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Abstract. Traitor tracing scheme can be used to identify a decryption
key is illegally used in public-key encryption. In CCS’13, Liu et al. pro-
posed an attribute-based traitor tracing (ABTT) scheme with blackbox
traceability which can trace decryption keys embedded in a decryption
blackbox/device rather than tracing a well-formed decryption key. How-
ever, the existing ABTT schemes with blackbox traceability are based
on composite order group and the size of the decryption key depends
on the policies and the number of system users. In this paper, we revisit
blackbox ABTT and introduce a new primitive called attribute-based set
encryption (ABSE) based on key-policy ABE (KP-ABE) and identity-
based set encryption (IBSE), which allows aggregation of multiple related
policies and reduce the decryption key size in ABTT to be irrelevant to
the number of system users. We present a generic construction of the
ABTT scheme from our proposed ABSE scheme and fingerprint code
based on the Boneh-Naor paradigm in CCS’08. We then give a concrete
construction of the ABSE scheme which can be proven secure in the ran-
dom oracle model under the decisional BDH assumption and a variant
of q-BDHE assumption.

Keywords: Public-key cryptosystems · Attribute-based encryption
Blackbox traceability

1 Introduction

Public-key encryption is the most fundamental primitive of public-key cryp-
tography. However, the traditional public-key infrastructure (PKI) suffers from
the certificate management problem. To overcome this drawback, identity-based
c© Springer Nature Switzerland AG 2018
J. Baek et al. (Eds.): ProvSec 2018, LNCS 11192, pp. 182–200, 2018.
https://doi.org/10.1007/978-3-030-01446-9_11
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encryption (IBE) has been proposed, and it provides a new paradigm for public-
key encryption [3]. IBE uses the identity string (e.g., email or IP address) of a
user as the public key of that user. The sender using an IBE does not need to look
up the public keys and the corresponding certificates of the receiver. However,
IBE cannot efficiently handle data sharing among multiple users. To address
this issue, attribute-based encryption (ABE) was introduced [3] to provide fine-
grained access control. However, encryption schemes supporting multiple valid
decryptors suffer the problem of decryption key re-distribution. A malicious user
might have an intention to leak the decryption key or some decryption privileges
by giving the decryption key or decryption blackbox/device to other unautho-
rized users for financial gain or for some other incentives.

To address this problem, traitor tracing scheme [4] was proposed to identify
the traitor who violates the copyright restrictions. A traitor tracing scheme com-
prises an encryption key, a tracing key and n decryption keys, where n is the
number of system users. Each legitimate user is given a unique decryption key
that can decrypt any properly encrypted message. The tracing key can trace at
least one user decryption used to construct the decryption blackbox/device. A
traitor tracing scheme is said to be t-collusion resistant if the tracing is still suc-
cessful against t colluded users. In this paper, we investigate the traitor tracing
scheme in the ABE setting.

ABE with traitor tracing (ABTT) has been studied in the literature [9–
11,14]. There are two levels of traceability depending on the way of tracing
traitors. Level one is whitebox traceability [10,14], by which given a well-formed
decryption key as input, a tracing algorithm can find out user who owns this
decryption key. Level two is blackbox traceability [9,11], by which given a decryp-
tion blackbox/device, which the decryption key and even decryption algorithm
could be hidden, the tracing algorithm, which treats the decryption blackbox
as an oracle, can still find out the malicious user whose key has been used in
constructing the decryption blackbox.

In this paper, we present a new construction of ABTT based on a new primi-
tive called attribute-based set encryption (ABSE) inspired by KP-ABE [16] and
IBSE [7]. We then describe our ABTT scheme from our proposed ABSE scheme
and fingerprint code [4] to provide the efficient traitor tracing mechanism in the
ABE setting. Our ABSE scheme is provably secure in the random oracle model
under the decisional BDH assumption and a variant of q-BDHE assumption.
Compared with the previous ABTT schemes, our ABTT scheme only requires
the prime order group and the size of the decryption key only depends on the
access policies as traditional KP-ABE rather than both the access policies and
the number of system users.

1.1 Related Work

Sahai and Waters [16] introduced ABE that allows users to selectively share
their encrypted data at a fine-grained level. To enrich expressiveness of access
control policies, Goyal et al. [6] and Bethencourt et al. [2] then proposed key-
policy and ciphertext-policy ABE schemes, respectively. In KP-ABE schemes,
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attribute sets are used to annotate ciphertexts, and private keys are associated
with access structures that specify which ciphertexts the user will be entitled to
decrypt. Ciphertext-policy ABE (CP-ABE) proceeds in a dual way, by assigning
attribute sets to private keys and letting senders specify an access policy that
receivers’ attribute sets should comply with. However, the seminal works [2,6,16]
of ABE schemes suffer some common problems, such as the size of the key and
the ciphertext are linear to the attribute set and security proofs are under the
selective model. Attrapadung et al. [1] proposed the first constant-size ABE and
Lewko et al. [8] provided first fully secure ABE with dual encryption system [17],
respectively. Unfortunately, the above schemes must define the attribute universe
at setup phase or have to sacrifice the security by deploying the random oracle
to scale up the attribute universe. Rouselakis and Waters [15] proposed large
universe ABE schemes with selective security that can overcome this problem.

