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a b s t r a c t

Recent years have observed increasing efforts on graph mining and many algorithms have
been developed for this purpose. However, most of the existing algorithms are designed for
discovering frequent subgraphs in a set of labeled graphs only. Also, the few algorithms
that find frequent subgraphs in a single labeled graph typically identify subgraphs appear-
ing regionally in the input graph. In contrast, for real-world applications, it is commonly
required that the identified frequent subgraphs in a single labeled graph should also be
globally distributed. This paper thus fills this crucial void by proposing a new measure,
termed G-Measure, to find globally distributed frequent subgraphs, called G-Patterns, in
a single labeled graph. Specifically, we first show that the G-Patterns, selected by G-Mea-
sure, tend to be globally distributed in the input graph. Then, we present that G-Measure
has the downward closure property, which guarantees the G-Measure value of a G-Pattern
is not less than those of its supersets. Consequently, a G-Miner algorithm is developed for
finding G-Patterns. Experimental results on four synthetic and seven real-world data sets
and comparison with the existing algorithms demonstrate the efficacy of the G-Measure
and the G-Miner for finding G-Patterns. Finally, an application of the G-Patterns is given.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Graph structure data, such as Resource Description Framework (RDF) files, Extensible Markup Language (XML) files, and
protein–protein interaction data, are being accumulated in many application domains. The need is now critical to develop effi-
cient and effective graph mining algorithms for analyzing such data. Towards this direction, there have been attempts for min-
ing frequent substructures from a set of labeled graphs [1–9], discovering important/frequent subgraphs from a network
[10,11], and mining frequent subtrees from a forest [12–16]. These identified frequent subgraphs are further used for a variety
of applications such as designing database schemas [17], building database indexes [18], and modeling user profiles [19].

In this paper, we study a particular graph mining problem, i.e., mining frequent subgraphs in a single labeled graph. In fact,
when we apply the existing graph mining algorithms to real-world applications, they would face the following practical
challenges.

� First, most of the existing algorithms are developed for finding frequent subgraphs in a set of labeled graphs only. These
algorithms are able to effectively and efficiently discover all the frequent subgraphs and be scaled to large data sets.
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However, they cannot be directly used to mine in a single labeled graph, despite the fact that the problem of finding fre-
quent subgraphs in a single labeled graph is more general and applicable [11].

� Second, the reason why we conduct frequent pattern mining is that the frequent patterns found are supposed to be the
common structures in the data, which can clearly describe the general relationships among items of different classes in
the data and effectively analyze the data. However, due to the difference between the graph model and other data models,
simply finding frequent subgraphs in a single labeled graph may not fulfil our requirement. The identified subgraphs of
high frequency could just include a small set of items of a particular class, which can be interpreted as that these found
patterns appear only in a regional area of the input graph (i.e., located regionally). In contrast, some less frequent but glob-
ally distributed subgraphs are more useful, as they provide global information about the whole graph. An illustration of
this point is given in Fig. 1, wherein we have found the two 2-edge graph patterns PA (located globally) and PB (located
regionally in the specified subarea) in the input graph. If we merely consider the importance of the frequency, PB should
be much more important than PA (freqðPBÞ ¼ 10 > freqðPAÞ ¼ 3). However, in real-world applications, for example, build-
ing graphical indices [18], PA would be more useful, as PA is the typical structure that all the instances of the class A have
while PB is only held by one instance of A.

� Third, being a critical property, the downward closure property enables the frequent pattern mining algorithms to effec-
tively prune the search space. However, when mining a single labeled graph, simply counting the occurrence/frequency of
a graph pattern in the input graph may not have the downward closure property. For example, given the two graph pat-
terns P and Q shown in Fig. 2, while Q is a superset of P (P # Q), Q has a higher frequency than that of P in the input graph G.
This indicates that the downward closure property no longer holds. As a result, the graph mining algorithms cannot utilize
the downward closure property to prune the search space. They have to search the whole candidate space for finding all
the frequent subgraphs. The mining process becomes extremely time-consuming.

In view of the above challenges, we introduce a new graph mining problem in this paper, i.e., finding globally distributed
frequent subgraph patterns in a single labeled graph. For simplicity, we call such graph patterns as G-Patterns in rest of this
paper. Those identified G-Patterns can provide global information about the input graph and are extremely valuable for a
variety of applications such as web usage mining [20], hypertext classification [21,22], and biological data analysis [23–26].

To find G-Patterns, the straightforward approach is divide and conquer. That is, to partition the input graph into smaller
manageable segments, and to find frequent patterns within those segments. However, a large amount of noise may be cre-
ated by splitting the input graph, rendering this approach ineffective.

Another approach of finding G-Patterns is to adopt a post-processing step which eliminates spurious patterns from the
results of the existing mining algorithms. However, as finding such globally distributed subgraphs normally requires setting
a lower support threshold, it often leads to the identification of many uninteresting graph patterns and the computation cost
can be prohibitively high. For example, given the small synthetic graph V2E1N500L20A55 used in our experiments, Table 1
presents the frequency distribution of the multi-edge graph patterns found in this graph. We could see the distribution is
rather skewed. Many patterns are with low frequency while only a few have frequency greater than 100. If we set a lower
minimum support threshold, many more patterns would be extracted. It consequently requires much more time to validate
whether these found subgraphs are globally distributed.

A better approach is to have a measure that can efficiently identify G-Patterns and automatically remove spurious pat-
terns during the mining process. In this paper, we propose a new measure, named G-Measure, for mining G-Patterns in a
single labeled graph. The basic idea behind the G-Measure takes the distribution of the graph patterns in the input graph
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Fig. 1. An illustration of the distribution of the two subgraph patterns found in the input graph, where A–F are the labels of the vertices.
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into consideration. Graph patterns with a G-Measure value no less than the user specified minimum support threshold are
the ones we are looking for.

Based on the proposed G-Measure, we develop an algorithm called G-Miner for finding G-Patterns. Specifically, G-Miner is
implemented following the Depth-First Search (DFS) approach, since this approach has shown to have a computational
advantage over the Breadth-First Search (BFS) for mining a single labeled graph [27,11] and works efficiently with the
DFS code [3] used for graph isomorphism testing and candidate generation. We evaluate the performance of the G-Miner
on both synthetic and real-world data sets and compare with the state-of-the-art graph mining algorithms. As demonstrated
by our experiments, G-Miner can efficiently and effectively find globally distributed G-Patterns in a single labeled graph. In-
deed, G-Miner runs several orders of magnitude faster than the existing approaches. Finally, we show an application of the
G-Patterns.

Overview. The rest of this paper is organized as follows. Section 2 provides the basic concepts related to this graph mining
problem. Section 3 introduces the G-Measure. Section 4 elaborates the G-Miner algorithm. The experimental results are gi-
ven in Section 5. Related work is presented in Section 6. Finally, we draw conclusions in Section 7.

2. Preliminary concepts

In this section, we define the graph model used in this paper and introduce some related concepts.

Definition 1 (Labeled graph). A labeled graph can be represented by a 4-tuple, G ¼ ðV ; E; L; lÞ, where

� V is a set of vertices,
� E # V � V is a set of edges,
� L is a set of labels,
� l : V [ E! L, l is a function assigning labels to the vertices and edges.

A subgraph of a graph G, SG, is a graph such that VSG # VG and ESG # EG, and the assignment of endpoints to edges in SG is
the same as in G.

Note that we focus on undirected labeled simple graph in this paper. However, our developed algorithm can easily be
modified for processing other kinds of graphs. For example, we can treat the direction of the edges as a label for processing
directed graphs.

A labeled graph extracted from the Biozon database (http://www.biozon.org) and one of its subgraphs is shown in Fig. 3.
Protein, Uni_encodes, Unigene, DNA, Uni_contains, Uni_encodes, and Encodes are the labels of the vertices and edges. ID:xxx
represents the ID of the corresponding vertex or edge stored in the database. With this graph, researchers can easily explore
relationships between these biological resources. Note that the IDs of the vertices and the edges in the labeled graph are not
considered during mining. They are presented here for illustration purpose. The frequent graph patterns2 that we search for
are like the one shown in Fig. 3c.

