release series of
patches or updates to correct those previously undiscovered
loopholes. The second limitation is that these knowledge
intensive approaches are static in nature. The behaviors of the
NPCs usually follow a few fixed patterns. Once the player
learns their patterns and discovers their weaknesses, the game
is considered boring, less fun, and less challenging [4].
Furthermore, from the player point of view, invincible NPCs
are not preferred [5], [6]. People find it is more enjoyable to
play with or against NPCs that try to imitate human players
who have flaws but are able to learn from mistakes. If NPCs
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are able to evolve and dynamically adjust themselves accord-
ing to the interaction outcomes between different players, the
level of player satisfaction increases drastically [7].

Modern video games, especially First-Person Shooter (FPS)
computer games, involve complex and frequent interactions
between players and NPCs. Among all the machine learning
approaches, FPS game environments are naturally suited for
reinforcement learning rather than unsupervised or supervised
learning. As reinforcement learning enables the NPCs to be
rewarded or be penalized according to different interaction
outcomes that are directly derived from the game environment,
this trial-and-error philosophy resembles the natural way of
human learning and suits complex environments well [8].

We create agents (in this paper, the term NPC is in-
terchangeably used as agent or bot) that employ FALCON
(Fusion Architecture for Learning, COgnition, and Navigation)
networks [9] to play an FPS computer game. FALCON is
a generalization of the Adaptive Resonance Theory (ART)
[10] to perform reinforcement learning. By utilizing respective
FALCON networks, our agents learn and apply rules for both
behavior modeling and weapon selection during run time.

Our game of choice is Unreal Tournament 2004 (UT2004),
which is a well-known commercial FPS computer game.
UT2004 has been directly used as the application domain of
much research work (elaborated in Section II). The UT2004
game server provides interfaces for two-way communications,
such as passing the relevant game information to the user and
receiving user commands to control the avatar in the game. To
make our implementation work easier, we use Pogamut [11],
which is a freeware to facilitate rapid developments of agents
embodied in UT2004.

To deal with the partially-observable information (elabo-
rated in Section IV-C) provided by UT2004, in this paper,
we propose a set of combinatorial operations for FALCON
networks to replace the conventionally applied operations.
Our agents employ two respective FALCON networks to
learn how to select appropriate behaviors and how to choose
effective weapons under different circumstances. In the ex-
periment section, we first show that the proposed combina-
torial learning operations enable our agents to learn (from
scratch in real-time) more appropriately in terms of behavior
modeling and effectively in terms of weapon preferences.
After demonstrating how different values of the two critical
FALCON parameters affect the overall performance in one
game configuration, we apply the same set of parameter setting
to three more game configurations, where our agents play
against different opponents in different maps, to evaluate the
performance and more importantly, to show the general set
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of parameter values can be commonly adopted in different
game configurations. Furthermore, we conduct experiments of
our agent playing against the new opponent in the new map
with pre-inserted knowledge retained from playing against the
previous opponent in the previous map. The statistical test
shows that after convergence, the agent adapting the pre-
inserted knowledge performs at the same level as the agent
learning from scratch, however, within a much shorter period
of time. Therefore, based on the carefully defined learning
algorithms, we show that the general set of parameter values
can be commonly adopted in different game configurations
and our agents are able to quickly adapt to new opponents in
new maps if the previously learned knowledge is retained.
The rest of this paper is organized as follows. First, we
review related work. Then we talk about the chosen FPS
computer game (UT2004) and its corresponding development
software (Pogamut). Next, we introduce FALCON as the rein-
forcement learning methodology and the variations we made
to enable our agents to learn appropriately and effectively.
Subsequently, we provide the experimental results with ample
illustrations and discussions. Finally, we conclude this paper.

II. RELATED WORK

In computer games, adaptive NPCs are beneficial to both
developers and players. Integrating various intelligent method-
ologies into NPCs is one feasible way to meet this demand
[12]. In this section, we review the related research work.

Spronck et al. [13], [14] use dynamic scripting to create
different NPCs (with different scripts, i.e. rules, according to
both tactics and level of experiences of the opponents) to fight
against different players. This approach could increase the
satisfaction level of the human players because their opponents
are dynamic. However, the NPCs are fixed after creation: They
do not evolve in real-time.

Cook et al. [15] use a graph-based relational learning
algorithm to extract patterns from human player graphs and
apply those patterns to agents. This work shows how human
knowledge could be transferred, but it cannot improve the
intelligence of the agent.

Many researchers use Genetic Algorithms (GAs) to auto-
matically tune the parameters used in games [16]-[19]. These
parameters include weapon preferences, priorities of targets,
and different level of aggressiveness. Although the perfor-
mance is getting better and better through generations, similar
to reinforcement learning with function approximation, GA
does not guarantee the final solution to be globally optimal.
Moreover, even for a satisfactory sub-optimal solution, GA
often takes an unnecessarily long time for a real-time computer
game.

Among the aforementioned work, both commercial com-
puter games and self-implemented platforms are applied.
There is also much research work that focuses on the same
application domain as ours, the UT2004 FPS computer game.

Hy et al. [20] define a way to specify various behaviors of
the agents, such as aggressive, caution, and normal. These
behaviors could be tuned by adjusting the corresponding
probability distributions, which is a straightforward way to use

only probability equations to determine the next action instead
of writing and maintaining scripts. However, the parameters
defined are all based on heuristics or experiences, which
often involve human bias because different people may have
different cognitions and judgments for different behaviors.

Kim [21] proposes a finite state machine to switch between
different behaviors of the agents according to the context-
sensitive stimuli received from the game environment. How-
ever, this architecture is rigidly defined and the agents are hard-
coded. They always perform the same action under similar
circumstances and are not able to evolve.

There is also research work [8], [22] closely related to our
approach, wherein reinforcement learning is applied to create
agents in UT2004. However, they study the collaboration
strategies for an entire team of agents in the Domination game
scenario. In contrast, we focus on the behavior selections
and the weapon preferences of a single agent in the 1-on-1
DeathMatch game scenario. Furthermore, there is a series of
research work related to the BotPrize competition' [5], which
is like a Turing Test for bots that evaluates whether computer
programs are able to convince human judges that they are
the actual human players. The basic idea behind one of the
two winner bots is to mimic the actions of the other opponents
(human players and bots) that have been recorded in the short-
term memory module. The other winner bot (previous version
presented in [23]) applies evolutionary algorithms to optimize
combat behaviors and follows the traces of human players
to navigate in the map. Much work on human-like bots is
presented in [24]. To numerically evaluate humanness, Gamez
et al. [25] propose a measure to combine scores from various
sources into a single number. Their bot utilizes a relatively
large spiking neural network with a consequently large number
of connections as the global workspace to resemble the human
brain architecture and to perform human-like behaviors in real-
time. Different from many bots that focus on the human-
like behaviors, our bot focuses on the capability to select
appropriate behaviors and choose effective weapons under
different circumstances. The rewards used for learning are
either directly obtained from the interaction outcomes in the
game environment or estimated using the temporal difference
learning scheme. Therefore, our bot does not need any role
model to learn from. Although focusing on how to defeat
the opponents, our bot is also human-like in the sense that it
learns how to select appropriate behaviors and choose effective
weapons according to the perceived interaction outcomes
through trial-and-error, like human players do.

III. UT2004 AND POGAMUT

UT2004 is a popular FPS computer game, which provides
an environment for embodying virtual agents. There are many
game scenarios available and the most commonly played ones
are the DeathMatch, Domination, and Capture The Flag (CTF)
scenarios. Fig. 1 shows a screen snapshot of the game taken
from the spectator point of view.

TAll details and archives of the BotPrize competition are available online:
http://www.botprize.org/
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Fig. 1. A screen snapshot of the Unreal Tournament 2004 game. FALCONBot
(the bottom one) is engaging fire with advancedBot in the Idoma map.

Unreal
Tournament
2004

Server

| GameBois2004

o)
Local Parser
==

Agent

Fig. 2. Pogamut architecture overview (picture excerpted from Pogamut
website, https://artemis.ms.mff.cuni.cz/pogamut/).

