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a b s t r a c t

Learning and memory are two intertwined cognitive functions of the human brain. This paper shows
how a family of biologically-inspired self-organizing neural networks, known as fusion Adaptive
Resonance Theory (fusion ART), may provide a viable approach to realizing the learning and memory
functions. Fusion ART extends the single-channel Adaptive Resonance Theory (ART) model to learn
multimodal pattern associative mappings. As a natural extension of ART, various forms of fusion
ART have been developed for a myriad of learning paradigms, ranging from unsupervised learning
to supervised learning, semi-supervised learning, multimodal learning, reinforcement learning, and
sequence learning. In addition, fusion ART models may be used for representing various types of
memories, notably episodic memory, semantic memory and procedural memory. In accordance with
the notion of embodied intelligence, such neural models thus provide a computational account of how
an autonomous agent may learn and adapt in a real-world environment. The efficacy of fusion ART in
learning and memory shall be discussed through various examples and illustrative case studies.

1. Introduction1

Learning and memory are two critically important and inter-2

twined cognitive functions of the human brain. Whereas learning3

generally refers to the capability or process of converting the4

sensory signals received from the environment into knowledge5

which guides future performance, memory in the broad sense6

refers to the knowledge created internally as an outcome of the7

learning. While learning leads to the creation of new knowledge8

(or memory), memory in turn plays a critical role in high level9

cognitive functions, in particular situation awareness and deci-10

sion making, enabling us to react to current situations based on11

our past experiences.12

Learning and memory are intensively studied topics in the13

fields of cognitive psychology and computer science. Unsurpris-14

ingly, many distinct theories, models and methods have been15

proposed over the past decades. However, a unified account or16

theory is lacking in simulating and explaining various types of17

learning and memory capabilities of which a single human brain18

is capable of. In this paper, we show that a generalization of19

∗ Corresponding author.
E-mail addresses: asahtan@ntu.edu.sg (A.-H. Tan), budhitama@ntu.edu.sg

(B. Subagdja), wangdi@ntu.edu.sg (D. Wang), menglei.thunder@gmail.com
(L. Meng).

Adaptive Resonance Theory (ART), known as fusion Adaptive Res- 20

onance Theory (fusion ART), may serve as the building blocks of 21

an integrated cognitive model that integrates a myriad of learning 22

paradigms and memory systems. 23

Adaptive Resonance Theory (ART) (Carpenter & Grossberg, 24

1991, 2003; Grossberg, 1976a, 1976b) is a class of self-organizing 25

neural networks derived from an analysis of human and animal 26

perceptual and cognitive information processing. Besides applica- 27

tions to pattern recognition, analysis and prediction (Duda, Hart, 28

& Stock, 2001; Levine, 2000), ART principles have led to behav- 29

ioral and neurobiological predictions, which receive significant 30

experimental support (Grossberg, 2003; Raizada & Grossberg, 31

2003). 32

Fusion ART, presented in this paper, is a direct extension of the 33

single-channel ART models. Whereas ART models (Carpenter & 34

Grossberg, 1987b) perform unsupervised learning of recognition 35

categories from input patterns, fusion ART learns multi-channel 36

associative mappings across multimodal pattern channels in an 37

online and incremental manner. While fusion ART with a single 38

input channel reduces to the original ART model, fusion ART 39

with two or more pattern channels extends unsupervised learn- 40

ing to supervised learning, semi-supervised learning, multimodal 41

learning, reinforcement learning, and sequence learning. More 42

importantly, the knowledge learned by fusion ART can be inter- 43

preted as various types of memory systems as studied in the field 44
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Fig. 1. The fusion ART network architecture.

of cognitive science, notably episodic memory, semantic memory1

and procedural memory.2

Over the years, various forms of fusion ART models have been3

developed and applied to a wide range of applications, including4

personal profiling (Tan & Soon, 2000), text categorization (He,5

Tan, & Tan, 2003; Tan, Ong, Pan, Ng, & Li, 2004), gene expression6

analysis (Tan & Pan, 2005), social media clustering (Meng, Tan, &7

Xu, 2014), non-player character (NPC) modeling in games (Feng8

& Tan, 2016; Wang & Tan, 2015a), artificial human in virtual9

world (Kang, Tan, & Nah, 2012), computer generated forces (CGF)10

in combat simulation (Teng, Tan, & Teow, 2013), and simulat-11

ing autobiographical memory. In this paper, we shall review12

the basic principles, models and algorithms of fusion ART and13

discuss how its network dynamics may support a principled14

account for a myriad of machine learning paradigms and memory15

representation.16

The rest of the paper is presented as follows. Section 2 presents17

the basic fusion ART model and the associated system dynamics.18

Section 3 discusses how fusion ART can be employed in various19

forms of learning paradigms. Section 4 shows how fusion ART20

can be used to simulate various types of memory systems. To21

aid understanding, Section 5 presents how the various memory22

systems may be integrated into a multi-memory cognitive archi-23

tecture. Section 6 reviews a selected collection of experiments24

and applications of fusion ART models and algorithms. The final25

section concludes and discusses future work.26

2. Fusion ART: Model and dynamics27

Fusion ART employs a multi-channel architecture (see Fig. 1),28

comprising K pattern channels or input fields F c1
1 , . . . , F ck

1 con-29

necting to a category field F2 through bidirectional conditionable30

pathways. This generalized form of ART model unifies a num-31

ber of network designs, notably the original single-channel ART32

models (Carpenter & Grossberg, 1991, 2003), the dual-channel33

Adaptive Resonance Associative Map (ARAM) (Tan, 1995) and the34

three-channel Fusion Architecture for Learning, COgnition, and35

Navigation (FALCON) (Tan, 2004).36

By inheriting the ART properties, Fusion ART is naturally de-37

signed to learn cognitive nodes, each encoding the multi-modal38

representation of a memory chunk across multiple pattern chan-39

nels, in response to a continual stream of incoming patterns in40

an online and real time manner. However, it is important to41

note that fusion ART does not require all inputs to be present42

in the pattern channels. For those channels not receiving input,43

the input vectors are typically initialized to all ‘1’s, indicating44

‘‘unknown.’’45

The fusion ART’s dynamics is determined by a set of param-46

eters P , consisting of the so called choice parameters αck > 0,47

learning rate βck
∈ [0, 1], contribution parameters γ ck

∈ [0, 1]48

and vigilance ρck
∈ [0, 1] for k = 1, . . . , K . Given a set of49

selected parameter values, a fusion ART model learns a set of50

recognition categories in response to an incoming stream of input51

patterns presented via multiple pattern channels. Specifically,52

each category node j in the F2 field thus learns to encode a53

template pattern wck
j representing the key characteristics of a set54

of patterns presented at each pattern channel ck.55

Fig. 2. The fusion ART dynamics: (a) Bottom up activation of category nodes;
(b) Code competition in the category field; (c) Template matching and learning
following a resonance; and (d) Reset of selected category node following an
expectation mismatch in the F1 fields.

As shown in Fig. 2, upon an input presentation, the fusion 56

ART code learning cycle consists of four key stages, namely code 57

activation, code competition, template matching, and template 58

learning, described as follows. 59

Code activation: Given a set of input vectors Ic1, . . . , IcK pre- 60

sented at F c1
1 , . . . , F ck

1 respectively, a bottom up activity propa- 61

gation process computes an input activation value Tj for each F2 62

node j, by 63

Tj = Choice({wck
j }|I

c1, . . . , IcK ). (1) 64

The Choice function Tj evaluates the aggregated overall similarity 65

of the input vectors to their respective weight vectors encoded by 66

F2 node j. The specific similarity function used in the individual 67

pattern fields depends on the types of ART operations chosen, 68

which can be ART1 (Carpenter & Grossberg, 1987b), ART2 (Car- 69

penter & Grossberg, 1987a), ART2-A (Carpenter, Grossberg, & 70

Rosen, 1991b), or fuzzy ART (Carpenter, Grossberg, & Rosen, 71

1991c) operations. 72

Code competition: A code competition process follows, which 73

typically results in a winner-take-all outcome. The winner is 74

indexed at J where 75

TJ = max{Tj : for all F2 node j}. (2) 76

When a category choice is made at node J , the activity value yJ 77

of the F2 node J with the highest input activation value becomes 78

‘1’, while the other F2 nodes have their activity value yj set to ‘0’. 79

Template matching: Following the code competition process, the 80

chosen F2 node J performs a reading out of its template weight 81

vectorswck
j into the input fields F c1

1 , . . . , F ck
1 . AMatch functionmck

J 82

is then computed for each pattern channel ck by 83

mck
J = Match(Ick|wck

J ). (3) 84

The Match function is required to ensure that the weight tem- 85

plates of node J are sufficiently close to their respective input pat- 86

terns before learning. Formally, the state of resonance is said to be 87

achieved if for each channel k, the match function mck
J of the cho- 88

sen node J is at least its corresponding required vigilance value. 89

If any of the vigilance criteria is not met, mismatch reset 90

occurs in which the node J is reset for the duration of the input 91

presentation. The search process then selects another F2 node J 92

under the revised vigilance criterion until a resonance is achieved. 93

Template learning: When the state of resonance is achieved, for 94

each channel ck, the weight vector wck
J is adjusted to encode the 95

matched patterns in the F ck
1 pattern field by 96

wck(new)
J = Learn(wck(old)

J , Ick). (4) 97
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Fig. 3. The architecture of two-channel fusion ART that incorporates user
preferences.

