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Abstract The main challenge of a search engine is to find information that are
relevant and appropriate. However, this can become difficult when queries are issued
using ambiguous words. Rijsbergen first hypothesized a clustering approach for web
pages wherein closely associated pages are treated as a semantic group with the
same relevance to the query (Rijsbergen 1979). In this paper, we extend Rijsbergen’s
cluster hypothesis to multimedia content such as images. Given a user query, the
polysemy in the return image set is related to the many possible meanings of the
query. We develop a method to cluster the polysemous images into their semantic
categories. The resulting clusters can be seen as the visual senses of the query,
which collectively embody the visual interpretations of the query. At the heart of
our method is a non-parametric Bayesian approach that exploits the complementary
text and visual information of images for semantic clustering. Latent structures
of polysemous images are mined using the Hierarchical Dirichlet Process (HDP).
HDP is a non-parametric Bayesian model that represents images using a mixture
of components. The main advantage of our model is that the number of mixture
components is not fixed a priori, but is determined during the posterior inference
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process. This allows our model to grow with the level of polysemy (and visual
diversity) of images. The same set of components is used to model all images, with
only the mixture weights varying amongst images. Evaluation results on a large
collection of web images show the efficacy of our approach.

Keywords Hierarchical Dirichlet Process · Non-parametric models ·
Image clustering · Sense disambiguation

1 Introduction

While there is undoubtedly an enormous amount of information on the Internet,
their utility is only as good as their accessibility. The past decade has seen devel-
opment of robust web page ranking methods that harness both intrinsic page in-
formation (such as the links, anchor texts, etc) and also extrinsic related information
(such as user click-through data). Nonetheless, a major challenge remains when there
is inherent ambiguity in the search query. This situation often arises in practice
because user queries are generally short and imprecise, and hence may represent
many different information needs. For example, the query “jaguar” can refer to the
animal or the car.

A common approach to handle query ambiguity is through automatic clustering
of web search results. The theoretical underpinning for this approach is based
on Rijsbergen’s cluster hypothesis [29] that states that the associations between
documents convey information about the relevance of documents to requests. A key
application of the hypothesis is that documents that are relevant to the query are
usually clustered together, and different clusters embody different relevance to the
query. In particular, a search engine may assume that the different information needs
of an ambiguous query are captured by the topical clusters of the search results.

The validity of Rijsbergen’s cluster hypothesis has been borned out by its many
successful applications in web search result clustering [37, 44], cluster-topic-based
document retrieval models [41], and exploratory browsing interfaces [11]. However,
the above successes are mainly limited to web text document search, and have
not been replicated to image and video search. For example, on the ambiguous
query “apple” which can refer to the fruit, the company or the product, most top
image search engines1 return results that haphazardly alternate between the first two
meanings. Hence, a user looking for images of iMac would likely be disappointed.
In the absence of any disambiguating information on the search query, the better
approach, exemplifying the cluster hypothesis, is to present users with clusters of
images embodying the multiple dominant interpretations of the original query. The
resulting clusters can then be seen as the visual senses of the query (see Fig. 1).

Clustering images into their visual senses is akin to semantic clustering of the
images, which remains a challenging problem. A common approach is to assume
that visually similar images are close to each other in feature space, and construct
models in which features are generated from a mixture of probability distributions,

1We tried Google, Yahoo and Microsoft Bing Image Search.
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Fig. 1 Top Top-ranked “apple” images fom Google Image; bottom six possible visual senses
(clusters): logo, fruit, iphone, iMac, drawings, people

However, because feature vectors are usually very high dimensional, a parametric
characterization of their distribution is difficult. In particular, the appropriate num-
ber of mixture components (K) is often not known a prior, hence necessitating some
form of model selection.

In this paper, we explore an alternate, fully Bayesian approach to build an
inf inite mixture model [28], where K is itself a random variable and can potentially
be unlimited. Of course, at any point in time, only a finite number of mixture
components have data assigned to them. But as more data is seen, more components
may be used. Hence, this is a non-parametric model in that the model parameters
(e.g., K) grow with the amount (and complexity) of data. This is desirable in our case
for visual sense clustering of polysemous images, because different queries inherently
have varying levels of ambiguity, leading to different levels of image polysemy. As
the complexity (polysemy) of the image data grows, our non-parametric model will
also grow to accommodate the greater visual diversity.

We follow recent trends in the vision community to represent images as bags
of words. Here, the words refer to both the textual words associated with the
images, and the visual words encoding the visual elements in the images. These
two modalities are related since they collectively describe the image content. By
incorporating the two modalities in our framework, we exploit their co-occurrence
patterns. We adopt the latent topic model [4, 27] to encode these co-occurrence
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Fig. 2 The framework of our
approach. Given the
ambiguous query “mouse”, a
set of polysemous images is
retrieved. Their latent visual
senses are elucidated by HDP,
helped by a parallel injection
of images of suggested
semantic senses by Wikipedia

patterns. We define latent topics as multinomial distributions over the words, and
make use of the Hierarchical Dirichlet Process (HDP) [34] to learn these topics and
derive compact representations of images and clusters.

Our clustering method is completely unsupervised. To constrain the clustering of
the images towards their semantic senses, we introduce into the clustering process
additional images that represent these semantic senses. These sense-specif ic images
are obtained by first consulting an online resource (Wikipedia) to solicit possible
ways to expand the ambiguous query, and then issuing the expanded query to an
image search engine. This process of query expansion can be seen as a way to
disambiguate query. Together, the polysemous images from the ambiguous query
and the sense-specific images from the disambiguated queries are input to the HDP-
based clustering step. Collectively, HDP computes latent topics that are shared by all
images. Figure 2 shows the framework of our approach.

Our contributions can be summarized as follow:

– We develop a non-parametric visual sense model of web images. We show the
efficacy of this model in clustering polysemous images returned from ambiguous
search queries. The main advantage of our model is that it grows with the level
of polysemy underlying the images.

– Our model exploits the multimodal nature of web images by combining infor-
mation from their visual content and textual content from the web surround
text. Furthermore, to improve semantic clustering, we introduce another related
modality of web images, namely their disambiguated senses as suggested by
Wikipedia. Using these disambiguated senses, we retrieve sense-specific images
and incorporate them into the clustering step.

2 Related works

Image sense elucidation using clustering Our approach of using image clustering as
a way to elucidate semantic senses has a few parallels in the literature. By applying
spectral clustering on the combined visual features and the text of the embedding
web pages, Loeff et al. [21] found that resulting clusters were dominated by images
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depicting the core (or primary) senses. There was no attempt to elucidate other
related senses. Similar to our motivation of computing visual interpretation of a
multi-faceted query word, Li et al. [20] proposed correlation analysis techniques,
semantic and visual clustering on an image corpus to convey the correct meaning
of a concept or word.

In this paper, we ignore iconographic senses (e.g., apple on a plate vs apple
on the tree) and restrict ourselves to only the core senses of images (e.g., apple
the fruit or the company logo). Because the core senses are usually exposed as
objects displayed prominently in the images, methods that compute image clusters
as distinct object categories are relevant to this paper. For example, Philbin et al. [26]
computed local features on affine-invariant Hessian regions and applied RANSAC-
based spatial verification to detect multiple instances of objects in videos and images.
Clusters are then formed by querying the objects against a database for similar
images. Grauman and Darrell [14] similarly treated unsupervised category learning
as an image clustering problem, and proposed an iterative refinement of the primary
groupings of images obtained from spectral clustering. They demonstrated superior
image classification results by using the images in the resulting clusters to train a
visual classifier for that object category. While we share common features (e.g.,
similar image features) and overlapping end-goals (e.g., to develop better image
object models) with the above two papers, the method of clustering used in this
paper is very different. Specifically, we use a non-parametric model of clustering that
adapts and grows with the complexity of the images. This is especially important as
we handle image search queries with different levels of polysemy, resulting in varying
levels of complexities in the returned images.

