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1 Introduction

Clustering refers to the task of partitioning unlabelled data into meaningful
groups (clusters). It is a useful approach in data mining processes for iden-
tifying hidden patterns and revealing underlying knowledge from large data
collections. The application areas of clustering, to name a few, include im-
age segmentation, information retrieval, document classification, associate
rule mining, web usage tracking, and transaction analysis.

While a large number of clustering methods have been developed, cluster-
ing remains a challenging task as a clustering algorithm behaves differently
depending on the chosen features of the data set and the parameter values
of the algorithm [10]. Therefore, it is important to have some objective
measures to evaluate the clustering quality in a quantitative manner. Given
a clustering problem with no prior knowledge, a quantitative assessment of
the clustering algorithm serves as an important reference for various tasks,
such as discovering the distribution of a data set, identifying the cluster-
ing paradigm that is most suitable for a problem domain, and deciding the
optimal parameters for a specific clustering method.

In the rest of this chapter, we review the process of clustering activities
and discuss the factors that affect the output of a clustering system. We
then describe two sets of quality measures for the evaluation of clustering
algorithms. While the first set of measures evaluate clustering outputs in
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terms of their inherent data distribution, the second set evaluates output
clusters in terms of how well they follow known class distribution of the
problem domain. We illustrate the application of these evaluation measures
through a series of controlled experiments using three clustering algorithms.

2 Clustering Process: A Brief Review

Jain et al summarized a typical sequence of the clustering activities as the
following three stages depicted in Figure 1 [13, 14]:

1. pattern representation, optionally including feature extraction and/or
selection,

2. definition of a pattern proximity measure for the data domain, and

3. clustering or grouping of data points according to the chosen pattern
representation and the proximity measure.

 
Feature 

Selection / 
Extraction 

Interpattern 
Similarity Grouping 

Patterns 
Pattern 

Representation 
 

Clusters 

Feedback Loop 
 

Figure 1: A typical sequencing of clustering activity.

Since the output of a clustering system is the result of the system’s
interactive activities in each stage, various factors in each stage that affect
the system’s activity in turn have impact on the clustering output. We
extend our discussion in the following subsections.

2.1 Pattern Representation, Feature Selection and Feature
Extraction

Pattern representation refers to the paradigm for observation and the ab-
straction of the learning problem, including the type, the number and the
scale of the features, the number of the patterns, and the format of the fea-
ture representation. Feature selection is defined as the task of identifying a
set of most representative subset of the natural features (or transformations
of the natural features) to be used by the machine. Feature extraction, on
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the other hand, refers to the paradigm for converting the observations of the
natural features into a machine understandable format.

Pattern representation is considered as the basis of machine learning.
Since human accessibility of the patterns is highly dependent on their repre-
sentation format, an unsuitable pattern representation may result in a failure
of producing meaningful clusters as a user desires. As show in Figure 2a,
using a cartesian coordinate representation, a clustering method would have
no problem in identify the five compact groups of data points. However,
when the same representation is applied to the data set in Figure 2b, the
four string-shape clusters would probably not be discovered as they are not
easily separable, in terms of Euclidean distance. Instead, a polar coordi-
nate representation could lead to a better result, as the data points in each
string-shape cluster are close to each other, in terms of polar angle.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

(a) (b)

Figure 2: To identify compact clusters, a cartesian coordinate representation
is more suitable for case (a), while a polar coordinate representation is more
suitable for case (b).

Feature selection and extraction play an important role for abstracting
complex patterns into a machine understandable representation. The feature
set used by a clustering system regularizes the “area” that the system gives
“attention” to. Referring to the data set in Figure 2a, if coordinate position
is selected as the feature set, many clustering algorithms would be capable of
identifying the five compact clusters. However, if only the color of the data
points is selected as the feature, a clustering system would probably output
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only two clusters, containing white points and black points respectively.

The feature set also affects the quality as well as the efficiency of a clus-
tering system. A large feature set containing numerous irrelevant features
does not improve the clustering quality but increases the computational com-
plexity of the system. On the other hand, an insufficient feature set may
decrease the accuracy of the representation and therefore cause potential
loss of important patterns in the clustering output.

2.2 Pattern Proximity Measure

Pattern proximity refers to the metric that evaluates the similarity (or in
contrast, the dissimilarity/distance) between two patterns. While a number
of clustering methods (such as [17]) disclaim the use of specific distance
measures, they use alternative pattern proximity measures to evaluate the
so-called relationship between two patterns. A pattern proximity measure
serves as the basis for cluster generation as it indicates how two patterns
“look alike” to each other.

Since the type, the range, and the format of the input features are defined
during the pattern representation stage, it follows that a pattern proximity
measure should correspond to the pattern representation. In addition, a
good proximity measure should be capable of utilizing only the key features
of the data domain. Referring to Figure 2 again, with a cartesian represen-
tation, Euclidean distance is suitable to identify the geometric differences
among the five clusters in data set (a) but may not be capable enough to
recognize the clusters in data set (b). Instead, cosine distance is more suit-
able for data set (b), as it gives no weight to a vector’s radius and focuses on
the differences of the vectors’ projections on the polar angle only. Generally,
a careful review on the existing correlations among patterns helps to choose
a suitable pattern similarity measure.

