
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-1991

Connectionist expert system with adaptive learning capability Connectionist expert system with adaptive learning capability

B. T. LOW

Hochung LUI

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Hoonheng TEH

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
LOW, B. T.; LUI, Hochung; TAN, Ah-hwee; and TEH, Hoonheng. Connectionist expert system with adaptive
learning capability. (1991). IEEE Transactions on Knowledge and Data Engineering. 3, (2), 200-207.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5200

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

200 IEm TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,voL. 3,~0. 2,Jum 1991

least, enable us to ask better questions based on insight gained from
knowledgeable people.

ACKNOWLEDGMENT

We wish to acknowledge the assistance provided by R. Doting,
F. Pierson, and B. Smith, Key Corp. Inc., Albany, NY, and Prof. J.
Durgee, Management Policy and Organization, School of Manage-
ment, Rensselaer Polytechnic Institute.

PI

PI

B. E. Collins and H. Guetxkow, A Social Psychology of Group Processes
for Decision Making. New York: Wiley, 1964.
E. F. Fern, “The use of focus groups for idea generation: The effects of
group size, acquaintanceship, and moderator on response quantity and
quality,” J. Marketing Rex, vol. 19, pp. l- 13, 1982.

[31

t41

PI

-7 “Focus groups: A review of some contradictory evidence, impli-
cations and suggestions for future research,” Advances Consumer Res.,
vol. 10, pp. 121-126, 1983.
B.A. Fisher, Small Group Decision Making. New York: McGraw-Hill,
1974.

[61
171

PI

[91

PO1

WI

WY

P31

P41

1151

A.E. Goldman, “The group depth interview,” in Focus Group Inter-
views: A. Reader, J. Higginbotham, and R. Cox, Eds. Chicago, IL:
American Marketing Association, 1979.
E. Harrison, The Managerial Decision-Making Process. Boston, MA:
Houghton-Mifflin, 1987.
J. M. Hess, “Group interviewing,” in 1968ACR Conference Proceedings,
R. L. King Ed. IL: American Marketing Association, 1968.
R. Hirokawa and R. Pace, “A descriptive investigation of the possi-
ble communication-based reasons for effective and ineffective group
decision making,” Commun. Monographs, vol. 50, pp. 363-380, 1983.
R.R. Hoffman, “A survey of methods for eliciting the knowledge of,
experts,” SIGART Newsletter, vol. 108, pp. 19-27, 1989.
K.-L. McGraw and K Harbison-Briggs, %zowledge Acquisition Princi-
ales and Guidelines. Enalewood Cliffs. NJ: Prentice-Hall, 1989.
‘K.L. McGraw and M.R. Seele, “Knowledge elicitation with mul-
tiple experts: Considerations and techniques,” Artif: Intell. Rev., vol. 2,
pp. 31-44, 1988.
D. L. Morgan, Focus Groups and Qualitative Research, Sage Univ. Paper
Series on Qualitative Research Methods, Sage, CA, vol. 16, 1988.
N. Shadbolt and A.M. Burton, “The empirical study of knowledge
elicitation techniques,” SIGART Newsletter, vol. 108, pp. S-18, 1989.
H. A. Simon, The New Science of Management Decisions. New York:
Harper and-Row, 1960.
W. A. Wolf, “Knowledge acquisition from multiple experts,” SIGART
Newsletter, vol. 108, pp. 138-140, 1989.

REFERENCES

Connectionist Expert System with
Adaptive Learning Capability

B.T. Low, H.C. Lui, A.H. Tan, and H.H. Teh

Absfroct-This paper describes a neural network expert system called
Adaptive Connectionist Expert System (ACES) which will learn adapa-
tively from past experience. ACES is based on the neural logic network
which is capable of doing both pattern processing and logical inferencing.
We discuss two stmtegies here: pattern matching ACES and rule infer-
encing ACES. The pattern matching ACES makes use of past examples
to construct its neuml logic network and fine-tunes itself adaptively
during its use by further examples supplied. The mle inferencing ACES

Manuscript received October 1, 1989; revised October 1, 1990.
The authors are with the Institute of Systems Science, National University

of Singapore, Kent Ridge 0511, Singapore.
IEEE Log Number 9144307.

conceptualizes new rules based on the frequencies of use on the rule-based
neural logic network. This new rule could be considered as a new pattern
matching example and be incorporated into pattern matching ACES.