The concept of whitebox ABTT was introduced by Liu et al. [10] to identify
the traitors who violate the copyright restrictions in the ABE setting. However,
Liu et al.’s work must define the attribute universe at setup phase and cannot
support the large attribute universe. To overcome this drawback, several ABTT
[14,18] schemes were proposed to support the large universe. Liu et al. [9,11]
introduced blackbox ABTT to solve a practical problem that the decryption
key may not be a well-formed key and it may be embedded in a decryption
blackbox/device. However, the decryption key in the proposed scheme is in the
order of O(|S| +

√
n), where |S| represents the number of attributes in the

attribute set S and n is the number of system users. After that, some other
works [12,13,19,20] have been proposed to improve efficiency, functionality or
security. Unfortunately, the above schemes require the composite order group or
large decryption key size depending on the number of system users.

1.2 Contribution

In this paper, we proposed an efficient blackbox ABTT scheme. Compared to
previous ABTT schemes, our scheme provides the blackbox traceability based on
prime order group and decryption key only relates to the access policies as the
traditional ABE rather than both the access policies and the number of system
users. Note that most of the previous blackbox ABTT schemes are based on
Boneh et al.’ traitor tracing scheme [5], which requires the decryption key in the
order of O(

√
n), where n is the number of system users.

Our approach utilizes fingerprint codes to realize the traitor tracing mech-
anism. However, the trivial solution needs O(n) private keys by appending a
unique index from fingerprint codes as the user identifier at the end of each
access policy. Suppose the ith user has an access structure A = (M, ρ) with the
matrix M of size d × l and mapping function ρ mapping each row in the matrix
to the attribute universe. The trivial solution requires to extend each row j in
the matrix to a set of policies for tracing traitors in blackbox, e.g., the jth row
policy (Mj , ρ(j)) extends to a set of policies

(Mj , ρ(j)‖1‖w
(i)
1 ), (Mj , ρ(j)‖2‖w

(i)
2 ), . . . , (Mj , ρ(j)‖�‖w

(i)
� ), (1)
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where � denotes the size of codeword in fingerprint codes and w
(i)
k represents

the kth position codeword for the ith user. It is obvious that the trivial solution
requires the policy size of � × d × l eventually.

To reduce the size of the decryption key, we introduce a new cryptographic
primitive called attribute-based set encryption (ABSE). Roughly speaking, our
ABSE compresses the decryption key for a set of policies as shown in Eq. (1) to
two policies

(Mj , ρ(j)‖S0‖0) and (Mj , ρ(j)‖S1‖1)

with O(1) size for each row in the access policy, where Sb represents a set of
indices recording all positions j ∈ [�] s.t. w

(i)
j = b (w(i)

j representing jth position
in the codeword for the ith user). Finally, the decryption key has the policy size
of d × l as the traditional ABE system.

We provide a generic construction of ABTT from fingerprint codes and ABSE
under the prime order group, and it is provably secure based on the underlying
fingerprint code and ABSE. The ABSE scheme instantiated in this paper is
provably secure in random oracle model based on the decisional BDH assumption
and a variant of q-BDHE assumption.

1.3 Outline

We introduce some preliminaries in Sect. 2 and provide the generic construction
of the ABTT scheme and its proof in Sect. 3. In Sect. 4, we provide the concrete
construction of ABSE scheme and its formal proof. We then summarize this
paper in Sect. 5.

2 Preliminaries

2.1 Notations

Let N denote the set of all natural numbers, and for n ∈ N, we define
[n] := {1, . . . , n}. If a and b are strings, then |a| denotes the bit-length of a,
a‖b denotes the concatenation of a and b. Let �u := (u1, u2, . . . , u�) denote a vec-
tor of dimension � in Zp. Let the Greek character λ denote a security parameter.
A function ε(λ) : N → [0, 1] is said to be negligible if for all positive polynomials
p(λ) and all sufficiently large λ ∈ N, we have ε(λ) < 1/p(λ). To simplify, ε is
used to represent negligible.

2.2 Bilinear Map

Let G and GT be two cyclic multiplicative groups of prime order p and g be a
generator of G. The map e : G × G → GT is said to be an admissible bilinear
pairing if the following properties hold true.

– Bilinearity: for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
– Non-degeneration: e(g, g) �= 1.
– Computability: it is efficient to compute e(u, v) for any u, v ∈ G.
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2.3 Decisional Bilinear Diffie-Hellman Assumption

Let a, b, c, z ∈ Zp be chosen at random and g be a generator of G. The deci-
sional Bilinear Diffie-Hellman (BDH) assumption [16] is that no probabilistic
time algorithm can distinguish the tuple (ga, gb, gc, e(g, g)abc) from the tuple
(ga, gb, gc, e(g, g)z) with a non-negligible advantage over random guess.

2.4 Modified q-Biliner Diffie-Hellman Exponent Assumption

Let a ∈ Zp be chosen at random and g be a generator of G. The modified q-
Bilinear Diffie-Hellman Exponent (q-BDHE) [7] is that giving the terms g, g(a),

g(a
2), . . . , gaq

, g(a
2q+2), g(a

2q+3), . . . , g(a
3q+1) ∈ G

2q+1, no probabilistic time algo-
rithm can output the term e(g, g)a2q+1

with a non-negligible advantage.

2.5 Access Structure and Monotone Span Program

We recall the definition of access structures and monotone span program, as
defined in [6].

Definition 1 (Access Structure). Let {P1, . . . , Pn} be a set of parties. A col-
lection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C, then C ⊆ A.
A monotone access structure is a monotone collection A of non-empty subsets
of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn} \ {∅}. The sets in A are called authorized
sets, and the sets not in A are called unauthorized sets.