(a) Graph P
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B B
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B

B

B

B

BB

(b) Graph Q (c) Input Graph G

Fig. 2. An illustration of the case that the downward closure property cannot hold. Here, Q is a superset of P but Q has a higher frequency than P in graph G.

Table 1
The frequency distribution of the multi-edge subgraphs found in the synthetic graph. These patterns are divided into seven disjoint groups according to their
frequencies.

Group G1 G2 G3 G4 G5 G6 G7

Frequency 3–10 11–20 21–30 31–40 41–50 50–100 100–1080
#Patterns 76,259 12,536 4070 1247 1170 1559 520

2 The frequent graph patterns to be found by our algorithm are those containing at least one edge and without disconnected vertices.
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Definition 2 (Graph instance). Let G be a single labeled graph and P be a graph pattern we search for in G, a subgraph of G, SG,
is an instance of P in G if there exists an isomorphism between P and SG.

For example, we search for the graph pattern P shown in Fig. 4a in the labeled graph G presented in Fig. 3a. We can see
there are four subgraphs of G isomorphic to P (see Fig. 4b). They are called the instances of P in G.

Definition 3 (Edge-disjoint based instance graph). Given the instances of a graph pattern P found in an input graph G, we can
construct a new graph for P where the vertices represent P’s instances in G and edges are added between two vertices if their
corresponding instances share an edge in G. This new graph is called edge-disjoint based instance graph, or instance graph
for simplicity.

For the example pattern P shown in Fig. 4, as its instance i1 shares the edge DNA(ID:215)–Uni_contains(ID:62)–Pro-
tein(ID:103) with i2 and i3 shares the edge Protein(ID:78)– Uni_encodes(ID:31)–Unigene(ID:150) with i4, its edge-disjoint
based instance graph is constructed as the one shown in Fig. 5a. Note that the instance graph is an unlabeled graph. The la-
bels i1, i2, i3, and i4 shown in the example are only used to help indicate the relations between the vertices with their cor-
responding instances.

Besides the edge-disjoint based instance graph, we can also form other types of instance graphs, for example, vertex-dis-
joint based instance graph, i.e., edges are added between two vertices of the instance graph if their corresponding instances
share vertices in the input graph (see Fig. 5b), or even a distance l based instance graph, i.e., edges are added between two
vertices if their corresponding instances are reachable with paths of length l in the input graph. Forming different instance
graphs would be seen as a way of defining the global distributed property, since how patterns are called globally distributed
are changed in different applications. In other words, the G-Pattern mining problem can be expressed as a function f ðl; hÞ,
where l is the preferred distance between the instances and h is the minimum support threshold. Given the same support
threshold, setting a larger l will lead to fewer patterns to be found. Therefore, fewer patterns are found with the vertex-dis-
joint based instance graph than those found with the edge-disjoint based instance graph.

In this paper, we only consider the edge-disjoint based instance graph. This setting specifies that graph patterns are called
globally distributed when their instances do not share common edges in the input graph. However, it is trivial to fit all our obser-
vations, methods, and conclusions to other conditions.

Definition 4 (The downward closure property). Given a measure f, downward closure property, also called the admissible
property [28,29] or frequency anti-monotone property [30], requires that for every pair of patterns p and q in the data set
such that p is a subset of q3 (p # q), the value of p computed by f is not lower than that of q, f ðpÞP f ðqÞ. This property is
essential for the computational tractability of most frequent pattern discovery algorithms, since it can be used to quickly narrow
the search space.

3. G-Measure

In this section, we present the motivation behind the G-Measure, the definition of the G-Measure, and its downward clo-
sure property.

3.1. Motivation

We aim to find frequent subgraphs which are also globally distributed in a single labeled graph. To achieve our goal, the
straightforward approach is divide and conquer. That is, to partition the input graph into smaller manageable segments, and
to find frequent patterns within those segments. However, this approach will suffer from the following problems.

Protein
(ID: 78)

Unigene
(ID: 150)

Unigene
(ID: 103)

DNA
(ID: 215)

Protein
(ID: 34)

Uni_encodes
(ID:25)

Uni_encodes
(ID:31)

Uni_contains
(ID:93)

Uni_contains
(ID:62)

Uni_encodes
(ID:14)

Encodes
(ID:57)

(a)  Labeled Graph G

Protein
(ID:78)

Uni_encodes
(ID:25)

Unigene
(ID:103)

(b)  Subgraph SG.

Protein Unigene

(c)  Graph Pattern P

Uni_encodes

Uni_contains
(ID:91)DNA

(ID: 213)

Fig. 3. The illustration of a single labeled graph G, its subgraph SG, and a graph pattern P identified in G.

3 We also call q a child of p in this paper for simplicity.
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1. The quality of the obtained segments is not ensured, as we have no knowledge of the input graph in advance and may not
set an optimal segment number. As a result, the subgraphs found are not the required G-Patterns. For example, if we
adopt the k-way partition method [31] to split the input graph, too many regionally distributed patterns would be
extracted due to a high k value.

2. A certain G-Patterns would be lost as their instances happen to occur across different segments. To guarantee the com-
pleteness of the G-Patterns to be found, additional methods are required to recover these lost graph instances, which
would make the mining task even harder.

Besides the divide and conquer approach, we would adopt a post-processing step which eliminates spurious patterns from
the results of the existing mining algorithms for finding G-Patterns. But as shown in the introduction section, this approach is
computationally inefficient. It requires much time to validate whether these found frequent subgraphs are also globally
distributed.

A better approach is to have a measure that can efficiently identify G-Patterns and automatically remove spurious pat-
terns during the mining process. In this paper, we propose a new measure, called G-Measure, that can efficiently identify
G-Patterns and automatically remove spurious patterns during the mining process.

The basic idea behind the G-Measure is based on the observations of forming the instance graph: when the instances of a
graph pattern appear in the same regional area of the input graph, sharing edges, their corresponding vertices in the instance
graph would be directly connected with edges. On the other hand, if these instances are located in different areas, their cor-
responding vertices in the instance graph are less likely to be linked. For the extreme cases, the instance graph could only be
composed of a set of disconnected vertices, since no common edges are shared by these instances.

i1 i2

i3 i4

i1 i2

i3 i4

(a) edge-disjoint based 
instance graph

(b) vertex-disjoint based 
instance graph

Fig. 5. The edge-disjoint and vertex-disjoint based instance graphs of P.

(a) Graph Pattern P

Protein Uni_encodes Unigene

DNA

Uni_contains

(b) The graph instances of P in G

Protein
(ID:78)

Uni_encodes
(ID:25)

Unigene
(ID:103)

DNA
(ID:215)

Uni_contains
(ID:62)

 i2

Protein
(ID:34)

Uni_encodes
(ID:14)

Unigene
(ID:103)

DNA
(ID:215)
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 i1

i4i3
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(ID:78)

Uni_encodes
(ID:31)

Unigene
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(ID:215)
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(ID:93)
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(ID:78)

Uni_encodes
(ID:31)

Unigene
(ID:150)

DNA
(ID:213)

Uni_contains
(ID:91)

Fig. 4. An illustration of a graph pattern P and its four instances in the input graph G shown in Fig. 3a.
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An illustration of our observations is shown in Fig. 6, where we will build the instance graph of P with G. We can see that
P’s instances are located in two particular areas of G, namely subarea 1 and subarea 2. Following the definition, we build P’s
instance graph as shown in Fig. 7. For instances located in the same areas, their corresponding vertices in the instance graph
are closely connected, even forming clique, while for instances distributed in different areas, their corresponding vertices are
with a few connections.

Our observations are similar to those happening in the social network where humans of the same class closely connect
while humans of different classes are with a few interactions. Therefore, we could change the G-Pattern mining problem to a
community detection problem. By partitioning the instance graph, we could test whether a pattern is a G-Pattern, where the
G-Measure is to count the number of partitions obtained from the instance graph.