In UT2004, a human player uses a keyboard and a mouse to
control the actions of an avatar in a 3-D confined virtual world.
On the other hand, the actions of an agent are performed when
specific commands are received by the game server. These
actions are primitive ones: run, jump, turn, shoot, change
weapon, etc. Both players and agents have many high-level
tasks in the game: killing opponents, collecting items, securing
areas, etc. The winning criterion is different for different
game scenarios. In terms of the DeathMatch scenario, the
first individual who obtains a predefined game score wins
the game. One point is awarded when any individual kills an
opponent and deducted when any individual commits suicide
(killed by the collateral damage of own weapon or killed
by the environment, e.g. by falling from high ground or by
entering a pool of lava). Getting killed in the game is a minor
setback, since an individual re-enters the game with a health
level of 100 points (which can be boosted by collecting special
health items to 199) and the two most primitive weapons (those
collected in the previous life are removed). Therefore, always
staying healthy and possessing powerful weapons with ample
ammunition results in better chances of winning.

Pogamut [11] is an Integrated Development Environment
(IDE) and a plug-in for the NetBeans Java development envi-
ronment. Pogamut communicates to UT2004 through Game-
bots 2004 (GB2004) [26]. GB2004 is an add-on modification
written in UnrealScript (the scripting language of UT2004),
which delivers information from the game to the agent and vice

Cognitive Field

Fy 1 I — F

Action (A) Reward R)

Motor Field Feedback Field

State (S)

Sensory Field

Fig. 3. FALCON network structure.

versa. Because GB2004 only exports and imports text mes-
sages, a parser is required for the translation tasks. Pogamut
has a built-in parser module, which automatically converts the
text messages to Java objects and vice versa. The architecture
of Pogamut is shown in Fig. 2.

It is convenient to implement an agent that plays UT2004
using Pogamut, which provides templates for various types of
simple agents. The user only needs to define and override a
few functions to develop a limited but functional agent. Other
than templates, there are also competitive agents provided by
Pogamut. They are good examples to follow and could be
used for benchmarking purposes. In the experiment section,
we employ two sample bots, namely advancedBot and
hunterBot, as the opponents of our FALCONBot.

IV. FALCON AND TEMPORAL DIFFERENCE LEARNING

A Fusion Architecture for Learning, COgnition, and Navi-
gation (FALCON) is proposed in [9]. It employs a 3-channel
architecture (see Fig. 3), comprising a cognitive (high-level)
field (F>) and three input (low-level) fields. The three input
fields include a sensory field (F) representing states, a motor
field (F?) representing actions, and a feedback field (F}) rep-
resenting reinforcement values. FALCON is a self-organizing
neural network based on the Adaptive Resonance Theory
(ART) [10], which means it is able to evolve systematically
to incorporate new information. FALCON networks can either
learn from scratch or learn with pre-inserted knowledge. When
learning from scratch, the FALCON network consists of only
one uncommitted code (all weight values are set to 1) in the
cognitive field. When learning with pre-inserted knowledge,
the FALCON network consists of a number of committed
codes (each code represents an inserted rule, whose values
vary in the [0, 1] interval) and one uncommitted code.

There are two major processes to utilize FALCON networks,
namely knowledge retrieval and knowledge update. When we
need to retrieve certain knowledge, we present the currently
known vectors of the input fields to retrieve the winner code
in the cognitive filed. For example, if we want to find out
which action according to the current state will receive the
maximum reward of 1, we present the state vector and the
reward vector (1, 0) to the FALCON network and consequently
read out the action vector of the winner code retrieved from
the cognitive field. The process to find the winner code is
briefly described as follows. According to the current input
vectors, for each code in the cognitive field, the activation
value is computed. The winner code is then selected to be the
one having the largest activation value among all the codes
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that fulfil the vigilance criterion. The equations are defined in
such a way that an uncommitted code will always be selected
as the winner if all the committed codes do not fulfil the
vigilance criterion. Following the aforementioned example, if
a committed code is retrieved, the action stored in the winner
code will be performed. If an uncommitted code is retrieved,
a random action will be performed instead.

When we need to learn certain knowledge, we present all
vectors of the three input fields and perform the knowledge
retrieval process to find the winner code in the cognitive
filed. Either a committed code (closely similar knowledge
has been learned before) or an uncommitted one (the pre-
sented information is new) will be retrieved. The currently
presented information is then updated to the knowledge stored
in the winner code. The update of information procedure is
named template learning. If template learning is performed,
the uncommitted code becomes committed and FALCON will
automatically create a new uncommitted code in the cognitive
field for future usage. Thus, FALCON expands its network
architecture dynamically in response to the ongoing new input
patterns. A detailed example is given later in Section V-F.

Most existing FALCON networks [9], [27]-[30] apply fuzzy
ART operations [31] (elaborated in Section IV-A), which
require the input vectors to include the complement values
of the originals. For example, we can assume the weight
vector of the winner code for a particular field is retrieved
as (0.2,0.8). This value only represents one exact point:
0.2 with its complement of 0.8. If the currently presented
input vector of that field (0.1,0.9) is to be learned with
the learning rate 8 = 0.1. The updated weight vector will
become (0.19,0.8) (detailed equations are given in Section
IV-A). Thus, it now represents a region from 0.19 to 0.2
(the complement of 0.8). Because each code learned with
fuzzy ART operations is generalized to represent a certain area
instead of an exact point, in general, fuzzy ART operations
produce a smaller number of cognitive codes than other types
of operations do. Applying fuzzy ART operations to reduce the
number of learned codes is referred as the method to avoid the
code proliferation problem [32]. FALCON networks can also
apply ART?2 operations [33], [34] (elaborated in Section IV-B),
which use exact values to represent knowledge. However, in
UT2004, we find FALCON networks learn more appropriately
and effectively with our proposed combinatorial operations
(elaborated in Section IV-C), which combines fuzzy ART and
ART?2 operations. Furthermore, to estimate the reward received
in the current state if the selected action is performed, temporal
difference learning is incorporated in TD-FALCON networks
[35] (elaborated in Section IV-D).

A. FALCON Network with Fuzzy ART Operations

The generic network dynamics of FALCON, based on fuzzy
ART operations [31], is described as follows:

1) Input vectors: Let S = (s1, 82,..., s, ) denote the state
vector, where s; € [0, 1] indicates the sensory input 7. Let A =
(a1,as,...,an,) denote the action vector, where a; € [0, 1]
indicates the preference of action i. Let R = (r,7) denote
the reward vector, where r € [0, 1] is the reward signal value

and 7 = 1 — r. Complement coding serves to normalize the
magnitude of the input vectors and has been found effective
in fuzzy ART systems in preventing the code proliferation
problem [32]. Since all the values used in FALCON are within
the [0, 1] interval, normalization is often required.

2) Activity vectors: Let x* denote the F} activity vector
for k =1,2,3. Let y denote the F; activity vector.

3) Weight vectors: Let Wf denote the weight vector
associated with the ;' code in F, for learning the input
patterns in FF for k = 1,2, 3.

4) Parameters: The dynamics of FALCON is determined
by choice parameters a¥ > 0 for k& = 1,2,3; learning rate
parameters 3 € [0, 1] for k = 1,2, 3; contribution parameters
~F € [0,1] for k = 1,2,3, where 37 _, v* = 1; and vigilance
parameters p* € [0,1] for k = 1,2, 3.

5) Code activation (Fuzzy ART): A bottom-up propagation
process first takes place in which the activities (the choice
function values) of the cognitive codes in F, are computed.
Specifically, given the activity vectors x!, x2, and x® (in F11
F12, and Ff’, respectively), for each F, code j, the choice
function 7} is computed as follows:

X Ixk A wh|
= Z Tk |wk| M
where the fuzzy AND operatlon A is defined by p; A q; =
min(p;,q;), and the norm |.| is defined by |p| = > . p;
for vectors p and q. In essence, T; computes the similarity
between the input vectors and the weight vectors of the Fj
code j with respect to the norm of the weight vectors.
6) Code competition: A code competition process follows
under which the F5 code with the highest choice function
value is identified. The winner is indexed at J where

T; = max{T; : for all F, code j}. 2)

When a choice is made at code J, y; = 1 and y; = 0, V5 #
J. This indicates a winner-take-all strategy.