Again, the specific Learn function used for each pattern channel1

follows the chosen ART operations used.2

When an uncommitted node is selected for learning, it be-3

comes committed and a new uncommitted node is added to4

the F2 field. Fusion ART thus expands its network architecture5

dynamically in response to the input patterns.6

3. Universal learning7

Used in different configurations, the fusion ART network dy-8

namics as described in the previous section are able to support a9

myriad of distinct learning paradigms.10

3.1. From unsupervised to supervised and semi-supervised learning11

With a single pattern channel, the fusion ART architecture12

reduces to the original ART models (Carpenter & Grossberg, 1991,13

2003; Grossberg, 1976a, 1976b), which have been applied in the14

context of unsupervised learning to a wide range of applications.15

With two pattern channels, a specific instance of fusion ART16

known as Adaptive Resonance Associative Map (ARAM), learns17

supervised associative mappings from one pattern space to an-18

other pattern space (Tan, 1995). An ARAM system consists of an19

input field F a
1 , an output field F b

1 , and a category field F2. Given20

a set of feature vectors presented at F a
1 and their corresponding21

class vectors presented at F b
1 , ARAM learns recognition nodes in22

the F2 field that associates key features in the input space to their23

respective classes in the output space.24

In terms of architecture, ARAM can be considered as a com-25

pressed version of ARTMAP (Carpenter, Grossberg, & Reynolds,26

1991a, Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992)27

and LAPART (Healy & Smith, 1993), which are extended ART28

models consisting of two separate ART modules, connected by an29

inter-ART map field or ‘‘Associator.’’30

While the previous section presents a generic code activation31

process wherein all pattern channels activate the common F2 field32

during code activation, for supervised learning, methods such as33

match tracking can be incorporated into ARAM, which raises the34

vigilance of the input channel adaptively only when a mismatch35

occurs in the output channel. This has been shown to reduce the36

code proliferation problem (Tan, 1995).37

In a two-channel fusion ART, it is also possible to perform38

semi-supervised learning by presenting both labeled and unla-39

beled samples to the network. Firstly proposed for personalized40

clustering of search engine results (Tan et al., 2004) and web41

photos (Meng & Tan, 2012) based on user-defined tags, semi-42

supervised learning incorporates user-provided category labels to43

control and refine the clustering results giving more flexibility to44

the user to enhance the quality of categorization (Meng, Tan, &45

Wunsch, 2019).46

Fig. 3 depicts the architecture of fusion ART that incorporates47

user preferences for semi-supervised learning. While the F a
1 field48

receives the features of objects to be categorized, the F b
1 field 49

receives the user preferences for categorizing specific sample 50

objects. Specifically, the preference vector xb, which encodes the 51

user-defined semantic labeling for the data, is used as a user- 52

guided categorization labeling for the splitting and merging of 53

data clusters. 54

During learning, the same incremental fusion ART code learn- 55

ing cycle is used to find a cluster in F2 field that match with 56

both xa and xb in the F1 fields. However, the category labeling, 57

in terms of xb, provides a user-guided control to direct the clus- 58

tering. It gives more flexibility to the user to direct and adjust 59

the clustering results to be more accurate or fit with the user 60

preferences. This incorporation of user preferences makes fusion 61

ART learning semi-supervised wherein user preferences are taken 62

into account to determine the final clusters. Fig. 4 illustrates the 63

process geometrically as a user-in-the-loop clustering cycle. As 64

illustrated, without the user preferences, fusion ART incremen- 65

tally clusters the inputs based on predefined distance measures. 66

In contrast, as shown in Fig. 4(b), with the user-specified catego- 67

rization (e.g the ‘‘triangle△’’, ‘‘rectangle □’’ and ‘‘diamond ♢’’), the 68

features that were originally partitioned in two separate clusters 69

(in Fig. 4(a)) are united together with the connection of ‘‘triangle 70

△’’, while those originally in the same category can be separated 71

into different clusters. 72

3.2. Multimodal learning 73

Fusion ART allows the encoding of multimodal data with an 74

arbitrarily rich level of modalities. To embrace the heterogeneous 75

nature of multimodal data, Generalized Heterogeneous Fusion 76

ART (GHF-ART) (Meng et al., 2014) takes advantage of fusion ART 77

in terms of its linear time complexity and its mechanism that in- 78

dependently processes each feature modality. Specifically, it uses 79

different similarity measure and prototype learning functions for 80

heterogeneous features, and includes a weighting method for 81

feature modalities. GHF-ART has shown promising performance 82

in terms of the social curation of user-tagged web photos (Meng 83

et al., 2014), the detection of user communities in social net- 84

works (Meng & Tan, 2014), and the indexing and retrieval of 85

weakly-supervised data (Meng et al., 2015). Essentially, GHF- 86

ART learns the mappings across multi-dimensional feature spaces 87

simultaneously to categories. The clustering process partitions 88

the input feature spaces incrementally to form cluster regions, 89

mapping them to the category space. The clustering procedure 90

of GHF-ART follows the general procedure of fusion ART, namely 91

code activation, code competition, template matching, and tem- 92

plate learning. However, it extends fusion ART with an adaptive 93

weighting operation to update the contribution parameter γ k for 94

every channel k. Formally, the modified choice function Tj for node 95

j in F2 field is given by 96

Tj =
K∑

k=1

γ k.Choicek(wk
j |I

ck), (5) 97

where the Choice function Choicek evaluates the similarity in input 98

channel k and the contribution parameter γ k determines the 99

significance of channel k in contributing to the overall choice 100

function. Intuitively, a channel that is robustly contribute to the 101

correct categorization should have a high γ k. To adjust γ k on- 102

the-fly, a robustness measure Rk for channel k can be obtained 103

by the inverse of averaged differences between the weights and 104

the input values of channel k such that a high Rk indicates 105

that channel k can accurately represent the data that belongs to 106

the same class. In contrast, when Rk approaches zero, it means 107

channel k is less reliable to characterize the input. In that case, 108
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Fig. 4. An example illustrating the influence of user preferences on the clustering results of fusion ART. (a) One possible clustering result of fusion ART — original
data shown on the left while the result is on the right; (b) Changes in clustering result after receiving user preferences, i.e. the ‘‘triangle △’’, ‘‘rectangle □’’ and
‘‘diamond ♢’’.

Fig. 5. The FALCON network architecture based on a three-channel fusion ART.