Index Terms-Adaptive learning, expert systems, logic programming,
neural logic network, neural network

I. INTR~Duc~~~N

One of the major areas for AI applications is in equipment
troubleshooting. To develop a rule-based diagnostic expert system,
the designer needs to interview the domain expert and formalize
the expert’s knowledge as inference rules and data structure. There
are several difficulties in this knowledge acquisition phase. First, it
is a very time-consuming process, involving much of the expert’s
valuable time. Second, the expert may not be able to express
his knowledge in a form which can be easily encoded as a rule.
Moreover, it is difficult to check whether the acquired knowledge
base is complete and consistent. As a result, knowledge acquisition is
typically an iterative process and the knowledge base will be modified
until the performance of the system is satisfactory.

Human beings, however, possess enormous capability to acquire
knowledge automatically. It is generally observed that for a technician
new to the job, he needs to rely heavily on the toubleshooting
manuals, and to follow the diagnostic flowcharts faithfully until
the faulty component is located. However, after a few years of
experience, he develops a good knowledge about the troubleshooting
process so that when he looks at the fault symptoms, he can guess
with good confidence which component is at fault. Internally, he
also develops a ranking about symptoms, and is able to focus on
those which are more important, using the others as supporting
evidence. The automatic development of expert skills has been
extensively studied by cognitive psychologists. Research on novice-
to-expert shift has been done on chess [l], physics [2] as well as
computer programming [3]. Anderson suggested that the development
of expertise occurs in stages [4]. He summarized it as follows:

Skill learning occurs in three steps: (1) a cognitive stage,
in which a description of the procedure is learned; (2) an
associative stage, in which a method for performing the skill
is worked out; and (3) an autonomous stage, in which the skill
becomes more and more rapid and automatic.

and
Underlying the development of expertise is the transformation
of problem solving from a basis in serial processing and
deduction to a basis in memory retrieval and pattern matching.

Quinlan proposed a technique for generating production rules from
decision tree [24]. Our aim is to develop an expert system which
does not only stop at rules, but can learn from rules as well as past
experience and exhibit characteristics of skill learning as suggested
by Anderson. The model which we have adopted is the connectionist
model (also call neural network).

A connectionist expert system (CES) consists of many nodes (or
neurons), each of which is a simple computation element. Nodes
are heavily interconnected and their computation can be done in
parallel. In recent years, there have been quite a few successful expert
systems developed based on this approach. Application domains
include career guidance [S], medical diagnosis [6], and solar flare
forecasting [7]. In his series of publications [S], [9], Gallant has
laid the foundation for building expert systems from connectionist
models. In this approach, the knowledge base is distributed across the
entire network and is represented by the connection weights between
nodes. Powerful learning algorithms, such as the pocket algorithm [8]

1041~347/91/0600-0200$01.00 0 1991 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,VOL.3, NO. 2,JUNE 1991 201

and the back-propagation algorithm [lo], exist so that the knowledge
base can be trained from a set of examples, Thus, the tedious effort
of knowledge acquisition can be greatly reduced. After training, the
system behaves as though it follows rules. Sejnowski calls it rule-
following as opposed to rule-based [II]. In [7], the performance of the
connectionist approach is compared to that of the rule-based method.
It took the developer one man-year to build the rule-based system
(with 700 rules), whereas the connectionist approach was developed
in less than one week using a simpler simulator. Yet both systems
performed as well as the human expert. In addition, the time for
inferencing was also greatly reduced from five minutes to a few
milliseconds.

While CES is capable of learning from examples, it does so by
finding a (nonlinear) mapping between the input attributes and the
output categories. In many practical situations, such input/output
associations can be easily obtained. For example, technicians may
have a log book which keeps records on fault symptoms and the
corresponding diagnostic results. In credit card application screening,
past records relating the applicant’s financial conditions and the
decision of approval/denial are usually available. These data can
be used to train the CES using the automatic learning algorithms.
However, although the knowledge base is built from examples, it
cannot be updated easily when new information is available during
operating. The main difficulty is that the learning algorithms are not
well suited for incremental learning. For example, the popular back-
propagation algorithm uses the gradient descent procedure to find the
nonlinear mapping function. When a new associative pair is to be
incorporated to the existing knowledge base, the entire knowledge
base may have to be retrained, using new and previous examples.
Training in such an algorithm can be very time consuming. Sejnowski
reported that it took 12 hours of VAX 780 CPU time to train the
NETtalk system [ll]. As a result, few CES’s provide adaptive,
incremental learning facilities.