7) Template matching: Before code J can be named as
the winner, a template matching process checks whether the
weight templates of code J are sufficiently close to their
respective activity patterns. Specifically, resonance occurs if
for each channel k, the match function m" of the chosen
code J meets its vigilance criterion (defined in Eq. (3)). The
choice and match functions work co-operatively to achieve
stable coding and control the level of code compression.

> pF. 3)

If any of the vigilance constraints are violated, mismatch
reset occurs in which the value of the choice function 7' is
set to O for the duration of the input presentation. The search
and evaluation process is guaranteed to end because FALCON
will either find a committed code that satisfies the vigilance
criterion or activate the uncommitted code (all weight values
equal to 1) that definitely satisfies the criterion.

8) Template learning (Fuzzy ART): Once a code J is
selected, for each channel &, the weight vector w§ is updated
by the following learning rule:

— 85w

Wi(ncw) (1 Kold) | gk (x"F A Wk(OId)). 4)
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The learning function adjusts the weight values towards
the fuzzy norm (AND) result of their original values and the
respective input values. The rationale is to learn by encoding
the common attribute values of the input vectors and the
weight vectors. For an uncommitted code, the learning rates
(% are typically all set to 1. For committed codes, 5* are set
to high values for fast learning in straightforward situations or
small values for slow learning in noisy environments.

B. FALCON Network with ART2 Operations

Instead of fuzzy ART operations, FALCON network can
incorporate ART?2 operations [33], [34] to avoid possible over-
generalization (elaborated in Section IV-C). To change from
fuzzy ART to ART2 operations, only two functions need to
be altered:

1) Code activation (ART2): The ART2 code activation
function defines the difference between the input vector x*
and the weight vector wé? as their cosine similarity measure:

Xk wh
Ty=) ~ (5)
Z ||Xk||||W I
where the operation - is the dot product and the norm ||.|| is

defined by ||p|| = /3, p;.

2) Template learning (ART2): While the Fuzzy ART
template learning function (Eq. (4)) updates the new weight
vector w]}(new) with the generalization of the input vector and
the old weight vector x* /\wi(dd), the ART2 template learning
function only learns towards the input vector x*:

wf;(new) =(1- ﬁk)wﬁ(OI(l) + 5kxk. (6)

C. Combinatorial Operations for Effective Learning

Fuzzy ART operations work well in generalization, es-
pecially in deterministic scenarios such as the mine-field
navigation [9] and the mission-on-mars exploration [29]. In
those applications, the same choice of action made by the
agent under similar circumstances always gets similar rewards.
Therefore, generalization of similar information does not incur
information loss and it helps to maintain a smaller set of rules.

However, FPS games are not identical to those application
domains. In this kind of game, certain information such as the
health of the opponent is often not provided to the players. In
this sense, UT2004 is a Partially-Observable Markov Decision
Process (POMDP) [36]. As a consequence, perceptual aliasing
occurs and distinct states are sensed via identical feature
vectors. For example, whether an agent kills its opponent
or gets killed does not only depend on the agent itself, but
also depends on the status of the opponent (such as health),
which is unknown to the agent. In this case, if the agent
is facing closely similar (self-sensed) situations at different
times and performs the same action, the outcomes of the
interactions between it and its opponent can be different, some-
times exactly opposite. Generalization of the contradictory
information is dangerous and may lead to incorrect results
(because information learned is ambiguous) or lead to the

creation of an unnecessarily large number of redundant rules
(because rules become less-representative if over-generalized).

Mathematically speaking, we can derive Eq. (7) from Eq.
“:

Wﬁ(new) _ WLk]:(old) A (Wi(old) Bk( k(old) Xk)> 7)

It is obvious to notice from Eq. (7) that the new weight
vector w J( new) will always be less than or equal to the old
weight vector WI;(OM). Therefore, using fuzzy ART template
learning function can only generalize information. Moreover,
once generalized, it cannot be specialized afterwards.

It is our intention to generalize the sensory field input
vectors of the FALCON network (see Fig. 3). Therefore,
similar situations are grouped together and only one vector is
required to represent all of them. The input vectors are Boolean
for the motor field and they require exact matches. Therefore,
applying either Eq. (4) or Eq. (6) makes no differences here.
Problems occur when the feedback field input vectors are
generalized. In the FPS game domain, for the same pair of state
and action, the reward can vary drastically. A good example is
assuming the agent Kkills its opponent at one time. For another
time, the agent may have the same state vector (because
the health level of the opponent is unknown) as before and
choose the same action, but this time itself gets killed. In this
POMDP [36], the quality of one rule may highly depend on its
initial values. Recall that when an uncommitted code becomes
committed, the weight vector is assigned to the input vector
wlj(new) = x"* (learning rates all equal to 1). After setting the
initial weight vector, a small § value means the learning is
slow and the correctness of this code highly depends on its
initial value. If /3 is set to a high value, when contradictory
outcomes arrive, the code will soon become over-generalized,
less-representative, or even misleading. Moreover, no matter
how [ is set, a code will become redundant eventually if
contradictory input vectors keep coming in. Because once
a code is over-generalized, it will always fail the vigilance
criterion defined in Eq. (3).

Therefore, in order to make our agents generalized and at the
same time to ensure they learn appropriately and effectively,
we propose to combine the fuzzy ART and ART2 operations.
Fuzzy ART operations are applied to the state (¢ = 1) and
action (k = 2) vectors to preserve generalization and ART2
operations are applied to the reward (k = 3) vectors for
effective learning. The updated code activation and template
learning functions are defined as follows, respectively:

2 k k 3 3

|x* A w?| x3 . w3
T:§ k J 4 3 J 8
! ! ak + [wi| ! (=3[ [[w]” ®)

(1— BF)ywh 4 g (xF Awk) for k= 1,2,
(1— BF)ywh 4 phxk for k = 3,

k(new)

W) = { ©)
where w' J denotes w; and w’} denotes w

The improvement of utilizing the combinatorial operations
(Egs. (8) and (9)) instead of fuzzy ART operations (Egs. (1)
and (4)) is illustrated in Section V-C.

k(old)
o
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TABLE I
TD-FALCON ALGORITHM WITH DIRECT CODE ACCESS
Step 1 Initialize the TD-FALCON network.
Step 2 Sense the environment and formulate the corresponding state vector S.
Step 3 Following an action selection policy, first make a choice between exploration and exploitation.
If exploring, take a random action.
If exploiting, identify the action a with the maximum @Q-value by presenting the state vector S, the action vector
A=(1,...1), and the reward vector R=(1,0) to TD-FALCON. If no satisfactory action is retrieved, select a random one.
Step 4  Perform the action a, observe the next state s, and receive a reward r (if any) from the environment.
Step 5  Estimate the value function Q(s, a) following the Temporal Difference formula defined in Eq. (12).
Step 6  Present the corresponding state, action, and reward (Q)-value) vectors (S, A, and R) to TD-FALCON for learning.
Step 7 Update the current state by s = s’.
Step 8  Repeat from Step 2 until s is a terminal state.
D. TD-FALCON Network we set the activity vectors x* = S, x? = (1,...,1), and

FALCON networks learn associations among states, actions,
and rewards. However, decision making sometimes does not
only depend on the current state. We need to perform antici-
pations on future outcomes and select the action that may lead
to the maximum reward. Furthermore, not every state-action
pair is guaranteed to receive a reward. We need to carefully
estimate the reward for learning. For those purposes, Temporal
Difference (TD) learning is incorporated into FALCON.

TD-FALCON is first proposed in [37]. It estimates and
learns value functions of the state-action pair Q(s, a), which
indicates the estimated reward when performing action a in
state s. Such value functions are then used to select an action
with the maximum payoff. The TD-FALCON network used
in this paper applies the direct code access procedure [32] to
select the best action associated with the state.