Visual search diversif ication We aim to cluster images according to their visual
senses, and present each of them as a possible interpretation of the original search
query. This approach can be considered as a form of search result diversif ication, used
by many researchers in the literature as a way to resolve query ambiguity [1, 2, 10].
Ali and Stam first observed the negative impact to movie viewers when given a
recommendation list that contains many (near-) duplicates [2]. They coined this
negative effect as the “portfolio effect”, alluding to the law of diminishing marginal
returns commonly known in economics. It explains the decreasing level of enjoyment
over a product when it is repeatedly consumed over and over again. Zeigler et al.
[46] alleviated this problem by diversifying a result list to reflect the spectrum of
user interests. Although their system is detrimental to average accuracy, they show
that their method improves user satisfaction. Carbonell and Goldstein [8] proposed
a Maximal Marginal Relevance (MMR) ranking function to tradeoff between maxi-
mizing relevance while minimizing similarity amongst the retrieved documents. Zhai
et al. [45] further extend MMR to a general framework to score documents with
probability of relevance and novelty.

It is natural to ask if the above ideas can be extended to the visual domain to
diversify visual search. The ImageCLEF 2008/2009 is an international image bench-
marking forum that dedicated a specific task on image search diversification [3]. Un-
der this task, given a query topic, images are assigned to clusters depicting subtopics
that promotes some predefined types of diversity to the original query topic. For
example on a query topic asking for “beaches in Brazil”, clusters are defined based
on location; on a topic asking for “animals”, clusters are formed based on animal
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classes. Our work in this paper contributes to this line of research by focusing on
sense discrimination as a novel diversity type.

There are many existing works that rank images by novelty and relevance. Song
et al. [33] used a re-ranking method based on topic richness analysis to enrich topic
coverage in retrieval results, while maintaining acceptable retrieval performance.
Leuken et al. [18] analyze the visual similarity amongst the images according to
their ranking order returned by existing text-based image search engines. Wang
et al. [40] evaluated semantic clustering based on a textual analysis of the image
search results, while Cai et al. [7] applied multimodal hierarchical clustering to
organize web image search results into different semantic groups, using visual cues,
textual cues and web link analysis. Wan et al. [39] used a generative model on the
keyframes and speech transcripts to enable faceted topic retrieval of news video. The
common processing thread in these methods is to add a layer of visual processing to
diversify (e.g., to increase novelty in the top-ranked images) the image rank order.
While these methods facilitate browsing of image search results from ambiguous
queries, the ensuing search results may not necessarily disambiguate the possible
sense interpretations of the query.

Latent structures and non-parametric models There has been recent interest in
discovering latent visual themes in images using topic models such as the Latent
Dirichlet Allocation (LDA) and the hierarchical LDA (hLDA) [4, 5, 12, 27, 32].
LDA mines the feature co-occurrence patterns to uncover the underlying distri-
butions (topics) that best account for the data. Closely related to our work, the
latent approach has also been applied to computing image clusters to resolve
image polysemy. Given an ambiguous query, Saenko [30] learn an image model to
distinguish images of the dominant sense of the query by using the image surround
text. Wan et al. [38] extended the model to the visual domain, and learn an image
model for every sense suggested by Wikipedia. However, in both work, a nagging
issue is that the appropriate number of latent topics is unclear.

By assigning priors with potentially unlimited capacity, the HDP framework
allows the design of flexible models to represent complex structures in data. In
recent years, development of efficient inference algorithms such as the Markov chain
Monte Carlo (MCMC) and variational Bayes have fueled its application to real-
world data. Xing et al. [43] used HDP to capture the cross-population structures
for multipopulation haplotype inference. Hoffman et al. [15] proposed a similarity
measure for songs based on the latent mixture components learnt by HDP. Li et al.
[19] adopted HDP as the incremental learning framework for building an image
collection. We further explore its utility in resolving polysemy in image search.

3 HDP-based elucidation of image senses

The HDP is an extension of the Dirichlet Process (DP), a type of stochastic process
first introduced in the 1960’s [13]. But it has recently become an important tool
as a prior for infinite mixture models. HDP extends DP in such a way that the
dependencies amongst a set of DPs can be specified in a tree structure [34]. HDPs are
useful priors for hierarchical mixture models, in which data are organized in groups
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that share the mixture components. We outline the DP and then describe how we
model images and clusters with an HDP.

3.1 Dirichlet process

We begin by considering a Bayesian finite mixture model with J mixture components
and each component j has a mixture weight π j and a parameter vector θ j. Assume
we have N data points denoted xi, where 1 ≤ i ≤ N. Each point is assigned to a
mixture component indexed by the indicator zi. Hence, p(zi = j|π) = π j, or zi|π ∼
Multi(·|π). The data likelihood is p(xi|zi = j, θ) = F(xi|θ j), where F(·|·) is a pdf
parameterized by θ , and θ j ∼ H(·) for some base distribution H. The mixture weight
π has a symmetric Dirichlet prior: π |J, α ∼ Dir(·|α/J). From [28], the probability of
assigning data point i to component j given all other assignments is:

p(zi = j|z−i, α, J) ∝ n−i
j + α/J

N − 1 + α
(1)

where z−i denotes the assignment of all data points excluding the point i, and n−i
j

denotes the number of points assigned to component j excluding point i.
Now we extend our consideration to an infinite mixture model. How can we define

a prior for the infinite dimensional parameters? The key is to understand that the
infinite dimension weights must sum to one. We can construct such a weight distrib-
ution by a stick-breaking process Stick(α), where α is a concentration parameter. We
imagine starting with a stick with unit length and breaking it at a random point. We
take the right piece and break it again at a random point. The process is repeated
infinitely, producing a set of random weights π that has a countably infinite number
of dimensions j = 1...∞, and whose components all sum to one. H would need to be
sampled a countably infinite number of times to generate the component parameter
values θ j.

Now consider the distribution over all possible component parameter values θ .
This distribution is non-zero at a countably infinite number of values. We denote this
distribution by G(ψ) = ∑∞

j=1 π jδ(ψ − θ j). Each such G can be seen as a sample from
a stochastic process that can be proven to be the DP. In general, a DP is characterized
by a scalar parameter α and a base distribution H. A sample from a DP, denoted
as G|α, H ∼ DP(α, H), is a distribution that is non-zero over a countably infinite
number of values. As we have seen, this is exactly what is required to parameterize
an infinite mixture model.

3.2 Hierarchical Dirichlet Process

In the same manner as how DP can act as a prior for infinite mixture models,
HDP can also be a prior for the hierarchical infinite mixture models. For clarity,
we here consider a two-level hierarchy model. But it can be easily generalized to
more levels. In HDP, we assume that we have T groups of data, each consisting of Nt

data points xti, 1 ≤ t ≤ T and 1 ≤ i ≤ Nt. Each data group is modeled by an infinite
mixture model. These models are not independent: the mixtures share component
parameters θ and a common DP prior.
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The dependencies amongst the infinite mixture models can be again understood
using the stick-breaking distribution. Starting at the top level, imagine drawing a
sample G|α0, H ∼ DP(α0, H). Then we can write as: G(ψ) = ∑∞

j=1 β0
j δ(ψ − θ j)

where β0|α0 ∼ Stick(α0) are the infinite dimensional mixing weights.
We next form a second DP using G as a base distribution, with scalar parameter

α1, and generate samples from this DP for each of the T mixture models: Gt|α1, G ∼
DP(α1, G). Each sample can be written as: Gt(ψ) = ∑∞

j=1 πt jδ(ψ − θ j) Each Gt

inherit the same non-zero points θ j as G. Hence we have constructed T dependent
infinite mixture models. Each model has a separate weight πt but shared θ .