Given an existing pattern representation paradigm, a data set may be
separable in various ways. Under this condition, using different pattern
proximity measures may result in very different clustering outputs. Figure 3
depicts a simple example using eight speed cameras on three roads. Based
on different proximity criteria listed in Table 1, there are different solutions
for clustering the speed cameras, each with an acceptable interpretation. In
most cases, the clustering system is desired to output only one (or a few
number of) optimal grouping solution that best matches the user intention
on the data set, although that may be partial and subjective. Hence it is
important to identify the pattern proximity measure that effectively and
precisely formulates the user’s intention on the patterns.
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Figure 3: Using various pattern proximity measures, the eight speed cameras
on the three roads may be clustered into different cluster groupings.

Table 1: Interpretations to the various clustering results of the eight speed
cameras, based on different pattern proximity measures.

Measure Clustering Result Interpretation
Geometric
distance

C1 = {S1, S2, S3, S4, S5}
C2 = {S6, S8}
C3 = {S7}

Cameras in each cluster are ge-
ometrically closer to each other
than to those in other clusters.

Connectivity C1 = {S1, S2, S3, S4}
C2 = {S5, S6}
C3 = {S7, S8}

Each cluster contains the cam-
eras in the same road.

Density C1 = {S1, S2, S3, S4, S5}
C2 = {S6, S7, S8}

C1 identifies the zone intensively
equipped with cameras, in con-
trast to the rest of the area.

2.3 Clustering Algorithms

A clustering algorithm groups the input data according to a set of prede-
fined criteria. The clustering algorithm used by a system can be either
statistical or heuristic. In essence, the objective of clustering is to maximize
the intra-cluster similarity and minimize the inter-cluster similarity [23]. A
large variety of clustering algorithms have been extensively studied in the
literature. While a comprehensive survey of clustering algorithms is not
the focus of our study, we give a bird’s-eye review of various types of the
available algorithms in Table 2.
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Table 2: Various types of clustering methods, based on learning paradigm,
codebook size, cluster assignment, and system architecture respectively.

Criteria Categories
Learning paradigm Off-line: Iteratively batch learning on the whole

input set.
On-line: Incremental learning that does not re-
member the specific input history.

Codebook size (num-
ber of output clusters)

Static-sizing: The codebook size is fixed.
Dynamic-sizing: The codebook size is adaptive
to the distribution of input data.

Cluster assignment Hard: Each input is assigned with one class la-
bel.
Fuzzy: Each input is given a degree of member-
ship with every output cluster.

System architecture Partitioning: The input space is naively sepa-
rated into disjoint output clusters.
Hierarchical: The output tree shows the relations
among clusters.
Density-based: The input data are grouped based
on density conditions.
Grid-based: The spacial input space is quantized
into finite sub-spaces (grids) before clustering of
each sub-space.

Despite the numerous clustering algorithms available in the literature,
there is no single method that can cope with all clustering problems. The
choice of the clustering algorithm for a specific task affects the clustering
result in a fundamental way. In addition, the learning activity of a large
number of clustering algorithms is controlled and hence affected by a set of
internal parameters. The optimal parameter set is usually decided through
empirical experiments on the specific data set.

3 Evaluation of Clustering Quality

With the summarization of the various factors that affect the result of a
clustering system, it is desirable for a clustering system to be capable of
providing the necessary feedback to each stage of the clustering process,
based on the evaluation and the interpretation of the clustering output. Such
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a feedback helps to gather prior knowledge on the data distribution, define
a suitable pattern proximity measure that matches the problem domain,
choose a clustering algorithm as well as decide the optimal parameter setting
for the specific algorithm, and therefore lead to an optimal clustering output.

Human inspection on the clustering output may be the most intuitive
clustering validation method as it compares the clustering result with the
user’s intention in a natural way. In fact, human inspection has been widely
used to validate the clustering outputs of the controlled experiments on two
dimensional data sets. However, human inspection lacks the scalability to
high dimensional, large, and complicated problem domains. In addition,
manual inspection is always not desirable and not feasible in real-life appli-
cations. Therefore, quantitative assessment of clustering quality is of great
importance for various clustering applications.

When talking about quantitative measure of the clustering quality, read-
ers should be aware that the definition of the quality actually is quite sub-
jective. Given an input data set, users may have varying desires on the
knowledge that a clustering system could discover, and therefore give dif-
ferent interpretation of the clustering quality. Before a quality measure is
applied to evaluate the clustering results generated by two different systems,
a study on the quantitative comparability of the outputs is fundamentally im-
portant. We consider two clustering systems quantitative comparable only
if:

• the pattern representation of the two systems are similar enough,

• they are based on the similar clustering fundament, and

• they intend to fulfill the same user requirement, optionally to optimize
the same criteria.

We give explanations through examples below. Given the speed cam-
era example as in Figure 3, the three clustering results in Table 1 are not
quantitatively comparable as they are based on different clustering criteria.
Likewise, given the data set as in Figure 2a, the clustering output based on
the coordinate position of each data point is not quantitatively comparable
with that based on the color of each data point, as they are based on totally
different feature sets. However, using the same feature representation (coor-
dinate position), the outputs of the two clustering methods as in Figure 4 are
quantitatively comparable as they both attempt to identify compact clusters
of the data set.