Definition 2 (Monotone Span Program (MSP)). Let K be a field and
{x1, . . . , xn} be a set of variables. A MSP over K is labeled matrix M̃(M, ρ)
where M is a matrix over K, and ρ is a labeling of the rows of M by literals from
{x1, . . . , xn} (every row is labeled by one literal). A MSP accepts or rejects an
input by the following criterion. For every input set S if literals, define the sub-
matrix MS of M consisting of those rows whose labels are in S, i.e., rows labeled
by some i such that i ∈ S. The MSP M̃ accepts S of and only if �1 ∈ span(MS),
i.e., some linear combination of the rows of MS given the all-one vector �1. The
MSP M̃ computes a boolean function fM if it accepts exactly those input S where
fM(S) = 1. The size of M̃ is the number of rows in M.

In the rest of paper, we define M as a matrix with d × l elements, where d is a
dynamic value depending on the access policy A. Mi stands for the ith row of
the matrix M and is a vector size of l. In our proposed scheme, each row of the
matrix M maps to different attributes. For simply the notation, let A(S) = 1
indicate the attribute set S satisfies the access policy A and A(S) = 0 denote
the attribute set S does not satisfy the access policy A.

2.6 Fingerprint Code

The fingerprint code [4] is defined as follows.
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– Let w̄ ∈ {0, 1}� be an �-bit codeword. We write w̄ = w1w2 · · · w� and assume
wi is the ith bit of w̄.

– Let W = {w̄(1), w̄(2), · · · , w̄(n)} codewords in {0, 1}�. We say that a codeword
w̄ = w1w2 · · · w� is feasible for the set W, if for all i ∈ [�] there exists a j ∈ [n]
such that the ith bit of w̄(j), denoted by w

(j)
i , is equal to wi.

– Let F (W) be a feasible set of W, it includes all codewords that are feasible
for W.

Definition 3 (Fingerprint Code). Let FC denote a fingerprint code and it
consists of two algorithms defined as follows.
FC.Gen(n, t, λ) → (Γ, tk). On input the number of codewords n, the collu-
sion bound t and a security parameter λ, the generation algorithm outputs a
codebook Γ containing n codewords {w̄(1), w̄(2), · · · , w̄(n)} in {0, 1}� with length
� = �(n, t, λ) and a tracing key tk.
FC.Trace(w̄∗, tk) → S. On input a codeword w̄∗ ∈ {0, 1}� and the tracing key tk,
the tracing algorithm outputs a subset S ⊆ [n]. Informally, let W be a subset of
Γ , if w̄∗ ∈ F (W), we have that the output set S is a subset of W.

Definition 4 (Security Model of Fingerprint Code). The security defini-
tion of a fingerprint code from the following experiment:

ExpFC,A(n, t, λ)
(Γ, tk) ← FC.Gen(n, t, λ);
w̄∗ ← AO(·)(n, t);
If FC.Trace(w̄∗, tk) �⊆ ∅ return 1 else return 0.

O(·) is a oracle that allows the adversary queries the index I ⊆ [n] with |I| ≤ t,
the challenger responds by returning the codewords W = {w̄i}i∈I to the adversary.
Note that the challenge codeword w̄∗ is not belongs to the returning codeword set
W, such that w̄∗ �∈ W.
A fingerprint code is t-collusion resistant if for all adversaries, all n, t satisfying
n ≥ t, all I satisfying I ⊆ [n] and |I| ≤ t, we have that the advantage of the
adversary in the above game AdvFC,A is negligible:

AdvFC,A(n, t, λ) =
∣
∣
∣ Pr[ExpFC,A(n, t, λ) = 1]

∣
∣
∣.

2.7 Attribute-Based Encryption with Traitor Tracing

We refine the definition and security model in [9,11]. It is worth to notice that
the augmented ABTT scheme is considered in the previous works since the
encryption algorithm needs an additional index for labeling users, which works
as an identifier that allows another user to identify the malicious users. In our
proposed scheme, we use fingerprint codes as a different tracing method, thus
our scheme does not need to consider augmented ABTT.
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Definition 5 (Attribute-Based Encryption with Traitor Tracing). Let
ABT T denote an ABTT scheme and an ABTT scheme with the attribute set Ω
that supports policies P with the message space M consists of five algorithms as
follows.
ABT T .Setup(n, t, λ) → (pp,msk, tk). The probabilistic setup algorithm takes the
number of system users n, the collusion bound t and a security parameter λ as
input, and outputs the public parameter pp, the master secret key msk and the
tracing key tk.
ABT T .KeyGen(msk,A) → skA. The probabilistic key generation algorithm takes
the master secret key msk and the an access structure A ∈ P as input, and
outputs the secret key skA.
ABT T .Enc(pp,m,S) → ctS . The probabilistic encryption algorithm takes the
public parameter pp, a message m ∈ M and an attribute set S ⊆ Ω as input,
and outputs the ciphertext ctS .
ABT T .Dec(skA, ctS) → m. The deterministic decryption algorithm takes the
secret key skA and the ciphertext ctS as input, and outputs a message m ∈ M.
ABT T .TracePD(tk) → S. The deterministic tracing algorithm is an oracle algo-
rithm takes is given as input the tracing key tk. The tracing algorithm queries
the pirate decoders PD as a blackbox oracle. It outputs a set of traitors S which
is a subset of [n].

Next, we define the security of the traitor tracing scheme in terms of the following
games, called selective indistinguishability under chosen plaintext attack (sIND-
CPA) and traceability against t-collusion attack.

Definition 6 (sIND-CPA in Attribute-Based Encryption with Traitor
Tracing). The security definition of an ABTT scheme for message hiding is
based on the following experiment:

ExpsIND-CPA
ABT T ,A(n, t, λ)

S∗ ← A(n, t, λ);
(pp,msk, tk) ← ABT T .Setup(n, t, λ);
(m0,m1) ← AOABT T .KeyGen(·)(pp);
b ← {0, 1};
ctS∗ ← ABT T .Enc(pp,mb,S∗);
b′ ← AOABT T .KeyGen(·)(ctS∗);
If b = b′ return 1 else return 0.