3.3 Image visual sense model

Following recent trends, we adopt a multinomial bag of words (textual words and
visual words) for images. Another motivation for using multinomial distributions is
that they are computationally amenable for the latent topic modeling framework [4].
This framework was used in our earlier work in [38] to model the visual senses
of images. In this paper, we extend the modeling framework to include HDP as a
non-parametric prior. HDP offers the advantage of sample an infinite number of
latent topics for each visual sense cluster. This is desirable because different queries
inherently have varying levels of ambiguity, leading to different levels of image
polysemy. As the complexity of the image data grows, such as when there is greater
visual diversity, our HDP model allows us to grow the visual sense model.

Given a collection of polysemous images retrieved from an ambiguous image
search query, these images induce a variable number of latent topics proportionate
to the number of underlying visual senses (or clusters). Images belonging to the
same visual sense (or cluster) are expected to have similar words (textual words and
visual words). We now consider each image j as consisting of n j image feature points
(x j1, . . . x jn j). We assume that these features are exchangeable and to be modeled
with a mixture model. While each mixture model has mixing proportions specific to
the image, we require that all images share the same set of mixture components. The
main idea behind the constraints is to allow statistical strength to be shared amongst
images, that also facilitate generalization to new images [34].

We use the HDP as a non-parametric prior to allow component sharing amongst
the mixture models. The HDP is a distribution over a set of random probability
measures over the parameter space of infinite mixture models. There is one measure
G j for each image j, and a global measure G0. G0 is distributed as DP(γ, H), with
H the base measure and γ the concentration parameter. Each G j is conditionally
dependent given G0, with distribution G j ∼ DP(α0, G0).

The goal of learning is to update the parameters in HDP. We adopt the Gibbs’
sampling as the learning algorithm [34]. We choose the simpler Chinese Restaurant
Franchise (CRF) [34] metaphor to describe the learning process.

Imagine there are an infinite number of Chinese restaurants each with an infinite
number of tables (see Fig. 3). All customers sitting on the same table in any
restaurant will share the same dish of food. Let x ji be the ith customer in the jth
restaurant. In this metaphor, the jth restaurant represents the jth image, and x ji is
the ith observed image features. There are n j such observed features. Recall then
that x ji|θ ji ∼ F(θ ji). Hence, for the jth image, there are θ j1, . . . , θ jn j such parameters.
To generate θ j1, . . . , θ jn j , imagine n j customers (each corresponds to a θ ji) in the
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Fig. 3 Chinese Restaurant Franchise (CRF) [34] for three images with eight image feature points.
Top shows the global restaurant serving dishes shared by all tables in the three local restaurants
shown below. The generative process in each restaurant is a Chinese Restaurant Process (CRP).
For example, in the first local restaurant, the first, third, sixth and eighth customer were the first to
sit at an empty table, while the others sat at tables already occupied. For this restaurant, the ninth
customer will sit at tables 1, 2, 3 and 4 with probabilities 3

8+α0
, 2

8+α0
, 2

8+α0
, 1

8+α0
, respectively, or will

sit at a new (fifth) table with probability α0
8+α0

. Similarly, in the global restaurant, each customer ( j, i)
sitting at a table corresponds to table i in the local restaurant j. The table in the global restaurant
that ( j, i) chooses to sit at, determines the dish that is served at table i in the local restaurant j. In
this example, for any new customer entering into a local restaurant j, if he sits down at a new table,
then the dish for that new table will be ψ1, ψ2, ψ3 or ψ4 with probability 4

11+γ
, 4

11+γ
, 2

11+γ
, or 1

11+γ
,

respectively, or a new dish ψ5 with probability γ
11+γ

Chinese restaurant. The first customer sits at the first table. A subsequent customer
sits at an occupied table with probability proportional to the number of customers
already seated there, or at the next unoccupied table with probability proportional
to α0. Suppose customer i sat at table t ji. The above conditional distribution can be
written as:

t ji
∣
∣t j1, . . . , t ji−1, α0 ∼

T j∑

t=1

n jt
∑

k n jk + α0
δt + α0

∑
k n jk + α0

δtnew (2)

where T j is the current number of tables in restaurant j, and n jt is the number
of customers currently sitting at table t. Note that because all customers share the
same dish of food, all x ji share the same mixture component indexed by the table
t ji. Once all customers have sat down, the seating plan corresponds to a partition
of θ j1, . . . , θ jn j . Because this is an exchangeable process [34], the probability of a
partition does not depend on the order in which the customers sit down. Now we
associate each table t a draw φ jt from G0, and assign θ ji = φ jt ji .

Performing this process independently for each image j, we have an assignment
of each θ ji to a sample φ jt ji from G0. Because all φ jt are independent draws from
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G0, which is distributed according to DP(γ, H), we may apply the same Chinese
restaurant partitioning process to all φ jt. This corresponds to partitioning at the next-
level hierarchy. Continuing the metaphor, we associate φ jt with a customer seated at
table k jt at the global level restaurant. However, each k jt is actually a (common) dish
that is served to a table at the local restaurant. We can then write the conditional
probability as:

k jt
∣
∣k11, . . . , k1n1 , k21, . . . , k jt−1, γ ∼

K∑

k=1

mk
∑

k′ mk′ + γ
δk + γ

∑
k′ mk′ + γ

δknew (3)

where K is the current number of dishes, and mk represents the number of local
restaurant tables that has ordered dish k. Just as a new table at a local restaurant can
be generated from G0, a new dish at the global level “restaurant” can be generated
from H: we draw ψk from H and assign φ jt = ψk jt .

The state space of HDP consists of values of t, k and ψ . In the global “restaurant”,
the number of k jt and ψk variables is not fixed. We can think of the actual state
space as consisting of countably infinite number of k jt and ψk. Only finitely many are
actually assigned to image feature data and represented explicitly.

Sampling the feature clusters (tables in the local restaurants) Let f (·|ψ) and h be
the density functions for F(ψ) and H respectively, n−i

jt be the number of tables t ji′’s
equal to t except t ji, and m− jt

k be the number of dishes k j′t′’s equal to k except k jt.
From (2), we can compute the conditional prior distribution of t ji. Combined with the
likelihood of generating image feature x ji given t ji = t (which is simply f (x ji|ψk jt )),
we obtain the conditional posterior for t ji. Hence, the probability of a new customer
x ji sitting at table t is:

p(t ji = t|t− ji, k, x, ψ) ∝
{

α0 f (x ji|ψk jt ) if t = tnew

n−i
jt f (x ji|ψk jt ) if t is used (4)

Sampling the global latent topics (dishes or tables in the global restaurant) Sampling
the k jt variables is similar to sampling the t ji variables described above. We generate a
new mixture parameter ψknew ∼ H. Changing k jt changes the component membership
of all feature data in table t. The conditional distribution for k jt is:

p(k jt = k|t, k− jt, ψ, x) ∝
{

γ
∏

i:t ji=t f (x ji|ψk) if k = knew

m−t
k

∏
i:t ji=t f (x ji|ψk) if k is used

(5)

Sampling ψ Conditioned on the indicator variables k and t, ψk for each mixture
component are mutually independent. The posterior distribution is dependent only
on the image feature assigned to component k and is given by:

p(ψk|t, k, ψ−k, x) ∝ h(ψk)
∏

ji:k jt ji =k

f (x ji|ψk) (6)
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3.4 Augmenting the visual sense model with Wiki-sense-disambiguated images

Because of its unsupervised nature, the resulting HDP-based image clusters may not
coincide with the semantic meaning of the original query. To constrain the clustering
of the images towards their semantic senses, we introduce into the clustering step,
images that are exemplars of the various senses of the query. These sense-specific
images can also be seen as a kind of “seed” to facilitate clustering [6]. To achieve this,
we use Wikipedia to suggest possible ways to expand the ambiguous query. These
disambiguated queries are then used to retrieve sense-specific images. Together, the
polysemous images from the ambiguous query and the sense-specific images from
the disambiguated queries are input to the HDP-based clustering step. Collectively,
HDP computes latent topics that are shared by all images.