Given the current state s, TD-FALCON first decides be-
tween exploration and exploitation by following an action
selection policy. For exploration, a random action is picked.
For exploitation, TD-FALCON searches for the optimal action
through a direct code access procedure. Upon receiving a
feedback from the environment after performing the action,
a TD formula is used to compute a new estimate of the Q-
value to assess the chosen action in the current state. The new
@-value is then used as the teaching signal for TD-FALCON
to associate the current state and the chosen action to the
estimated (Q-value. The details of the action selection policy,
the direct code access procedure, and the temporal difference
learning equation are elaborated as follows:

1) Action Selection Policy: There is a trade-off between
exploration (the agent should try out random actions to give
chances to those seemingly inferior actions) and exploitation
(the agent should stick to the most rewarding actions to its
best knowledge). The agent takes a random action with a
probability of € or selects the action with the highest reward
with a probability of 1 — €. In practice, we prefer the agent
explores more in the initial training phases and exploits more
in the final phases. Therefore, ¢ decreases after each training
trial. This is known as the e-greedy policy with decay.

2) Direct Code Access Procedure: In exploitation mode, an
agent, to the best of its knowledge, searches for the cognitive
code that matches with the current state and has the maximum
reward value. To perform the direct code access procedure,

x% = (1,0). TD-FALCON then performs code activation (Eq.
(8)) and code competition (Eq. (2)) to select the winner code
J in F,. Consequently, a readout is performed on J in its
action field F?:

X2(new) _ X2(old) A w3 ) (10)

An action ay is then chosen, which has the highest value in
the action field F?:

T3 = max{x?(new) : for all F? code i}.

(an

3) Learning Value Function: TD-FALCON employs a
bounded Q-learning rule, the equation for the iterative estima-
tion of value function Q(s, a) adjustments is given as follows:

Q(s,a)),

TDerr = 7 + ymaxy Q(s',a’) — Q(s, a),

AQ(s,a) = aTDeypp (1 — (12)

13)

where a € [0,1] is the learning parameter; 7D, is a
function of the current ()-value predicted by TD-FALCON
and the ()-value newly computed by the TD formula; r is the
immediate reward value; v € [0, 1] is the discount parameter;
and max, Q(s’,a’) denotes the maximum estimated value of
the next state s’.

The Q-learning update rule is applied to all states that the
agent traverses when the maximum value of the next state
s’ could be estimated. By incorporating the scaling term 1 —
Q (s,a) in Eq. (12), the adjustment of @Q)-value is self-scaling
so that they could not increase beyond 1 [32]. If the immediate
reward value r is constrained within the [0, 1] interval, we can
guarantee the (Q-values are bounded in the [0, 1] interval [32].

The overall TD-FALCON algorithm with the direct code
access procedure is summarized in Table 1.

V. EXPERIMENTS AND DISCUSSIONS

Our agents employ two networks for behavior modeling
(TD-FALCON) and weapon selection (FALCON) respectively.
First of all, we conduct experiments on how to appropriately
and effectively model the behaviors of our agents through
reinforcement learning. In this set of experiments, we evaluate
different learning operations and parameter values to show
how they affect the performance of our agents in several
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aspects with discussions. Moreover, to obtain stable perfor-
mance evaluation, the weapon selection network is by-passed
during behavior modeling, which means all the change-to-
the-best-weapon commands are governed by the game server
wherein the pre-defined expert knowledge is stored. After
presenting and evaluating the experimental results on behavior
modeling, the general set of parameter values is then applied
to all the other experiments presented in this paper. Actually,
these values can be roughly estimated based on the basic
understanding of the application domain, which could serve
as the guidelines for applying similar reinforcement learning
methodologies in other similar FPS game domains.

In the following set of experiments, we challenge our agents
to effectively learn the weapon preferences. Before conducting
experiments on weapon selection, we choose a set of learned
behavior modeling rules (from previously conducted experi-
ments) for appropriate behavior modeling. To obtain stable
performance evaluation, the learning of the behavior modeling
network is turned off in the weapon selection experiments.
Therefore, the performance evaluation is certainly determined
by the quality of the learned weapon selection rules.

After evaluating the individual performance of the behavior
modeling and weapon selection networks, respectively, we
enable the learning of both networks and conduct three more
sets of experiments, wherein our agents play against different
opponents in different maps. In these three sets of experiments,
our agents learn from scratch, which means both networks
start with zero knowledge (i.e. only one uncommitted code
in the cognitive field). Furthermore, to show our agents can
quickly adapt the learned knowledge to a new opponent in
a new map, we repeat one set of the conducted experiments
wherein our agents play against a new opponent in a new map
with the learned (after playing against the previous opponent
in the previous map) sets of rules (both behavior modeling
and weapon selection) pre-inserted.

A. Designing Experiments

All experiments are conducted in the 1-on-1 DeathMatch
scenario of UT2004. Each game trial completes when either
bot obtains a game score of 25. We run each set of experiments
for 20 times and average the results to remove randomness.

Two sample bots (advancedBot and hunterBot) pro-
vided by Pogamut are selected as the opponents of our bot
named FALCONBot. AdvancedBot collects items along the
way while exploring the map and shoots at its opponent once
spotted. It always uses the same weapon, named assault rifle,
which is a primitive weapon given to every new born player.
Because advancedBot performs all basic high-level tasks
that a competent agent should do and its combat performance
is steady (always shoots with assault rifle unless it runs out
of ammunition), it is probably the most appropriate opponent
in terms of providing baseline comparisons for performance
evaluation. There is one and only one modification that we
made to keep the experiments more consistent: Whenever
advancedBot runs out of ammunition (less than 50 bullets
left for assault rifle), it sends specific commands directly to
the game server for refill. Therefore, advancedBot always

sticks to the same weapon and thus becomes a steadier
opponent. Moreover, such a modification actually increases the
performance of advancedBot. Because based on our obser-
vation, changing weapons during battles (after running out of
ammunition rather than proactively) is a noticeable disadvan-
tage (wasting critical time). However, we do not automatically
refill the ammunition for FALCONBot. If FALCONBot runs
out of ammunition for its weapon in use, it is forced to
change to another weapon. During battles, if the weapon
selection network is enabled to learn and retrieve knowledge,
FALCONBot changes to the best weapon in possession (has
ammunition) based on the learned knowledge (changes to a
random weapon if no relevant knowledge has been learned or
decides to try another weapon for exploration). HunterBot
also performs all basic high-level tasks that a competent
agent should do and it has been used in much research work
[25], [38]-[40]. Different from advancedBot, hunterBot
changes its weapon based on the expert knowledge stored in
the game server.

Two maps (“DeathMatch 1-on-1 Idoma” or Idoma in short
and “DeathMatch 1-on-1 Spirit” or Spirit in short) provided
by UT2004 are selected to be the combat arenas. Both maps
are ideal for 1-on-1 DeathMatch games because they are
relatively small in size but have all kinds of collectible items
for bots to pick up. Furthermore, the Idoma map has several
levels of ground in different altitudes and rich terrain types:
slopes, tunnels, obstacles, etc. Therefore, the bots are naturally
prevented from excessive encounters and escaping becomes
relatively easier. On the other hand, the Spirit map also has
levels of ground but its number of terrain types is limited
and the central space of the virtual arena is hollow (one bot
can spot the other from a different level of ground in the other
side of the map and bots can directly drop to the lower ground
from a higher level), which increase the chances of encounters.
Therefore, in the Spirit map, bots have relatively less amount
of time to collect useful items. In summary, the abilities of all
bots can be thoroughly evaluated in these two maps.

All game configurations are listed in Table II to show
explicitly how we conduct our experiments. In the first row of
Table II, BM denotes the learning of behavior modeling and
WS denotes the learning of weapon selection.