OABT T .KeyGen(·) represents the key generation oracle that allows the adversary
to query an access structure A ∈ P except A(S∗) = 1, and it returns the secret
key skA by running ABT T .KeyGen(msk,A).
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An ABTT scheme is said to be sIND-CPA secure if for any probabilistic polyno-
mial time adversary A, the following advantage is negligible:

AdvsIND-CPA
ABT T ,A(n, t, λ) =

∣
∣
∣ Pr[ExpsIND-CPA

ABT T ,A(n, t, λ) = 1] − 1/2
∣
∣
∣.

Definition 7 (Traceability against t-collusion Attack in Attribute-
Based Encryption with Traitor Tracing). The security definition of an
ABTT scheme for traceability is based on the following experiment:

ExpTrace
ABT T ,A(n, t, λ)

S∗ ← A(n, t, λ);
(pp,msk, tk) ← ABT T .Setup(n, t, λ);
PD ← AOABT T .KeyGen(·)(pp);
S ← ABT T .TracePD(tk);
If Pr[PD(ABT T .Enc(pp,m,S∗)) = m] = 1 and
S ⊆ ∅ or S �⊆ I return 1 else return 0.

OABT T .KeyGen(·) represents the key generation oracle that allows the adversary
to query a set of the indices I ⊆ [n] (|I| ≤ t), and it runs ABT T .KeyGen(msk,A)
to all i ∈ I and A(S∗) = 0, and then returns the secret key {ski}i∈I. Notice that
the adversary cannot adaptively query this oracle since this oracle only runs once
before the challenge phase.
An ABTT scheme is said to be t-collusion resistant if for any probabilistic poly-
nomial time adversary A, the following advantage is negligible:

AdvTrace
ABT T ,A(n, t, λ) = Pr[ExpTrace

ABT T ,A(n, t, λ) = 1].

2.8 Attribute-Based Set Encryption

An IBSE scheme [7] was introduced to improve the efficiency of identity-based
traitor tracing scheme by reducing the size of private key and ciphertext. We
refined the definition and security model in the IBE setting to the ABE setting.
It is worth to notice that the following algorithms have some elements in the
definition of fingerprint code as given Sect. 2.6.

Definition 8 (Attribute-Based Set Encryption). Let ABSE be an ABSE
scheme and an ABSE scheme with the attribute set Ω that supports the policies
P and the message space M consists of four algorithms as follows.
ABSE .Setup(n, λ) → (pp,msk). The probabilistic setup algorithm takes the num-
ber n and a security parameter λ as input, and outputs the public parameter pp
and the master secret key msk.
ABSE .KeyGen(msk,A, b,L) → skA. The probabilistic key generation algorithm
takes the master secret key msk and the access structure A ∈ P, a bit b ∈ {0, 1}
and a list of indices L (|L| ≤ � and L represents all indices j ∈ [�] s.t. w

(i)
j = b,
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where w
(i)
j representing jth position in the codeword for the ith user) as input,

and outputs the private key skA.
ABSE .Enc(pp,m,S, b, �, τ) → ctS . The probabilistic encryption algorithm takes
the public parameter pp, the message m ∈ M, an attribute set S, a bit b ∈ {0, 1},
a number � representing the size of each codeword and a number τ (τ ≤ � which
represents the position in the codeword and will be used to form the attribute
A‖τ‖b for all A ∈ S) as input, and outputs a ciphertext ctS .
ABSE .Dec(skA, ctS , b) → m. The deterministic decryption algorithm takes the
secret key skA, the ciphertext ctS and a bit b ∈ {0, 1} as input, and outputs a
message m ∈ M.

Next, we describe the security of selective indistinguishability under chosen plain-
text attack in the random oracle model (sIND-CPA security) for the ABSE set-
ting.

Definition 9 (sIND-CPA in Attribute-Based Set Encryption). The secu-
rity definition of an ABSE scheme is based on the following experiment:

ExpsIND-CPA
ABSE,A (n, λ)

S∗ ← A(n, λ);
(pp,msk) ← ABSE .Setup(n, λ);
(m0,m1, b, τ) ← AO(pp);
c ← {0, 1};
ctS∗ ← ABSE .Enc(pp,mc,S∗, b, �, τ);
c′ ← AO(ctS∗);
If c = c′ return 1 else return 0.

In the random oracle setting O represent a set of oracles, {OABSE.KeyGen(·, ·, ·),
OH(·)}, and the details are given in below.

– OABSE.KeyGen(·, ·, ·) is the key generation oracle that allows the adversary to
query on the access structure A (expect A(S∗) = 1), a bit b and a set of
indices L, and the challenger runs the ABSE .KeyGen(msk,A, b,L) algorithm
and returns the secret key skA to the adversary.

– In random oracle model, we provide the oracle OH(·) that allows the adversary
to query on the message s, if s has been queried, it will output the same has
output; otherwise, it outputs a random hash output. Note that, we may provide
multiple hash oracles in the random oracle model.