Note that an incorrect impression could be made that we can count the number of disconnected components in the in-
stance graph for finding G-Patterns. However, referring to the above example, we can see this approach may not correctly
separate instances located in different areas from those in the same areas given some particular distance requirements,
for example, edge-disjoint.

3.2. Definition

Before giving the formal definition of the G-Measure, we first present the criterion used for partitioning the instance
graph.

Basically, to effectively find community structure in a social network, we assume that for the result obtained, there is a
higher density of edges within the same partition than between different partitions. To quantify this requirement, people

A

A

A A

A

A A A

A

A

A

A

A

A A

A

(a) Graph Pattern P

(b) Input Graph G

subarea 1
subarea 2

A

Fig. 6. The graph pattern P and the input graph G.

subarea 1

subarea 2

Fig. 7. The built P’s instance graph, where the node marked with orange color corresponds to P’s instance in Fig. 6 with the same color. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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have proposed different quality measures such as the min cut [32] and the ratio cut [33]. In this paper, we adopt the mod-
ularity measure [34], which is commonly used in the social network research field to tackle this problem.

The general principle of the modularity measure is presented as follows. Let Avw be an element of this network’s adjacency
matrix where

Avw ¼
1 if vertices v and w are connected;
0 otherwise:

�
ð1Þ

and suppose this network has been divided into several partitions such that vertex v is in partition Pv. Thus, the fraction of
edges that connect vertices in the same partition, isP

vwAvwd Pv; Pwð ÞP
vwAvw

¼ 1
2m

X
vw

Avwd Pv; Pwð Þ; ð2Þ

where d Pv; Pwð Þ is 1 if Pv ¼ Pw and 0 otherwise, and m ¼ 1
2

P
vwAvw is the number of edges in the network.

Note that for a random graph, the probability of an edge existing between vertices v and w is kvkw=2m, where kv and kw

are the degrees of the vertices v and w. If the social network is correctly partitioned, its value computed by Eq. (2) should be
greater than that of a random graph. Otherwise, the two values will be the same. Therefore, the modularity measure, M, is
defined by

M ¼ 1
2m

X
vw

Avw �
kvkw

2m

� �
d Pv; Pwð Þ: ð3Þ

A higher M value indicates the result is good.
With the modularity measure, we give the formal definition of the G-Measure as follows:

Definition 5 (G-Measure). The G-Measure is a metric that reflects the distribution of a graph pattern’s instances in the input
graph. Given a graph pattern P, the G-Measure GðPÞ is computed as the number of partitions found on P’s instance graph with
the modularity measure. If the instance graph is composed of disconnected components, the G-Measure is computed as the
sum of the different partitions found in each component.

The definition of the G-Pattern is as follows:

Definition 6 (G-Pattern). Given a graph pattern P and a minimum threshold h, P is a G-Pattern if and only if GðPÞP h.

3.3. The downward closure property of G-Measure

After defining the G-Measure, we now present its downward closure property. Particularly, we first introduce three types
of operations occurring in the instance graph. We show that the instance graph of a graph pattern Q is constructed and can
only be constructed under these operations on that of its ancestor P. Therefore, an instance graph based support measure,
e.g., the G-Measure, is shown to have the downward closure property if its value is non-decreasing under the three types
of operations.

Note that our defined operations are not the same as those given in [29]. Our operations are discovered independently by
analyzing the process of forming Q’s instance graph on that of its ancestor P. Furthermore, our defined operations are able to
test the downward closure property of an instance graph based support measure on all kinds of instance graphs (i.e., edge-
disjoint based instance graph, vertex-disjoint based instance graph, and distance based instance graph) while Vanetik et al.
have claimed their operations are only proved correct for evaluating the downward closure property of a support measure on
the edge-disjoint based instance graph [29].

3.3.1. Operations on the instance graph
Given a graph pattern P and its child Q that is with a growth of one edge4, Q’s instances cannot occur in the input graph

suddenly. They all should be generated from P’s instances. The corresponding operations shown on P’s instance graph belong to
three categories, namely forming clique, adding edge, and removing vertex.

Definition 7 (Forming clique). Given a pattern P’s instance graph GP ¼ ðVP; EPÞ and an arbitrary vertex k on GP , the forming
clique operation on k adds a clique K ¼ ðVk; EkÞ into GP , which results in the instance graph GQ ¼ ðVQ ; EQ Þ where

VQ ¼ VP n fkg
[

Vk

and

EQ ¼ fu; vgju; v 2 VP n fkg; fu; vg 2 EPð Þ
[
fu0; v01gju0 2 VP n fkg;ð

v0 2 Vk; fu0; kg 2 EPÞ
[
fu00; v00gju00; v00 2 Vk; fu00; v00g 2 Ekð Þ:

4 For simplicity, we only give examples that Q is with a growth of one edge from P. However, it is trivial to consider the growth of many edges.
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Fig. 8 presents an example of the forming clique operation, where a clique K3 is added into the instance graph. It happens
when several instances of Q are generated from the same instance of P. The sample patterns and the input graph correspond-
ing to this example are given in Fig. 9.

Definition 8 (Removing vertex). Given the instance graph GP ¼ ðVP; EPÞ, removing vertex operation removes a vertex v from
the instance graph, which results in the instance graph GQ ¼ ðVQ ; EQ Þ, where

VQ ¼ VP n fvg;

and

EQ ¼ EP n ffu; vgju 2 VP n fvg; fu; vg 2 EPg:

Definition 9 (Adding edge). Given the instance graph GP ¼ VP; EPð Þ, adding edge operation adds a new edge fu; vg into the
instance graph, resulting in the graph GQ ¼ VP ; EP

S
ffu; vggð Þ.

Fig. 8. An example of the forming clique operation, where the vertices marked with black color are used for highlight purpose.

(a) pattern P (b) pattern Q (c) input graph g
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D

D
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D
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D

C

Fig. 9. The sample patterns and the input graph corresponding to the forming clique operation shown in Fig. 8.

Fig. 11. An example of the adding edge operation, where the vertices marked with black color are used for highlight purpose.

Fig. 10. An example of the removing vertex operation, where the vertex marked with black color is used for highlight purpose.
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The examples corresponding to the removing vertex operation and the adding edge operation are given in Figs. 10 and 11,
respectively. The former operation occurs if an instance of P cannot generate Q’s instance with one edge growth and the lat-
ter happens when the instances of Q share edges in the input graph. The sample patterns and the input graph corresponding
to the adding edge operation shown in Fig. 11 are presented in Fig. 12.

3.3.2. Constructing instance graphs with the three operations
After defining the three operations, we now present how the instance graph of Q can be and only be constructed from that

of P under these operations.
First, we show that the instance graph of Q can be constructed from that of P with the three operations. An example is

given in Fig. 13, where we will build the instance graph of Q based on that of P (see Fig. 14a). Firstly, for P’s instances that
cannot generate instances of Q with one edge growth, we remove their corresponding vertices from the instance graph (see
Fig. 14b). Then, the forming clique operation is performed on the instance graph (Fig. 14c). Finally, we add a new edge to the
instance graph, obtaining the instance graph of Q (see Fig. 14d). Note that the orders of these operations do not affect the
final instance graph obtained. They can be arranged freely when building Q’s instance graph.

Second, we prove that the instance graph of Q can only be constructed from that of P with the three operations. For dem-
onstration, we first introduce two other operations5, namely deleting an edge from P’s instance graph (Fig. 15) and adding
completely new vertices (Fig. 16) into Q’s instance graph whose corresponding instances are not generated from P’s instances.
The two operations may also be supposed by people to happen when forming Q’s instance graph. Therefore, if the two opera-
tions do exist, our statement is incorrect.