Our experiments are conducted concurrently on various
computers. One of the computers is equipped with Intel
Pentium Dual Core processor of 3.4 GHz and 2 GB RAM.
When we use it to run the experiments shown in Section V-H,
we find that the decision cycle (for all experiments, the time
budget between cycles are given as 200 ms) is never postponed
(occasionally delayed by server communications) due to any
excessive computation time taken by our agents. This shows
that our agents are able to learn and make decisions in real-
time while playing the FPS game.

A recorded video on how we set up the experiments and
how our agents learn in real-time while playing the game
has been uploaded online?. From the demo video, one may
notice that sometimes FALCONBot erratically switches its
direction. There are mainly two circumstances under which

2The demo video is available online: http://youtu.be/iSAEXZ1KOgQ
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TABLE II

GAME CONFIGURATIONS OF ALL THE CONDUCTED EXPERIMENTS
Experiment Opponent Map BM WS € decay # trials Purposes
Section V-C advancedBot Idoma on off 0.5 0.02 30 To evaluate different operations and different parameter values.
Section V-E advancedBot Idoma off on 0.5 0.02 30 To evaluate whether learned weapon effects are better than expert knowledge.
Section V-G.1 advancedBot Spirit on on 0.5 0.0125 45 To evaluate the performance under a different game configuration.
Section V-G.2 hunterBot Idoma on on 0.5 0.0125 45 To evaluate the performance under a different game configuration.
Section V-G.3 | hunterBot Spirit on on 0.5 | 0.0125 | 45 To evaluate the performance under a different game configuration.
Section V-H hunterBot Spirit on on 0.5 | 0.05 15 To show FALCONBot can adapt quickly with pre-inserted knowledge.

FALCONBot erratically changes its direction. In the first
circumstance, FALCONBot is momentarily switching between
behavior states. Such behavior is expectated in the earlier trials
of the experiments when FALCONBot is purposely exploring
all the possible options. However, FALCONBot gets more
determined in the later trials as it gradually learns how to select
appropriate behavior states through trial-and-error. The second
circumstance is that the opponent of FALCONBot is out of
sight. Therefore, FALCONBot looks around and occasionally
jumps to locate its opponent.

B. Modeling Behavior Selection Network

In order to avoid having a hard-coded agent that will always
perform the same action under similar circumstances, we
enable our agent to learn in real-time by employing a TD-
FALCON network to model various behaviors.

We define four behavior states for our agent. In each state,
the agent performs a sequence of primitive actions described as
follows. This decomposition of high-level tasks to low-level
actions is similar to the Hierarchical Task Network (HTN)
discussed in [8], [22]. These four states are:

1) Running around state, wherein the agent explores the
map with a randomly selected reachable location. Once
the location is chosen, if our agent remains in this
behavior state, it will reach the determined location
before the next one can be chosen. However, a new
random reachable location will be chosen when our
agent switches to this behavior state from another state.

2) Collecting item state, wherein the agent runs to a par-
ticular place and picks up a collectible item. Different
priorities are assigned to all the collectible items in sight,
which can be briefly described as follows. If the health
of our agent is low (less than 100 points), then go for
health boost. Else if the weapon has not been collected,
then go to pick it up. Else if certain ammunition is low
for its corresponding weapon, then go to pick it up. Else
our agent just picks up items along its moving direction.

3) Escaping from battle state, wherein the agent flees the
battle field and collects health boosts nearby. Whenever
our agent decides to escape from the battle, it chooses
a navigation point in its [90°,135°] or [—135°, —90°]
direction. Then, it runs along that direction and picks up
health boosts (if available) nearby.

4) Engaging fire state, wherein the agent tries to kill its
opponent and avoids being hit at the same time. There
are a number of movements that our agent performs
during battles: moving towards or away from the op-
ponents (according to the effective range of the weapon

L N HEEEREERERR.

Health l enemySeen l healthSeen lhasNew{Neaponl Behavior 2 l Behavior 4

beingDamaged hasAmmo weaponSeen Behavior 1 Behavior 3
Action Reward
‘ ‘ ‘ ‘ ‘ ‘ ‘ l:l The original value
Behavior 1 J Behavior 3 l Q value [ The complement value
Behavior 2 Behavior 4

Fig. 4. Information vector for behavior modeling.

in use), jumping, crouching (when the agent is on a
higher level of ground than its opponent), dodging (when
the agent detects an incoming projectile), strafing, etc.
Although in this paper, certain movements are performed
randomly, we propose another FALCON network to
learn the effective tactic movements (according to the
strategies or abilities of its opponents) to avoid being hit
as part of the future work. Although, only in this state,
our agent fires on its opponents, it is programmed to
collect useful items while firing (by sending the strafe-
to-location command).

The information vector used for behavior modeling is shown
in Fig. 4. Inputs in grey indicate they are the complements
of their respective preceding inputs. These complements are
added to facilitate FALCON operations (see introduction in
Section IV) as well as to avoid code proliferation [32].

The state vector S comprises eleven inputs. Therefore, the
length of S is 22 (including eleven complements). These inputs
indicate (1) the current health level of the agent (normalized),
(2) whether the agent is being damaged, (3) whether the
opponent is in sight, (4) whether the agent has adequate am-
munition, (5) whether any collectible health boost is available
nearby, (6) whether any collectible weapon is available nearby,
(7) whether the agent possesses weapons other than the two
primitive ones given when born, and (8) another four Boolean
values such that one and only one of them is 1, indicating the
current behavior state of the agent. The length of the action
vector A is eight (including four complements). One and only
one of the four inputs is 1, indicating which behavior state the
agent should switch to based on S and R.. The reward vector
R only has two values, namely the reward and its complement.

The aim of the DeathMatch game scenario is to get high
game scores. However, we cannot directly use the scores as
the rewards for agents. Instead, by intuition, the highest reward
of 1 is given whenever the agent kills its opponent and the
lowest reward of 0 is given whenever the agent gets killed. The
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reward of 0 is actually a form of punishment because a reward
of 0.5 is the neutral value in the [0, 1] interval. Furthermore,
an immediate reward of 0.75 (the median number between
the neutral reward and the highest reward) is given whenever
the agent successfully hits its opponent, increases health, or
collects new weapon.

C. Experiments on Behavior Modeling

Before conducting experiments on behavior modeling, we
need to set TD-FALCON parameters. The default parameters
used are listed as follows:

Vigilance parameters {p', p?,p3} are set to {0.8,1,0.2}.
Because most (10 out of 11) of the attributes in the state
vector are Boolean, we set p! to a relatively high value to
preserve certain level of integrity of the learned knowledge.
At the same time, p' is not set to a extremely high value to
allow compaction on the learned knowledge to obtain certain
level of generalization. Setting p? to 1 for action field means
that we want an exact match for all the Boolean variables. The
reason for setting p® to a low value for the reward field is to
ensure effective learning for all similar state-action pairs.

Learning rate parameters {3, 3%,33} are set to
{0.2,0.2,0.1}. Because we have immediate rewards, ('
and 32 are set to low values for slow learning. Actually, 32
for the action field could be assigned to any value in the [0, 1]
interval, because we constrain the learning in that field to be
an exact match.

The contribution factors {y!,7%,93} are set to
{0.3,0.3,0.4}. We slightly favor the reward field not
because we intend to be goal driven, but because the code
activation values are calculated based on different functions.
In general, cosine similarity measurement (Eq. (5)) is smaller
than fuzzy measurement (Eq. (1)) in terms of numerical
values.

Choice parameters {a!, a?, a3} are set to {0.1,0.1,0.1}. It
is introduced to avoid any possible invalid calculation in Eq.
(1).

TD learning rate parameter a = 0.5 in Eq. (12) and TD
learning discount parameter v = 0.5 in Eq. (13), which are
the general values used in TD-FALCON networks [32].

The action selection policy threshold e is initially set to
0.5 and decays 0.02 after each game trial until it reaches 0.
Therefore, our agents are expected to explore as well as exploit
in the first 25 game trials and rely only on their best knowledge
in the last 5 game trials.

Three sets of experiments are conducted for behavior model-
ing. In these experiments, we always use the default parameter
values except the one being evaluated to ensure consistent
performance comparisons.