A multitude of clustering evaluation measures have been extensively
studied in the literature. Examples include the Dunn and Dunn-like family
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Figure 4: Two quantitatively comparable partitioning outputs of the data
set in Figure 2a. Each type of marker identifies data points in the same
cluster. Result (a) is considered to have a higher quality than result (b) in
the sense that it recognizes the large cluster (marked with solid circles in
(a)) more precisely.

of measures initially proposed for evaluation of crisp [7], the variances of
DB measures [6, 16], the various cross validation methods based on Monte
Carlo theory [18], and the relatively recent SD validity indices [11]. However,
due to the limitations mentioned above, a large number of these evaluation
measures are capable of validating a narrow ranges of in-house clustering
methods only. Our study intents to use a set of evaluation measures with
high scalability, in terms of the capability for evaluating a wide range of
clustering systems. In the rest of this section, we introduce several cluster-
ing evaluation measures based on two different statistical fundaments, i.e.
cluster distribution and class conformation respectively.

3.1 Evaluation Measures Based on Cluster Distribution

The objective of clustering has been widely quoted as to reorganize the input
data set in an unsupervised way such that data points in the same cluster
are more similar to each other than to points in different clusters. When
explaining this objective in the quantitative manner, it is to minimize the
distances among the data points in individual clusters and to maximize the

9



distances between clusters. Therefore, it is a natural way to validate the
intra-cluster homogeneity and the inter-cluster separation of the clustering
output in a global fashion, using the quantities inherent to the distribution
of the output data.

We extend our study from the various clustering validity methods in this
category [9, 11], and propose two quality evaluation measures, namely: clus-
ter compactness and cluster separation. The definitions of these measures
are given as below.
Cluster Compactness: The cluster compactness measure introduced in
our study, is based on our generalized definition of the variance of a vector
data set given by

v(X) =

√

√

√

√

1

N

N
∑

i=1

d2(xi,x) (1)

where d(xi,xj) is a distance metric between two vectors xi and xj , N is the
number of members in X, and x = 1

N

∑

i xi is the mean of X. A smaller
variance value of a data set indicates a higher homogeneity of the vectors
in the data set, in terms of the distance measure d(). Particularly, when
X is one-dimensional and d() is the Euclidean distance, v(X) becomes the
statistical variance of the data set σ(X). The cluster compactness for the
output clusters c1, c2, · · · , cC generated by a system is then defined as

Cmp =
1

C

C
∑

i

v(ci)

v(X)
, (2)

where C is the number of clusters generated on the data set X, v(ci) is the
variance of the cluster ci, and v(X) is the variance of the data set X.

The cluster compactness measure evaluates how well the subsets (output
clusters) of the input is redistributed by the clustering system, compared
with the whole input set, in terms of the data homogeneity reflected by the
distance metric used by the clustering system. When the distance metric is
the Euclidean distance, the cluster compactness measure becomes coherent
to the average cluster scattering index used in Halkidi et al’s study [11]. It
is understandable that, for the cluster compactness measure, a smaller value
indicates a higher average compactness in the output clusters. This however
does not necessarily mean a “better” clustering output. Given a clustering
system that encodes each and every unique input data into one separate
cluster, the cluster compactness score of its output has a minimal value of
0. Such a clustering output is however not desirable. To tackle this, we
introduce the cluster separation measure to complement the evaluation.
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Cluster Separation: The cluster separation measure introduced here bor-
rows the idea in [11] and combines the idea of the clustering evaluation
function introduced by [9]. The cluster separation of a clustering system’s
output is defined by

Sep =
1

C(C − 1)

C
∑

i=1

C
∑

j=1,j 6=i

exp(−
d2(xci

,xcj
)

2σ2
), (3)

where σ is a Gaussian constant, C is the number of clusters, xci
is the

centroid of the cluster ci, d() is the distance metric used by the clustering
system, and d(xci

,xcj
) is the distance between the centroid of ci and the

centroid of cj .
It is noted that the pair-wise distances among the output cluster cen-

troids are the key components of the cluster separation measure. The Gaus-
sian function and the L1-normalization normalizes its value to between 0
and 1. A smaller cluster separation score indicates a larger overall dissim-
ilarity among the output clusters. However, given the particular case that
a clustering system output the whole input set into one cluster, the clus-
ter separation score reaches to minimal value of 0, which is not applicably
desirable. Hence, we reach the necessary point to combine the cluster com-
pactness and cluster separation measures into one in order to tackle each
one’s deficiency and evaluate the overall performance of a clustering system.
An intuitive combination, named overall cluster quality, is defined as:

Ocq(β) = β · Cmp + (1 − β) · Sep, (4)

where β ∈ [0, 1] is the weight that balances measures cluster compactness
and cluster separation. Particularly, Ocq(0.5) gives equal weights to the two
measures. Readers however should be aware of the limitation of this com-
bination: although the combination measure Ocq facilitates the comparison
work, one may find it not easy to interpret the combined value, as the Cmp

and Sep scores are not measured in the same dimension. In addition, in some
other cases, evaluating a clustering system through intra-cluster compact-
ness and inter-cluster separation respectively helps to gain more insightful
understanding of the system characteristics.