Then, we show that the two operations cannot exist. For example, if the deleting edge operation happens (see Fig. 15), the
corresponding instances of v1 and v2 in Q’s instance graph, Q v1 and Q v2, will not share a common edge in the input graph.6

However, Q’s instances are generated based on P’s instances. If Qv1 and Q v2 do not share an edge, its ancestors Pv1 and Pv2 do not
share an edge either. It conflicts with the truth that Pv1 and Pv2 share edges in the input graph. The same conclusion can be

(a) pattern P (b) pattern Q (c) input graph g

B C

A

A

B
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A

B

B C

B C

AB

Fig. 12. The sample patterns and the input graph corresponding to the adding edge operation shown in Fig. 11.
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(a) pattern P
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Fig. 13. The sample patterns and the input graph for illustrating how the instance graph of Q is constructed from that of P with the three operations.

5 Given an instance graph, the possible operations on it can only be adding edge, adding vertices, deleting vertices, and deleting edges.
6 This proof given here is based on the edge-disjoint based instance graph only. However, it is trivial to demonstrate its correctness on other kinds of instance

graphs.
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obtained for the operation of adding vertices into the instance graph. Therefore, the instance graph of Q can only be built from
that of P with the above three defined operations.

Theorem 1. An instance graph based support measure for mining frequent subgraphs in a single labeled graph has the downward
closure property if its value is non-decreasing under the forming clique, removing vertex, and adding edge operations on the
instance graph.

Proof. As demonstrated above, given a graph pattern P and its child Q, Q’s instance graph can be and only be constructed
under the three types of operations on that of P. If a measure f is non-decreasing under the three type of operations, the value
of P computed by f will not be lower than that of Q, f ðPÞP f ðQÞ, satisfying the definition of the downward closure property.
This measure therefore has the downward closure property. �

3.3.3. Conditions for the downward closure property
To evaluate the downward closure property of G-Measure, the standard approach is to test whether GðPÞP GðQÞ. How-

ever, it is well known that the problem of deciding the optimal partition number of a graph has no standard solutions yet
[34]. Although we have many quality measures, the results are still with uncertainness because of many factors, which will
further affect the evaluation. For example, two different partition results may be obtained given the same input graph (see
Fig. 17), which can further ruin the downward closure property. Therefore, we design a new approach to compute the G-
Measure values.

The basic idea of the new approach is based on the fact that all the instances of Q are generated from those of its ancestor
P with edge growth. If we have partitioned P’s instance graph, we may not directly partition that of Q again. The vertices of
Q’s instance graph can be placed into different partitions according to its ancestors. Specifically, if a vertex of P’s instance
graph, vp, is placed into a partition Pari, all the vertices of Q’s instance graph that are generated from vp can also be placed

(a)
(b)

(c)(d)

Fig. 14. The detailed steps of building Q’s instance graph.

(a) instance graph of P (b) instance graph of Q

v1

v3

v2

v1

v3

v2

Fig. 15. Deleting an edge from P’s instance graph for forming Q’s instance graph.
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into Pari. Such an approach can keep the downward closure property of the G-Measure with the following lemmas and The-
orem 1.

Lemma 1. Given instance graph of a graph pattern P and that of its child Q, if Q’s instance graph is partitioned according to the
partition result of P’s instance graph, i.e., the vertices of Q’s instance graph are placed together if their ancestors in P’s instance
graph are in the same partition, the G-Measure of P will equal to that of Q, GðPÞ ¼ GðQÞ, when forming clique operation happens on
the instance graph.

Proof. Given a vertex of P’s instance graph, vp, that has been placed into a partition Pari, when a clique K is generated from
vp, all the vertices of K will also be placed into Pari. No new partition is formed on the instance graph and no existing partition
is deleted, i.e., GðPÞ ¼ GðQÞ. �

Lemma 2. Given instances of a graph pattern P and those of its child Q, if Q’s instance graph is partitioned according to the par-
tition result of P’s instance graph, i.e., the vertices of Q’s instance graph are placed together if their ancestors in P’s instance graph
are in the same partition, the G-Measure of P will equal to that of Q, GðPÞ ¼ GðQÞ, when adding edge operation is conducted on the
instance graph.

Proof. Given two vertices of P’s instance graph, vp1 and vp2, and two vertices of Q’s instance graph, vq1 and vq2, where vq1 is
generated from vp1 and vq2 is generated based on vp2,

� if vp1 and vp2 both are in a partition Par1, vq1 and vq2 will be in Par1 too. Adding one edge between vq1 and vq2 does not form
a new partition or delete an existing partition of the instance graph, i.e., GðPÞ ¼ GðQÞ.

� if vp1 is in partition Par1 and vp2 is in partition Par2, vq1 will be in Par1 and vq2 is in Par2 subsequently. Adding one edge
between vq1 and vq2 does not form a new partition or remove an existing partition either, i.e., GðPÞ ¼ GðQÞ. �

Lemma 3. Given instances of a graph pattern P and those of its child Q, if Q’s instance graph is partitioned according to the par-
tition result of P’s instance graph, i.e., the vertices of Q’s instance graph are placed together if their ancestors in P’s instance graph
are in the same partition, the G-Measure of P will equal to or be greater than that of Q, GðPÞP GðQÞ, when removing vertex oper-
ation is conducted on the instance graph.

(a) instance graph of P (b) instance graph of Q

v1

v2

v1

v3

v2

Fig. 16. Adding a new vertex into Q’s instance graph whose corresponding instance is not generated from P’s instance.
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(a) (b)

Fig. 17. An illustration of the problem we suffer from, where two different partition results obtained from the same instance graph.

1044 X. Jiang et al. / Data & Knowledge Engineering 68 (2009) 1034–1058



Proof. Given a vertex of P’s instance graph, vp, that is placed in a partition Par1 and an instance p corresponding to vp, if no
instance of Q can be generated based on p, vp should be removed from the instance graph. Specifically,

� If Par1 has more vertices besides vp, Par1 will still exist after removing vp, i.e., GðPÞ ¼ GðQÞ.
� If Par1 only contains vp, removing vp will also lead to deleting Par1, i.e., GðPÞ > GðQÞ.

Therefore, GðPÞP GðQÞ when removing vertex from the instance graph. �

Note that directly adopting above method can only produce an approximate G-Measure value. However, as all the in-
stances of the graph pattern Q are generated from those of its ancestor P, the exact modularity value can actually be com-
puted by merging these partitions obtained. Merging two neighbor partitions simply as if the modularity value increases7,
which can be seen as a local optimization of the modularity value. A global optimization has to analyze all the partitions for
maximizing the modularity value. Because the local optimization value is not less than the exact value, we can quickly prune
many spurious patterns by doing local optimizations only.

With above observations, the new approach is designed for mining G-Patterns. Specifically, we only partition a few pat-
terns’ instance graphs directly with the partition algorithm (in this paper only the 2-edge patterns). The instance graphs of
the descendant patterns are firstly partitioned according to their ancestors. Then, the G-Measure value is computed by merg-
ing these possible partitions. If a pattern’s value is already lower than the threshold during local optimizations, it can be dis-
carded directly.

If we map this approach to the input graph, we could find it actually follows the idea of divide and conquer. However, the
new approach is based on the instance graphs to partition the input graph, which can be seen as a type of prior knowledge of
the input graph. It thus avoids the problems mentioned in Section 3.1.

4. The G-Miner algorithm

In this section, we present the G-Miner algorithm which is designed for mining G-Patterns with G-Measure values
not less than a user specified minimum threshold. Specifically, we first introduce the Depth-First Search (DFS) code based
approach [3] for candidate generation and graph isomorphism testing. Then, we present the details of the G-Miner
algorithm.

4.1. The DFS code

Graph isomorphism testing, subgraph isomorphism testing, and candidate generation are costly steps in the frequent sub-
graph mining problems. In G-Miner, we use the DFS code based approach to solve these problems.