the contribution parameter γ k can be updated proportional to the1

robustness Rk by2

γ k
=

Rk∑K
k=1 Rk

. (6)3

3.3. Reinforcement learning4

Beyond two pattern channels, we show how a specific in-5

stant of fusion ART, known as Fusion Architecture for Learn-6

ing, COgnition, and Navigation (FALCON) (Tan, 2004), subsumes7

three distinct learning methods, notably unsupervised learning,8

supervised learning, and reinforcement learning.9

The development of FALCON is motivated by designing au-10

tonomous agents capable for learning and operating in an embod-11

ied real-time environment. As shown in Fig. 5, FALCON employs12

a three-channel architecture, comprising a category field F2 and13

three pattern fields, namely a sensory field F c1
1 for representing14

current states, a motor field F c2
1 for representing actions, and a15

feedback field F c3
1 for representing reward values.16

When only sensory inputs are presented to the sensory field,17

FALCON simply reduces to the original ART model performing18

unsupervised learning of sensory inputs into natural groupings19

of state representation. When presented with pairings of sen-20

sory inputs and actions, FALCON performs supervised learning21

of associative mapping from the sensory field to the motor field.22

This is equivalent to learning an action policy directly based on23

the given supervisory signals. When the reinforcement feedback24

signals are also presented to the feedback field, FALCON performs25

reinforcement learning, which learns the value of performing26

an action in a specific input state. This corresponds to learning27

a value policy by associating each state–action pair with an28

evaluative reward value.29

A class of FALCON networks, known as TD-FALCON (Tan,30

2006), incorporates Temporal Difference (TD) methods to esti-31

mate and learn value function Q (s, a), that indicates the merit32

to take a certain action a in a given state s. The original TD-33

FALCON algorithm (Tan, Lu, & Dan, 2008) selects an action with34

the maximal Q-value in a state s by enumerating and evaluating 35

each available action a. A subsequent model called DA-FALCON 36

replaces the action enumeration step with a direct code access 37

procedure (Tan, 2007). Specifically, DA-FALCON searches for the 38

cognitive node which encodes a state similar to the current state 39

and the maximal reward value. It has been shown that if there 40

is at least one cognitive node(s) encoding the current state, DA- 41

FALCON will enable the selection of the cognitive node with the 42

maximum reward value. 43

To facilitate understanding, the general sense–act–learn cycle 44

for DA-FALCON is summarized below. Given the current state s, 45

TD-FALCON first decides between exploration and exploitation by 46

following an action selection policy. For exploration, a random 47

action is picked. For exploitation, TD-FALCON performs a directed 48

search for cognitive nodes that match with the current states 49

and at the same time provide the highest reward values using 50

a direct access procedure. Upon receiving a feedback from the 51

environment after performing the action, a TD formula is used 52

to compute a new estimate of the Q value of performing the 53

chosen action in the current state. The new Q value is then used 54

as the teaching signal for TD-FALCON to learn the association of 55

the current state and the chosen action to the estimated Q value. 56

3.4. Sequence learning 57

As a further extension of fusion ART, iFALCON is a neural 58

model that combines multiple fusion ART networks to emulate 59

the process of planning and plan execution (Subagdja & Tan, 60

2012). As shown in Fig. 6, iFALCON consists of four input (output) 61

fields F b
1 , F

g
1 , F

c
1 , and F a

1 , representing beliefs, desires, critic, and 62

action, respectively, which are connected to the category fields F2 63

and F3 representing plans and sequence of actions respectively. In 64

contrast to other fusion ART networks described in the previous 65

sections, iFALCON employs multiple layers of interconnected cat- 66

egory fields. The selection output in one category field becomes 67

the input to a higher level one. In iFALCON, the activation pattern 68

in F3 category field (sequence) becomes the input to the F2 field 69

(plans), and both F2 and F3 become the input fields to the F4 70

First-In-Last-Out (FILO) category field. In this multi-layered model 71

of ART, a sequential pattern can be represented as a pattern of 72

node activation in the field (F3) wherein a value indicates the 73

relative order of time when the corresponding node is selected, 74

stored, and recalled (in First-In-First-Out or FIFO order). Since 75

the sequence pattern is formed only transiently as activation or 76

node selections, the pattern can be stored more permanently as 77

weighted connections representing the gradual pattern of the 78

sequential order. In Fig. 6, the weighted connections from F3 to 79

F2 (wt
j ) and to F4 (ws

i ) represent FIFO sequential pattern. 80

The beliefs field represents the state of the environment. The 81

desires field represents the goal to be achieved. The critic field 82

evaluates the degree of mismatch between beliefs and desires. 83

The critic value may trigger a resonance search in F2 or F4 to 84
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Fig. 6. The iFALCON network architecture based on a hierarchical fusion ART
model with four pattern channels.

select a plan or restore the last condition pending achievements,1

respectively. The action field represents the action to be taken.2

As parts of the hierarchical planning system, the achievement of3

an action in F a
1 may activate a resonance search in F2 and F4 to4

initiate subgoal expansion.5

Connected to the four input fields, the F2 field is the plan6

repository for storing and recall of plans. Each node j in the F27

field encodes a plan description, consisting of a pre-condition, a8

post-condition, a value, and a sequence of actions. Selecting an9

applicable plan to achieve the goal corresponds to a resonance10

search to select a node j in F2 given the goal and the current11

situation. A new plan will be stored or inserted automatically if12

the search cannot find any existing match. The F3 field represents13

an action controller that stores and replays actions according to14

their order of presentations. The F4 field serves as a working15

memory that stores and reproduces the status of the planning16

process. Nodes activation in F4 follows the recency gradient prin-17

ciple (Grossberg, 1978; Grossberg & Pearson, 2008). To restore the18

status of the plan and action sequence, the F4 node with the max-19

imal activation is selected for reading out the status of the plan.20

In this multi-layered model of fusion ART networks, sequences21

can be transiently captured and permanently learned by repre-22

senting the order of node selections as graded activation values.23

By this sequential encoding technique, a hierarchical structure24

can also be represented in the networks allowing a reasoning25

process to be applied for planning and sequential inferences (Sub-26

agdja & Tan, 2012, 2015)27

3.5. Integrating domain knowledge28

During learning, fusion ART formulates recognition categories29

of input patterns across multiple channels. The knowledge that30

fusion ART discovers during learning is compatible with symbolic31

rule-based representation. Specifically, the recognition categories32

learned by the F2 category nodes are compatible with a class33

of conjunctive IF-THEN rules that maps a set of input attributes34

(antecedents) in one pattern channel to a disjoint set of output35

attributes (consequents) in another channel. Due to this compat-36

ibility, instructions in the form of IF-THEN rules can be readily37

translated into the recognition categories of a fusion ART system.38

The fusion ART rule insertion strategy (Teng, Tan, & Zurada,39

2015) is similar to that used in Cascade ARTMAP (Tan, 1997),40

a generalization of ARTMAP that performs domain knowledge41

insertion, refinement, and extraction. Cascade ARTMAP follows42

the ARTMAP network architecture (Carpenter & Grossberg, 1992),43

consisting of two ART modules ARTa and ARTb connected by44

an inter-ART associative map field. By representing intermediate45

variables of rule-based knowledge explicitly and an update mech-46

anism feeding the output activity pattern at the F b
1 field of ARTb47

Table 1
Sample knowledge learned by FALCON in the minefield navigation domain (Tan
et al., 2007). The ‘∧’ symbol is used here to indicate the AND relation.
Type of learning Knowledge learned

Unsupervised FrontSonar = 1.0 ∧ Target = Front
learning FrontSonar ≤ 0.5∧ Target = Front

Supervised IF FrontSonar ≤ 0.5∧ Target = Front
learning THEN Move = Front

IF FrontSonar = 1.0 ∧ DRightSonar≤0.5
∧ Target = Front THEN Move = DRight

Reinforcement IF FrontSonar≤ 0.5∧ Target = Front
learning THEN Move = Front (Q = 1.0)

IF FrontSonar = 1.0 ∧ Target = Front
THEN Move = Front (Q = 0.0)

module back into the F a
1 field of ARTa, Cascade ARTMAP emulates 48

multi-step inferencing (rule chaining) by performing multiple 49

rounds of code activation for the period of an input presentation. 50

In addition, during learning, new recognition categories (rules) 51

can be created dynamically to cover the deficiency of the domain 52

theory. 53

For direct knowledge insertion into fusion ART, the IF and 54

THEN clauses of each instruction (rule) are first translated into 55

a pair of vectors A and B respectively, which are then used as 56

training patterns for inserting into a fusion ART network. During 57

rule insertion, the vigilance parameters of fusion ART are set to 1s 58

to ensure that each distinct rule is encoded by one category node. 59

In addition, existing codes/rules in the network are activated 60

and modified only when they are identical to the inserted rules. 61

Therefore rules learned from data are unlikely to be affected 62

when inserting new rules. 63

3.6. Explaining learned knowledge 64

Due to its compatibility with symbolic rules, the knowledge 65

learned by the fusion ART models can also be translated into sym- 66

bolic IF-THEN rules for interpretation. To illustrate the knowledge 67

learned, Table 1 shows a sample set of the knowledge learned 68

by TD-FALCON in one of our experiments (Tan, Carpenter, & 69

Grossberg, 2007). As shown in the first row of the table, through 70

unsupervised learning, TD-FALCON identifies two key situations 71

in its environment that are of significance. The second row shows 72

two association rules learned by TD-FALCON through supervised 73

learning between typical situations and their corresponding de- 74

sired actions. Finally, through reinforcement learning, TD-FALCON 75

learns the value of performing a specific action in a given situa- 76

tion. The third row shows two learned cases, one indicating a high 77

payoff for taking an action in a situation and the other giving a 78

severe penalty for taking the same action in a slightly different 79

situation. 80

4. Neural modeling of memory 81

It has been well recognized that human brains are multi- 82

memory systems (Kandel, Schwartz, & Jessell, 2000; Tulving, 83

1985). While declarative memory, in particular episodic memory 84

and semantic memory, is an explicit record of what we encounter 85

and what we learn (Tulving, 1972, 1983), procedural memory 86

refers to skills and reflex responses, which we learn to act in 87

the environment. In this section, we discuss how variants of 88

fusion ART may be used to model the various types of human 89

memory systems, notably episodic memory, semantic memory, 90

and procedural memory. 91
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Fig. 7. The EM-ART network model.