3.2 Evaluation Measures Based on Class Conformation

This category of validation measures assumes that there is a desirable distri-
bution of the data set with which it is possible to perform a direct comparison
of the clustering output. Following the data distribution, one can assign a
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class label to each data point. The target of the clustering system can then
be correspondingly interpreted as to replicate the underlying class struc-
ture through unsupervised learning. In an optimal clustering output, data
points with the same class labels are clustered into the same cluster and data
points with different class labels appear in different clusters. We describe
two quantitative evaluation measures based on these criteria as follows.
Cluster Entropy: Boley [1] introduced an information entropy approach
to evaluate the quality of a set of clusters according to the original class
labels of the data points . For each cluster ci, a cluster entropy Eci is
computed by

Eci = −
∑

j

n(lj , ci)

n(ci)
log

n(lj , ci)

n(ci)
(5)

where n(lj , ci) is the number of the samples in cluster ci with a predefined
label lj and n(ci) =

∑

j n(lj , ci) is the number of samples in cluster ci. The
overall cluster entropy Ec is then given by a weighted sum of individual
cluster entropies by

Ec =
1

∑

i n(ci)

∑

i

n(ci)Eci. (6)

The cluster entropy reflects the quality of individual clusters in terms of
homogeneity of the data points in a cluster (a smaller value indicates a higher
homogeneity). It however does not measure the compactness of a clustering
solution in terms of the number of clusters generated. A clustering system
that generates many clusters would tend to have very low cluster entropies
but is not necessarily desirable. To counter this deficiency, we use another
entropy measure below to measure how data points of the same class are
represented by the various clusters created.
Class Entropy: For each class lj , a class entropy Elj is computed by

Elj = −
∑

i

n(lj , ci)

n(lj)
log

n(lj , ci)

n(lj)
(7)

where n(lj , ci) is the number of samples in cluster ci with a predefined label
lj and n(lj) =

∑

i n(lj , ci) is the number of the samples with class label lj .
The overall class entropy El is then given by a weighted sum of individual
class entropies by

El =
1

∑

j n(lj)

∑

j

n(lj)Elj . (8)

Since both the cluster entropy and class entropy utilize the predefined
class labels on the input data only, they are independent to the choice of the
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feature representation and the pattern proximity measure. Therefore these
two measures are practically capable of evaluating any clustering system.
Compared with the cluster distribution based measures, these class confor-
mation based measures are likely to have more advantages for identifying
the optical clustering solution to match the user’s intention on the problem
domain. One apparent drawback however is the potential complexity of the
labelling process, which may not be feasible and not desirable in real-life
applications.

Our prior study showed that, similar to the characteristics of the cluster
compactness and the cluster separation measures, as the number of clusters
over one data set increases, the cluster entropy generally decreases while the
class entropy increases. We follow the identical paradigm for the combina-
tion of cluster compactness and cluster separation, and define a combined
overall entropy measure:

Ecl(β) = β · Ec + (1 − β) · El, (9)

where β ∈ [0, 1] is the weight that balances the two measures.

4 Clustering Methods

Before introducing our experiments on the various clustering quality mea-
sures, review of the clustering systems used in our experiments helps toward
a better understanding of the experimental results. Our experiments tested
three partitioning methods that work with a fixed number of clusters, namely
k-means [19], Self-Organizing Maps (SOM) [15], and Adaptive Resonance
Theory under Constraints (ART-C) [12]. The learning algorithms of the
three methods are summarized as follows.

4.1 k-means

k-means [19] has been extensively studied and applied in the clustering lit-
erature due to its simplicity and robustness. The fundament of the k-means
clustering method is to minimize the intra-cluster compactness of the output,
in terms of the summed squared error. The k-means clustering paradigm is
summarized below.

1. Initialize the k reference clusters with randomly chosen input points
or through certain estimation of the data distribution.

2. Assign each input point to the nearest cluster centroid.

13



3. Recalculate the centroid of each cluster using the mean of the input
points in the cluster.

4. Repeat from step 2 until convergence.

Since k-means follows a batch learning paradigm to iteratively adjust the
cluster centroids, it is inefficient in handling large scale data sets. In addi-
tion, the output of k-means is affected by the cluster initialization method.
Its strength however lies in the satisfactory quality in the sense that the
output has locally minimal summed squared error when it converges.

4.2 Self-Organizing Maps (SOM)

SOM as proposed by Kohonen [15] is a family of self-organizing neural net-
works widely used for clustering and visualization. As an unique feature of
SOM, the clusters in a SOM network are organized in a multi-dimensional
map. During learning, the network updates not only the winner’s weight,
but also the weights of the winner’s neighbors. This results in an output
map with a distribution that similar patterns (clusters) are placed together.
The learning paradigm of SOM is given below.

1. Initialize each reference cluster w
(0)
j with random values. Set the initial

neighborhood set of each cluster N
(0)
j to be large.

2. Given an input xi, find the winner node J that has the maximal sim-
ilarity with xi.

3. Update the cluster vectors of the winner node and its neighbors, ac-
cording to

w
(t+1)
j = w

(t)
j + η(t)h(j, J)(xi − w

(t)
j ) for each j ∈ N

(t)
J , (10)

where h(j, J) ∈ [0, 1] is a scalar kernel function that gives a higher
weight to a closer neighbor of the winner node J and η(t) is the learning
rate.

4. At the end of the learning iteration, shrink the neighborhood sets so

that N
(t+1)
j ⊂ N

(t)
j for each j and decrease the learning rate so that

η(t+1) < η(t). Repeat from step 2 until convergence.