Wikipedia is a free online encyclopedia, representing the outcome of a continuous
collaborative effort of a large number of volunteers. Because of the open and
collaborative environment the quality and quantity is well trusted. As a large-scale
repository of structured knowledge, Wikipedia is a valuable resource for a diverse
array of research activities [24]. One structure of particular interest to this paper
is the disambiguation page. It gives a detailed list of possible senses (meanings) of
ambiguous words by attaching the expression (disambiguation) to the name of the
ambiguous entity, e.g., bar_(disambiguation), which identifies the disambiguation
page of the entity “bar”.2 The advantage of this disambiguation page is that it
not only gives the word senses in a structured categorized way, but also links up
pages that have further details. All these advantages motivate us to use it for
disambiguating keyword based image search. Given an ambiguous query keyword
we issue the query to Wikipedia to extract different (senses) meanings of the word
automatically.

Because Wikipedia may suggest many superfluous disambiguation, we need a
way to assess the informative content of all proposed sense suggestion. There are
conceivably many methods to do this, but we choose a simple variant of the method
in [35] to evaluate the mutual information content of each suggested disambiguation.
Each such disambiguation S comprises of one or more terms t ∈ S that augment the
original query to give it a more specific meaning. We score each candidate disam-
biguation S by the average pointwise mutual information (PMI) of the disambiguated
terms t ∈ S with the original query keyword q, weighted by the relative importance
of each term t over the Web corpus [9]. The Mutual Information (MI) of S reflects
its “semantic distance” from the ambiguous query q and is computed as follow:

MI(S, q) =
∑

t∈S

PMI(t, q|corpus) × w(t) (7)

where w(t) denotes the relative importance of the term t and normalized to sum to 1:∑
t∈S w(t) = 1. The PMI between two terms is computed as follow:

PMI(t, q|corpus) = log
(

P(t, q|corpus)
P(t|corpus) × P(q|corpus)

)

(8)

2There is no Wikipedia API to retrieve the disambiguation of a word. However, it is straightforward
to write a regexp parser to extract the disambiguation links in Wikipedia pages.
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Table 1 Keywords and their Wiki-senses used in our experiments

Keyword Wikipedia word senses

Bank Bank finance, Bank building, River Bank, Bank sea floor, Blood bank, Gene bank,
Piggy bank

Bar Bar rod, Bar pole, Dessert Bar, Bar Law, Candy Bar, Barbell
Bass Bass Drum, Bass guitar, Bass Flute, Bass Fish, Bass Rock, Bass Strait, Bass

Instrument, Acoustic Bass Guitar
Mouse Mouse computing, Mickey Mouse, Mouse Rodent, Stanley Mouse, Mouse anime
Plant Tree, chemical plant, implant, herb, bush, grass, vines, ferns, mosses, forest
Speaker Speaker government, loudspeaker, Orator, computer speaker, BBC speaker
Temple Temple anatomy, hindu temple, mount temple, temple mount, temple Jerusalem
Tiger Bengal Tiger, Tiger Woods, Tiger Shark, Tiger Snake, Tiger Beer, Tiger Mac OS,

Tiger Tank, Tony the Tiger, White Tiger, Detroit Tiger
Watch Wrist watch, guard, watch tower, wall clock, pocket watch
Window Window house, computer window, windows operating system, window snyder,

window blind

where the probability of term(s) is approximated by maximum likelihood:
P(t, q|corpus) = #(t,q)

#(corpus) is the fraction of documents in the corpus where both t and

q are found, and P(t|corpus) = #(t)
#(corpus) is the fraction of documents where the term t

is found.
Treating MI in (7) as a form of saliency, we then rank and retrieve the top most

salient senses. Because different query keywords have different levels of ambiguity,
we cannot simply take the top-N sense suggestions, where N is a fixed number for all
query. For example, compared to “mouse”, the “tiger” keyword is more ambiguous
and hence, can have a longer list of disambiguated senses: say, of size ten. If we
mandate N to be ten, then while each of the ten “tiger” senses may be meaningful,
some “mouse” senses may be spurious.3 To resolve this, we define a single threshold
that is applied to the MI saliency measure for all queries. This threshold is manually
set so that we can have a reasonable number of salient senses for each keyword
(at least five, and at most ten), and at the same time, the obtained senses are fairly
meaningful for all query keywords. Each of the senses is then used to retrieve images
from the web using Google Image Search (See Table 1 for examples of automatic
disambiguated senses of keywords).

3.5 Presenting final image clusters according to their Wiki-primary senses

Given an ambiguous query, the returned images will comprise of images from various
senses. After the HDP parameters are learnt as described in Section 3.3, we have an
approximation of the posterior distribution of the latent variables conditioned on
the observed image features. This distribution is over the cluster partition assigning
the image feature vectors to clusters and a truncated vector π j defining the mixture
proportions of each image j over the finite subset of K mixture components that

3For example, besides the more intuitive “Mickey” or “Computing” senses, Wikipedia also suggests
“hematoma” to be a “mouse” sense. In boxing usage, a facial “hematoma” is a kind of blood
hemorrhage caused by repeated blows to the face.
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are actually assigned to image feature points. These mixture components ψ1..K

parameterize the latent structures in the image features. Because the HDP machinery
enforces statistical sharing of strength, the mixture proportion vectors π1..J can
compactly express the features for each image 1..J in terms of the underlying
polysemy in the image collection. That is, we can expect that images corresponding
to the same visual sense would have a greater similarity in the π distribution. This is
the basis for music similarity described in [15], where the KL divergence of πi and π j

is used to compute the distance between songs i and j.
Given a query keyword P, we treat the disambiguated senses suggested by

Wikipedia as the primary senses Si of P, i = 1, 2, ..., NP, where NP is the number
of Wiki-senses of P. For example, in Fig. 2, the “mouse” keyword has three
primary senses, corresponding to the three wiki-disambiguated-senses: “computing”,
“Mickey” and “rodent”. Because these are usually the semantic senses of the original
query, we propose classifying the polysemous images from the original ambiguous
query to one of the Np primary senses. We define the likelihood of the ith sense Si

given the global latent topic z = z j as:

P(Si|z = z j) = 1
|Si|

∑

a∈Si

P(a|z = z j) (9)

= 1
|Si|

∑

a∈Si

KL(Wa, Z j) (10)

where Wa is the word (concatenated textual and visual) distribution of image a, Z j

is the word distribution of topic z j, and KL(·) is the Kullback Leibler divergence
between the two. For an image d, the model computes the probability of d belonging
to the ith sense Si as:

P(Si|d) =
K∑

j=1

P(Si|z = z j)P(z = z j|d) (11)

Equation (11) assigns visual sense probabilities to an image according to how
similar it is to the sense-specific images. P(Si|d) provides a way to re-rank the images
in the original polysemous order. Images belonging to some sibling senses are given
lower probabilities and pushed to the back of the rank list.