Another drawback of this approach is that the system is essentially
doing pattern matching. While the learning algorithm can find the
association between the input and the output, the system does
not know how and why they are related. As a result, the system
has poor explanation facility, and this may be intolerable in some
applications.

For many diagnostic applications, the troubleshooting manuals are
readily available. These manuals typically instruct the user to first
perform certain measurement, then based on the result proceed to
the next step. These instructions can be encoded into conditional IF
THEN rules; and are a valuable source of knowledge for diagnostic
systems.

We are developing expert systems which have incremental learning
capabilities so that the knowledge base can be updated as new
information is available. We refer to our system as Adaptive Connec-
tionist Expert System (ACES). Two types of adaptive strategies are
discussed, the first one is based on pattern matching while the other
is based on rule inferencing. We adopted the neural logic model [131,
which is capable of handling both types of computations, as the basic
element in our system.

Section II of this paper gives a general overview of the neural
logic model and its characteristics in logical inference and pattern
classification. Section III discusses how to build the knowledge base
using existing and new examples and the corresponding inferencing
mechanism. Section IV discusses the realization of propositional
rules in neural logic network, the adaptive search strategy, and
how special input patterns can be detected to create new examples.
With this capability, the system can transform its problem solving
strategy gradually from deductive reasoning to pattern matching-a
phenomenon similar to the novice-expert shift to technicians.

Fig. 1. A neural logic network.

II. NEURAL LOGIC NETWORKS

Neural logic network [12], [13] mcorporates both pattern process-
ing capability of multilayer perceptrons [lo] and logical inferencing
capability of Boolean logic inference networks [19] within a single
frame of neural network environment. This class of neural networks
can model classical three-valued Boolean logic effectively and can
be extended to perform probabilistic [16] and fuzzy logic [17].

A three-valued neural logic network as shown in Fig. 1 is a finite
directed graph. A set of nodes is selected to be input nodes and the
other set be output nodes, and each node can take one of the three
ordered pair activation values:

(1,0) for TRUE,

(0.1) for FALSE and

(0,O) for DON’T-KNOW.

Every edge or link is associated with an ordered pair (x. y) where r
and y are real numbers of positive, negative, or zero value. The use of
ordered pair weightages allows the models to be more flexible than
a single-value model which emphasizes both positive and negative
input equally.

The propagation rule of neural logic network is defined as follows.
Let P be a particular node and {Qt. Qa. . Qk} be the set of

all nodes which are linked to P. Suppose the existing value of Qz is
(cl*, b,) and the weight of the edge linking QZ to P be (sL, qP).

Step 1: Compute net excitatory input a = c a,~,, and net
inhibitory input 3 = C b, y,.

Step 2: Value of node

P = (1,O) if (I - 3 >= 1.

(0,l) if 0 - .j <= -1

(0,O) otherwise.

Let us look at an example in Fig. 2:
We have

a = 4, ,I = 2
o-.J=2>1.

Hence, the final value for node P is (1,O).

A. Logical Inference Based on Three-Valued Boolean Logic

Classifical Boolean logic is developed based on two truth values
“TRUE” and “FALSE”. In three-valued Boolean logic, we include
one more value “DON’T KNOW.” As a generalization of inference
networks [19], neural logic network is able to represent logical
operations AND, OR, NOT, IF..THEN.. and implication.

For example, a two-input three-valued logical OR operation can
be realized by a network in Fig. 3(a). When the above-mentioned
propagation rule is applied to the network, it yields the truth table as
shown in Fig. 3(b). Similarly, by assigning different weight values

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 3, NO. 2, JUNE 1991

Fig. 2. Propagation of activation values.

(a)

Fig. 3. Operation OR.
(b)

to the connection links, the neural logic network can realize different
three-valued logic functions as shown in Eig. 4.