1) Comparisons on different operations: As discussed in
Section IV-C, using combinatorial operations instead of fuzzy
ART operations is expected to improve the performance of our
agents in this FPS game domain. Performance comparisons on
different operations are shown in Fig. 5.

The game score difference is defined as the game score of
our agent minus the game score of advancedBot at the end
of each game trial. The agent with combinatorial operations
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Fig. 5. Results of FALCONBot with different TD-FALCON operations
playing against advancedBot in the Idoma map. (a) Averaged game
score difference between FALCONBot and advancedBot. (b) Averaged
percentage of actual TD-FALCON usage of FALCONBot. (c) Averaged
number of codes generated in the F» cognitive field. (Note: in this paper,
all figures visualizing the experimental results are plotted with the confidence
intervals at every third trials to avoid too much overlaps that could potentially
mess up the figures.)

(Egs. (8) and (9)) uses the default parameter values as given
earlier. It is obvious from Fig. 5(a) that it performs better
(the highest average game score difference is 6.9) than all
the other agents with fuzzy ART operations. This statement
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is further supported by the statistical test. We run single
factor ANOVA [41] on the averaged game score differences
obtained by using combinatorial operations and fuzzy ART
ones (p! = 0.9 is used for comparison since it performs
better than p* = 0.7 and p' = 0.5) from the 26" to
30" game trial (after convergence). P-value is computed as
3.43 x 10719 < 0.05 and F = 1337.37 > F.i = 5.32.
Both measures indicate that FALCONBot significantly im-
proves its performance in the FPS game domain by using the
combinatorial operations than using the fuzzy ART ones. In
terms of fuzzy ART operations, if vigilance parameter for the
state vector p! = 0.5, the learning completely fails because
the performance keeps dropping after a slight increase in the
early trials. This indicates that over-generalization with fuzzy
ART operations learns incorrect knowledge in this FPS game
domain. The agent learns if p! = 0.7, but the performance is
not encouraging because the highest game score difference
is only O and it still seems to be decreasing in the later
trials. Further increase of p! to 0.9 shows improvements.
However, the highest game score difference is 1.05, which is
much smaller than 6.9 obtained by applying the combinatorial
operations (corresponding statistical test result is shown earlier
in this paragraph). All agents using fuzzy ART operations
stop improving their performance after the 16" game trial.
In contrast, the agent using combinatorial operations keeps
improving until it converges in the last five game trials.

The agent using combinatorial operations utilizes its learned
knowledge well. Its decisions at the last five trials (converged)
are nearly 100% instructed by the TD-FALCON network (see
Fig. 5(b)). Although the agent is learning from scratch, in the
end, its knowledge set is complete to instruct nearly every
decision making and achieve satisfactory performance. The
learning is thus shown to be successful and effective. For agent
using fuzzy ART operations with p' = 0.5, it relies heavily
(over 97.5% after convergence) on its learned knowledge but
its performance is disappointing. The decrease in performance
when applying fuzzy ART operations with p' = 0.5 again
shows that applying over-generalized fuzzy ART operations
learns incorrect rules. When p! used for fuzzy ART operations
increases, the utilization of learned knowledge decreases and
there is a significant drop when p' = 0.9. There are two
reasons for this finding. The first one is that the agent is
not good at associating similar situations because it might
be over-specific. Therefore, the knowledge learned may not
be complete. The second reason is that once the previously
learned functional knowledge gets corrupted, it is not easy to
make corrections due to the high p! value.

The agent using combinatorial operations generates more
rules (codes in the F5 cognitive field) than all the others using
fuzzy ART operations. This is expected because the agent
using combinatorial operations is less generalized and requires
more rules for competent decision making. It is interesting to
note in Fig. 5(c) that as p' for fuzzy ART operations increases,
the size of the rule set decreases. Intuitively speaking, when
the vigilance parameters decrease, the agent is supposed to
use less rules because those rules are more generalized. This
contradictory proportional relation is due to the reason that
there are many redundant rules created (grouping inconsistent
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Fig. 6. Results of FALCONBot with different vigilance parameter values
playing against advancedBot in the Idoma map. (a) Averaged game score
difference between FALCONBot and advancedBot. (b) Averaged number
of codes generated in the F> cognitive field.

knowledge together makes the rule unreliable) for being over-
generalized. This problem has been discussed in Section IV-C.

2) Comparisons on different p values: After showing that
the agents should apply combinatorial operations (Eqgs. (8) and
(9)) for this FPS game domain, in this subsection, we compare
the performance of the agents based on different vigilance
parameter values. This is an important parameter because it
controls the level of knowledge generalization. Performance
comparisons on different vigilance parameter values are shown
in Fig. 6.

It is clear in Fig. 6(a) that the agent with p! = 0.9
performs worse than the one with p' = 0.8 at all times
(single factor ANOVA test shows that the difference between
p' = 0.8 and p' = 0.9 from the 26" to 30*" game trial is
significant since P-value is computed as 5.44 x 10~7 < 0.05
and F' = 205.80 > Fiy = 5.32). This is because p1 =09
is too specific in this game domain and it leads to ineffective
learning. When p' = 0.7, the agent learns well in the first 15
game trials. However, its performance does not improve ever
since. This is because p' = 0.7 is too general that the learned
knowledge becomes more and more ambiguous and eventually
gets corrupted. Actually, we did perform experiments with
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different p' values around 0.8 (0.77 and 0.83), the results are
not noticeably different with that of using 0.8 (unlike 0.7 and
0.9). This means a rough estimation on the parameter values is
sufficient to create competent agents in the FPS game domain.

The biggest difference among all the three settings of
vigilance parameters in terms of TD-FALCON utilization is
less than 1%. Therefore, the comparisons in this aspect are
not shown and discussed in this paper.

Fig. 6(b) well demonstrates that when the vigilance parame-
ters increase, the agent needs more rules for decision making.
With p! = 0.9, the agent needs over 200 rules which is
significantly large considering its inferior performance. With
p' = 0.7, the agent keeps a small number of rules (less than
106). However, it fails to further improve its performance.

3) Comparisons on different J values: The learning rate
B% in Eq. (9) is also an important parameter. If the agent learns
too fast in this POMDP [36], it may not learn well in the end
or even under-perform due to excessive learning. To facilitate
discussion, we denote low learning rates of {0.2,0.2,0.1} as
small 3 values, medium learning rates of {0.5,0.5,0.2} as
medium £ values, and high learning rates of {1,1,0.5} as big
[ values. The performance comparisons on different learning
rates are shown in Fig. 7.

The performance of the agent applying small 3 values is
not worse than that applying medium (3 values (single factor
ANOVA test shows no real difference from the 26" to 30"
game trial since P-value is computed as 0.21 > 0.05 and
F =186 < F.i = 5.32) as shown in Fig. 7(a). However,
the agent applying big /3 values is not comparable to applying
small 3 values (P-value is computed as 3.62 x 102 < 0.05
and F' = 738.79 > Fyy = 5.32).

As being comparable in performance, the preference be-
tween small and medium [ values depends on their rule set
sizes. According to Occam’s Razor (which states that when
all other things being equal, the simplest solution is the best),
we prefer small S values since the rule size is noticeably
smaller as shown in Fig. 7(b). When big /3 values are used, an
excessive number of rules are generated fast and continuously.
This again shows that over-generalization introduces redundant
rules and is not preferred in this FPS game domain.

Before conducting the other experiments, we would like to
emphasize again in here that although we evaluate various
operations and parameter values in this section, our purpose
is to show that the combinatorial operations should be applied
instead of fuzzy ART operations and how different parameter
values of the vigilance threshold and the learning rate affect
the performance of our agent, rather than sweeping parameter
values to determine the most appropriate ones. We believe
that based on the basic understanding of any application
domain, any developer would be able to apply the proposed
methods with roughly estimated parameter values to achieve
satisfactory performance without a relatively complete sweep.
The default parameter values are used to conduct the rest
of the experiments presented in this paper to show that the
parameter values are general for different game configurations.
Therefore, no tuning is required on any learning parameter.

game score difference

-10F —= 0.2, 0.2, 0.1}
B={05 08502}
a5t ==as e, 1.0, 05) J
20 L L L L L
5 10 15 20 25 20
trial number
(a)

220 T T T T T 3

200 R

number of codes

5 10 15 20 25 30
trial number

(b)

Fig. 7. Results of FALCONBot with different learning rates playing against
advancedBot in the Idoma map. (a) Averaged game score difference
between FALCONBot and advancedBot. (b) Averaged number of codes
generated in the F5 cognitive field.