4 Experimental results

4.1 Methodology and dataset

In this section, we evaluate how well our visual sense models can distinguish between
images depicting the various senses of a given polysemous query keyword. We focus
on objects, and define a set of ten polysemous keywords. Two factors motivate our
choice of object-based keywords. One, following [21], we focus on the core senses
of images, which are typically exemplified as objects displayed predominantly in the
images. Two, the three most relevant previous works on sense discrimination [21]
and sense model [30, 38] have also focused on object-based keywords. In comparison,
our experiments on ten polysemous object keywords provide a more comprehensive



522 Multimed Tools Appl (2012) 56:509–534

evaluation in terms of dataset size and extent of query class ([21] uses three object
keywords, while [30] reports on five). For each keyword, we automatically mine
the dominant senses from Wikipedia (refer to Section 3.4). As the Web corpus
to compute MI saliency, we download and index the English Wikipedia XML
dump [42]. Table 1 shows the ten keywords and their respective senses (64 in total).

For each of the ten keywords, we create an image dataset by issuing the keyword
as a search query to Google Image Search. We retrieve about 500 images for each
keyword. In total, there are 5,013 keyword images. We do the same for the 64
keyword senses, each time issuing to the image search engine with the expanded
keywords as search query. We retrieve about 200 images for each keyword sense,
totaling 12,336 sense images.

All images were automatically downloaded by following the image URLs on the
Google image result index page. For each image, we also retrieve their surround text.
To do this, we first remove all HTML and meta-tags, and retain only the non-markup
words. Then, centered on the HTML location of the image, we collate all the adjacent
100 words and take them to be the textual content of the image.

Our image labeling procedure is briefly as follow. For each image of a particular
keyword, three human labellers were given the list of the word senses, and they were
asked to choose only one dominant sense. The dominant sense of an image is the one
with majority vote. 27% of images have no majority vote, and they are then labeled
as “None” and not used. With three independent opinions, we are assured of some
basic coverage of the image senses and the objectivity in their labeling. The extra
“None” label is also defined for images that are outside the sense list, or where the
object was too small or occluded.

The keyword images and the sense-specific images serve different purposes. For
the keyword images, our intent is as follow. Because each keyword is polysemous
and can have different meanings, the returned images will contain a mix of images
representing the various meanings of the keyword. The efficacy of our visual sense
models can be evaluated on how well they can classify each of these images into their
respective meaning.

For the sense-specific images, they are used for the following. Firstly, as mentioned
in Section 3.4, we constrain our unsupervised clustering of the polysemous images
with exemplar images depicting the various senses of the polysemous keyword. Sec-
ondly, these sense-specific images are used to create a sense-specific image classifier
that becomes a baseline comparison for our visual sense model. For example, by
issuing the expanded query “Mouse Computing” to Google Image Search, we can
retrieve images of computer-mouse and learn a computer-mouse classifier. Clearly
we can compare this classifier to our visual sense model by their classification results
on the polysemous “Mouse” images.

4.2 Visual features

We use a dense over-sampling approach to represent images. Local image regions
are extracted from three sources: Difference of Gaussian (DoG) interest points [22],
Maximally stable extremal regions (MSER) [23], and overlapping rectangular grid.
DoG and MSER regions can be viewed as complementary to each other, sampling
blob-like regions and high contrast image structures. Similar dense representation
has been successfully used in the context of supervised object and scene category
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recognition [16, 17]. For each region, the SIFT [22] descriptors are then computed
using the VLFeat [36] toolkit, and assigned to the nearest visual word from a visual
codebook learned on a separate dataset using K-means clustering.

4.3 Baselines

Our goal is to re-rank the polysemous images from the ambiguous keyword query
into its various visual senses. Naturally, our first baseline is the existing Google rank
of the polysemous images. The choice of this as a baseline seems contrived because
by design, Google never intends to rank images into their visual senses. Nonetheless,
we retain this baseline for the sake of comparison.

As our second baseline, we use an unsupervised method based on spectral
clustering to group images that are iconographically coherent. Spectral methods use
eigen-decomposition to compute non-linear clustering of high-dimensional manifold
data [25]. In the image domain, they have found successful applications in clustering
web images [7, 21]. Spectral clustering works by first constructing a graph Laplacian
L = D−1/2W D−1/2 of the image data, where W is the pairwise image-similarity
matrix, and D is the diagonal matrix such that Dii = ∑

j Wij. The first p eigenvectors
of L are then taken and arranged as columns in a new matrix Y. The rows of Y are
then normalized, and the final cluster assignment is obtained by using the traditional
k-means to cluster the rows of Y. The number of k in the final k-means clustering
is set to be the same as the number of Wiki-primary senses. Following [25], we
encode the affinity matrix Wij between image i and image j as a combination of
cosine similarity in text and χ2 distance between visual words histogram in images:
Wij = exp(−(1 − cost

ij) − (1 − χ2
ij)). For brevity, we shall call this baseline method

SPEC-CLUST in short.
Because we have sense-specific images by issuing Wiki-disambiguated queries, our

third baseline is to bootstrap sense-specific classifiers from these images. We call this
method Sense-Specific SVM (SS-SVM in short). While we expect that these images
can be more homogeneous as a result of increase query specification, polysemy will
nonetheless be a problem in learning the sense-specific SVM (see Fig. 7). In contrast,
our approach in this paper resolves these issues by incorporating a latent model of
the visual senses of the original polysemous keyword. The key idea is that in these
images, there is a rich source of information about the various senses (visual or
textual content) of the word. These visual senses capture the salient visual (and
textual) characteristics of images associated with the keyword, and offer a more
robust model than learning on just the Wiki-sense-specific images.

Our fourth baseline is the visual sense model described in [38]. In that work, a
latent image model based on LDA (we shall call it VS-LDA, in short for Visual
Sense-LDA) is similarly trained on polysemous images. However, there are two
important differences. Firstly, VS-LDA does not make use of the textual content
of the images that is provided by the HTML surround text. secondly, for each
polysemous keyword, the number of global latent topics (K) is hard-coded to be
twice the number of Wiki-senses of that keyword. This number is based on the
intuition that there are more visual topics spanning the polysemous image data-
sets than that specified by Wikipedia. In contrast, this number is now completely
automated by the non-parametric approach described in this paper. We shall call our
new model VS-HDP in short.
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Fig. 4 ROC plots of the first primary sense of the ten polysemous keywords
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Table 2 Area Under Curve (AUC) of all senses of each keyword

Keyword Google rank SPEC-CLUST SS-SVM VS-LDA VS-HDP

Bank 3.18402 4.8934 5.1769 5.34275 5.50356
Bar 2.48154 3.3478 3.94088 4.20582 4.6842
Bass 3.71719 5.5345 5.47068 5.84983 6.21209
Mouse 1.73422 2.2279 2.41485 2.54619 2.4917
Plant 5.03565 6.8972 7.45235 7.96624 8.06207
Speaker 2.07675 2.4125 2.82301 3.03133 3.04853
Temple 2.1008 2.9134 2.90866 3.01708 2.88802
Tiger 3.87138 6.8976 7.72587 8.11975 8.04058
Watch 2.06972 3.3231 3.7881 4.06134 3.98498
Window 1.93045 3.4665 4.05622 4.19338 4.24679
Total-AUC 28.2017 41.9139 45.7575 48.3337 49.1625

4.4 Evaluation

We now evaluate how well the four algorithms (SPEC-CLUST, SS-SVM, VS-
LDA and VS-HDP) can re-rank the polysemous keyword image dataset using a
classification approach. For each of the Wiki-primary senses of every query keyword,
we train sense-specific image classifiers and apply them to the polysemous images.4

Images are re-ranked by their classification confidence, where lowly-scored images
are moved down to the rank. For example, for each query keyword, a multi-class
SS-SVM is trained on the sense-specific images for each sense class of the query
keyword. The trained SS-SVM is then used to classify polysemous images into the
various senses. For VS-LDA and VS-HDP, we similarly train the two models on
the polysemous images. compute P(Si|d) for each image d using (11), and rank the
corresponding images according to the probability of each sense S.