The basic ideas behind the DFS code based approach are given as follows. For a labeled graph G, for example, the one
shown in Fig. 18a, we have different DFS trees of this graph (see T1 in (b) and T2 in (c)). We call edges included in the
DFS tree are the forward edges and edges not in the DFS tree are the backward edges. A linear order � of the edges in G
is then defined. Particularly, given a DFS tree T and two edges a ¼ ðvia; vjaÞ and b ¼ ðvib; vjbÞ in G where via is the start node
of a and vja is the end node of a according to T,

a < b ¼

a and b are forward edges; vja < vjbð Þk via > vib&&vja ¼ vjbð Þ;

a and b are backward edges; via < vibð Þk via ¼ vib&&vja < vjbð Þ;

a is a forward edge and b is a backward edge; vja 6 vib;

a is a backward edge and b is a forward edge; via < vjb:

8>>>>><
>>>>>:

ð4Þ

With the �, the edges in G can be arranged into a sequence for individual DFS trees, called DFS code of G. For example, the
DFS code for T1 is ðhv0; v1;B; y;Ai; hv1; v2;A; x;Ai; hv2; v3;A; y;Ci; hv3; v1; C; x;AiÞ and that of T2 is ðhv0; v1;A; x;Ai;
hv1; v2;A; x; Ci; hv2; v0;C; y;Ai; hv1; v3;A; y;BiÞ.

As a linear order over the labels in the graph can further be defined, for example, A < B < C for the input graph G8, we are
able to sort these different DFS codes obtained. For example, as hv0; v1;A; x;Ai is smaller than hv0; v1;B; y;Ai with the linear or-
der over the labels, the DFS code of T2 is thus smaller than that of T1, which can also be proved to be the minimum DFS code of
G.

Because two graphs are isomorphic if they have the same minimum DFS code, the problem of mining frequent subgraphs
can be changed to mining frequent minimum DFS codes. Particularly, the edge sequence for generating a subgraph must be
the minimum DFS code of this subgraph. As a result, only a few candidates would be explored, which reduces the total cost of
subgraph isomorphism testing and candidate generation.

7 Note that merging two partitions will not ruin the downward closure property, since the number of partitions can only decrease.
8 Note that we can order the labels using other approaches besides the lexicographic order. For example, in [3], the labels are ordered according to their

frequencies in the data set.
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4.2. Algorithm details

G-Miner utilizes a Depth-First Search method to find G-Patterns, since this approach has shown to have a computational
advantage over the Breadth-First Search for mining a single labeled graph [27,11] and works efficiently with the DFS code.
Specifically, G-Miner starts with a set of frequent 2-edge graph patterns. Then, it recursively generates potential descendants
with a growth of one edge. Graph patterns with G-Measure value not less than the minimum support threshold are selected.

Fig. 19 outlines the pseudo-code of the G-Miner algorithm. It is similar to the gSpan algorithm. The major differences
between the two algorithms are that G-Miner will partition the instance graphs and use the G-Measure for finding frequent
subgraphs. Explanations of this algorithm are presented as follows.

Step 1 (line 1–4): Scan the whole input graph G into the memory. Remove infrequent vertices and edges from the input
graph. The remaining vertices and edges are relabeled in descending frequency for forming 1-edge graph patterns. These
frequent 1-edge graphs are added into S1 and sorted in the DFS lexicographic order. Note that in this paper we only con-
sider the problem that the whole data set can be held into the main memory. For large scale data sets, we could adopt our
developed technique on mining a set of graphs [4] with certain motivations. That will be our future work.
Steps 2–4: Loops to generate qualified G-Patterns. It stops after all the elements of S1 are explored.
Step 2 (line 6): For each 1-edge graph pattern, enumerate its potential 2-edge children. Note that only graph patterns
satisfying the minimum DFS code are built.
Step 3 (line 8–10): For each 2-edge graph pattern P, record P’s instances in the input graph G, build P’s instance graph and
partition this graph. Each instance will be assigned into a particular partition according to the partition result.
Step 4 (line 11): Subgraph_mining recursively generates P’s potential descendants with a growth of one edge (satisfying
the minimum DFS code). Only graph patterns with G-Measure value greater than the minimum support are added to S
(line 17) and further explored (line 18). Their instances are firstly placed into different partitions according to the ances-
tors (line 21). Then, neighbor partitions are merged as new partitions (similar to the agglomerative clustering) if the mod-
ularity value increases (line 13). For patterns whose G-Measure values are already lower than the threshold before
finishing the merge process, they are discarded immediately.
Step 5 (line 12):Add the frequent 1-edge graph set S1 to S.

Note that the reason why G-Miner starts from 2-edge patterns but not 1-edge patterns is because the instance graphs of
the 1-edge patterns are all composed of a set of disconnect vertices. As a result, the G-Miner algorithm cannot separate in-
stances that are located in the same area from those appearing in different areas, making poor performance for finding G-
Patterns.

5. Experiments

In this section, we evaluate the performance of the G-Miner algorithm and the usefulness of the G-Patterns. Specifically,
we evaluate: (1) the effectiveness of the G-Miner algorithm for mining G-Patterns. (2) the computational efficiency of the G-
Miner algorithm for mining G-Patterns.9 (3) the application of G-Patterns for text categorization.
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(a) Graph G (b) DFS Tree T1 (c) DFS Tree T2
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Fig. 18. An illustration of the DFS code based approach. The input graph G has different DFS trees, which are shown in (b) and (c).

9 For evaluation, we only compare G-Miner with algorithms in which a post-processing step can be adopted, as we do not find an effective way of defining
the K value for partitioning the input graph and make it difficult to compare with the divide and conquer approach.
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5.1. The performance of the G-Miner algorithm

5.1.1. The experimental setup
We evaluate the performance of the G-Miner algorithm on both synthetic and real-world data sets.
Synthetic Data. We develop a synthetic data generator which is based on Barabasi’s evolving scale-free random graph

model [35] to produce labeled power-law graphs, as we can easily observe the difference between the patterns mined by
the existing frequent subgraph mining algorithms and those discovered by G-Miner on such graphs.

The procedure of this generator for producing a labeled graph is as follows: Firstly, by setting the initial vertex seed num-
ber jV j, the number of edges to be added at each step jEj, and the number of steps for evolution N, an unlabeled power-law
graph is generated. Then, each vertex is assigned a particular label, which is controlled by the number of labels in the graph
(L) and the probability of neighbor vertices sharing a same label (a). The details how the parameters L and a affect the fre-
quent patterns mined are given in Section 5.1.2. The summary of the parameter settings used to create the synthetic graphs
is given in Table 2.

Real-world Data. Seven real-world data sets are used in the experiments. The basic characteristics of these data sets are
shown in Table 3.

The credit and aviation data sets are downloaded from SUBDUE’s web site10. Among all, the aviation data set is the largest
used in the experiments, with more than 100,000 vertices and 90,000 edges.

The citation50_15, citation50_20, and citation50_25 data sets are generated from the citation graph used in the KDD Cup
200311, the vertices of which represent research papers and the edges of which indicate the citation relation between papers.

Fig. 19. The pseudo-code of the G-Miner algorithm.

10 http://www.subdue.org.
11 http://www.cs.cornell.edu/projects/kddcup/.
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Because the original citation graph does not have any meaningful labels for the vertices and edges, we firstly apply a clustering
algorithm to group the abstracts of the papers into 50 topic clusters. The cluster IDs are then assigned to the vertices as their
labels. For the edges, we give them a common label, since they all represent the citation relation. As our experiments are as-
sumed for processing undirected graphs only, the directions of the edges are ignored. Note that the original citation graph is
very dense, containing 29,555 vertices and 352,807 edges. A simple graph pattern can have many instances in the data set
(for example, the one shown in the Fig. 20 even has a frequency of 1,843,068), which can lead to the programs quickly run
out of memory even just starting mining. Therefore, we only use a subgraph of the original graph for evaluation, which is cre-
ated by removing vertices with degree greater than a threshold h and their associated edges from the original graph. In our
experiments, we set the thresholds as 15, 20, and 25, respectively.12 Such settings enable us to conduct a more comprehensive
study and allow the computation to be finished in a reasonable amount of time.