An ABSE scheme is said to be sIND-CPA secure if for any probabilistic polyno-
mial time adversary A, the following advantage is negligible:

AdvsIND-CPA
ABSE,A (n, λ) =

∣
∣
∣ Pr[ExpsIND-CPA

ABSE,A (n, λ) = 1] − 1/2
∣
∣
∣.
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3 Attribute-Based Encryption with Traitor Tracing

3.1 Generic Construction

Let FC = (Gen,Trace) be an fingerprint code and ABSE = (Setup,KeyGen,Enc,
Dec) be an ABSE scheme. Our ABTT is described as follows.
ABT T .Setup(n, t, λ) → (pp,msk, tk). Let � = �(n, t, λ) be the length of code-
word in the fingerprint code. The setup algorithm runs

FC.Gen(n, t, λ) → (Γ, tk),
ABSE .Setup(n, λ) → (pp0,msk0).
ABSE .Setup(n, λ) → (pp1,msk1).

The public parameter is pp = (Γ, pp0, pp1) and the master secret key is msk =
(msk0,msk1).
ABT T .KeyGen(msk,A) → skA. For the ith user, this algorithm assigns the ith

codeword w̄(i) to this user and initializes two empty lists L0 and L1. For j ∈ [�],
the algorithm derives the ciphertext skA as: If w

(i)
j = 0,

L0 ← L0 ∪ {j};

otherwise,
L1 ← L1 ∪ {j}.

The key generation algorithm runs

ABSE .KeyGen(msk0,A, 0,L0) → sk
(0)
A

,

ABSE .KeyGen(msk1,A, 1,L1) → sk
(1)
A

.

Finally, it returns the secret key skA = (sk(0)
A

, sk
(1)
A

) for the access structure A.
ABT T .Enc(pp,m,S) → ctS . The encryption algorithm randomly pick τ ∈ Zp

(τ ≤ �). Then, it runs

ABSE .Enc(pp0,m,S, 0, τ) → ct
(0)
S ,

ABSE .Enc(pp1,m,S, 1, τ) → ct
(1)
S .

The ciphertext is ctS = (τ, ct(0)S , ct
(1)
S ).

ABT T .Dec(skA, ctS) → m. For the ith user, the decryption algorithm runs as
follows. If w

(i)
τ = 0, it runs

ABSE .Dec(sk(0)
A

, ct
(0)
S , 0) → m;

otherwise, it runs
ABSE .Dec(sk(1)

A
, ct

(1)
S , 1) → m.
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ABT T .TracePD(tk) → S. Suppose the pirate decoder PD claims to be able to
decrypt any message m ∈ M under the access structure A: For all j ∈ [�],
the tracing algorithm randomly chooses a message mj �= 0, and derives the
ciphertext under the attribute set S with A(S) = 1 by running

ABSE .Enc(pp0,mj ,S, 0, �, j) → ct
(0)
S ,

ABSE .Enc(pp1, 0,S, 1, �, j) → ct
(1)
S .

It then sends the ciphertext ctA = (j, ct(0)S , ct
(1)
S ) to PD. Let the return from PD

be m′
j . Define the bit w∗

j as

w∗
j =

{

0 if m′
j = mj , and

1 otherwise.

It outputs the �-bit codeword w̄∗ = w∗
1w

∗
2 · · · w∗

� and returns a set of traitors
S ⊆ [n] by running

FC.Trace(w̄∗, tk) → S.

3.2 Security Analysis

Our ABTT scheme above is extended from the public-key traitor tracing scheme
[4]. We do not change their paradigm, but replace the public-key encryption
scheme in [4] with ABSE. The following theorem shows that our ABTT scheme
is secure.

Theorem 1. Given an attribute-based set encryption scheme ABSE = (Setup,
KeyGen,Enc,Dec), which is sIND-CPA secure and fingerprint codes FC = (Gen,
Trace), which is t-collusion resistant, our ABT T = (Setup,KeyGen,Enc,Dec,
Trace) is a t-collusion resistant attribute-based traitor tracing scheme. Particu-
larly, using the notion in Sect. 2, for all t > 0, n > t, and all polynomial time
adversaries attacking ABTT, there exist polynomial adversaries attacking ABSE
or fingerprint code such that

AdvsIND-CPA
ABT T ,A(n, t, λ) ≤ 2� · AdvsIND-CPA

ABSE,A (n, t),
AdvTrace

ABT T ,A(n, t, λ) ≤ AdvFC,A(n, t, λ) + � · (AdvsIND-CPA
ABSE,A (n, t) + 1/|M|).

where � denotes the bit length of codeword and M denotes the message space.

The proof of Theorem1 is very similar to the proof of Theorem 1 in [4]. We
detail the proof in the full version of this paper1.

1 Please contact the authors for it.
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4 The Proposed Attribute-Based Set Encryption

4.1 Our Construction

An ABSE scheme with the attribute set Ω that supports policies P with message
space Ω is described as follows.
ABSE .Setup(n, λ) → (pp,msk). The setup algorithm takes the number of sys-
tem users n and the security parameter λ as input. It first generates the bilinear
groups (g, p,G,GT , e) by running the bilinear group generator G(λ). The algo-
rithm randomly chooses the terms α, β ∈ Zp and h ∈ G, then the algorithm
computes the terms h1, h2, g1, g2, . . . , gn as:

h1 = gα, h2 = hβ , g1 = g(β), g2 = g(β
2), . . . , gn = g(β

n).

It picks three collusion-resistant hash functions H1,H2 and H3 at random:

H1 : Ω → G, H2 : {0, 1}∗ → Zp, H3 : GT → M.

The public parameter pp and the master secret key msk are

pp = (p,G,GT , e, g, g1, . . . , gn, h, h1, h2,H1,H2,H3), msk = (α, β).