D. Modeling Weapon Selection

Each weapon in UT2004 has several attributes that can be
queried. Some important ones are the effective distance, the
maximum range, and the weapon type (close-range melee or
long-distance sniper). In Section V-C, weapon selections are
performed by sending specific commands to the game server.
Based on the predefined expert knowledge, the server then
selects the most powerful weapon in possession for the agent.

The idea of incorporating a weapon selection network into
our agent is inspired by [5] that during the competition,
weapon effects are changed and no weapon hints are provided
by the game server. Therefore, all weapon specifics are not
available and the agent must learn all the modifications by
itself. By incorporating a weapon selection network that learns
from scratch, we enable our agent to deal with such challenge.
Furthermore, our agent learns any possessed weapon directly
from the outcomes during battles at run time without any
human supervision and its performance is shown (in Section
V-E) to be as good as using the predefined expert knowledge.

To model the behaviors of our agent in this weapon selection
experiment, we select one of the best performing sets of
knowledge (133 rules) obtained from the previous experiment.
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Weapon 2 Weapon 4 Weapon 6 Weapon 8

Fig. 8. Information vector for weapon selection.

The learning of the behavior modeling network is now turned
off to obtain consistent performance comparisons.

The information vector for the weapon selection network is
shown in Fig. 8. There are only two values used for the state
vector S, namely the (normalized) distance between the agent
and the opponent and its complement. There are nine inputs
(with their complements) for the action vector A, which is
the same as the total number of available weapons. One and
only one of them is 1, indicating which weapon the agent uses
currently (the alternative firing mode of each weapon is not
considered). The reward vector R only has two values, the
reward and its complement. This weapon selection network is
only learning reactively, which means the weapon in use does
not affect any other weapon (no chains of effects). Therefore,
the rewards perceived from the game environment are directly
applied for learning without any ()-value estimation.

Intuitively, if the agent kills its opponent with certain
weapon, we give that weapon the highest reward of 1. If a
weapon is fired but missed, we give a reward of 0 (as a form
of punishment). The reward value for a successful hit by a
certain weapon is computed according to Eq. (14).

d
r=min(1,0.5 + 100),
where r represents the reward value and d represents the actual
amount of damage received by the opponent.

Eq. (14) is designed in such a way that the reward for a
successful hit should be larger than the neutral reward of 0.5.
Furthermore, if the amount of damage made is greater or equal
to 50 (a new born player has a health level of 100 points),
which means the particular weapon is extremely powerful, the
reward value is capped at 1.

Although it would be cheating if we directly query the
health level of the opponent (because the health level of any
avatar in UT2004 other than oneself is not shown during the
game play), the amount of damage received by the opponent
is public information. Whenever someone gets hit, the game
server will broadcast a global message containing information
such as who has been hit, by whom, with which weapon, at
what time, and the exact amount of damage. Furthermore, we
do not modify the shooting command for our bot (unlike in [6],
our bot shoots towards the opponents with random deviations
purposely to behave like a non-perfect human player) as well
as its opponents. Moreover, we do not include the tendency

(14)

FALCON learning

game score difference

] = gypert knowledge
-10F |
-8 |
20 - i : I :
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trial number
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Fig. 9. Results of FALCONBot playing against advancedBot in the Idoma
map to learn weapon preferences. (a) Averaged game score difference between
the FALCON learned rules and expert knowledge. (b) Averaged number of
codes generated in the Fb cognitive field.

of movements or high-level bullet reflections when our bot
fires its weapon in hand. We just leave the shooting command
unmodified to examine the effectiveness of each weapon.

E. Experiments on Weapon Selection

The parameter values used in the weapon selection network
are identical to those default ones used in the previous ex-
periments (given in Section V-C) and the experiment in this
subsection is conducted in the same manner as the previous
experiment. The experimental results are shown in Fig. 9.

The game score difference between our agent who selects
weapons based on the predefined expert knowledge (provided
by the game server) and advancedBot is represented with
the dash line in Fig. 9(a). Because the predefined knowledge
of weapons is static, this game score difference is consistent
and the average is approximately 8.5. The other game score
difference between our agent who selects weapons using
the dynamically expanding weapon selection network and
advancedBot is represented with the solid line in Fig.
9(a). Although the statistical test does not show significant
improvements (P-value of single factor ANOVA is computed
as 0.058 > 0.05 and F' = 3.75 < Fgiy = 4), it still
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TABLE III
TRANSLATED EXAMPLE RULES FOR BEHAVIOR MODELING

IF health is around [87, 109], not being damaged, opponent is in
sight, has adequate ammo, has health boost nearby, has no
weapon nearby, possessing only primitive weapons, and
currently in RUN_AROUND state;

THEN  go into ENGAGE state;

WITH  reward of 0.729.

IF health is around [2, 21], being damaged, opponent is in sight,
has adequate ammo, has no health boost nearby, has no
weapon nearby, possessing only default weapons, and currently
in ENGAGE state (0.9);

go into ESCAPE state;

reward of 0.05.

THEN
WITH

TABLE IV
TRANSLATED EXAMPLE RULES FOR WEAPON SELECTION

IF distance is very near [108, 317];
THEN  use flak cannon;

WITH  reward of 0.838.

IF distance is far [1781, 2364];
THEN  use lightning gun;

WITH  reward of 0.781.

indicates that FALCONBot is able to quickly acquire weapon
selection strategies from scratch and performs at the same
level as relying on the expert knowledge. The reasons for
the weapon selection network being less successful than the
behavior modeling network are three-fold: (1) the choice of an
effective weapon is naturally less critical than the choice of an
appropriate behavior (which weapon to fire is less influential
than whether to shoot), (2) the expert knowledge of weapon
effects predefined by the game developers are already good
enough, and (3) FALCONBot often fights with a limited
selection of weapons in possession since it is force to engage
fire before getting more effective ones.

The number of rules generated in the FALCON network
is shown in Fig 9(b). From the 115% trial to the 20" trial,
there are approximately ten rules created. From the 215¢ trial
to the 30" trial, there are approximately four rules created.
The curve shows certain level of convergence.

FE. Examples of Translated Rules

Our agents learn from zero knowledge in the previously pre-
sented experiments. Reliable rules on both behavior modeling
and weapon selection are acquired during run time.

Two examples (after translation) of the learned behavior
modeling rules are shown in Table III. The first rule basically
says that if the health of the agent is high enough, not being
hit, with its opponent in sight, and equipped with only the
primitive weapons, the agent may start a battle to receive a
high reward. The second rule can be highlighted that if the
health of the agent is very low, and already engaged with its
opponent, the successful rate of running away from the battle
is very low. This is true because there is no collectible health
boost nearby. The (0.9) at the end of the IF clause means that
this current state indication attribute has been generalized.

Two examples (after translation) of the learned weapon
selection rules are shown in Table IV. These two rules coincide
with our knowledge learned during game plays. Flak cannon is
a very powerful melee type of weapon, which is most effective
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in the short range. Upon firing, it blasts many small shrapnel
pieces. Therefore, it seldom misses in a short distance. The
first rule is associated with a rather high reward. Lightning
gun is a sniper type of weapon with a large maximum shooting
range and it is also very powerful in terms of the damage dealt.
The second rule is associated with a high reward.