4.1. Modeling episodic memory1

Episodic memory (Tulving, 1983) can be considered as the2

record of one’s life experience, consisting of temporal sequences3

of events associated with contextual information such as people,4

objects, times, and places. Two key elements of episodic memory5

are events and episodes. An event can be represented as an aggre-6

gation of attributes describing a snapshot of experience in time.7

The event attributes characterize the who (subject/object), what8

(relation/action), where (location), and when (date/time) infor-9

mation of an event. On the other hand, an episode can be defined10

as a sequence of events, which happen over a period of time.11

The main challenge of modeling episodic memory is to build12

an efficient storage mechanism for encoding an incoming stream13

of episodic events consisting of multimodal sensory as well as14

contextual information in real time. The episodic memory should15

allow generalization across events when required and be scalable16

and remain plastic (adaptable) to new incoming events. On the17

other hand, the memory model should enable recall of stored18

events in real time in response to partial or inexact search cues.19

Most early episodic memory models are largely based on sym-20

bolic representation (Ho, Dautenhahn, & Nehaniv, 2003; Nuxoll21

& Laird, 2007; Samsonovich & Ascoli, 2005). Designed to encode22

complex relationships among the events precisely, they are not23

able to handle noisy or incomplete cues during memory retrieval.24

Also, by encoding all incoming events without any form of gen-25

eralization, the memory storage may have a scaling up issue in a26

continuous real-time environment.27

Building upon fusion ART, the Episodic Memory-Adaptive Res-28

onance Theory (EM-ART) model (Wang, Subagdja, Tan, & Starzyk,29

2012a) stores events and episodes by combining two fusion ART30

networks: one for encoding events and the other for episodes. As31

shown in Fig. 7, the EM-ART model can be seen as a three-layer32

fusion ART network consisting of F1, F2, and F3 field.33

Event Encoding: The network between F1 and F2 is a fusion34

ART for encoding memory representation of individual events. F235

serves as a medium-term memory buffer for event activation that36

holds the graded activity pattern for representing a sequence of37

events (see Fig. 8(a)). Specifically, an event can be encoded as an38

input vector to the fusion ART network and a category can be39

selected as an activated node by a bottom-up activation process.40

On the other hand, the top-down activation (readout operation)41

achieves the recall task.42

Episodic Encoding: Our approach to encoding a sequence of43

events in the neural network follows the gradient encoding44

method (Grossberg, 1978; Grossberg & Pearson, 2008) by main-45

taining a graded pattern of activities evoked by each incoming46

event and decayed over time. Fig. 8(b) illustrates the bottom-47

up and top-down operations between neural fields F2 and F3 for48

learning, recognition, and recalling an episode. Each time when49

a new event is presented and an event node J is activated, the50

Fig. 8. (a) Event encoding based on network interaction between F1 and F2; (b)
Episodic encoding based on network interaction between F2 and F3 .

activation value yJ is set to 1. For all other nodes j in F2, the 51

activation value yj is decayed over time by y(new)
j = y(old)j (1 − τ ) 52

where τ ∈ (0, 1) is the decay factor. The activation values ytj 53

thus form a gradient pattern such that yti > yti−1 > yti−2 > 54

· · · > yti−n , where ti is the current or the latest time point. The 55

graded activation pattern can then be learned into the weighted 56

connections between the F2 and F3 layers. 57

To retrieve an episode, a continuous search process can be 58

applied, whereby given a stream of incoming event cues, a graded 59

activity pattern of events is accumulated over time in F2 until a 60

matching node is found in F3 by the resonance search process. 61

The episodic memory model described above has been shown to 62

robustly retrieve episodic traces using partial and noisy memory 63

cues (Wang, Subagdja, Tan, & Tan, 2012b). An in-depth study on 64

EM-ART as a general cognitive model of episodic memory (Sub- 65

agdja & Tan, 2015) has provided some proofs that the graded 66

representation of the sequence allows a stored episode to be 67

retrieved even though the memory cues may not be complete 68

(e.g some events missing) and the order of the cue items may 69

slightly be drifted from their original position. In this case, EM- 70

ART offers flexible methods of storing, retrieving, and reasoning 71

over episodic memory that are consistent with memory-related 72

behaviors in humans and animals (Subagdja & Tan, 2015). The 73

flexibility of EM-ART has also been recently demonstrated in con- 74

trolling task performance of a humanoid robot (Park, Yoo, Kim, 75

& Kim, 2018). Based on a multi-layered (deep) EM-ART network 76

to learn daily routines of activities wherein each layer represents 77

different range of time period of the sequence, the robot can 78

perform a user-instructed sequence of actions properly and com- 79

pletely even though the given instruction is noisy, corrupted, or 80

incomplete (Park et al., 2018). In this case, the instruction is used 81

as a memory cue to retrieve the stored task sequence as episodes. 82

Whereas the original EM-ART focuses on encoding the sequen- 83

tial aspect of episodic memory, a variant of fusion ART called 84

Spatial–Temporal Episodic Memory (STEM) model (Chang & Tan, 85

2017) is designed to encode explicit representation of time, space 86

and contextual information of objects, people, and their activities. 87

Using fusion ART as the building block, STEM integrates multi- 88

modal episodic memory involving audio, visual imagery, self and 89

other contextual information. As shown in Fig. 9, STEM can be 90

visualized as two fusion ART models connected in a hierarchical 91

manner. The F1 layer consists of five input fields constituting the 92

event representation, namely the Object field for representing the 93
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Fig. 9. The STEM network architecture.

Fig. 10. Three main types of semantic memory, namely (a) association rule
(s, s′); (b) concept hierarchy sa : sA; and (c) causal relation s → s′ encoded
by two-channel fusion ART networks.