We evaluate the retrieval performance using receiver operating characteristic
(ROC) by thresholding P(S|d) for every sense S of a keyword. Due to space
constrain, Fig. 4 shows the ROCs for the first Wiki-primary sense of each keyword.
The dark-blue lines are the ROCs for the original Google search ranks. The cyan
lines are the ROCs using the sense-specific SVMs to re-rank the Google search image
order. The orange lines show the ROCs of the SPEC-CLUST baseline, while the
red and green lines are the ROCs obtained by VS-LDA and VS-HDP respectively.
Table 2 shows the total Area Under Curve (AUC) for all senses of each keyword.

From the results, there are a few notable observations. Firstly, all baseline models,
including both VS-LDA and VS-HDP visual sense models, are able to retrieve far
more positive class images than the original Google order. While this should not
come too much as a surprise, since many authors have also found similar deficiency
in Google rank [31], our results are achieved without the need for any training data.
Perhaps more surprising is that the re-ranking results of our visual sense model, a

4For SPEC-CLUST, our classification-based evaluation framework poses some problem. Because
SPEC-CLUST is an unsupervised clustering method, it is unknown which output cluster correspond
to the query sense currently being evaluated. We resolve this by manually inspecting the clusters and
introspectively labeling the one that best group all images with the query sense. We treat the centroid
image of the labeled cluster as the sense prototype, and use the Wij similarity values as classification
scores to rank all other images.
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Fig. 5 Example visual sense clusters on four polysemous keywords: “Tiger”, “Watch”, “Bass” and
“Mouse”. For each polysemous keyword, we show enclosed in a green box two rows of sample
polysemous images returned by Google Image Search. Note that because the first Google page of top
rank images usually depict the dominant sense of the query keyword, they are fairly homogeneous.
Hence, for our illustrative purpose to show sample polysemous images, we randomly take images
that Google ranks from 50 onwards. Below the green box, we show the automatic clusters of images
enclosed in red boxes

generative model by design, outperform those of SS-SVM, a discriminative model.
We postpone the discussion on this to the next section. Finally, between the two
visual sense models, VS-HDP model has produced the better overall performance.
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Fig. 6 Visual senses of the ten polysemous keywords. For each keyword, five visual senses are
shown. Each visual sense represents a cluster of the images retrieved from the polysemous keyword.
From each cluster, we show two images which are visually informative. As can be seen, the primary
semantic senses of the polysemous word are captured by the cluster images

This points to the advantage in adapting the sense modeling to the level of polysemy
in the images. We show the clustering results on some keywords in Fig. 5. Figure 6
summarizes the first five visual senses for all ten keywords.

4.5 Analysis and discussion

Dif f iculty for SS-SVM to learn on polysemous images A likely reason for the
shortcoming of SS-SVM is that the sense-specific images on which it is trained
are also fraught with polysemy (see Fig. 7), making SS-SVM learning difficult. To
further illustrate this problem, we show an example of the Wiki-disambiguated
query “Mouse-computing” in Fig. 8. In the figure, we compute the average image
to visualize the visual polysemy (and diversity) of images. The top figure shows the
average image of images retrieved using the expanded query “Mouse-computing”.

Fig. 7 Google search results on a Wiki-disambiguated query “Mouse computing”. While results are
more homogeneous than that of “Mouse”, polysemy clearly remains an issue
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Fig. 8 Using the average image to illustrate the visual polysemy of images. Top even for images
retrieved using the Wiki-disambiguated query “Mouse computing”, they are very diverse. This will
be a challenge to a supervised learning method. Bottom average images of three HDP generated
clusters on “Mouse computing” images. Note the fine-grained elucidation of “notebook”, “pointer”
and “desktop” images

Note that even with the help of this disambiguation so as to retrieve mouse images in
the “computing” sense, there is little visual structure in these sense-specific “Mouse-
computing” images. In contrast, the images in the three HDP clusters shown in the
bottom figure can be seen to exhibit more visual structures. Using HDP, further fine-
grained image senses are elucidated, wherein “Mouse-computing” images are now
clustered into the “notebook”, “pointer-device” and “desktop” senses.

Ef fect of K on AUC results We take a closer look at the two most competitive
models, the VS-LDA and VS-HDP. While the overall performance difference of two
models over the ten keywords are statistically insignificant, the main advantage of the
VS-HDP model is that it circumvents the need for a prior choice of the number of
mixture components K. In contrast, the VS-LDA model needs to define K a-priori,
and the optimal value of K is necessarily determined via repeated trials and cross-
validation. We show this in Fig. 9 on two query words (“Bass” and “Speaker”), but
results are similar for the other query words. We plot the comparative performance
of the parametric models against the non-parametric VS-HDP across varying K.
Apart from VS-LDA, we also use a truncated version of the VS-HDP model5 as

5Note that in HDP, even though the CRP prior allows an infinite multinomial distribution over the
mixture components, each image nevertheless learns a posterior distribution π̂ over only a f inite
subset of cluster partition that are actually assigned to image feature vectors. Following [15], we use
a truncated DP approach, and truncate β at K + 1, so that βk = 0 for all k > K + 1. Hence, π̂ j ∼
DP(απ , β1,..,∞) becomes π̂ j ∼ Dirichlet(απ , β1,..,K+1). Specifically, for each image j, we let π j,1..K =
π̂ j,1..K , and π j,K+1 = 1 − ∑K

k=1 π̂ j,k, where π j,K+1 denotes the probability of sampling from a mixture
component that has not been used to explain any image feature vector.
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Fig. 9 Comparative AUC performance across various values of the number of mixture components

another parametric model. Note the different values of K for which their normalized
AUC is nearest to the best obtained from VS-HDP: 35 for “Bass”, and 25 for
“Speaker”. The higher K for “Bass” reflects its greater ambiguity than “Speaker”
(“Bass” has eight Wiki-senses, while “Speaker” has five). For VS-LDA, its AUC
results are most sensitive to the value of K. It peaks around the empirical optimal
point before deteriorating.

Ef fect of injecting sense-disambiguated images The appeal of unsupervised cluster-
ing methods is that they have no need for manual labels. However, their resulting
clusters are generally of lower quality than those generated with supervision. On the
other hand, it is often possible to improve clustering results by including some form of
limited supervision. For example, pairwise constraints are often used to indicate that
two particular data points should belong to same (or different) clusters. In this paper,
the use of sense-disambiguated images (suggested by Wikipedia disambiguation
links) can be seen as an injection of supervised labels onto the unsupervised HDP
clustering framework. The inclusion of these sense-specific images constrain the
clustering so that fine-grained sense clusters can be obtained (see Fig. 8). On first
thought, it would seem that these sense-specific images already encode the semantic
senses that we want. However, this is not the case, since even with these expanded
queries, returned images are not homogeneous. The important thing to note is
that it is not just the inclusion of more data that matters (because much of these
data are also noisy), it is the judicious combination of the adaptive strength-sharing

Fig. 10 Including more
sense-specific images improve
AUC performance of
VS-HDP
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machinery of HDP, that results in the fine-grained sense clustering. Figure 10 charts
the performance improvement as more sense-specific images are used to constrain
VS-HDP clustering. AUC results rapidly improve early on but plateau off when
hundreds of images are used. We note that this is the range where the return Google
images start to be of lower precision, i.e., noisier. In our dataset, we crawled 200
sense-specific images for each keyword sense (see Section 4.1).