ABSE .KeyGen(msk,A, b,L) → skA. The key generation algorithm takes the
master secret key msk, an access structure A = (M, ρ) ∈ P, a bit b ∈ {0, 1}
and a index list L (|L| ≤ n) as input, where M is a matrix of the size d× l in Zp

and ρ : [d] → Ω is a mapping function. Let �u be a random l dimensional vector
over Zp and �1 · �u = α. For each row i in the matrix M, it randomly chooses
ri ∈ Zp and computes the terms K

(0)
i ,K

(1)
i and K

(2)
i as:

K
(0)
i = hMi�uiH1(ρ(i))ri , K

(1)
i = gri , K

(2)
i = h

∑
j∈L

1
β−H2(ρ(i)‖j‖b) .

The secret key skA is

skA = {K
(0)
i ,K

(1)
i ,K

(2)
i }i∈[d].

ABSE .Enc(pp,m,S, b, �, τ) → ctS . The encryption algorithm takes the public
parameter pp, the message m ∈ M, an attribute set S = (A1, A2, . . . , Ak), a
random bit b ∈ {0, 1}, and a number � ∈ Zp and a number τ ∈ Zp (τ ≤ �) as
input. It randomly chooses a message m′ ∈ M, and derives the message m′′ as:

m′′ = m ⊕ m′.

It chooses a random exponent s ∈ Zp and computes the terms C(0) and C(1) as:

C(0) = m′ · e(h, h1)s, C(1) = gs.
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For all i ∈ [k], it computes the terms C
(2)
i , C

(3)
i , C

(4)
i and C

(5)
i as:

C
(2)
i = H1(Ai)s,

C
(3)
i =

(

g
∏�

j=1 β−H2(Ai‖j‖b)
)s′

,

C
(4)
i =

(

hβ−H2(Ai‖τ‖b)
)s′

,

C
(5)
i = m′′ ⊕ H3

⎛

⎝e

(

g

∏�
j=1 β−H2(Ai‖j‖b)

β−H2(Ai‖τ‖b) , h

)s′⎞

⎠ .

The ciphertext ctS is

ctS = (τ, C(0), C(1), {C
(2)
i , C

(3)
i , C

(4)
i , C

(5)
i }i∈[k]).

ABSE .Dec(skA, ctS , b) → m. The decryption algorithm takes the secret key skA,
the ciphertext ctS and a bit b ∈ {0, 1} as input. It takes the vector �w s.t.
∑

ρ(i)∈S Miwi = �1 and recovers the message m′ by computing:

C(0) ·
∏

ρ(i)∈S

(

e(K(1)
i , C

(2)
i )

e(K(0)
i , C(1))

)

= m′ · e(h, h1)s ·
∏

ρ(i)∈S

(
e(gri ,H1(ρ(i))s)

e(hMi�uiH1(ρ(i))ri , gs)

)

= m′.

It randomly chooses Ai ∈ S and recovers the message m′′ as: Let the polynomial
function f(a) be

f(a) =
∏�

j=1 (a − H2(Ai‖j‖b)) ·
(
∑

j∈L
1

a−H2(Ai‖τ‖b)

)

=

∏�
j=1 (a − H2(Ai‖j‖b))

a − H2(Ai‖τ‖b)
+ (a − H2(Ai‖τ‖b)) ·

(
∑�−2

j=0 fja
j
)

,

where fj is the coefficient of aj . The algorithm derives the message m′′ by com-
puting:

C
(5)
i ⊕ H3

(

e(C(3)
i ,K

(2)
i ) · e

(

C
(4)
i ,

∏�−2
j=1 g

fj

j · gf0

)−1
)

= m′′ ⊕ H3

⎛

⎝e

(

g

∏�
j=1 β−H2(Ai‖j‖b)

β−H2(Ai‖τ‖b) , h

)s′⎞

⎠ ⊕ H3

⎛

⎝e

(

g

∏�
j=1 β−H2(Ai‖j‖b)

β−H2(Ai‖τ‖b) , h

)s′⎞

⎠

= m′′.

The returning message m is m = m′ ⊕ m′′.
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4.2 Security Proof

We prove the security of our ABSE in the selective security model based on the
decisional BDH assumption and the modified q-BDHE assumption.

Theorem 2. Suppose the hash functions H1,H2,H3 are three random oracles.
Let qH1 , qH2 and qH3 be the query number to the oracle H1,H2 and H3, respec-
tively. Assuming the decisional BDH assumption is εBDH-hard, and the modified
q-BDHE is εq-BDHE-hard, our ABSE scheme is (qH2 , qH3 , ε)-secure under selec-
tive IND-CPA model under the ABSE setting. We have

AdvsIND-CPA
ABSE,A ≤ 1/2 · (εBDH + 1/(qH2qH3) · εq-BDHE) .

Proof. Suppose there exist a probabilistic polynomial time adversary A that
can break our ABSE scheme in the selective security model with a non-negligible
advantage. We can build an algorithm B that can have a non-negligible advantage
to break the decisional BDH problem or the modified q-BDHE problem.
Init. B runs A. A chooses the challenge attribute set S∗ and sends S∗ to B. B
randomly chooses a bit ĉ ∈ {0, 1}.
If ĉ = 0, B is giving the terms (A = ga, B = gb, C = gc, Z) and the aim of B is
to distinguish Z is e(g, g)abc or a random value.

If ĉ = 1, B is giving the terms g, g(a), g(a
2), . . . , gaq

, g(a
2q+2), g(a

2q+3),
. . . , g(a

3q+1) ∈ G
2q+1 and the aim of B is to output e(g, g)(a

2q+1).
Setup. B generates the public parameters pp to A.
If ĉ = 0, B assigns the public parameter h = B and h1 = A and chooses random
value β ∈ Zp to derive the rest of public elements:

h2 = hβ , g1 = g(β), g2 = g(β
2), . . . , gn = g(β

n).