presence of specific objects in the event, such as ‘‘people’’ and1

‘‘bag’’; the Activity field for representing the presence of specific2

activity in the event; the Time field for representing the time of3

occurrence of the event; the Place field for representing the loca-4

tion information of the event; the Imagery field for representing5

a visual snapshot of the event.6

Noted that the STEM model uses the activity values of the7

nodes in the Time field to encode the time information directly.8

Besides allowing an explicit representation of time information,9

similarity matching in time can be supported. As an illustration,10

the model is designed to encode memories such as ‘‘I went to11

school yesterday at 9am in the morning ’’, which can be activated12

and recalled by a query on ‘‘what did you do yesterday at 8:30am?.’’13

The encoding and recall capabilities of the model have been14

applied to encoding event-related information extracted from a15

public domain video data set. Our experiments show that the16

STEM model is able to support robust recall of the stored events17

in response to incomplete and noisy search cues.18

4.2. Modeling semantic memory19

Different from episodic memory, semantic memory stores20

general meanings, concepts, rules, and facts typically acquired21

over a possibly long period of time rather than specific experi-22

enced events. Over the past decades, various types of structure23

and representation have been proposed for semantic memory. To24

aid discussion, a mathematical formulation for representing three25

common types of semantic memory is presented below.26

Semantic Memory, denoted by S = {S1, S2, . . .}, can be viewed as27

a set of semantic fragments or codes. Each semantic code Si, can28

be one of the three basic types described as follows: (1) an asso-29

ciation rule indicates the co-occurrence of two memory states,30

each representing any piece of information or concept stored.31

Each association rule is represented as Si = (s, s′), where s and32

s′ indicate the two associated objects or concepts. For example,33

‘‘People who buy milk usually buy some bread together.’’; (2) a34

rule of concept hierarchy defines the ‘‘IS-A’’ relation between two35

known concepts and can be represented by Si = (sa, sA), wherein36

sa and sA refer to the memory representation of the concept a37

and its category A respectively. For example, ‘‘Pigeon is a kind of38

bird.’’; and (3) a causal relation rule states the causality between39

two memory states and is written as Si : s→ s′, wherein s refers40

to the cause and s′ represents the effect. For example, ‘‘Eating41

crabs with some fruits usually causes diarrhoea and vomiting.’’42

As shown in Fig. 10, all three types of the semantic knowledge43

structures may be represented using a two-channel fusion ART44

model. Specifically, each semantic rule is encoded as a category 45

node in the F2 layer of the corresponding fusion ART network. 46

The representation of each concept in the rule is specified by the 47

weights between the category node and the two input fields. 48

4.3. Modeling procedural memory 49

Procedural memory is a class of human memory systems that 50

involves reactive action or decision making in response to specific 51

situations presented by the environment. It can be realized via a 52

collection of action rules, each of which encodes a state–action 53

pairing to perform familiar routines or well-rehearsed tasks. More 54

formally, a mathematical formulation for procedural memory can 55

be defined as follows. 56

Procedural Memory, denoted by P = {P1, P2, . . .}, is a set of 57

action rules which perform the learned tasks and routines. Each 58

action rule Pk suggests a possible action a with an expected 59

reward r (payoff), based on a given situation s. Therefore, each 60

action rule can be represented as Pk : s → (a, r). Typically 61

through reinforcement learning, procedural memory learns the 62

association of the current state and the chosen action to the 63

estimated reward. 64

Similar to semantic memory, a simple form of procedural 65

memory can be learned by a three-channel fusion ART, known 66

as FALCON, via reinforcement learning. As presented in Section 3, 67

FALCON employs fusion ART dynamics for learning the value 68

functions estimated by the temporal difference learning rules. 69

Upon learning, each F2 category node in FALCON corresponds to 70

a procedural memory code linking a state s to an action a with 71

an estimated reward r . 72

5. An integrated multi-memory cognitive architecture 73

To illustrate how the various memory systems may work 74

together, this section presents a minimalist cognitive model with 75

an explicit modeling of episodic memory, semantic memory, and 76

procedural memory. As shown in Fig. 11, the overall architecture 77

comprises five main components, described as follows. 78

• Executive Control maintains a set of goals in hand to reg- 79

ulate the decision making process linking sensory input to 80

motor responses. 81

• Working Memory is a medium-term memory buffer that 82

maintains the mental status at the point in time. In a neural 83

architecture, working memory may be implemented as a 84

field of neurons of which the activity values reflect the 85

inputs from the sensory field as well as the accumulated 86

inferenced results from the memory modules. The working 87

memory is a ‘‘medium-term’’ memory in the sense that the 88

activated neurons stayed activated during a decision making 89

session. It may further interact with an attention mechanism 90

to ensure that only the information relevant to the current 91

task is retained in the working memory. 92

• Episodic Memory encodes past experiences in the form of 93

events and episodes. These memories can be acquired by an 94

EM-ART model, consisting of two layers of fusion ART, via 95

unsupervised learning. 96

• Semantic Memory encodes various forms of semantic 97

knowledge, which can be concept hierarchy, causal relations 98

or association rules. This knowledge can be learned by two 99

or three-channel fusion ART models via supervised learning. 100

• Procedural Memory encodes action rules, each of which is a 101

pairing of a situation to an action. The procedural knowledge 102

as mentioned is learned via a three-channel fusion ART, also 103

known as FALCON, via reinforcement learning. 104



Please cite this article as: A.-H. Tan, B. Subagdja, D. Wang et al., Self-organizing neural networks for universal learning andmultimodalmemory encoding. Neural Networks
(2019), https://doi.org/10.1016/j.neunet.2019.08.020.

8 A.-H. Tan, B. Subagdja, D. Wang et al. / Neural Networks xxx (xxxx) xxx

Fig. 11. The overall architecture of the multi-memory cognitive model.

In this architecture, each of the memory modules is designed1

to support its own operations for the encoding, learning, and2

retrieval of memory. However, the overall decision process and3

functions of the system are a result of the dynamic interactions4

among the various memory modules. Although ART models, in5

their most original neural implementation, are designed to op-6

erate in a self-organized manner based on dynamic differential7

equations integrating activity values from multiple sources, the8

stability in individual modules is achieved by the code compe-9

tition and top-down matching process before any learning takes10

place in a state of resonance. To enforce stability at the system11

level, high level goal-driven functions or decision cycles, consist-12

ing of definitive stages such as sense, reason, act, and learn, may be13

imposed to direct the operations of the various memory models.14

In the following sections, we discuss how the episodic, semantic,15

and procedural memory modules are able to interact via the16

working memory for the functions of memory consolidation and17

decision making.18

5.1. Episodic to semantic memory consolidation19

During memory consolidation, selected content of episodic20

memory is read out into the working memory, which in turn21

triggers the learning process in semantic memory (Wang et al.,22

2012a). As each event is presented, it is evaluated for whether23

it describes an instance relevant to a type of semantic rules24

of interests. A type of semantic rules is said to be ‘‘of inter-25

est’’ if such rules are deemed important and to be learned by26

the semantic memory. For example, the semantic memory in27

Fig. 12 is designed to learn semantic rules on object–location map,28

weapon effectiveness, and causal relations. An event is relevant29

to a type of semantic rules of interest, if it contains the input and30

output attributes for learning such semantic rules. If so, the event31

representation held in the working memory is forwarded to the32

semantic memory for learning. Otherwise, the memory playback33

continues on to the next stored event.34

As illustrated in Fig. 12, various types of domain specific35

semantic memories, such as correlation between objects and36

locations in the environment, weapon effectiveness with respect37

to the distance of the opponents, and causal relations between38

events, can be learned through the playback of episodic memory39

in the working memory buffer.40

5.2. Semantic and procedural memory interaction41

As discussed above, while procedural memory is responsible42

for action selection and reinforcement learning, its behavior may43

be influenced by the interaction with the other memory modules.44

Fig. 12. Illustration of how various types of semantic memory may be learned
through a consolidation process from episodic memory.

Specifically, given the current state of the working memory, the 45

action to be executed is selected through the procedural mem- 46

ory. However, during the process of online decision making, the 47

agent may discover the solutions to novel situations based on 48

the knowledge provided by semantic memory. For illustration 49

purpose, we discuss two basic types of interaction between the 50

semantic and procedural memory below. 51

5.2.1. Semantic to procedural (SP) interaction 52

In this basic form of interaction, semantic memory is used to 53

provide the contextual information for activating relevant action 54

rules in the procedural memory. More formally, given the current 55

state s, a semantic code Si : s → s′ or Si = (s, s′) and a 56

procedural code Pk : s′ → (a, r), where r represents a good 57

reward, the state s can trigger an action a leading to a good 58

outcome according to the procedural rule Pk. 59

Upon SP interaction, if the procedural rule leads to a favorable 60

outcome, the procedural memory may learn to directly associate 61

the memory state s with the action a, which can be expressed as: 62

Pnew : s→ (a, r). 63

5.2.2. Procedural to semantic (PS) interaction 64

In order to make a decision, procedural memory may trigger 65

a search in the semantic memory for the missing information for 66

firing a specific action rule. 67

More formally, given the current state s and a procedural rule 68

Pk : s′ → (a, r), the semantic memory is primed to search for a 69

semantic code of the form Si : s→ s′ or Si = (s, s′), which will 70

lead the current state s to s′. If Si is found, the procedural rule Pk 71

is fired. 72

Again, if the selected procedural code leads to a favorable 73

outcome r , the procedural memory may learn to directly associate 74

the memory state of s with the action a as Pnew : s→ (a, r). 75

6. Experiments and applications 76

The various models and algorithms described in this paper 77

have been evaluated through empirical experiments and applied 78

to a wide range of applications. This section illustrates how the 79

fusion ART models are used in selected application domains, 80

including modeling autonomous non-player characters (NPCs) in 81

real-time computer games, development of multimodal search 82

engine, simulating computer generated forces (CGF), and neu- 83

rocognitive study of autobiographical memory. 84

6.1. Modeling NPCs in First-Person games 85

Games are excellent test-beds to evaluate AI methodologies. In 86

this section, we show how fusion ART may be used to build Non- 87

Player Characters (NPCs) in a well-known First-Person Shooter 88
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Fig. 13. A screenshot of the Unreal Tournament game, wherein FALCONBot
(bottom) is engaging fire with advancedBot. The internal and environmental
inputs to the state space of FALCONBot include its health level, damage status,
amount of damage inflicted to opponent, ammunition available (bottom), and
health kits available (top) etc.

(FPS) computer game named Unreal Tournament (UT). Specifi-1

cally, we design and implement autonomous agents (interchange-2

ably called NPCs or bots) to play 1-on-1 ‘‘DeathMatch’’ games in3

UT (see Fig. 13). The game objective is to kill as many opponents4

as possible and avoid being killed at the same time. For a better5

chance of winning, the NPCs are required to effectively navigate6

the 3-D game environment and collect useful items, such as7

health kits, weapons and ammunition.8

6.1.1. Procedural memory for behavior learning and weapon selec-9

tion10

To enable our NPCs to learn autonomously in real-time based11

on the inputs perceived in the game environment, we employ12

TD-FALCON networks (see Section 3) to model their behaviors.13

Specifically, we define an action space, consisting of four alterna-14

tive behavioral modes for our agents, described as follows:15

1. Run around mode, wherein the agent explores the game16

environment by moving to a randomly selected, reachable17

location.18

2. Item collection mode, wherein the agent marches to a19

particular location to pick up a collectible item placed20

there.21

3. Escape from battle mode, wherein the agent flees the battle22

field and collects health kits (if any) along the way.23

4. Engage fire mode, wherein the agent fires its weapon at its24

opponent while avoids getting hit. Upon switching to this25

mode, the agent may change its weapon in use based on26

the circumstances.27

We implement a TD-FALCON network using the state space28

shown in Fig. 14 to model the behaviors of our agent named FAL-29

CONBot (Wang & Tan, 2015a). The state, action and reward vec-30

tors are used as the respective inputs to the TD-FALCON network31

(see Fig. 5). The state vector captures information about the status32

of FALCONBot, such as ‘‘health’’, ‘‘beingDamaged’’, ‘‘hasAmmo’’33

and ‘‘hasNewWeapon’’, situation about the surrounding, such as34

‘‘enemySeen’’, ‘‘healthSeen’’ and ‘‘weaponSeen’’, and its current35

behavior state. The cardinality of the action vector always equals36

1, because at any time, FALCONBot should be in one and only37

one of the four behavior states. The reward value is estimated38

using Q -learning. Moreover, besides receiving a direct reward of39

1 when FALCONBot kills an opponent and 0 when it gets killed,40

Fig. 14. Vectors used to model the behaviors of FALCONBot.