Using the above definition, we can easily construct a neural logic
network for any rule involving any combination of logical operators.
For an example, the logical statement

IF (A AND B) OR (NOT C) THEN D

can be represented by a network as shown in Fig. 5.
We can build a representation of the inferencing process using a

neural logic network with each node in the network representing a
proposition. The input nodes are assigned with known values whereas
the others are all assigned with DON’T-KNOW (0,O). A new value
for each node is then calculated according to the propagation rule.
The process is repeated until there is no change in the values, i.e.,
the network settles in a stable state. At this point, if the value of a
output node is still (O,O), then it means that existing information is
insufficient to arrive at a definitive conclusion; those output nodes
having value of (1,0) or (0,l) will indicate the truth value of the
corresponding proposition (true or false).

B. Pattern Processing Capability

On the other hand, like any other neural network models, the
neural logic network is also capable of performing pattern processing.
Besides that the perceptron convergence procedure and the back-
propagation algorithm [lo] can be extended to train neural logic
network, [12] and [13] showed that it is always possible to construct
a neural logic network to match any input/output association. This
theory forms the basis for ,a neural logic learning algorithm.

The Neural Logic Learning Algorithm consists of three subal-
gorithms, namely Construction Algorithm, Feature Extraction and
Enforcement, and Tuning Algorithm.

Construction Algorithm: Given a set of training examples
{El,-&,.**, Ek}. For each example Et, let Xt be its input attribute
set (say, with size of n) and Zt be its output attribute set (say, with
size of m).

A

A

B

Fig. 4.

AANDB

(a)

0
(-41) NOT (A)

(C) IF ATHEN B

= A->B

(4
Logical operation AND, NOT, IF..THEN, and IMPLY.

OAic 2py2)

042

(1,O) a D

wm
(4-l)

Fig. 5. Network representation of a sample rule.

Tomatchthepattemset{X1,Xa,...,Xk} to{Zi,Za,~~~,Z~}.
Step 1: Construct a directed graph with three columns as shown

in. figure a, column 1 has n nodes, column 2 has Ic nodes,
and column 3 has m nodes. From every node in column 1,
draw a directed edge to every node in column 2, and from
every node in column 2, draw a directed edge to every
node in column 3.

Step 2: For each node Ui in column 1 and each node Uj in
column 2, attach the edge joining them by the ordered
pair (CV, p) obtained as follows:
Let (a, b) be the ith value of the vector Xj,

Case 1: If (qb) = (l,O), we define (cY,~) = (l/c, 0)
Case 2: If (a,b) = (0, l), we define (a,,@ =

(0, -l/c) where c is the number of values in
Xi with either (1,0) or (0,l).

Case3: If (a,b) = (O,O), we define (a,@) = (-l/
(d + l), l/(d + l)), where d is the number of
values in Xj with (0,O).
Hence, d + c = 7~.

Step 3: For each node Ui in column 2 and each node Uj in
column 3, attach the edge joining them by the ordered
pair (cu, ,L?) obtained as follows.
Let (a, b) be the jth value of the vector Z,,

Case 1: If (a, b) = (l,O), we define (cr, p) = (1,0)
Case 2: If (a,b) = (0, l), we define (cr,/3) = (-1,0)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 3, NO, 2, JUNE 1991 203

k hidden nodes

Fig. 6. A network constructed by neural logic learning algorithm,

Representative Cases

Fig. 7. Network KB for INS troubleshooting

50 Faulty
Components

Case 3: If (n. b) = (O.O), we define (n. J) = (0.0).
Step 4: Attach every node in this network with initial value of

GAO).
The nodes in column 1 are selected as input nodes while the nodes

in column 3 are selected as output nodes. Direct verification will
show that this neural logic network matches the input pattern set
{Jil, XZ. xk} to the output pattern set {Z,. ZZ.. . . . Zk}.
2) Features Extraction and Enforcement:

-Extraction:

Step 1: Let E be the given training example.
Let S be the set of examples not distinguishable from E.

Step 2: Initialize the identification set to be an empty set.
Initialize S to be the set of all training examples.

Step 3: While size (S) > 1 do
for each input attribute a in the example

calculate count[a] = number of training examples T
in S such that T[a] = E[a]

find m such that count[m] is the minimum for all
attributes
put m into the identification set
S = {T/T in S and T[m] = E[m]}.