The PPI data set is a protein–protein interaction network13, in which each vertex represents a protein and an edge is added
between two vertices if the corresponding proteins are detected to have an interaction in the experiments. For each vertex, we
assign the protein’s functional class as its label, where the functional class scheme used is the one established by the MIPS data-
base14. Since all the edges represent the interaction relation, we only give one label to them. Similar to the citation graphs, we
remove vertices whose degrees are greater than 10 and the incident edges from the original graph to guarantee the computation
to be done in a reasonable mount of time.

The chemical data set15, provided for the Predictive Toxicology Evaluation Challenge [36], contains 340 chemical com-
pounds (i.e., 340 labeled graphs) that has been used for evaluating the performance of FSG [2] and gSpan [3]. It is used by
us to test whether G-Miner can also effectively find frequent subgraphs from a set of small graphs as we claim. Note that
the 340 small graphs have to be merged into a large graph as the input and each becomes a disconnected component of the
large graph.

Baseline Algorithms. In our experiments, we implement two algorithms, namely baseline-1 and baseline-2, as the base-
lines for comparison. The details of the two algorithms are given as follows.

The baseline-1 algorithm is a standard algorithm for finding frequent subgraphs in a single labeled graph. The support
value of a graph pattern is computed as the exact number of its instances in the input graph. Its pseudo-code is given in
Fig. 21.

As mentioned previously, the standard support measure, i.e., the one used in baseline-1, may not have the downward clo-
sure property for mining a single labeled graph. To overcome this problem, a downward closure property holding measure is
proposed by Vanetik et al. [28] that computes the maximum independent set of a pattern’s instance graph and assigns the
size as its support value (for example, for the pattern P shown in Fig. 4a, its support value would be 2 with this support mea-
sure). Programs with this support measure are supposed to quickly discover a set of frequent subgraphs from the input
graph, although it cannot find all the frequent subgraphs. Here, the baseline-2 algorithm is implemented with Vanetik’s sup-
port measure for finding frequent subgraphs. Its pseudo-code is given in Fig. 22.

Table 2
Parameter settings for the synthetic data sets used in the experiments.

Data set jV j jEj N L a

V2E1N500L20A55 2 1 500 20 0.55
V2E1N500L20A05 2 1 500 20 0.05
V2E1N550L10A65 2 1 550 10 0.65
V2E1N550L100A65 2 1 550 100 0.65

Table 3
The characteristics of the real-world data sets.

Data set Total number of Total number of

Vertices Edges Vertex label Edge label

Credit 14,700 14,000 59 20
Aviation 101,185 98,576 6173 51
Citation50_25 18,114 47,776 50 1
Citation50_20 15,766 34,494 50 1
Citation50_15 12,760 21,219 50 1
PPI 4931 10,003 28 1
Chemical 9189 9317 66 4

12 When setting a higher threshold h, the resulted graph would be denser, making more subgraphs extracted with more time.
13 The S. cerevisiae data set is available at http://dip.doe-mbi.ucla.edu/dip/Download.cgi.
14 This scheme is available in http://mips.gsf.de/projects/funcat, containing 28 classes.
15 http://www.comlab.ox.ac.uk/activities/machinelearning/PTE/.
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All the experiments are conducted on an Intel 64-bit Xeon CPU (2.0 GHz) PC with 4G main memory, running linux. When
partitioning the instance graph, we use a fast community detection algorithm [34] with time complexity of Oðmd log nÞ,
where n is the number of vertices, m is the number of edges, and d is the depth of the dendrogram. When computing the
MIS of the instance graph, we use a fast exact maximum clique algorithm wclique [37]. Note that the reason of using a
64-bit PC is because the 32-bit JVM can only support up to 1.5 Gigabyte memory while some data sets require more memory.
In our experiments, the maximum memory heap size is 3G. Also, as our program is implemented using JAVA, it gives us a
disadvantage when comparing with programs using C/C++.

5.1.2. Illustration of the global distribution of G-Patterns
Firstly, we evaluate the effectiveness of the G-Miner algorithm for mining G-Patterns. As the real-world data sets are too

large for visualization, we only use the synthetic data sets here. For data sets V2E1N500L20A55 and V2E1N500L20A05, we
set a lower a value to the latter so that the probability of two linked vertices sharing a common label is more random, which
leads to fewer frequent patterns to be found. For data sets V2E1N550L10A65 and V2E1N550L100A65, assigning more labels
to the latter also leads to fewer frequent patterns to be found.

The experimental results of the G-Miner algorithm on the synthetic data sets are given in Figs. 23–26, respectively. We
have highlighted vertices which are contained in the top 10 frequent multi-edge G-Patterns found in these data sets. Also, we
mark the coverage of the top 10 frequent multi-edge patterns found by baseline-1 whose edge number is not greater than
the maximal edge number of the frequent G-Patterns discovered.

We can see patterns found by baseline-1, as we expect, occur only in several particular areas of the input graphs (partic-
ularly, these found patterns all occur around the vertices with high degrees), while patterns found by G-Miner distribute

21

49

49

4949

Fig. 20. A 4-edge pattern with frequency of 1,843,068 in the original citation graph.

Fig. 21. The pseudo-code of the baseline-1 algorithm.
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globally in the synthetic graphs. Table 4 lists the number of unique vertices found by the two algorithms. Although the num-
ber of frequent subgraphs in each synthetic graph is different, G-Miner can always effectively find G-Patterns which cover
more unique vertices of the input graphs.

To save space, we do not present the coverage of the frequent patterns by baseline-2 in this paper. The interested readers
can find that patterns mined by baseline-2 seem globally distributed in the input graph as well. However, the G-Patterns
cannot be effectively identified by baseline-2. An illustration of this point is given in Fig. 27, where the instance graph of
a particular graph pattern is shown. If we use the G-Measure, the value of this pattern would be 1, since the vertices of
the instance graph are closely connected. However, if we compute the maximum independent set of the instance graph, this
pattern’s value will be 2. These closely connected instances cannot be identified as a whole.

5.1.3. Computational efficiency of mining G-Patterns
We evaluate the computational performance of the G-Miner algorithm for finding G-Patterns on the first six real-world

data sets.16 The baseline-1 and baseline-2 algorithms are used for comparison, as a post-processing step can be applied to the
results of the two algorithms for finding G-Patterns. If G-Miner outperforms baseline-1 and baseline-2 in the experiments, it
certainly runs faster than the approaches that further adopt a post-processing step.

Table 5 shows the runtime (in seconds), the minimum support threshold used, and the number of frequent patterns found
by the three algorithms. Entries marked with ‘‘-” represent experiments aborted for running more than one day or out of
memory. We can see G-Miner runs greatly faster than baseline-1 and baseline-2 on these data sets. Given the same mini-
mum support threshold and 24-hour slot, baseline-1 cannot work on any data sets and baseline-2 works only on three. Such
results clearly demonstrate the computational efficiency of the G-Miner algorithm for finding G-Patterns.

Fig. 22. The pseudo-code of the baseline-2 algorithm.

Table 4
The number of unique vertices contained in the frequent patterns found by G-Miner and Baseline-1.

Data sets G-Miner Baseline-1

V2E1N500L20A55 107 52
V2E1N500L20A05 59 20
V2E1N550L10A65 185 54
V2E1N550L100A65 44 22

16 The chemical data set is only used to compare the performance of G-Miner with those of gSpan and FSG shown later.
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5.1.4. Example G-Patterns
We use the G-Patterns found in the PPI data set to illustrate the type of subgraphs that G-Miner can discover. Recall that

the PPI data set is a network recording the interactions between proteins. Therefore, the G-Patterns found are the common
structures among proteins in the interaction network, which can be used to analyze these proteins.