B then randomly chooses two collusion-resistant function H2 : {0, 1}∗ → Zp and
H3 : GT → M, and forwards the public parameter as:

pp = (p,G,GT , e, g, g1, . . . , gn, h, h1, h2,H2,H3)

except the hash function H1 to A, where H1 works as a random oracle in the
rest of reduction.
If ĉ = 1, B randomly picks a random value α ∈ Zp and sets h1 = gα. Next, B
randomly chooses {I1, I2, . . . , IqH2

} from Zp, and picks a random i∗ ∈ [qH2 ]. Let
F (x) ∈ Zp[x] be a (qH2 − 1)-degree polynomial function as:

F (x) = b
∏qH2

i=1,i �=i∗(x − Ii) = FqH2−1x
qH2−1 + · · · + F2x

2 + F1x + F0.

It sets gi = g(a
i) for all i ∈ [�] and computes h = gF (a) and h2 = gaF (a) from the

challenge input and F (x). B then randomly chooses a collusion-resistant hash
function H1 : Ω → G, and forwards the public parameter pp as

pp = (p,G,GT , e, g, g1, . . . , gn, h, h1, h2,H1)
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except the two hash functions to A, and sets H1 and H2 as random oracles.
Hash Queries. If ĉ = 0, A can query the random oracle H1 at any time;
otherwise, A can query the random oracles H2 and H3 at any time.
OH1(·). For any query on A to the random oracle H1, B maintains a list LH1 and
responds as follows. If A is not in the list, the algorithm responds depended on
S∗. If A ∈ S∗, the algorithm sets r = 0 and randomly picks r′ ∈ Zp. If A �∈ S∗,
the algorithm randomly chooses r, r′ ∈ Zp. The algorithm returns H1(A) = hrgr′

to A, and adding (A, r, r′) to LH1 . Otherwise, there has been already a tuple
(A, r, r′) in the list and the algorithm responds with H1(A) = hrgr′

.
OH2(·). For any query on A to the random oracle H2, B maintains a list LH2 and
responds as follows. If there has been already a tuple (A, I) in the list LH2 , the
algorithm responds with H2(A) = I. Otherwise, let A be the ith distinct query.
B responds by returning H2(A) = Ii to A, and adding (A, Ii) to LH2 .
OH3 . For a random query on R to the random oracle H3, B maintains a list
LH3 and responds as follows. If R is not in the list, the algorithm responds by
randomly choosing a different Y ∈ Zp, returning H3(R) = Y to A, and adding
(R, Y ) to LH3 . Otherwise, there has been already a tuple (R, Y ) in the list and
the algorithm responds with H2(R) = Y .

Phase 1. A queries the key generation oracle OABSE.KeyGen(·, ·, ·). For the query
on access structure A = (M, ρ), a bit b and a number � from A, B responds as:
If ĉ = 0, according to the proposition 1 in [6], we have

Mi�u = �v +
ab − �v

h
· �w = αμ1 + μ2,

where the coefficients μ1 = Mi �w · h−1 and μ2 = Mi(h�v − �v �w) are computable.
For all i ∈ [d], the algorithm fetches (ρ(i), r, r′) and computes the terms K

(0)
i

and K
(1)
i as:

If ρ(i) ∈ S∗, the algorithm randomly chooses ri ∈ Zp and sets

K
(0)
i = hMi�uiH3(ρ(i))ri , K

(1)
i = gri , K

(2)
i = h

∑�
j=1

1
β−H2(ρ(i)‖j‖b) .

If ρ(i) �∈ S∗, the algorithm randomly chooses r′
i ∈ Zp and sets

K
(0)
i = h

−μ1·r′
r

1 gμ2
2 H3(ρ(i))r′

i , K
(1)
i = gr′

ih
−μ1

r
1 , K

(2)
i = h

∑�
j=1

1
β−H2(ρ(i)‖j‖b) .

If ĉ = 1, it computes the terms {K
(0)
i ,K

(1)
i }i∈[d] as our proposed scheme. For all

i ∈ [d], let the response for ρ(i)‖j‖b in the list LH2 be (ρ(i)‖j‖b, Ij) for all j ∈ [�].
If Ij = I∗ holds for any i ∈ [�], the algorithm aborts the simulation. When Ij �= I∗

holds for j ∈ [�], we have that H2(ρ(i)‖1‖b),H2(ρ(i)‖2‖b), . . . ,H2(ρ(i)‖�‖b) are
all the roots of F (x). Then, we deduce that

Fρ(i)(x) = F (x) ·
(
∑�

j=1
1

x−H2(ρ(i)‖j‖b)

)
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is a (qH2 − 2)-degree at most polynomial function, and B can compute

K
(2)
i = h

∑�
j=1

1
β−H2(ρ(i)‖j‖b) = g

F (β)·
(∑�

j=1
1

β−H2(ρ(i)‖j‖b)

)

= gFρ(i)(a)

from Fρ(i)(x) and g, g(a), . . . , g(a
q), and K

(2)
i is a valid secret key component.

Finally, B returns the secret key skA = {K
(0)
i ,K

(1)
i ,K

(2)
i }i∈[d] to A.

Challenge. A will submit two challenge message (m0,m1, b, τ) to B. B flips a
fair binary coin c̄.
If ĉ = 0, B randomly chooses m′ ∈ M and sets m′′ = mc̄ ⊕ m′, then computes
the terms C(0), C(1), C(2) as:

C = m′ · Z, C(1) = C, ∀Ai ∈ S∗ : C
(2)
i = Cr′

.