To better illustrate how FALCON works, the first weapon
selection rule presented in Table IV is used as an example. If
the opponent is spotted at 300 units (in UT2004) away and
FALCONBot wants to find which weapon is the most effective
choice, the direct code access procedure (see Section IV-D.2)
is followed to compute the activation values (based on Eq.
(8)) for all codes in the cognitive field. Suppose the example
rule is found to be the winner (based on Eq. (2)). Because
its resonance values fulfil the vigilance criterion (see Eq. (3),
m! = 0.93 > p! = 0.8 and m? = 0.838 > p> = 0.2),
the vector in the action field is read out and FALCONBot
consequently changes to flak cannon (if in possession, has
ammunition, and not currently in use). Furthermore, assume
for another time, FALCONBot fired flak cannon from 900
units away and missed. When this information is presented for
learning, assume the example rule is again the winner based
on the activation values. However, the vigilance criterion is
violated (m! = 0.736 < p' = 0.8). Therefore, this new input
cannot be updated to the example rule. Moreover, if no other
committed codes fulfil the vigilance criterion, an uncommitted
code will be selected to incorporate the new knowledge (based
on Eq. (9)) and becomes committed after learning.

G. Experiments on Performance Evaluation

To evaluate whether our agent (with the same set of param-
eter setting) learns appropriately and efficiently in different
game configurations, we conduct experiments wherein our
agent plays against different opponents in different maps. The
detailed combinations have been listed in Table II. Because
both the behavior modeling and the weapon selection networks
are enabled to learn from scratch at the same time, we give our
agent more time to learn. The action selection policy threshold
€ is initially set to 0.5 and decays 0.0125 after each game trial
until it reaches O.

The game scores of our agent and its opponent and their
game score differences in the following three game configu-
rations are shown in Fig. 10, respectively.

a) FALCONBot VS. advancedBot in the Spirit map.

b) FALCONBot VS. hunterBot in the [doma map.

¢) FALCONBot VS. hunterBot in the Spirit map.

All evaluations plotted in Fig. 10 illustrate clear increasing
performance of FALCONBots that learn in real-time while
playing against different opponents in different maps. To
evaluate whether different maps affect the combat outcomes,
we run single factor ANOVA on the averaged game score
differences taken from the 415 to 45" game trial of the second
(b) and third (c) game configurations. P-value is computed
as 7.53 x 107* < 0.05 and F = 27.8 > F.; = 5.32.
Both measures indicate that the performance of FALCONBot
playing against the same opponent (hunterBot) in different
maps is truly different (mainly due to the different frequency of
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Fig. 10. Game scores of FALCONBot playing against different bots in dif-
ferent maps. (a) VS. advancedBot in the Spirit map. (b) VS. hunterBot
in the Idoma map. (c) VS. hunterBot in the Spirit map.

encounters indirectly determined by the different terrain types
and different layouts in the maps, see Section V-A for more
details). Similar results can be found when comparing Fig.
10(a) to Fig. 9(a). However, the two experiments are conducted
in different manners. The statistical comparisons between the
values visualized in Fig. 10(a) and Fig. 9(a) are not performed.

By comparing Fig. 10(c) to Fig. 10(a) (also roughly com-
paring Fig. 10(b) to Fig. 9(a)), it is clearly shown that when
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Fig. 11. Game scores of FALCONBot playing against hunterBot in the

Spirit map with pre-inserted knowledge that learned when playing against
advancedBot in the Idoma map.

FALCONBot adopts the same learning strategies and parame-
ter values, its performance is significantly better when playing
against hunterBot than against advancedBot (from the
41%¢ to 45" game trial, P-value of single factor ANOVA on
the game score differences is computed as 4.7 x 1072 < 0.05
and F' = 691.39 > F,i = 5.32). This finding infers that
advancedBot is better than hunterBot in terms of the
ability to obtain higher game scores. There are mainly two
explanations. First, the skill level of hunterBot is deliber-
ately lowered by the developers of Pogamut (FALCONBot and
advancedBot have the same default skill level). Therefore,
although advancedBot only uses assault rifle (whose fired
bullets travel fast in space, therefore, they are naturally hard
to miss as long as the aim is accurate), it seldom misses the
target. On the other hand, although hunterBot uses all kinds
of powerful weapons, it does not shoot as well as the other
two bots. Secondly, advancedBot is more determined to
find where the opponent is and engage fires. It does not spend
unnecessary time on collecting items (only along the path),
unlike hunterBot does.

H. Experiments on Knowledge Adaptation

To show that our agent can quickly adapt to a new opponent
in a new map, we design the experiments as follows. First of
all, we select the same behavior modeling knowledge as used
in Section V-E and one set of the learned weapon selection
rules from Section V-E as the pre-inserted knowledge. With
the knowledge learned when playing against advancedBot
in the Idoma map, FALCONBot plays against hunterBot in
the Spirit map for a relatively short period of time. The action
selection policy threshold e is initially set to 0.5 and decays
0.05 after each game trial until it reaches 0. The performance
evaluations are illustrated in Fig. 11.

It is obvious in Fig. 10(c) that at the first game
trial, the game score difference between FALCONBot and
hunterBot is below 0. However, in Fig. 11, at the first
game trial, the same game score difference is above 7. In both
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experiments, during the first game trials, the action selection
threshold € is 0.5. Therefore, this increase in game score
difference is contributed by the pre-inserted knowledge.
Furthermore, we run single factor ANOVA on the averaged
game score differences taken from the 415 to 45" game trial
of the results shown in Fig. 10(c) and from the 11*" to 15"
game trial of the results shown in Fig. 11. P-value is computed
as 0.26 > 0.05 and F' = 1.45 < F,i; = 5.32. Both measures
indicate that with or without pre-inserted knowledge, after
convergence, the performance of our agent playing against the
same opponent in the same map is at the same level. This
finding is encouraging because it shows our agent can adapt
to a new opponent in a new map in a relatively short period of
time if previously learned knowledge is retained. Based on this
finding, in the future, we could perform more experiments on
FALCONBot with pre-inserted knowledge fighting against the
native bots (given in UT2004 rather than Pogamut). The native
bots are challenging to defeat because they are implemented
by the experienced game developers (repeatedly play-tested)
and their response time and decision cycles are shorter than the
bots controlled through Pogamut (because the native bots run
directly in the game server, there are no communication delays
and connection overheads). More interestingly, because native
bots have different specialties and personalities, it would be
intriguing to add certain characteristics to FALCONBot and
investigate how it fights against different native bots.

VI. CONCLUSION

In this paper, we describe how we create intelligent agents
to play a well-known first-person shooter computer game and
to learn in real-time from the interaction outcomes perceived
in the game environment only. The term intelligent may have
different meanings from different perspectives. In our work, it
refers to the ability and the quality of self-adaptive learning
and the reliability of decision making.

Our agents employ two reinforcement learning networks to
learn knowledge on behavior modeling and weapon selection,
respectively. Both networks can learn from scratch or with pre-
inserted knowledge. In the experiment section, we first show
that using our proposed combinatorial operations rather than
the conventionally applied operations enables our agents to
learn more appropriately and effectively. After that, we demon-
strate how different values of certain critical parameters would
affect the performance. The general set of parameter values
are then applied to all the other experiments presented in this
paper. By applying the self-acquired knowledge on weapon
effects, our agents can perform at the same level as using
the predefined expert weapon preference knowledge stored in
the game server. With different game configurations but the
same set of parameter setting, we show that the performance
of our agents is encouraging when playing against different
opponents in different maps. Furthermore, we show that our
agents can adapt quickly to a new opponent in a new map if
the previously learned knowledge is retained.

Our agents currently do not utilize the information about
physical locations based on the past experiences. In the future,
we could add a new control module to function as the episodic
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memory [42]. Therefore, the agent could gradually discovery
its preferred places in the map where useful items are available
for collection or locations suitable for ambush.

In the future, we could also try out different strategies to
implement our agents, such as applying the UCB1 [43] or self-
regulated action exploration [44] strategies as the new action
selection policy.

Last but not least, we could extend the number of agents
in control. We can create a team of agents to play in the
Domination [8], [22] or Capture The Flag game scenarios.
In those scenarios, the difficult problem is to give effective
commands to form the best team collaboration rather than to
control the individuals. It will be even more challenging if
each individual has its own specialties and preferences.
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