There are a large number of SOM variances depending on the dimen-
sion of the organization map, the definition of the neighborhood sets Ni,
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the kernel function h(), as well as the paradigm that iteratively readjusts
Ni and η. When the network utilizes one-dimensional map and the degree
of neighborhood is zero (i.e. the neighborhood contains the winner node
only), SOM equals to an online learning variance of the k-means cluster-
ing method [8]. It is also understandable that, if the neighborhood degree
shrinks to zero at the end of the learning, SOM is capable of obtaining op-
timal output with locally minimal summed square error. The drawback of
SOM is that its learning activity is affected by the initialization of network
and the presentation order of the input data.

4.3 Adaptive Resonance Theory under Constraints (ART-C)

ART-C [12] is a new variance of the Adaptive Resonance Theory (ART)
neural networks, which was originally developed by Carpenter and Gross-
berg [5]. Unlike the conventional ART modules which work on a dynamic
number of output clusters, an ART-C module is capable of satisfying a user
constraint on its codebook size (i.e. the number of output clusters), while
keeping the stability-plastically of ART intact. Compared with the con-
ventional ART architecture, the ART-C architecture (Figure 5) contains an
added constraining subsystem, which interacts with the ART’s attentional
subsystem and the orienting subsystem. During learning, the constraining
subsystem adaptively estimates the distribution of the input data and self-
adjusts the vigilance parameter for the orienting subsystem, which in turn
governs the learning activities in the attentional subsystem. The learning
paradigm of ART-C is summarized below.

�

F2�

F1�

F0�

…�

ρ

Input�

-�

+�

Attentional�Subsystem�

C
-�

+� Constraining�
Subsystem�

Orienting�
Subsystem�

�

Figure 5: The ART-C architecture.
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1. Initialize the network’s recognition layer F2 with null set ø (i.e. the
number of clusters in F2 is zero) and set the network’s vigilance ρ as
1.0.

2. Given an input xi in the input layer F0, the comparison layer F1 stores
the match scores M(xi,wj) between the input and every cluster vector
wj in F2.

3. If the maximal match scores satisfies max{M(xi,wj)} ≥ ρ or the num-
ber of clusters c in F2 satisfies c < C, where C is the user constraint on
the number of output clusters, then carry out the conventional ART
learning process, which is summarized below,

(a) Calculate the choice scores T (xi,wj) between the input and every
cluster vector wj in F2.

(b) Identify the winner node J that receives the maximal choice score
T (xi,wJ). Resonance happens when the match score M(xi,wJ) ≥
ρ. Otherwise reset the winner node J and repeat the search pro-
cess.

(c) If the network reaches resonance, the network updates the cluster
vector of the winner node, according to a learning function

w
(t+1)
J = L(xi,w

(t)
J ). (11)

Otherwise, if all F2 nodes j are reset, insert the input xi into the
F2 layer as a new reference cluster.

otherwise, do constraint reset, which is summarized below,

(a) Insert input xi into F2 layer as a new reference cluster.

(b) Calculate the pair wise match score M(wi,wj) of every F2 node
pairs.

(c) Locate the winner pair (I, J) according to

M(wI ,wJ) = max{M(wi,wj) : i ∈ R}, (12)

where R is the set of F2 nodes indexed by the criteria:

R = {F2 node i whose max{M(wi,wj) : j 6= i} < ρ}. (13)
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(d) Modify the network’s vigilance according to the match score be-
tween the winner pair:

ρnew = M(wI ,wJ). (14)

(e) Update wJ with wI, by utilizing the ART learning function:

w
(t+1)
J = L(w

(t)
I ,w

(t)
J ). (15)

(f) Delete node I from F2 layer.

4. Repeat from step 2 until convergence.

The ART module used in the ART-C architecture can be either ART-1
[5], ART-2 [2, 4] or fuzzy ART [3], each using a different set of choice, match,
and learning functions. ART-2 utilizes the cosine similarity as the choice
and match functions:

T (xi,wj) = M(xi,wj) =
xi · wj

||xi||||wj ||
, (16)

where the L2-norm function || · || is defined by

||x|| =

√

∑

i

x2
i (17)

for vector x. The learning function is given by

L(xi,wj) = ηxi + (1 − η)wj . (18)

where η is the learning rate. As a comparison, fuzzy ART uses hyper-
rectangle based choice and match functions

T (xi,wj) =
|xi ∧ wj |

α + |wj |
, (19)

M(xi,wj) =
|xi ∧ wJ |

|xi|
, (20)

where α is a constant, the fuzzy AND operation ∧ is defined by

(p ∧ q)i ≡ min(pi, qi) (21)

and the L1-norm |.| is defined by

|p| ≡
∑

i

pi (22)
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for vectors p and q. The learning function for fuzzy ART is given by

L(xi,wj) = η(xi ∧ wj) + (1 − η)wj . (23)

ART-C adaptively generates reference clusters (recognition categories)
using the input samples. Therefore no prior knowledge on the data distri-
bution is required for the initialization of the network. However, like most
online learning algorithms, ART-C’s learning is affected by the presentation
order of the input data.

5 Experiments and Discussions

The experiments reported in this section illustrate the use of the various
clustering evaluation measures for a variety of purposes. We extend our
discussion on the two synthetic data sets as in Figure 2a and 2b in a quanti-
tative manner. Tasks on these two data sets include identifying the optimal
number of clusters in the data set and choosing of a pattern proximity mea-
sure suitable for the specific data distribution. In addition, using a high-
dimensional and sparse real-life data set, i.e. the Reuters-21578 free text
collection, we carry out comparisons across the performance of three dis-
tinct clustering algorithms, namely k-means, SOM, and ART-C, to discover
the similarities and differences of their clustering behaviors.