If Z = e(g, g)abc. Then the ciphertext is:

C = m′ · e(g, g)abc, C(1) = gc, ∀Ai ∈ S∗ : C
(2)
i = H3(Ai)c.

The rest of ciphertext (τ, {C
(3)
i , C

(4)
i , C

(5)
i }Ai∈S∗) are generated as our proposed

scheme.
If ĉ = 1, B randomly chooses m′ ∈ M and sets m′′ = mc̄ ⊕ m′, then computes
the terms C(0), C(1), C

(2)
i as our proposed scheme. For each attribute ρ(i) in S,

B works as follows:
If B cannot find the tuple (ρ(i)‖τ‖b, I∗) ∈ LH2 satisfies I∗ �= Iτ , abort; otherwise,
the algorithm randomly chooses C

(5)∗
i ∈ {0, 1}�. Let

F ′(x) =
∑�

j=1
1

β−H2(ρ(i)‖j‖b)

x−I∗

be an (n − 1)-degree polynomial function. The algorithm randomly chooses r′ ∈
Zp and computes the challenge ciphertext (C(3)

i , C
(4)
i , C

(5)
i ) by

C
(3)
i = gr′(a2q+2−I∗2q+2)F ′(a), C

(4)
i = gr′(a2q+2−I∗2q+2)F (a), C

(5)
i = C

(5)∗
i .

where C
(3)
i and C

(4)
i are computable from F ′(x) and F (x) and the challenge

input. Let the randomness r be

r = r′ · a2q+2−I∗2q+2

a−I∗ ,

which is also universally random in Zp. We have the challenge ciphertext is
equivalent to

C
(3)
i =

(

g
∑�

j=1
1

β−H2(ρ(i)‖j‖b)

)r

, C
(4)
i =

(

hβ−H2(ρ(i)‖τ‖b)
)r

, C
(5)
i = C

(5)∗
i .

According to our setting, there must exist a hash query on

e

(

g

∑�
j=1

1
β−H2(ρ(i)‖j‖b)

β−H2(ρ(i)‖τ‖b) , h

)r

to the random oracle H3 in order to decrypt the
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message in the challenge ciphertext.

m′′ = H3

(

e

(

g

∑�
j=1

1
β−H2(ρ(i)‖j‖b)

β−H2(ρ(i)‖τ‖b) , h

)r)

· C
(5)∗
i .

Phase 2. Phase 2 is same as Phase 1.

Guess. If ĉ = 0, A will submit a guess c̄′. If c̄ = c̄′, B will output 0 to indicate
that is was given a valid BDH-tuple otherwise it will output 1 to indicate it was
given a random 4-tuple.

If ĉ = 1, A returns a guess c̄′. Let F ′′(x) be the (2q + n + qH1 − 1)-degree
polynomial function

F ′′(x) = r′ · x2q+2−I∗2q+2

x−I∗ · F ′(x) · F (x)

and F ′′
i be the coefficient of xi in F ′′(x). We have that e

(

g

∑�
j=1

1
β−H2(ρ(i)‖j‖b)

β−H2(ρ(i)‖τ‖b) , h

)r

= e(g, g)F ′′(a). It is easy to verify that F ′′
2q+1 is equal to r′F ′(I∗)F (I∗) which

is non-zero, and that e(g, g)F ′′·ai

for all i �= 2q + 1 are computable from the
challenge input. B picks a random tuple (R, Y ) from the list LH3 and computes

(

R ·
∏2q+n+qH2−1

i=1,i �=2q+1 e(g, g)−F ′′
i ·ai

) 1
r′F ′(I∗)F (I∗) = e(g, g)a2q+1

as the solution to the modified q-BDHE problem.
When ĉ = 0, if B output 0 (c̄ = c̄′), the generation of public parameters and

secret keys is identical to that of the actual scheme. In the case where outputs 1
(c̄ �= c̄′), A gains no information about c̄. Therefore, the probability of guessing
successful is 1/2. In the case where outputs 0, A sees an encryption of mc̄. The
advantage in this situation is εBDH by definition. Hence, the advantage is εBDH.

When ĉ = 1, we need to consider of three events. The first event is B can
generate ith key generation query on the challenge attribute. The second event
is B does not abort in the challenge phase. Hence, we have the overall abort
in the guess phase 1/qH2 . The last one is B may not query e(g, g)F ′′(a) to the
random oracle OH3 , and the probability of choosing a correct randomness Ri

is 1/qH3 . The advantage in this situation is (1/(qH2qH3))εq-BDHE. Therefore, the
advantage of A breaking the game is (1/(qH2qH3))εq-BDHE

We have the advantage when ĉ = 0 and ĉ = 1, respectively. Hence, the above
probability analysis does not consider B guessing ĉ correctly, and the probability
of B guessing ĉ successful is 1/2. Therefore, the overall advantage is

AdvsIND-CPA
ABSE,A = 1/2 · (εBDH + 1/(qH2qH3) · εq-BDHE) .
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5 Conclusion

We introduced the attribute-based traitor tracing scheme based on the finger-
print code in blackbox setting. The size of the secret key relates to the size of
policies as the normal attribute-based encryption scheme rather than the previ-
ous blackbox attribute-based traitor tracing schemes depend on both the number
of the user in the system and the size of policies. It saves both secure storage
and bandwidth for ABTT applications. We also introduced a new primitive of
attribute-based set encryption for reducing the multi-attribute scenarios. Our
proposed ABSE scheme is provably secure in the random oracle under the deci-
sional BDH assumption and the modified q-BDHE assumption.
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