Upon identifying the identification set of each training example,
the influence of those key features can be amplified by the following
algorithm:

-Enforcement:

for each training example Et,
Let I be the identification set of Et and S be the size of I
for each element m in I

Let (cy, 0) be the weight attached to the link joining the mth

familiar case*

User
Interface

Fig. 8. Adaptive learning strategy of INSIDE.

node in column 1 and the tth node in column 2.
modify (o,13) such that
a = a’(1 + l/S)
.3 = 3*(1+ l/S).

3) Tuning: For each training example Et,
assign values of its input attribute set Xt to the input nodes
compute the values on the nodes in column 2.
For each node CT, in column 1 and each node C; in column 2
Let (a: 3) be the weight associated with the edge joining them,

(a. b) be the ith value of Xt and (c. d) be the propagated value of
the jth node of column 2. Compute r = c - d.

We shall modify the values (a. ,3) according to the following cases:
Case 1: If j = t, put

a = 0 + gain*n*(l - r)
3 = ,3 + gain*b*(r - 1)

Case 2: If j <> f, put
a = Q + gain*a*(-r)
,3 = 3 + gain*b*(r)
where gain is a small constant.

This process is repeated until there is no change in weight.
The Construction Algorithm involves an assignment of weightages

to all the links in the network such that after the assignment, the
network is able to match all the training examples perfectly. That
is, given the input set of each training example, the network, after
the propagation, will be able to produce the correct output set at the
output layer. However, the resultant weightages will be too precise
that the network will not tolerate any error in the input.

It is recognized in “The Bayes Connection” [21] that any pat-
tern recognition problem must be defined by the fairly important
correlations. We agree with this and believe that in reality, some
input attributes are more important than others. We should identify
them and enforce their influence for the pattern recognition of past
examples. Formally, we define an identification set of an example E
to be a set of input attributes that enable us to distinguish E from
the rest of the examples. Given a training example, we can deduce
its identification set using a simple algorithm. The influence of those
key features can then be amplified by multiplying all the weightages
on their outgoing links by a constant greater than 1.

After enforcing the identification sets, the neural logic network
will not match the training examples correctly. A controlled tuning
algorithm has thus to be applied on the first layer of the network
to relearn back the heuristics. After the tuning, the network will be
different from the originally constructed version but it will still match
the given set of examples correctly and in addition, it will tolerate
error in the user input. One advantage of the Neural Logic Algorithm
is that it provides us with the necessary network topology, including
the number of hidden nodes in the intermediate layer. Moreover, it
ensures convergence because a solution has already been found (by
the construction algorithm) and the tuning is easy and fast. With
different emphasis on the enforced set of attributes, we may build

several pattern matching ACES overlaying each other to provide a
more comprehensive system.

III. PATTERN MATCHING ACES
This section describes an adaptive comrectionist expert system

that can be constructed from past examples and tuned adapatively
during its use by examples from another knowledge module. The
system named Inertial Navigation System Interactive Diagnosis Ex-
pert (INSIDE) [14] was jointly developed by Institute of Systems
Science and Singapore Airline for toubleshooting a piece of avionics
equipment-Inertial Navigation System (INS).

There are detailed flowcharts which provide guidance in trouble
shooting this piece of equipment. Nevertheless, once the technician
has built up knowledge on the failure modes of the equipment,
they will tend to rely more on their knowledge rather than the
troubleshooting charts. A broad understanding of the equipment,
coupled with a good knowledge of its failure modes gathered from
past experience, proved to be more difficult.

In Singapore Airlines (SIA), a large database on the equipment
failures has thus been accumulated over the years which represents
the combined experience of many technicians. In building the con-
nectionist knowledge base, heuristics regarding the diagnosis of INS
were collected in the form of training examples using a combination
of interviewing and referring to the documented cases in the database.
Among the cases reviewed, a total of 100 troubleshooting cases
with 110 fault attributes and 50 faulty components were selected
for training the knowledge base. Using the Neural Logic Learning
Algorithm, our knowledge base is a two-layered neural logic network
with 110 input nodes, 100 hidden nodes, and 50 output nodes.