5.1 Statistical Validation of Comparative Observation

It is noted that, for both k-means and SOM, the clustering output is affected
by the initialization of cluster prototypes. In addition, the order of the input
sequence affect the outputs of SOM and ART-C. Therefore, comparative
findings based on a single experiment would not be representative due to
the potential deviation of the observation values.

To tackle this deficiency, we adopted the commonly used statistical val-
idation paradigm in our experiments. Given a clustering task, we repeat
the experiments for each clustering method under evaluation for ten times.
In each experiment, the presenting sequence of the input data is reshuffled
and the clustering methods are trained to convergence. Based on the ob-
servation values from the ten runs, the means and the standard deviations
are reported. In order to compare the evaluation scores obtained, we com-
pare the mean values and employed t-test to validate the significance of the
comparative observations across the ten runs.
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5.2 Identification of the Optimal Number of Clusters

Our experiments on the synthetic data set as shown in Figure 2a evaluated
the k-means clustering method using the Euclidean distance. The synthetic
data set contains 334 data points, each is a 2-dimensional vector of values
between 0 and 1. Our task is to identify the optimal number of clusters
on the data set in an unsupervised way. Here the optimal solution refers
to the result that best reflects the data distribution and matches the user’s
post-validation on the data set, in terms of intra-cluster compactness and
inter-cluster separation of the output clusters.

The paradigm of the experiment is summarized below. We apply the
k-means method on the data set using k values ranging from 2 to 8. For
each k value, we evaluate the quality of the output using the measures based
on cluster compactness (Cmp) and cluster separation (Sep). This enables
us to observe the change of the score values according to the change of k.
Intuitively the most satisfactory quality score indicates the best partition of
the data set, while the corresponding k value suggests the optimal number
of clusters on the data set.

Figure 6 depicts the change of cluster compactness, cluster separation,
as well as overall cluster quality by varying k from 2 to 8. 2σ2 = 0.25
is used for the ease of evaluation in Equation 3 and β = 0.5 for Ocq() is
used to give equal weights to cluster compactness and cluster separation. To
obtain a clear illustration, only the mean values of the ten observations over
each measure are plotted in the figure while the standard deviations are not
reported.

It is noted that, when k increases, cluster compactness gradiently de-
creases and cluster separation generally increases. This is due to the nature
that a larger number of partitions on the same data space generally tends
to decrease the size of each partition (which causes higher compactness in
each partition) as well as the distances among the partition centroids (which
causes lower separation of partitions). However, as an apparent exception,
the cluster separation shows a locally minimal value at k = 5, while the
decreasing trend of cluster separation at k = 5 is significantly different from
those at different k values. The overall cluster quality also shows a locally
minimal value at k = 5. This suggests that the optimal number of clusters
(in terms of Euclidean similarity) is five. The result is supported by human
inspection of the data in Figure 2a.

The drawbacks of this experimental paradigm however are notable. First,
it is not easy to suggest a proper range of k values for the iterative testing if
the user lacks a prior estimation of the data distribution. In addition, both
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Figure 6: Cluster compactness, cluster separation, and overall cluster quality
of k-means on the synthetic data set in Figure 2a. The locally minimal value
of overall cluster quality Ocq(0.5) at k = 5 suggests the optimal number of
clusters on the data set.

the σ value for the calculation of cluster separation and the weight β for
the calculation of overall cluster quality are subjectively determined. This
shows that human interaction and prior knowledge on the problem domain
is still required for the use of these evaluation measures.

5.3 Selection of Pattern Proximity Measure

Our experiments on the synthetic data set as shown in Figure 2b utilize the
quality measures based on class conformation to evaluate two variances of
ART-C networks, namely fuzzy ART-C (based on Fuzzy ART) and ART2-
C (based on ART-2). While fuzzy ART-C groups input data according to
nearest hyper-rectangles, ART2-C groups input data according to nearest
neighbors, in terms of cosine similarity. Our comparative experiments at-
tempt to discover which of these two pattern proximity measures is more
capable of identifying the data distribution on the problem domain, and
therefore produces clustering output with a higher match with the user in-
tent.

In order to evaluate the clustering quality using cluster entropy, class
entropy, and overall entropy, we pre-assigned each data point with a class
label based on our observation. There are four different class labels assigned
to the 250 data points in the collection, each label corresponding to a string-
shaped class in Figure 7.

Our experiments compared fuzzy ART-C and ART2-C with a preset

20



0 0.5 1
0

0.5

1

Figure 7: The manually labelled data set as in Figure 2b. Data points
assigned with the same class label are identified with the same marker.

constraint (C) of 4, each using a standard set of parameter values. Ta-
ble 3 summarizes the statistics of the comparison results. While ART2-C
is capable of producing a better balanced set of cluster entropy and class
entropy scores (which indicates a better balance of cluster homogeneity and
class compactness), the cluster entropy score of fuzzy ART-C is three times
higher than that of ART2-C in our experiment. Although the class entropy
score of fuzzy ART-C is slightly lower than that of ART2-C, the weighted
overall entropy Ecl(0.5) of fuzzy ART-C is significantly higher than that of
ART2-C due to the high cluster entropy value. This indicates that the cosine
similarity based paradigm is more suitable than the nearest hyper-rectangle
based paradigm on the tested problem domain. This result is not surprising
to us, as prior comparison studies on hyper-rectangle methods also showed
that they perform well only when the data boundaries are roughly parallel
to the coordinates axes [20].