5 Conclusion

We develop a method that learns the visual sense model of images. By using it to
classify polysemous images into their semantic categories, we are able to extend
Rijsbergen’s cluster hypothesis to the image domain.

We relate the lexical ambiguity of a query keyword to the corresponding polysemy
in its return images. The inherent word-based senses of the query is reflected in
the image-based senses: the more ambiguous the query word, the greater the visual
polysemy (and diversity) in the retrieved images. By clustering these polysemous
images into their image senses, we present the clusters as embodying the possible
visual interpretations of the query keywords. We coin the collective images in these
clusters as the visual senses of the query keywords, and show how these sense clusters
can be used as a way to diversify and disambiguate image search queries.

Our method is completely unsupervised. It capitalizes on the large amount of
unlabeled images available through keyword image search to learn a generative
model of sense. We extend the notion of image multimodality to include its dictionary
senses. We not only exploit the conventional textual and visual information in web
images, we also incorporate a list of suggested disambiguated senses from Wikipedia.
These sense suggestions act as a form of query expansion to solicit further sense-
specific images, and inject limited supervised labels into our unsupervised clustering
framework. Collectively, the three modalities guide the development of robust sense
models for images.

Compared to conventional generative models with fixed prior, we inject flexibility
in our visual sense model by using the Hierarchical Dirichlet Process (HDP) as a non-
parametric prior, with potentially unlimited capacity. The HDP framework allows
our model to be adaptive to the level of polysemy of the image data, which is in turn
related to level of polysemy in the query.

We use our visual sense models to classify polysemous images into their sense
clusters, according to their sense probability. On a large dataset of images consisting
of search results from ten polysemous keywords, our visual sense models improve on
both the baseline (Google) search engine, a state-of-art spectral-clustering method,
and bootstrapping SVMs trained on the sense-specific images.

Acknowledgements The authors would like to thank Sujoy Roy, Yap Ghim Eng, Sim Tze Jan, Sim
Khe Chai and Wang Yue for valuable discussions, and three student helpers for their labeling effort.

References

1. Agrawal R, Gollapudi S, Halverson A, Ieong S (2009) Diversifying search results. In: Proc of the
second ACM international conference on web search and data mining, pp 5–14



Multimed Tools Appl (2012) 56:509–534 531

2. Ali K, Stam V (2004) TiVo: making show recommendations using a distributed collaborative
filtering architecture. In: Proc ACM international conference on knowledge discovery and data
mining, pp 394–401

3. Arni T, Clough P, Sanderson M, Grubinger M (2008) Overview of the ImageCLEFphoto 2008
photographic retrieval task. In: Working notes of the 2008 CLEF workshop

4. Blei D, Ng A, Jordan M (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
5. Blei D, Griffiths T, Jordan M (2010) The nested chinese restaurant process and Bayesian non-

parametric inference of topic hierarchies. J ACM 57(2):1–30
6. Bradley P, Fayyad U (1998) Refining initial points for k-means clustering. In: Proc international

conference on machine learning, pp 91–99
7. Cai D, He X, Li Z, Ma W, Wen J (2004) Hierarchical clustering of WWW image search results

using visual, textual and link information. In: Proc multimedia, pp 952–959
8. Carbonell J, Goldstein J (1998) The use of MMR, diversity-based reranking for reordering docu-

ments and producing summaries. In: Proc ACM SIGIR conference on research and development
in information retrieval, pp 335–336

9. Cilibrasi R, Vitanyi P (2007) The google similarity distance. IEEE Trans Knowl Data Eng
19(3):370–383

10. Clarke C, Kolla M, Cormack G, Vechtomova O, Ashkan A, Buttcher S, MacKinnon I (2008)
Novelty and diversity in information retrieval evaluation. In: Proc ACM SIGIR conference on
research and development in information retrieval, pp 659–666

11. Cutting D, Karger D, Pedersen J, Tukey J (1992) Scatter/gather: a cluster-based approach to
browsing large document collections. In: Proc ACM SIGIR conference on research and devel-
opment in information retrieval

12. Fergus R, Li F, Perona P, Zisserman A (2005) Learning object categories from googles image
search. In: Proc international conference on computer vision

13. Ferguson T (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–230
14. Grauman K, Darrell T (2006) Unsupervised learning of categories from sets of partially matching

image features. In: Proc computer vision and pattern recognition
15. Hoffman M, Blei D, Cook P (2008) Content-based musical similarity computation using the

hierarchical dirichlet process. In: Proc international conference on music information retrieval
16. Jurie F, Triggs B (2005) Creating efficient codebooks for visual recognition. In: Proc international

conference on computer vision, vol 1, pp 604–610
17. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching

for recognizing natural scene categories. In: Proc conference on computer vision and pattern
recognition, pp 2169–2178

18. Leuken V, Reinier H, Garcia L, Olivares X, Roelof V (2009) Visual diversification of image
search results. In: Proc of the 18th international conference on world wide web, pp 341–350

19. Li L, Wang G, Li F (2007) Optimol: automatic object picture collection via incremental model
learning. In: Proc computer vision and pattern recognition

20. Li H, Tang J, Li G, Chua T (2008) Word2image: towards visual interpreting of words. In: Proc
ACM international conference on multimedia, pp 813–816

21. Loeff N, Alm C, Forsyth D (2006) Discriminating image senses by clustering with multimodal
features. In: Proc COLING/ACL, pp 547–554

22. Lowe D (2004) Distinctive image features from scale-invariant keypoints. J Comput Vis 60(2):
91–110

23. Matas J, Chum O, Urba M, Pajdla T (2002) Robust wide baseline extremal regions. In: Proc
British machine vision conference, pp 384–396

24. Mihalcea R (2007) Using Wikipedia for automatic word sense disambiguation. In: Proc the
annual conference of the North American Chapter of the Association for Computational
Linguistics

25. Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. In: Advances
in neural information processing systems, vol 14, pp 849–856

26. Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies
and fast spatial matching. In: Proc computer vision and pattern recognition

27. Quelhas P, Monay F, Odobez J, Gatica-Perez D, Tuytelaars T, Gool LV (2005) Modeling scenes
with local descriptors and latent aspects. In: Proc international conference on computer vision

28. Rasmussen C (2000) The infinite gaussian mixture model. In: Neural information processing
systems

29. Rijsbergen C (1979) Information retrieval. University of Glasgow



532 Multimed Tools Appl (2012) 56:509–534

30. Saenko K, Darrell T (2008) Unsupervised learning of visual sense models for polysemous words.
In: Proc neural information processing systems

31. Schroff F, Criminisi A, Zisserman A (2007) Harvesting image databases from the web. In: Proc
international conference on computer vision

32. Sivic J, Russell B, Zisserman A, Freeman W, Efros A (2008) Unsupervised discovery of visual
object class hierarchies. In: Proc computer vision and pattern recognition

33. Song K, Tian Y, Gao W, Huang T (2006) Diversifying the image retrieval results. In: Proc
multimedia, pp 707–710

34. Teh Y, Jordon M, Beal M, Blei D (2007) Hierarchical dirichlet processes. J Am Stat Assoc
101(476):1556–1581

35. Turney P (2002) Thumbs up or thumbs down? semantic orientation applied to unsupervised
classification of reviews. In: Proc association of computational linguistics, pp 417–424