Fig. 15. Averaged game score difference between FALCONBot in difference
configurations and advancedBot.

FALCONBot also receives an immediate reward of 0.75 when it 41

hits the opponent, increases health, or collects new weapon. 42

The partially perceived game information in UT makes learn- 43

ing in this game a Partially-Observable Markov Decision Process 44

(POMDP). For example, the health status of the opponent is not 45

known to FALCONBot. Therefore, the outcome of the same or 46

similar action may vary drastically. To cater for effective learn- 47

ing in POMDP, we proposed combinatorial operations (Wang & 48

Tan, 2015a), which combine the advantages of Fuzzy ART op- 49

erations (Carpenter et al., 1991c) for knowledge generalization 50

(applied in the State and Action fields) and ART2 operations (Car- 51

penter & Grossberg, 1987a; Carpenter et al., 1991b) for function 52

approximation (applied in the Reward field). To evaluate the 53

effectiveness of the proposed combinatorial operations, we com- 54

pare the performance of FALCONBot in different configurations 55

when playing against the same opponent named advancedBot 56

provided by the game interface developers. As it performs all 57

the basic high-level tasks and always uses the most primitive 58

weapon, advancedBot is chosen as the baseline comparison 59

bot due to its steady level of performance. Fig. 15 shows the 60

performance comparisons among the different FALCONBot con- 61

figurations. As shown in Fig. 15, higher vigilance values for the 62

state field (ρ1, see Template Matching in Section 2) used in 63

fuzzy ART operations produce better results. Specifically, when 64

ρ1
= 0.5, learning fails as the performance keeps dropping 65

after a slight increase in the early game trials. Nonetheless, even 66

when ρ = 0.9, the performance of fuzzy ART operations does 67

not improve after the 16th trial and only achieves 1.05 as the 68

highest game score difference. As a comparison, combinatorial 69

operations are able to continually improve the performance till 70

the last five game trials when exploration ceases and achieve the 71

highest game score difference of 6.9 when playing against the 72

same baseline opponent. Therefore, combinatorial operations are 73

shown to perform significantly better than pure fuzzy ART in this 74

POMDP game. 75

Besides learning behavior modeling knowledge, we further 76

investigate whether FALCONBot can learn the weapon effective- 77

ness in its procedural memory through reinforcement learning 78
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Fig. 16. Vectors used to learn weapon effectiveness.

Fig. 17. Averaged game score difference between FALCONBot using different
weapon selection strategies and advancedBot.

Fig. 18. An example of event encoding in the Unreal Tournament game.

as well. Specifically, we deactivate the weapon selection function1

calls that utilize heuristic rules provided by game developers, and2

restrict FALCONBot to rely on a FALCON network for all weapon3

selection decisions. The information vector used to learn weapon4

selection knowledge is shown in Fig. 16. In essence, this weapon5

selection FALCON network learns the associations among the dis-6

tance (to the opponent), specific weapon, and the corresponding7

effectiveness. The reward is determined by whether FALCONBot8

kills its opponent, misses the target, and causes damage. More-9

over, in this experiment, we adopt one set of behavior modeling10

knowledge learned in the previous experiment and disabled the11

adaptive learning in behavior modeling. As such, we can focus on12

the assessment of the learned weapon selection knowledge.13

Fig. 17 shows the results of FALCONBot playing against ad-14

vancedBot using self-learned weapon selection knowledge15

through FALCON and relying on predefined expert knowledge.16

The results are encouraging that the learned knowledge leads to17

better performance than expert knowledge.18

To illustrate the learned knowledge in FALCON networks, we19

present two learned behavior modeling rules (translated) in Ta-20

ble 2 and two learned weapon selection rules (translated) in21

Table 3 (Wang & Tan, 2015a). The values shown in square brack-22

ets ([ ]) represent the range of distance in the game. As shown,23

the translated knowledge is comprehensive and consistent to the24

domain knowledge in the UT game.25

Table 2
Translated example rules for behavior modeling.
IF Health is around [87, 109], not being damaged, opponent

is in sight, has adequate ammo, has health boost nearby,
has no weapon nearby, possessing only primitive weapons,
and currently in RUN_AROUND state;

THEN Go into ENGAGE state;
WITH Reward of 0.729.

IF Health is around [2, 21], being damaged, opponent is
in sight, has adequate ammo, has no health boost nearby,
has no weapon nearby, possessing only default weapons,
and currently in ENGAGE state;

THEN Go into ESCAPE state;
WITH Reward of 0.05.

Table 3
Translated example rules for weapon selection.
IF Distance is very near [108, 317];
THEN Use flak cannon;
WITH Reward of 0.838.

IF Distance is far [1781, 2364];
THEN Use lightning gun;
WITH Reward of 0.781.

6.1.2. Multi-memory modeling for NPC 26

The use of NPCs in computer games has also been adopted 27

for studying more sophisticated and realistic models of memory. 28

Wang et al. (2012a) use the UT game to study episodic memory 29

(EM-ART) and memory consolidation when the NPCs are per- 30

forming complex tasks under real-time constraints. As an episodic 31

memory model, EM-ART use the structure for event encoding as 32

shown in Fig. 18. As the NPC moves around the environment 33

and engaging with the opponents, it receives a stream of events 34

wherein each of them is stored consecutively in sequence as 35

episodes (see Fig. 8). 36

A study has looked at the robustness of episodic memory to 37

retrieve memory items when the cues are noisy or incomplete in 38

the UT environment (Wang et al., 2012a). Compared to Spatio– 39

Temporal LTM (Starzyk & He, 2009), as one of the highly robust 40

sequential learning model that can also deal with noisy cues, EM- 41

ART can still retrieve the correct episodes most of the time (at 42

least 75% of the test items) when 30% noises are introduced to 43

every incoming cue event causing the compared LTM model to 44

get only less than 30% of the correct episodes. When the noises 45

are applied to the sequential order of the cue episodes, EM- 46

ART can still retrieve all the correct memory items completely 47

with 50% level of sequential noises compared to the LTM model 48

that only retrieve less than a quarter of all the target items 49

(20%–25% of the correct items) at the same level of noises. The 50

results show that EM-ART is highly robust in correctly recalling 51

the experiences in roaming the UT environment even though the 52

memory cues are noisy, unordered, or partially corrupted. 53

Episodes stored in EM-ART are periodically consolidated to a 54

semantic memory, particularly for the knowledge about weapon 55

effectiveness as shown as one of the semantic memory networks 56

in Fig. 12. This is done by playing back the episodes periodically 57

and passing the items retrieved to a working memory system 58

that transiently holds the information. The semantic memory 59

then learns to generalize the information in parallel from this 60

transient buffer while the NPC plays the game (Subagdja, Wang, 61

Tan, Tan, & Teow, 2012). Experiments are also conducted to study 62

the effects of different memory processes like consolidation and 63

forgetting in the game play. For example, to deal with noises 64

from the environment that can make the stored items erroneous 65

and corrupted, some nodes learned may be removed (forgotten) 66

from the network if they are infrequently used or rarely retrieved 67

in order to regulate the memory capacity. However, it is found 68



Please cite this article as: A.-H. Tan, B. Subagdja, D. Wang et al., Self-organizing neural networks for universal learning andmultimodalmemory encoding. Neural Networks
(2019), https://doi.org/10.1016/j.neunet.2019.08.020.