Fig. 28 shows two representative G-Patterns found in the PPI data set. It can be immediately seen that vertices of the
found G-Patterns belonging to the same functional class, same as the observations of the previous experiments that proteins
of a frequent pattern perform the same biological function [25]. Furthermore, we see that proteins of Cell Transport function

Fig. 24. The coverage of the top 10 frequent multi-edge patterns extracted by G-Miner compared with that of baseline-1 on graph V2E1N500L20A05.

Fig. 23. The coverage of the top 10 frequent multi-edge patterns extracted by G-Miner compared with that of baseline-1 on graph V2E1N500L20A55.
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have a line structure (see Pattern A) while proteins of Cell cycle and DNA processing have a tree structure (see Pattern B).
Therefore, the two patterns can be used to help classify unknown proteins of the two categories.

5.1.5. Performance comparison with existing algorithms
Comparison with SEuS. The SEuS algorithm [38] is designed for mining frequent subgraphs in a single labeled directed

graph. Particularly, it first builds a data structure called data summary, which is a compressed representation of the input
graph. Then, frequent subgraphs are found based on the data summary, in which the support values of the patterns are com-
puted as their exact number of instances in the input graph, same as baseline-1. The advantage of such an approach is that
the most frequent patterns in the data set can be easily found. However, it still needs to explore the whole candidate space
for finding frequent patterns with support values no less than a predefined threshold.

Here, we only compare the computational performance of G-Miner with that of SEuS on the credit data set, as the other
real-world data sets either cannot be treated as a directed graph or be processed by SEuS. Given the same minimum support
threshold h ¼ 100, 11,696 patterns mined by G-Miner using 47 seconds, that is 36 frequent subgraphs per second. However,
as SEuS sets a beam width parameter17 to limit the number of possible candidates to be tested, only 5 frequent graph patterns
found by SEuS with 2.1 seconds, that is 2.4 frequent patterns per second. We can see G-Miner runs much faster than SEuS for
mining this graph.

Comparison with SUBDUE. Different from G-Miner or SEuS which find frequent subgraphs in a single labeled graph, SUB-
DUE [10,39] is to find subgraphs that can compress a single graph according to the minimum description length principle.
Specifically, SUBDUE searches for patterns Ps in the graph G that minimize

IðPÞ þ IðGjPÞ;

where IðPÞ represents the number of bits required to encode the pattern P and IðGjPÞ is the number of bits required to encode
G with respect to P. Such a requirement makes the patterns found by SUBDUE may not be the most frequent patterns. There-
fore, we cannot directly compare G-Miner with SUBDUE because of the inherent difference between the two algorithms.

Here, we only evaluate the computational performance of the SUBDUE system on the first six real-world data sets. Be-
cause SUBDUE employs a heuristic beam search to keep limited candidates for further exploration, only a few patterns
are mined from these data sets.18 The results are given in Table 6. We can see SUBDUE generally requires more time than
G-Miner for mining these real-world data sets. For the aviation data set, the program even does not finish the computation after
spending one day. Such results clearly indicate the computational inefficiency of SUBDUE for processing large graphs.

Comparison with gSpan and FSG. One of the reasons why the problem of mining a single labeled graph is more general and
applicable is that its solution can be used for mining frequent subgraphs in a set of labeled graphs directly. For demonstration,

Fig. 25. The coverage of the top 10 frequent multi-edge patterns extracted by G-Miner compared with that of baseline-1 on graph V2E1N550L10A65.

17 The default beam width in SEuS is 5 for version 1.0 and we cannot set a larger value, which will make the program crash.
18 The default beam width is 4 for SUBDUE version 5.2.1.
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we employ the G-Miner to find frequent subgraphs from the chemical data set, where gSpan19 and FSG20 are used for
comparison.

Note that we modify the setting of the G-Miner algorithm by forming reachable based instance graphs instead of edge-
disjoint based instance graphs in this comparison. That is, an edge will be added to two vertices of the instance graph if their
corresponding instances are reachable through certain paths in the input graph. In this case, a pattern’s G-Measure value can
actually be computed by counting the number of disconnected components in the instance graph. G-Miner’s output will thus
be the same as those of gSpan and FSG.

The experimental results of G-Miner, gSpan, and FSG, in terms of the runtime (in seconds) and the number of frequent
subgraph patterns found on the chemical data set, are given in Table 7. The reasons why G-Miner runs slowly may be attrib-
uted to the difference between JAVA and C/C++ for computation and the time required for identifying whether two instances
are reachable in the input graph. Nevertheless, we can see G-Miner extracts the same number of frequent subgraphs from
the chemical data set as gSpan and FSG.

Table 5
Experimental results of the G-Miner on the real-world data sets compared with those of baseline-1 and baseline-2.

Data set h G-Miner Baseline-1 Baseline-2

Runtime # Patterns Runtime # Patterns Runtime # Patterns

Credit 50 155.2 73,992 – – 432.6 73,992
100 33.4 11,696 – – 217.9 11,696

Aviation 1500 80.7 5231 – – 88,623 5231
2,000 16.6 843 – – 24,988 843

Citation50_15 10 2.1 1099 – – 2.9 1140
20 1.1 260 – – 1.1 260

Citation50_20 30 – – – – – –
40 1.45 108 – – – –

Citation50_25 70 1.57 65 – – – –
80 1.34 53 – – – –

PPI 250 – – – – – –
275 286.5 12 – – – –

Fig. 26. The coverage of the top 10 frequent multi-edge patterns extracted by G-Miner compared with that of baseline-1 on graph V2E1N550L100A65.

19 http://www.xifengyan.net/software/gSpan.htm.
20 http://glaros.dtc.umn.edu/gkhome/pafi/overview.
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5.2. The application of G-Patterns for text categorization

Here, we present an application of G-Patterns for classifying text documents.

5.2.1. Basic principle
Different from the common text classification methods that only utilize the document content, approaches of classifying

hypertext could further use the links between the documents to tackle this problem. For example, a relaxation labeling prob-
lem [21,22] is introduced that assigns a particular class label to an un-classified document by considering both the content of
the document and the labels of its neighbors. An illustration of such a problem is given in Fig. 29, where we have known
certain documents’ labels (i.e., nodes presented with rectangle and triangle) and want to infer the left documents’ labels
(i.e., nodes marked with ?).

The basic solution of the relaxation labeling problem is presented as follows. Given a document d, the probability of assign-
ing a label c to d is computed by

Uc;d ¼ Pr kðdÞ ¼ cjsðdÞ; kðd1Þ; . . . ; kðdnÞ½ �; ð5Þ

Table 7
The experimental results of G-Miner, gSpan, and FSG on the chemical data set.

h G-Miner gSpan FSG

Runtime # Pattern Runtime # Pattern Runtime # Pattern

50 7.5 434 0.2 434 0.6 434
100 5.8 71 0.1 71 0.2 71
150 5.6 58 0.1 58 0.2 58

Fig. 27. An example instance graph on which different support values are obtained by using the G-Measure and the MIS based support measure.

Table 6
The performance of SUBDUE on the real-world data sets.

Data set Number of patterns Runtime (second) Frequency of found patterns

Credit 3 65.8 341 395 253
Aviation 3 – – – –
Citation50_25 3 89.26 6 5 2
Citation50_20 3 61.6 10 9 8
Citation50_15 3 35.29 10 9 9
PPI 3 4104 96 112 113

(a)    Pattern A (b)    Pattern B
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Fig. 28. Two example G-Patterns discovered by G-Miner from the PPI data set.

1054 X. Jiang et al. / Data & Knowledge Engineering 68 (2009) 1034–1058



where Uc;d is the probability of assigning c to d, kðdÞ represents the label of d, sðdÞ represents the content of d, and d1 through
dn are the documents linked to d in the data set. As there is no direct dependence between the content of a document and the
labels of its neighbors, we can simplify the solution as:

Uc;d ¼ Pr kðdÞ ¼ cjsðdÞ½ � � Pr kðdÞ ¼ cjkðd1Þ; � � � ; kðdnÞ½ �: ð6Þ

Finally, a document d will be assigned a label c� if Uc� ;d is the maximal value.
Here, we propose using G-Patterns to resolve this relaxation labeling problem. Specifically, we assign the label to an un-

known node based on the possible G-Patterns it matches. For example, the unknown node marked with red color in Fig. 29
will be assigned label ‘‘rectangle” by the existing approach as most of its neighbors are labeled with ‘‘rectangle”. However, as
this node could satisfy the G-Pattern shown in Fig. 30, it may be assigned the label triangle as well.