36. Vedaldi A, Fulkerson B (2008) VLFeat: an open and portable library of computer vision algo-
rithms. http://www.vlfeat.org/. Accessed Sep 2009

37. Vivisimo (2009) Vivisimo web clustering. http://vivisimo.com/. Accessed Jan 2010
38. Wan K, Tan A, Lim J, Chia L (2009) A latent model for visual disambiguation of keyword-based

image search. In: Proc british machine vision conference
39. Wan K, Tan A, Lim J, Chia L (2010) Faceted topic retrieval of news video using joint topic mod-

eling of visual features and speech transcripts. In: Proc international conference on multimedia
and expo

40. Wang S, Jing F, He J, Du Q, Zhang L (2007) Igroup: presenting web image search results in
semantic clusters. In: Proc of the SIGCHI conference on Human factors in computing systems,
pp 587–596

41. Wei X, Croft W (2006) LDA-based document models for ad-hoc retrieval. In: Proc ACM SIGIR
conference on research and development in information retrieval, pp 178–185

42. Wikipedia (2010) English dumps in SQL and XML. http://download.wikimedia.org/enwiki/
20100116/. Accessed Feb 2010

43. Xing E, Sohn K, Jordan M, Teh Y (2006) Bayesian multi-population haplotype inference via a
hierarchical dirichlet process mixture. In: Proc international conference on machine learning

44. Zeng H, He Q, Chen Z, Ma W, Ma J (2004) Learning to cluster web search results. In: Proc ACM
SIGIR conference on research and development in information retrieval

45. Zhai C, Cohen W, Lafferty J (2003) Beyond independent relevance: methods and evaluation
metrics for subtopic retrieval. In: Proc ACM SIGIR conference on research and development in
information retrieval, pp 10–17

46. Ziegler C, Mcnee S, Konstan J, Lausen G (2005) Improving recommendation lists through topic
diversification. In: Proc international conference on world wide web, pp 22–32

Kong-Wah Wan received his B.Sc. (Hons) and M.Sc. degrees in Computer Science from the National
University of Singapore. He is currently a Research Manager with the Institute for Infocomm
Research (I2R), and a lead investigator of a few projects examining image and video retrieval. His
work has been used in several large scale deployments in Singapore, including the Port of Singapore
Authority (PSA Corp) and the Immigration and Checkpoint Authority (ICA) of Singapore. A few

http://www.vlfeat.org/
http://vivisimo.com/
http://download.wikimedia.org/enwiki/20100116/
http://download.wikimedia.org/enwiki/20100116/


Multimed Tools Appl (2012) 56:509–534 533

of his recent projects in video content analysis are also exhibited at the STARHome, a technology
showcase of the Agency for Science, Technology and Research in Singapore. He has five patents
(awarded and pending) and is a recipient of the Tan Kah Kee Young Inventor Award (Silver) in
2004.

Ah-Hwee Tan is an Associate Professor and the Division Head of Information Systems at the
School of Computer Engineering (SCE), Nanyang Technological University. He has been a faculty
member of SCE since 2003 and was the founding Director of Emerging Research Laboratory, a
research center for incubating new interdisciplinary research initiatives. Prior to joining NTU, he
was a Research Manager at the A*STAR Institute for Infocomm Research (I2R), spearheading the
Text Mining and Intelligent Agents research programmes. His current research interests include
intelligent agents, cognitive and neural systems, machine learning, knowledge discovery and text
mining.

Prof. Tan received a Ph.D. in Cognitive and Neural Systems from Boston University, a Bachelor
of Science (First Class Honors) (1989) and a Master of Science (1991) in Computer and Information
Science from the National University of Singapore. He is a recipient of Lim Soo Peng Book Prize,
Asia Life Gold Medal, Cambridge Scholarship, Tan Kah Kee Young Inventor Award (Silver), NUS
Overseas Graduates Scholarship, KRDL High Achiever Award, Optimal 2003 Gold Award, and
Tan Chin Tuan Fellowship. He is an Editorial Board Member of Applied Intelligence published by
Springer-Verlag, a Member of ACM, and a Senior Member of IEEE.

Joo-Hwee Lim received his B.Sc. (Hons I) and M.Sc. (by research) degrees in Computer Science
from the National University of Singapore and his Ph.D. degree in Computer Science & Engineering
from the University of New South Wales. He has joined Institute for Infocomm Research (I2R) and



534 Multimed Tools Appl (2012) 56:509–534

its predecessors since October 1990. He has conducted research in connectionist expert systems,
neural-fuzzy systems, handwriting recognition, multi-agent systems, and content-based retrieval.
He was a key researcher in two international research collaborations, namely the Real World
Computing Partnership funded by METI, Japan and the Digital Image/Video Album project with
CNRS, France and School of Computing, National University of Singapore. He also contributed
technical solutions to a few industrial projects involving pattern-based diagnostic tools for aircraft
and battleship navigation systems and knowledge-based post-processing for automatic fax/form
recognition. He has nine patents (awarded and pending) and published more than one hundred and
twenty refereed international journal and conference papers in his research areas. He is currently
the Department Head of the Computer Vision & Image Understanding Department, with staff
strength of fifty research scientists and engineers, at I2R, Singapore. He is also the co-Director of
IPAL (Image Perception, Access and Language), a French-Singapore Joint Lab (UMI 2955, January
2007–December 2010). He is bestowed the title of ‘Chevallet dans l’ordre des Palmes Academiques’
by the French Government in 2008.

Liang-Tien Chia received his B.Sc. degree in Electrical and Electronics Engineering and Ph.D. from
Loughborough University (of Technology) in 1990 and 1994, respectively. During this period, he was
awarded the University Traveling Prize for his academic achievements and he was a recipient of the
Overseas Research Scholarship Award.

He is currently an Associate Professor in the School of Computer Engineering, Nanyang
Technological University, Singapore. He was the Director of the Centre for Multimedia and
Network Communications from 2002 to 2007 and is currently Head of the Division of Computer
Communications.

Liang-Tien Chia’s research interests can be broadly categorized into two main areas, Internet
related research with emphasis on the Semantic Web and Multimedia Understanding for Infor-
mation Management through media analysis, annotation and adaptation. Related topics include
multimedia storage & retrieval, multimedia processing, multimodal data fusion and multimedia
adaptation/transmission.

He is involved in a number of funded research projects and he serves as a member on numerous
conference program committees and reviews for some international journals and he has published
over 100 referred international conference and journal papers. He was awarded the A*Star Overseas
Attachment Programme and spent one month in Microsoft Research Asia.

Liang-Tien Chia is a council member of the Infocomm Technology Standards Committee and
serves as the technical chairman of ITSC Plugfest 2006. As a Singaporean, he is an active National
Serviceman serving as a Signal Officer in the Singapore Armed Forces.


	A non-parametric visual-sense model of images: Extending the cluster hypothesis beyond text
	Citation

	A non-parametric visual-sense model of images---extending the cluster hypothesis beyond text
	Abstract
	Introduction
	Related works
	HDP-based elucidation of image senses
	Dirichlet process
	Hierarchical Dirichlet Process
	Image visual sense model
	Augmenting the visual sense model with Wiki-sense-disambiguated images
	Presenting final image clusters according to their Wiki-primary senses

	Experimental results
	Methodology and dataset
	Visual features
	Baselines
	Evaluation
	Analysis and discussion

	Conclusion
	References