5.4 Cross-Comparison of Clustering Methods

We applied the four evaluation measures introduced in this chapter, namely
cluster compactness (Cmp), cluster separation (Sep), cluster entropy (Ec),
and class entropy (El) to compare the performance of k-means, Self-Organizing
Maps (SOM), and Adaptive Resonance Theory under Constraints (ART-C)
on a sparse and high-dimensional real-life data set, namely the Reuters-
21578 free text collection. The details of our benchmark study are reported
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Table 3: Cluster entropy, class entropy, and overall entropy of ART2-C and
fuzzy ART-C on the synthetic data set in Figure 7. Both methods work on
C = 4. All values are shown with the means and the standard deviations
over ten runs.

Method Ec El Ecl(0.5)
ART2-C 0.1483 ± 0.0173 0.1142 ± 0.0225 0.1312 ± 0.0092

fuzzy ART-C 0.5800 ± 0.0037 0.0337 ± 0.0064 0.3068 ± 0.0020

in the following subsections.

5.4.1 Data Preparation

The Reuters-21578 data set is a collection of documents that appeared on the
Reuters news-wire in 1987. Since the data set was originally released for the
evaluation of text classification systems, the documents have been carefully
assembled and indexed with class labels by personnel from Reuters Ltd.
Our experiments used the subset of documents from the top ten categories.
To facilitate our evaluation, documents that were originally indexed with
multiple class labels were duplicated in our experiment so that each copy
was associated with one class label.

We adopted the bag-of-words feature representation scheme for the doc-
uments. CHI (χ) statistics [22] was employed as the ranking metric for
feature selection. Based on a bag of 335 top-ranking keyword features, the
content of each document was represented as an in-document term frequency
(TF) vector, which was then processed using an inverse document frequency
(IDF) based weighting method [21] and subsequently L2-normalized. After
the removal of 57 null vectors (i.e. vectors with all attributes equal to 0),
we obtained a set of 9,968 labelled vectors for our experimental study.

5.4.2 Evaluation Paradigm

All three methods used the cosine similarity measure and a standard set of
parameter values. As the data collection is large and sparse, we did not
expect the clustering methods to replicate the ten clusters corresponding
to the ten original classes. Instead, we carried out two set of experiments,
each setting the number of the output clusters to be 25 and 81 respectively.
In the SOM architecture, these correspond to a 5 by 5, and a 9 by 9 two-
dimensional maps.
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Unlike the previous two experiments, our experiment on the Reuters-
21578 data set evaluated the three clustering methods’ performance us-
ing each measure separately for a better understanding of their properties.
2σ2 = 1.0 was used for the ease of computing cluster separation. Since the
document vectors are preprocessed with L2-normalization, we use Euclidean
distance for the evaluation of cluster compactness and cluster separation.
This is due to the high correlation between the cosine similarity and the Eu-
clidean distance under this condition, i.e. high cosine similarity corresponds
to close Euclidean distance.

In addition to the four cluster quality measures, the time complexity
of each tested system, in terms of the CPU time used on each experiment,
were reported and compared. Based on these, we empirically examined the
learning efficiency of each method. To facilitate the comparison, all the three
systems were implemented with C++ programs that shared a common set
of functions for vector manipulation.

5.4.3 Results and Discussions

Table 4 reports the experimental results on k-means, SOM, and ART2-C.
Working with 81 clusters, the output of SOM showed a slightly worse quality
than that of k-means, in terms of cluster compactness, cluster separation,
and class entropy. It may be that the nature of the SOM’s learning in
maintaining the neighborhood relationship decreases the dissimilarity among
clusters as well as the compactness of each cluster. However, the differences
were not significantly reflected when the number of output clusters was 25.
In general, the evaluation scores of k-means and SOM were rather similar,
compared with those of ART2-C. This may be due to the same paradigm
we use to initialize the cluster prototypes for both k-means and SOM. More
importantly, the learning paradigms of k-means and SOM are more similar
to each other than to that of ART2-C. We thus focus our further discussions
on the comparison of ART2-C with k-means and SOM.

In our experiments, the cluster entropy scores (Ec) and the cluster com-
pactness scores (Cmp) of ART2-C outputs were generally higher (which
indicated worse data homogeneity within clusters) than those of SOM and
k-means. Our explanations are as follows: The learning paradigms of SOM
and k-means minimize the mean square error of the data points within the
individual clusters. Therefore both SOM and k-means are more capable of
generating compact clusters. In terms of class entropy (El), and cluster
separation (Sep), the outputs of ART2-C were better than those of SOM
and k-means. It may be that, whereas SOM and k-means modify existing,
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Table 4: Experimental results for k-means, SOM, and ART2-C on the
Reuters-21578 corpus, when the number of clusters were set to 25 and 81
respectively. I and T stand for the number of learning iterations and the
cost of training time (in seconds) respectively. Cmp, Sep, Ec and El stand
for cluster compactness, cluster separation, cluster entropy and class entropy
respectively. All values are shown with the mean and the standard deviation
over ten runs.