The G-Pattern based approach of the relaxation labeling problem can be presented as:

Uc;d ¼ Pr kðdÞ ¼ cjsðdÞ½ � � Pr kðdÞ ¼ cjk P1ðdÞð Þ; . . . ; k PnðdÞð Þ½ �; ð7Þ

where PnðdÞ represents a G-Pattern Pn the document d matches. The document d will be assigned a label c� if Uc� ;d gets the
maximal value.

5.2.2. Results
We conduct experiments to evaluate the performance of the G-Pattern based solution for the relaxation labeling problem.

For evaluation, we would compare the performance of labeling documents using Eq. (7) with that of using Eq. (6). However,
as the content of the documents would not affect this evaluation, we simplify the evaluation as the comparison between

Uc;d ¼ Pr kðdÞ ¼ cjkðd1Þ; . . . ; kðdnÞ½ � ð8Þ

and

Uc;d ¼ Pr kðdÞ ¼ cjk P1ðdÞð Þ; . . . ; k PnðdÞð Þ½ �: ð9Þ

The Wikipedia21 data set is used for this experiment, which contains 5360 documents crawled from the Wikipedia dump
file. These documents have been classified into 7 classes, including ‘‘Politics”, ‘‘Computer Science”, ‘‘Physics”, ‘‘Chemistry”, ‘‘Biol-
ogy”, ‘‘Mathematics”, and ‘‘Geography”. Because the graph of the original data set is very dense, containing 83,956 links, we re-
moved links if the content similarity of their linked documents is larger than 0.05 to compress the graph. Finally, there are 4727
links kept for the experiment.

The details of this experiment are as follows: First, a set of documents are selected from the data set as the testing doc-
uments. Then, G-Patterns for estimating Pr kðdÞ ¼ cjk P1ðdÞð Þ; . . . ; k PnðdÞð Þ½ � and the transition matrix for estimating
Pr kðdÞ ¼ cjkðd1Þ; . . . ; kðdnÞ½ � are built based on the graph formed with the left documents. Finally, these testing documents
are labeled with Eqs. (8) and (9), respectively.

?

?

?

?

? ?

?
Rectangle

Triangle

Fig. 29. An illustration of the relaxation labeling problem.

Fig. 30. A sample G-Pattern used to label documents.

21 http://www.mpi-inf.mpg.de/angelova/.
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Two hundred documents that have at least one link with other documents are selected for testing. The performance of the
two methods is evaluated by the precision and the F-measure of the testing documents labeled, which is presented in Table
8. We can see the G-Pattern based approach indeed increases the performance of classifying documents. The improvement in
precision obtained is 15% (from 0.53 to 0.61) and the improvement in F-Measure obtained is 7%. Such results validate our
approach of using G-Patterns to resolve the relaxation labeling problem.

6. Related work

Given the population of the graph structure data, a large number of graph mining algorithms have been developed for ana-
lyzing and managing such data. Based on the difference of the inputs to the algorithms, we can classify the existing graph min-
ing algorithms into two categories, namely mining frequent/important patterns in a set of labeled graphs and mining frequent/
important patterns in a single labeled graph. The G-Miner algorithm presented in this paper belongs to the second category.

Between the two classes of algorithms, algorithms belonging to the first category [1–7] are more mature. Most existing
graph mining algorithms are of this category. These algorithms can efficiently and effectively discover all the frequent sub-
graphs in the data and be scaled to large data sets. However, algorithms of the second category have received much less
attention, despite the fact that this problem is more general and applicable. A simple illustration for this point is that algo-
rithms that mine a single labeled graph can be directly used to find subgraphs in a set of labeled graphs. However, algorithms
that mine in a collection of graphs have to be modified before working on a single labeled graph.

Besides the G-Miner algorithm, there are only a few attempts for finding frequent/important subgraphs in a single labeled
graph [10,40,28,27,38]. As a major difference, G-Miner targets on finding globally distributed frequent subgraphs while these
existing mining algorithms usually lead to the appearance of the identified frequent subgraphs regionally in the input graph.
In addition to this key difference, we compare and contrast some algorithmic ideas of the related mining algorithms as follows.

The SUBDUE system [10,39] is a well-known algorithm which selects qualified patterns for compressing the input graph
under the minimum description length principle. Specifically, SUBDUE searches for patterns Ps in the input graph G that
minimize

IðPÞ þ IðGjPÞ;
where IðPÞ represents the number of bits required to encode P and IðGjPÞ is the number of bits required to encode G with
respect to P. This requirement makes the patterns found by SUBDUE may not be the most frequent patterns in the graph.
Furthermore, to avoid the problem of exploring the whole search space, a heuristic beam search is employed to narrow
the search space. Only limited candidates are kept for further exploration. As a result, SUBDUE cannot find the complete
set of important/frequent subgraphs in the input graph. The similar approach is adopted by GBI [40] for finding typical sub-
graphs in a single labeled graph.

The SEuS algorithm [38] aims at finding frequent subgraphs in a directed labeled graph. In particular, SEuS first uses a
data structure called data summary to construct a compressed representation of the input graph, similar to DataGuides
[41] for semi-structured data. Then, the frequencies of the graph patterns are estimated based on the built data summary.
SEuS can quickly find the most frequent patterns in the input graph. However, it still needs to explore the whole search space
for finding all the frequent patterns with support value not less than a predefined threshold. As the authors indicate [38], the
SEuS algorithm is not efficient if the input graph contains a large number of frequent subgraphs with low frequency and is
useful only when there are a few frequent subgraphs with high frequency in the input graph. This limitation greatly affects
its ability for mining G-Patterns, since G-Patterns are normally with relatively low frequencies.

Given the fact that the standard support measure does not guarantee the downward closure property for finding frequent
subgraphs in a single labeled graph, Vanetik et al. [28] propose a downward closure property holding measure instead. Spe-
cifically, this proposed measure computes the maximum independent set (MIS) of a graph pattern’s instance graph. Only pat-
terns with MIS size not less than the minimum support threshold are selected. Because of the downward closure property,
algorithms implemented with this support measure may quickly find a set of frequent subgraphs. However, computing the
maximum independent set of a graph has proved to be a NP-hard problem [42]. Algorithms with this support measure can
even perform worse than those with the standard approach.22 Also, as shown in [27,11], algorithms implemented with this
measure are only efficient for mining large sparse graphs due to the high cost of computing the maximum independent set.
As a result, the new measure is not a general solution for quickly mining a single labeled graph. Note that although some vari-
ants of Vanetik’s support measure are proposed [43,44], these new measures only reduce the number of MIS to be computed
and do not change the problem substantially.

Table 8
The experimental results of labeling the 200 testing documents using Eq. (8) compared with that of using Eq. (9).

Method Eq. (8) Eq. (9)

Precision 0.53 0.61
F-Measure 0.69 0.75

22 If the maximal edge number of the frequent pattern to be found is also predefined, the algorithm with Vanetik’s support measure may run slower than
algorithms with the standard support measures on certain graphs, e.g., the credit data set we have used in the experiments.
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7. Conclusion

In this paper, we have formalized the problem of finding G-Patterns, a type of globally distributed frequent subgraphs, in
a single labeled graph. As a measure of association for graph data, G-Measure is proposed to find G-Patterns. It is conse-
quently exploited to develop a G-Miner algorithm for efficiently identifying G-Patterns in a single labelled graph. Experimen-
tal results from both synthetic and real-world data sets demonstrated the efficacy of the G-Miner for discovering G-Patterns.
Finally, we present an application of the G-Patterns.
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