Note that, not all input attributes of a case would be known at
the beginning of the consultation, an inference engine [14], [15] is
needed to direct the flow of the consultation and to acquire more
information from the users.

At the beginning of the consultation, the user will be asked to
supply some input attributes values such as the malfunction codes
or the complaints from pilots. Having received the initial set of
information, the corresponding input nodes will propagate the value
forward to the nodes in the other layers (forward chaining). If one
of the intermediate node is fired, the value will be propagated to
the output layer and the appropriate conclusion(s) will be reported
to the user. Otherwise, the system calculates a confidence estimate
of each intermediate node and identifies the intermediate node that
has the highest confidence estimate. In pursuing that node, backward
chaining occurs to identify the next input attributes to be pursued. To
acquire that attribute value, the user might be asked to perform some
intermediate test on the INS. After the user supplies the information,
the system continues to infer forward again until a conclusion is
reached.

Knowing that having insufficient training examples, the knowledge
base might not be able to cover the entire problem domain, a trouble-
shooting flowchart module was developed to serve as a backup.
During the user consultation, a comrectionist module will be activated
first. If the case is close enough to a case that was captured before, the
module is able to derive the solution in just a few steps. Otherwise,
the user will be directed to the flowchart module to continue the
diagnosis with the help of the troubleshooting charts. While the
connection& module often provides a short cut to solve most familiar
problem, the flowchart module resolves those uncommon cases. After
the case is solved, it can be formulated as a new example to be
acquired by the connectionist knowledge base. Note that by using
the Neural Logic Learning Algorithm, the tuning of knowledge base
is no longer a tedious and time consuming process, the knowledge

base constructed does not behave just like a lookup table and it can
relate new problems to old experience if they are close to each other.
Under this KB updating strategy, the connectionist knowledge base
is able to learn adaptively from new examples from the flowchart
module as the system is being used. Besides providing an economical
way for developing fault diagnostic systems in general, the learning
process of the system highly resembles the way an expert acquires
knowledge through experience.

IV. RULE INFERENCING ACES
In [22], a network approach was proposed to process hierarchical

knowledge. In this section, we will discuss another aspect of ACES
that not only can handle hierarchical knowledge, but it also learns
from these rules. This is based on the same framework employed by
the pattern matching ACES: the neural logic network model described
in Section II, and a particular adaptive control of resolution [20]. We
express rules derived from the knowledge domain as propositional
Horn-clauses and then converted these clauses into neural logic
network as illustrated in the example below:

There are six rules
rule 1: a IF@ AND (NOT c)).
rule 2: a IF (c AND d).
rule 3: a IF (e AND f).
rule 4: d IF (g AND h).
rule 5: d IF (i AND j).
rule 6: d IF (B AND E).

By converting these rules into neural logic network representation
as discussed in Section II of this paper, we will have a rule network
as shown in Fig. 9.

When a deduction is made to the neural logic network, it starts
from the proposition rule term, or the node as it is in the neural logic
network, computes its truth value by searching and computing the
truth values of all the related fragment of the network sequentially.
The computation of node values is described in the propagation rule
in Section.11. Let us look at the previous example, and if we want to
find out the truth value of the rule term “a,” we can back-propagate
from node “a” and follow through the entire network according to
the sequence shown in Fig. 10 and obtain the answer.

However, with the expressiveness of neural logic network, we
could improve this blind search and arrive at some adaptive search
techniques for the deduction.

A. Adaptive Search

Since all related rule terms (or nodes) expressed by some rules in
the neural logic network are connected together by links, priorities can
be attached to these links to indicate the sequence of deductive search.
We may preset the search sequence when compiling knowledge
into rules but this could mean rigidity and often lead to inefficient
knowledge consultations. A more desirable way is allowing the
pattern of use to determine which path has higher priority.

Let us consider the same example again. Assuming after the expert
system has been used for a period of time, analogous to Probabilistic
Approached to dynamically update the certainty measure at each
decision node [23], we attach the number of successful deductions
during actual consultation to each link as shown in Fig. 11 below.