A.-H. Tan, B. Subagdja, D. Wang et al. / Neural Networks xxx (xxxx) xxx 11

Fig. 19. The process flow of the search engine incorporating OMC-ART. Solid
lines correspond to the search process conducted on-line; dashed lines show
the off-line indexing processes.

that not only the nodes removal helps to maintain a manageable1

memory size in the long term, but also enhances the robust-2

ness and reliability of memory retrieval in a noisy environment.3

With 5%–20% noises in the memory cues, more correct episodes4

(5%–25% more) can be retrieved with the nodes forgetting mecha-5

nism than in the one without it (Wang et al., 2012a). This interest-6

ing characteristic has also been observed in the UT game wherein7

the NPC with the multi-memory model can gain more score in8

playing the ‘DeathMatch’ game when more under-utilized nodes9

are removed (Subagdja et al., 2012).10

6.1.3. Playing StarCraft strategic game11

Beyond First-Person-Shooting (FPS) game, fusion ART with the12

multi-memory model has also been applied to play a real-time13

strategic game named StarCraftTM. In StarCraftTM, a player has a14

multitude of interrelated game objectives and tasks to accom-15

plish like collecting natural resources, building construction, unit16

systems production, and even engaged in a battle situation. In17

this more complex strategic game, the multi-memory system is18

employed to play the game to study the characteristics of the19

multi-memory model in the game (Wang, Tan, & Teow, 2017).20

In particular, the model of multiple interacting memory sys-21

tems as described in Section 5 is applied to play the StarCraftTM22

game to achieve multiple objectives. Three different kinds of23

fusion ART memory model are applied: one is the procedural24

memory that conducts actions according to a value function as25

in reinforcement learning (e.g FALCON), the second one is a26

semantic memory to encode causal relations between available27

resources and possible building construction actions, and the last28

one is a semantic memory to encode causal relations between29

available resources and possible unit production actions. In this30

StarCraftTMdomain, the semantic to procedural interaction is used31

together with the procedural to semantic interaction as described32

in detail in Section 5.33

Experiments using the StarCraftTMdomain have been conducted34

to investigate whether the interaction between different memory35

systems can affect the performance of the player in gaining36

the game score (Wang et al., 2017). Particularly, it is demon-37

strated that both procedural-to-semantic (PS) and semantic-to-38

procedural (SP) interactions enable the player to gain much39

higher score than the procedural memory system (PR) alone40

consistently for three different types of scoring criteria (resource41

gaining score, construction score, and unit production score). The42

least score differences between the interacting model and the43

standalone PR are in the resource collection configuration where44

Fig. 20. The OMC-ART architecture for healthcare product search engine.

PR can gain around normalized score 0.4 and both PS and SP 45

around 0.65. On the other hand, the most significant differences 46

occur in the unit production score configuration where the PR 47

alone configuration achieves only 0.1 normalized score when 48

both SP and PS interactions gain more than 0.9. Overall, it is 49

demonstrated that the memory system performs significantly 50

better in accomplishing different tasks when different mem- 51

ory systems interact together rather than when they are used 52

independently (Wang et al., 2017). 53

6.2. Multimodal product search 54

Nowadays, search engines have been an essential tool in peo- 55

ple’s daily lives. The current challenges in making a good search 56

engine, particularly for finding e-commerce products, include 57

dealing with big ever-changing data that continuously being up- 58

dated and the diversity of the users’ preferences and background 59

knowledge. Motivated by the issues, OMC-ART, as an extension 60

of fusion ART, has been applied as an on-line indexing and search 61

engine for multi-modal e-commerce product data. 62

Fig. 19 shows the overall process of the search engine compris- 63

ing OMC-ART (Meng et al., 2015) that includes modules for pro- 64

cessing the queries and presenting the results interactively to the 65

user. It also includes an off-line indexing system for e-commerce 66

product data in the background. 67

Specifically, OMC-ART is a multi-channel fusion ART based 68

on GHF-ART (Meng et al., 2014) for multi-modal learning (see 69

Section 3.2). As a multimodal fusion ART, the network can learn 70

not just the categorization or clusters of the input patterns but 71

also the right values for the contribution parameters during the 72

learning. In other words, the learning algorithm of OMC-ART 73

also determines which channels should be more important than 74

the others. As a multimodal search engine, the user can query 75

the system with OMC-ART using different modalities or types 76

of input data like image, keywords, numbers, other media, or a 77

combination of them. 78

As a part of the NTU-UBC Research Center of Excellence in 79

Active Living for the Elderly (LILY) ‘‘Silver Silk Road’’ project,1 80

a search engine website for e-commerce product was developed 81

that includes OMC-ART. As shown in Fig. 20, the multi-modal data 82

in OMC-ART associated with each product includes one product 83

visual image (consisting of wavelet texture of the image data, grid 84

color moment, and edge direction histogram), a name keyword, 85

and a textual description. 86

Using E-commerce product data from AmazonTM, the search 87

results were evaluated based on the different modalities of query 88

to retrieve the product information. As shown in Fig. 21(a), when 89

an image data of the product is provided to an OMC-ART channel 90

without the keyword or name, it will return the products with 91

similar pictures, but some of them are irrelevant (e.g protein 92

1 http://www.ntulily.org/silver-silk-road/.

http://www.ntulily.org/silver-silk-road/
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Fig. 21. The results of search with OMC-ART based on different types of queries: (a) photo image of the product only, (b) name keywords, and (c) both the image
and some inexact description.

Fig. 22. Strive-CGFTMAir combat maneuver simulation that includes autonomous
CGF agents (adapted from Teng et al., 2013). Each CGF agent observes the
environment based on relative parameters (e.g orientation, bearing), entity ACM
parameters (e.g flight status, maneuver id), and entity parameters (e.g altitude,
airspeed, energy ratio). The agent can also perform different maneuver actions
including one neutral, three offensive, and nine defensive maneuvers.

pills). When the name keyword only is provided as the query1

without the picture (e.g ‘‘vitamin’’), Fig. 21(b) shows that all2

products retrieved are correct categorically. Although this can be3

due to a high self-adapted contribution parameter of the name4

channel as the user frequently interacts with the system, the5

problem remains when the user does not know the exact name6

or keyword for the product. In OMC-ART, the user may provide7

additional inexact textual description in the query besides the8

picture of the product to improve the search results semantically9

(e.g all vitamin pills in white bottles) as in Fig. 21(c). This demon-10

strates that multi-modal queries using multi-modal fusion ART11

can represent the semantic of the user preferences better even12

though the queries are inexact.13

6.3. Modeling computer generated forces in air combat simulation14

Developing a realistic combat simulation for computer gen-15

erated forces (CGF) requires tedious efforts and costly especially16

when it involves translating manually crafted military doctrines.17

Basically, the doctrines refer to domain specific knowledge for18

performing particular tasks. Specifying the complete rules of en-19

gagement and behavior to direct autonomous entities in simula-20

tion is less scalable and impractical. It is proposed in Teng et al.21

(2013) that fusion ART can be applied to support the develop-22

ment of a real-time combat simulation for CGF by allowing new23

doctrines to be discovered.24

Specifically, fusion ART is applied as a reinforcement learning25

model (see TD-FALCON in Section 3.3) for autonomous CGF enti-26

ties that perform in CAE Inc.’s Strive-CGFTMair combat maneuver27

simulation. Fig. 22 shows the screenshots of the simulation dis- 28

play and its context of use. In the simulation platform, a human 29

pilot trainee may engage in a ‘‘dogfight’’ with another human 30

pilot or a virtual one as an autonomous CGF agent. The simulation 31

can be used to analyze air combat strategies or doctrines by 32

observing two or more CGF agents engaged in a combat situation. 33

Designed to encode knowledge as individual nodes in the 34

neural network, the advantage of using fusion ART in this CGF 35

system can be twofold: initial doctrines or rules can be directly 36

pre-inserted to guide the behavior of CGF agents and additional 37

knowledge learned through reinforcement learning from the bat- 38

tle engagement can be directly extracted from the growing nodes 39

in the network for further analysis and application (see the ex- 40

plainable learned knowledge in Section 3.6). 41

As a TD-FALCON network (see Section 3.3), the particular 42

fusion ART for CGF encodes the state space and action space as 43

described in Fig. 22 into their corresponding vector represen- 44

tation in the state and action channels, respectively. A reward 45

function is employed for a CGF agent based on whether it suc- 46

cessfully eliminates the opponent (high or positive reward) or is 47

eliminated (low or negative reward) by the opponent. Based on 48

the state, action, and reward representation, the reinforcement 49

learning algorithm in TD-FALCON is applied. A combat maneuver 50

doctrine can be inserted directly to the fusion ART network by 51

adding a node in the category field with weight connections 52

reflecting the pattern as expressed in the corresponding vectors 53

representation of state and action space. The corresponding re- 54

ward channel is set to the maximum value (e.g. 1) to ensure 55

the doctrine is always selected or prioritized whenever the state 56

channel matches with the input. 57

Special care has been taken, however, in dealing with the 58

inserted knowledge since the normal exploration strategy like 59

ϵ-decay policy in reinforcement learning cannot be applied. Ex- 60

ploring the environment randomly during learning may likely 61

erode the pre-inserted knowledge as experiences resulting in an 62

inconsistent result with the knowledge may change the initial 63

doctrine such that it may make it irrelevant and useless. In that 64

case, the self-regulating action exploration strategy is applied based 65

on the average successful attempts φ in the current learning 66

episode such that the ϵ parameter is updated based on ϵ ← 67

1 − φ. In that case, the inserted doctrines may only be modified 68

if they produce low performance behavior. When the agent is 69

performing well enough, it is more likely that the doctrine is 70

used more often to direct the behavior rather than just a random 71

exploration. 72

Experiments are conducted to evaluate the learning capability 73

of the fusion-ART-based CGFs. A non-adaptive CGF agent is built 74

with a set of initial doctrine to start with to engage in a ‘‘1-v- 75

1 dogfight’’ with the adaptive fusion-ART CGF agent (Teng, Tan, 76

Tan, & Yeo, 2012). The adaptive CGF agent is pre-inserted with 77

the same prior doctrine as the non-adaptive one. During the first 78

few iterations (about ten iterations) the learning CGF agent is 79
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Table 4
Operations applied in AM-ART to realize the three stages of generative autobiographical memory
retrieval.
# Stage Description given in AM-ART operations