Cluster number = 25

k-means SOM ART2-C
I 10.9 ± 2.0 11.2 ± 1.8 2.2 ± 0.4

T (s) 103.36 ± 36.543 90.018 ± 13.738 42.724 ± 15.537
Cmp 0.4681 ± 0.0086 0.4560 ± 0.0106 0.5187 ± 0.0044
Sep 0.2312 ± 0.0286 0.2248 ± 0.0617 0.2063 ± 0.0143
Ec 0.2028 ± 0.0057 0.2154 ± 0.0122 0.2670 ± 0.0165
El 0.7795 ± 0.0056 0.7838 ± 0.0164 0.7586 ± 0.0341

Cluster number = 81

k-means SOM ART2-C
I 11.8 ± 1.6 12.3 ± 1.3 2.8 ± 1.0

T (s) 323.85 ± 74.285 310.84 ± 33.656 88.057 ± 45.738
Cmp 0.3957 ± 0.0116 0.4126 ± 0.0041 0.4594 ± 0.0037
Sep 0.1968 ± 0.0187 0.2135 ± 0.0217 0.1874 ± 0.0243
Ec 0.1808 ± 0.0019 0.1806 ± 0.0030 0.1983 ± 0.0060
El 1.2375 ± 0.0122 1.2592 ± 0.0065 1.1580 ± 0.0127

randomly initialized cluster prototypes to encode new samples, ART adap-
tively inserts recognition categories to encode new input samples that are
significantly distinct from existing prototypes. Therefore, ART2-C tends to
generate reference prototypes using distinct samples, which in turn makes
the output clusters to be more dissimilar to each other. This unique neu-
ron initialization mechanism appeared to be effective in representing diverse
data patterns in the input set. Our observations were supported by the
t-test validations in Table 5.

It is interesting that, since the two categories of quality measures are
based on the same theoretical fundament (i.e. to encourage intra-cluster
compactness and inter-cluster separation), the comparison results using the
two categories of measures generally support each other. For an experiment
that produces a low cluster compactness score, the cluster entropy score is
accordingly low. For an experiment that produces a low cluster separation
score, the class entropy score is generally low as well.
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Table 5: Statistical significance of our cross-method comparisons between
k-means, SOM, and ART2-C on the Reuters-21578 corpus. “>>” and “>”
(or “<<” and “<”) denote the left-side value is greater (or smaller) than
the right-side value at significance level 0.01 and 0.05 respectively.

Cluster number = 25

T Cmp Sep Ec El

ART2-C vs. SOM < >> << >> <

ART2-C vs. k-means << >> < >> <

Cluster number = 81

T Cmp Sep Ec El

ART2-C vs. SOM << >> < >> <<

ART2-C vs. k-means << >> << >> <<

Besides the clustering quality of the trio, we are particularly interested
in the learning efficiency of each method. k-means utilizes a relatively slow
off-line learning paradigm in modifying cluster centroids to achieve minimal
mean errors within clusters iteratively. SOM updates the winner’s neighbors
during the encoding of each input, which could be rather computationally
expensive. The time cost of SOM’s learning was generally comparable to
that of k-means in our experiments. The learning paradigm of ART guar-
antees that only input data with significant similarity are to be encoded
together. Therefore ART2-C is capable of encoding the inputs using a rela-
tively high learning rate without causing oscillation. With this architectural
advantage, ART2-C showed a promising learning efficiency in our experi-
ments. The number of learning iterations used by ART-C was generally
four to six times less than those used by SOM and k-means. The training
time of ART-C was significantly less than those of SOM and k-means. This
suggested the strength of ART-C in handling massive real-life data on the
fly.

Based on the discussions above, we summarize our comparative findings
below:

• While the clustering output of SOM showed a slightly worse quality
than that of k-means in some of our experiments, the performances of
k-means and SOM are roughly comparable.

• The intra-cluster compactness of ART2-C’s output is generally worse
than those of k-means and SOM’s outputs.
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• The inter-cluster separation of ART2-C’s output is generally better
than those of k-means and SOM’s outputs.

• ART2-C shows a significantly higher efficiency than k-means and SOM.

6 Conclusions

Clustering is one of the major learning tasks in data mining research. The
fundament of the clustering task is to group the input data into clusters such
that data points in the same cluster are more similar to each other than to
points in other clusters.

A clustering system consists of three major components, namely the
feature representation, the definition of pattern proximity measure, and the
grouping paradigm. This chapter gives insightful illustration of the various
factors in each aspect that affect the output of a clustering system. Our
review work concludes that cluster analysis and interpretation serves as an
important feedback for selecting the parameters in each stage towards an
optimal clustering output.

While the evaluation of the clustering result may be subjective, quantita-
tive assessment of the clustering quality is of great value for various research
areas. Since the objective of a clustering method is to maximize the intra-
cluster compactness as well as the inter-cluster separation, a multitude of
evaluation measures based on these two principles have been extensively
studied in the literature. This chapter reviews and introduces two sets of
evaluation measures, namely evaluation measures based on cluster distribu-
tion and evaluation measures based on class conformation. Our experiments
showed the strength of these evaluation measures in various tasks, including
discovering the inherent data distribution for suggesting the optimal number
of clusters, choosing a suitable pattern proximity measure for a problem do-
main, and comparing various clustering methods for a better understanding
of their learning characteristics.
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