In Fig. 11, the total number of successful deductions for rule term
“a” is 100 consultations and the distribution of these 100 successful
passes are 10 passes for the first OR branch, 85 passes for the second
OR branch, and five passes for the last OR branch. We may, therefore,
rerank their search priorities according to their statistical data to

204 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,VOL. 3,NO.2,JUNE 1991

- -

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 3, NO. 2, JUNE 1991 205

Fig. 9. A neural logic network.

Fig. 10. A neural logic network with sequential search order.

OR

O 100

Fig. 11. A neural logic network with statistical data after 100 successful consultations.

improve on efficiency as indicated by the number of successful passes continue searching other branches anymore. In this case, the statistical
of each branch. This dynamic search order for each OR relation is also data we need are the number of failures during past consultations for
shown in Fig. 11 in square brackets. each AND branch and rank them accordingly. Fig. 12 below shows the

We have so far dealt with alternative search branches, that is OR same example with statistical data and ranking for the AND relations.
relation of a given node and we shall now extend it to the combinative By making this reordering mechanism a dynamic feature in the
branches-the AND relation. The rationale for AND relation is: if one rule inferencing ACES, we arrive at an expert system that will always
of the branches fails, the AND relation is FALSE and we do not need to adapt its search strategy to the pattern of use.

206 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 3, NO. 2, JUNE 1991

Fig. 12. A neural logic network with statistical data on unsuccessful consultations for AND relations.

Special Reference Node

Fig. 13. Learning a special reference case from rules.

B. Learning from Rules
Human beings conceptualize knowledge from past experience,

In the Rule Inferenclng Connectionist Expert System, we could
also learn and conceptualize special reference cases based on the
experience gained during knowledge consultations. The Adaptive
Search Mechanism discussed ln the previous section provides a
powerful source of record keeping. If we look at the example in
Fig. 10 again, with the experience that the network has acquired so
far, we can clearly identify that rule terms “c,” “g,” and “h” are the
most frequently consulted input nodes set to deduce “a.” W e can
view the relation between the resulting conclusion “a” and this set of
rule terms as the knowledge learned from past consultations, which
is equivalent to the short-cut repairing knowledge a technician gained
from his past repairing experience.

To capitalize on this experience, we can always create an additional
node in the neural logic network linking up the output of deduction,
that is “a.” in this case, and the set of rule terms, which can be
consider as the inputs, as shown in Fig. 13. W e call this new node
“special reference case” and always set the highest priority to it.
Whenever rule term “a” is consulted, the network will always refer

to this special reference case before going into the deeply nested
network of rules. If the statistical data change with time, we may
automate this process by deleting the old reference case and create a
new one according to the lastest situation.

The Rule Inferencing ACES using neural logic network with
adaptive search and learning special reference capability will provide
an environment for a rule-based expert system to continuously learn
and improve its efficiency based on its past consultation experience.

V. CONCLUSION

This paper discusses two adaptive strategies to update the knowl-
edge base of the expert system during operation. The first strategy
describes how a pattern matching knowledge base constructed from
past examples can be updated when new case is available, while the
second method makes use of the frequency usage of rules to form
a new rule. The new rule thus formed is a special reference case
which can be considered as a “bypass” of the original set of rules,
and it is applicable if all the antecedents of the rule are satisfied. As
such, the new rule can also be considered as a new pattern matching

-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 3, NO. 2, JUNE 1991 207

example and hence can be incorporated to the example knowledge
base using the first adaptive strategy. With this capability, the system
can adapt to the operation environment and gradually transform its
problem solving strategy from rule-reasoning to pattern-matching as
it is being used.