Conway and Pleydell-Pearce (2000)

1 Elaboration ‘‘The elaboration of a cue with which to Template masking, mutation
search memory and the simultaneous (Wang, Tan, & Miao, 2016), and
setting of verification criteria.’’ setting of vigilance parameters

2 Strategic ‘‘Matching the description to records Code activation and
search in memory.’’ code competition

3 Evaluation ‘‘Records accessed in memory were Template matching
assessed against the verification criteria.’’

observed to be struggling to survive as the non-adaptive one1

effectively uses the pre-given doctrine to eliminate the opponent.2

Over time, the adaptive agent learn to outmaneuver and eliminate3

the opponent so that it can gradually overtake the opponent’s4

score. After over 100 iterations, the adaptive CGF agent can con-5

sistently eliminate the non-adaptive one most of the time. The6

experiments demonstrate that the fusion-ART can learn to use7

and further improve the pre-given doctrines effectively (Teng8

et al., 2012).9

6.4. Neurocognitive study of autobiographical memory10

As presented in Section 4, fusion ART has been used for mod-11

eling various types of human memory systems. In this section, we12

present a study on using a three-layer fusion ART model named13

Autobiographical Memory-Adaptive Resonance Theory14

(AM-ART) network for modeling autobiographical memory for-15

mation and forgetting (memory loss).16

Autobiographical memory (AM) is a class of memory that17

encodes, stores and guides retrieval of episodic information re-18

lated to our personal experiences (Bluck & Levine, 1998). It may19

be considered as a special form of episodic memory with the20

associated context and personal emotions. By comparing a widely21

accepted AM hierarchy established by psychologists (Conway &22

Pleydell-Pearce, 2000) (shown in Fig. 23) and the network ar-23

chitecture of AM-ART (shown in Fig. 24), it is clear that their24

network topological structures are highly consistent. For example,25

the life experience of ‘‘working at A’’ can be represented as a26

code (learned episode) in F3 of AM-ART. The associated events27

of that episode, namely ‘‘first day at work’’, ‘‘working in the C28

office’’, and ‘‘drinks at W Friday evenings’’ can be represented as29

codes (learned events) in F2. A specific event, taking ‘‘drinks at30

W Friday evenings’’ as an example, can be read out in F1 (en-31

codes 5W1H, a comprehensive set of event specific information)32

that on Friday night (time-when), at W (location-where), with33

colleagues (people-who), drinking (activity-what), feeling happy34

(emotion-how), together with the pictorial memory (imagery-35

which). According to the Hippocampal Indexing Theory (Teyler36

& DiScenna, 1986), the hippocampus provides indices to the37

associated activities stored. The F1 fields in AM-ART thus can be38

considered as representing activities in other brain regions.39

Other than the consistent network topology, the memory re-40

trieval process in AM-ART exactly replicates the three stages41

of the generative memory retrieval presented in Conway and42

Pleydell-Pearce (2000). These three stages and the corresponding43

operations applied in AM-ART are summarized in Table 4.44

To evaluate the various functions of AM-ART in modeling au-45

tobiographical memory, we collected a memory set of Mr. Obama,46

the 44th president of USA, from public domains. The memory set47

comprises 1,019 snapshots of life events in 131 episodes spanning48

across different life period of Mr. Obama. Subsequently, we show49

that AM-ART is able to efficiently encode all the memories and50

more importantly, retrieve them using exact, partial and noisy51

Fig. 23. Autobiographical memory hierarchy.
Source: Adapted from Conway and Pleydell-
Pearce (2000).

cues (Wang et al., 2016). Specifically, the memory retrieval per- 52

formance of AM-ART using noisy cues is significantly better than 53

the other models, such as the keyword-based query, which is 54

used by many existing photo or memory repositories. 55

Moreover, by introducing the mutation operation in AM-ART 56

(Wang et al., 2016), we are able to emulate the wandering in rem- 57

iniscence memory recall patterns, wherein seemingly random, 58

but contextually connected memories across different episodes 59

of life events are sequentially retrieved. This wandering in remi- 60

niscence function is particularly beneficial as a form of cognitive 61

stimuli to improve one’s, especially an elder’s, cognitive well- 62

being. The corresponding application is presented in Wang and 63

Tan (2015b). 64

To study how people generally lose their memories and emu- 65

late various memory loss phenomena, we further extended AM- 66

ART by introducing the overload, decay and inhibition parameters 67

to replicate memory loss during the memory formation, storage 68

and retrieval stages, respectively (Wang, Tan, Miao, & Moustafa, 69

2019). Fig. 25 shows the high consistency between the human 70

memory recall performance and that emulated by AM-ART. The 71

averaged correlation between the two subfigures is computed 72

as 0.793 ± 0.166. The capability of computationally modeling 73

memory loss presents an appropriate framework to provide in- 74

sight into human behavioral processes in a rapid and quantitative 75

manner. 76

7. Conclusion 77

This paper has presented a family of self-organizing neural 78

networks, collectively known as fusion Adaptive Resonance The- 79

ory (fusion ART), that learns associative mappings across multi- 80

modal pattern channels, in an online and incremental manner. 81

As a natural extension of the Adaptive Resonance Theory (ART) 82
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Fig. 24. Network architecture of AM-ART. All its channels and layers match specific brain regions.

Fig. 25. Memory recall distributions of different age groups across life span:
(a) Fig. 6 excerpted from Berntsen and Rubin (2002). (b) Results of AM-ART
emulations. To make all plots visible, an offset of 0.2 is applied to each adjacent
age group.

model, fusion ART can be adopted for use in a myriad of tradition-1

ally distinct learning paradigms, namely unsupervised learning,2

supervised learning, semi-supervised learning, multimodal learn-3

ing, sequence learning, and reinforcement learning. In addition,4

fusion ART models have been used for representing a variety of5

memory structures, notably episodic memory, semantic memory,6

and procedural memory. While it is not possible to present the7

details of the models and experimental results in this paper, it 8

is the authors’ contention that the various application and case 9

studies presented, spanning autonomous non-player characters 10

(NPCs) modeling, multimodal product search, computer gener- 11

ated forces (CGF) simulation, and neurocognitive studies, have 12

served to illustrate the efficacy of these neural networks. 13

As the generic network architecture and computational prin- 14

ciples of fusion ART are applicable for realizing a broad range 15

of learning and memory functions, a promising future direction 16

going forward will be to integrate such capabilities into a large 17

scale integrated cognitive architecture. Nevertheless, while we 18

see this as a step towards artificial general intelligence (AGI), the 19

holy grail of AI, the first such system will most likely be grounded 20

for a specific target domain. 21

Also, the current development of fusion ART is limited to 22

shallow network models, consisting of two to four layers of 23

neural fields. It is thus missing the invariant pattern recognition 24

capabilities prevalent in the hotly studied deep learning neural 25

networks. While there has been recent work on deep Adaptive 26

Resonance Theory (Park et al., 2018), the number of levels in 27

the network models presented did not match the typical scale 28

of deep neural networks. As such, it will be interesting to study 29

how computational principles of fusion ART may be generalized 30

to very deep neural networks. 31

On the other hand, it is also important to note that fusion ART 32

models play a distinctive role from those of deep networks in 33

cognitive systems, being they biological or artificial. While deep 34

learning based multi-layer neural structures are typically found 35

in primary sensory cortices, fusion ART networks may naturally 36

reside at a higher level of the neural pathways, responsible for fu- 37

sion and binding of the high level sensory and contextual signals 38

produced by the deep learning networks. Therefore, integrating 39

fusion ART models and deep learning neural networks would 40

also be an interesting research area towards building integrated 41

cognitive architectures and systems. 42
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