PI

PI

[31

[41

151

161

[71

PI

[91

[lOI

REFERENCES

W. G. Chase and H. A. Simon, “The mind’s eye in chess” in &ual
Information Processing. W. G. Chase, Ed. New York: Academic,
1973.
J. Larkin, J. McDermott, D. P. Simon, and H. A. Simon, “Expert and
novice performance in solving physics problems,” Science, vol. 208,
pp. 1335 - 1342, 1980.
A. G. Bateson, R. A. Alexander, and M. D. Murphy, “Cognitive process-
ing differences between novice and expert computer programmers,” Int.
I. Man-Machine Studies. vol. 26, pp. 649-660, 1987.
J.R. Anderson, Cognitive Psychology and Its Applications, 2nd ed.,
San Fransico, CA” Freeman, 1985.
A.H. Tan and L. K. Chee, “Connectionist expert system for intelli-
gence advisory application,” in Proc. Expert Syst. Econom. Banking,
Management. and Singapore, Jan 11- 13, 1989.
K. Saito and R. Nakano, “Medical diagnostic expert system based on
PDP model,” in Proc. IEEE ICNN, Vol. II, San Diego, CA, July 24-27,
1988, pp. 525-532.
G. Bradshaw, R. Fozzard, and L. Ceci, “A connectionist expert system
that actually works,” Advances Neural Inform. Processing Syst., I,
pp. 248-255.
S. I. Gallant, “Connectionist expert systems,” Commun. ACM, Feb.
1988.

“Automatic generation of expert system from examples,” in Proc.
2ndIAt. Conf: AIAppl., IEEE Press, New York, 1985, pp. 313-319.
D.E. Rumelhart, G. Hinton, and R. Williams, “Learning internal rep-
resentations by error propagation, ” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition,” D. E. Rumelhart and
J. L. McClelland, Eds. Cambridge, MA: MIT Press, 1986.

[l l] T. .I. Sejnowski and C. R. Rosenbert, “Parallel networks that learn to
pronounce English text,” Complex Syst., vol. 1, pp. 145- 168, 1987.

[12] H. H. Teh and C. P. Yu Wellington, “A controlled learning environment
of enhanced perceptron,” in IEEE Proc., Future Trend in Distributed
Comput. Syst., 1988, Hong Kong.

[13] S.C. Chan, L.S. Hsu, S. Brody, and H.H. Teh, “Neural three-valued-
logic networks,” in Proc., Inter-Faculty Seminar Neuronet Comput., June
1989, National Univ. of Singapore, pp. 54-75.

[14] A. H. Tan, Q. Pan, H.C. Lui, and H. H. Teh, “INSIDE: A neuronet
based hardware fault diagnostic system,” in Proc. Int. Joint Conf Neural
Networks, San Diego, CA, June 17-21, 1990.

[15] A. H. Tan and H. H. Teh, “Connectionist expert systems-An inductive
cum deductive approach,” Inform Technol. -J. Singapore Comput.
Society, Special Issue on Knowledge Engineering, Feb. 1990.

[16] H. H. Teh, S. C. Chan, L. S. Hsu, and K. F. Loe, “Probabilistic neural-
logic networks,” in Proc. Inter-Faculty Neuronet Seminar, National
Univ. of Singapore, June 1989.

[17] L. S. Hsu, H. H. Teh, S. C. Chan, and K. F. Loe, “Fuzzy decision mak-
ing based on neural-logic networks,” in Proc. Inter-Faculty Neuronet
Seminar, National Univ. of Singapore, June 1989.

[18] T. Samad, “Towards connectionist rule-based systems,” in Proc. IEEE
ICNN, Vol. II, San Diego, CA, July 24-27, 1988, pp. 525-532.

[19] H. H. Teh, L. S. Hsu, and W. W. Tsang, “Modelling knowledge informa-
tion systems using inference networks,” ARS Combinatoria, vol. 23A,
pp. 269-290, 1987.

[20] T.J. Reynolds, H.H. Teh, and B.T. Low, “Programming in neural
logic,” Pacific Rim Int. Con$ AI’90, Nov. 14- 16, Nagoya, Japan.

1211 C. Anderson and E. Abrahams, “The Bayes connection,” in Proc. IEEE
Int. Co@ Neural Networks, San Diego, CA, 1987, pp. 111105-112.

[22] L. Becker and J. Peng, “Networking processing of hierarchical knowl-
edge for classification and diagnosis, ” in Proc. IEEE Int. Co@ Neural
Networks, San Diego, CA, 1987, pp. 11309-317.

[23] S. Chan, “Automated reasoning on neural networks: A probabilistic
approach,” in Proc. IEEE Int. Cant Neural Netorks, San Diego, CA,
1987, pp. 11373-378.

[24] J.R. Quinlan, “Generating production rules from decision trees,” in
Proc. IJCAI 87, Milan, pp. 304-307.

-

	Connectionist expert system with adaptive learning capability
	Citation

	tmp.1595529859.pdf.CNMFc

