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Region-Aware Reflection Removal With Unified
Content and Gradient Priors

Renjie Wan , Student Member, IEEE, Boxin Shi, Member, IEEE, Ling-Yu Duan , Member, IEEE,
Ah-Hwee Tan, Senior Member, IEEE, Wen Gao, Fellow, IEEE, and Alex C. Kot, Fellow, IEEE

Abstract— Removing the undesired reflections in images taken
through the glass is of broad application to various image
processing and computer vision tasks. Existing single image-
based solutions heavily rely on scene priors such as separa-
ble sparse gradients caused by different levels of blur, and
they are fragile when such priors are not observed. In this
paper, we notice that strong reflections usually dominant a
limited region in the whole image, and propose a region-aware
reflection removal approach by automatically detecting and
heterogeneously processing regions with and without reflections.
We integrate content and gradient priors to jointly achieve
missing contents restoration, as well as background and reflec-
tion separation, in a unified optimization framework. Extensive
validation using 50 sets of real data shows that the proposed
method outperforms state-of-the-art on both quantitative metrics
and visual qualities.

Index Terms— Reflection removal, internal patch recurrence,
content prior, sparse representation.

I. INTRODUCTION

CAPTURING images through a transparent glass is
unavoidable in many daily scenarios such as looking

through a window or in front of a glass show case at the
museum. Images taken under such circumstances usually have
the objects of interests overlaid by the undesired reflections of
the scene behind the camera. Feeding such images as input
into general image processing and computer vision algorithms
may result in degenerated output, since most algorithms only
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process images captured under reflection-free conditions with
the desired background scene being clean and clear. Given
such a mixture image, reflection removal aims at enhancing the
clearity of the desired background scene while removing the
undesired reflections. It has been shown to be an important pre-
processing step for many image processing (e.g., image stitch-
ing [1]) and computer vision (e.g., image classification [2])
tasks to largely increase their accuracy. The reflection removal
problem can be represented by the following equation:

I = B + R + n, (1)

where I is the input mixture image, B is the background image
to be clearly recovered, R is the reflection to be removed, and
n is the additive noise. We show an example of I, B and R
in Figure 1.

This problem is challenging due to its obviously ill-posed
nature — the number of unknowns is twice the number of
equations. Besides, the structures and properties of reflections
can be similar with that of background, which makes it
difficult to simultaneously remove the reflections and restore
the contents in the background. To reduce ill-posedness of the
problem, reflection removal can be solved by using a sequence
of images (e.g., from different viewpoints [1], [3] or using
images under various polarization status [4]), but such requests
for special data capture setup or device largely limit their
wide applicability, for instance to images downloaded from
the Internet.

With image statistics and priors being taken into consid-
eration, reflection removal can also be solved using only
a single image. Motivated by the fact that natural image
gradients have the heavy-tailed distribution, the gradient priors
are widely used to fit the heavy-tailed distribution in solving
different problems, e.g., image deblurring [6] and single image
reflection removal [5], [7], [8]. To apply such gradient priors,
special properties have to be observed on one of I, B,
and R, or two or three of them simultaneously. For example,
the edges from B and R need to be clearly distinguishable
and could be manually annotated, then Laplacian mixtures are
applied to model the distributions of B and R [7]; the image
is assumed to be captured with B in focus and R out of focus,
i.e., the blur levels from B and R show obvious difference, then
narrow Gaussian distributions can model their differences [5].
However, when the reflection dominates the contents, gradient
priors can hardly be used and content priors are introduced to
solve the problem through restoration of the missing contents
instead of separating two images. For example, GMM patch
prior can be adopted to learn the image prior from the external
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Fig. 1. Examples of real-world mixture images and reflection removal results using LB14 [5], SK15 [2], and our method.

sources [2], and such external patch recurrence can be applied
to repair the mixture patch with several clean patches [9].
However, these methods are either based on the observations
that reflections show ghosting effects observed through a piece
of thick glass [2], or require reflection-free patches similar to
the background image from an external database [9], which
limit their practicability for a general scenario taken in the
wild.

In many real-world mixture images taken in the real world,
the reflections only occupy a part of the whole image plane like
regional ‘noise’, as the examples shown in Figure 1. However,
existing single image methods treat the whole mixture image
in a global manner. Either the gradient prior based separation
(e.g., LB14 [5]) or the content prior based restoration (e.g.,
SK15 [2]) shows artifacts in regions with weak reflections,
as shown in the example of Figure 1. The result of LB14 [5]
becomes globally darker than the ground truth background B
and the result of SK15 [2] suffers from the patchy effect where
the color becomes non-uniform; both methods are not able to
effectively handle locally strong reflections, which results in
residue edges on the pillar next to the car.

In this paper, we propose a Region-aware Reflection
Removal (R3) approach to address these limitations. Given
regions with and without strong reflections automatically
detected, we apply customized strategies to handle them,
so that the regional part focuses on removing the reflections
with fewer artifacts and the global part keeps the consistency
of the color and gradient information. We integrate both the
content and gradient priors into a unified framework, with
the content priors restoring the missing contents caused by
the reflections (regional) and the gradient priors separating the
two images (global). As an example, the result of our method
shown in Figure 1 shows less reflection residues and more
complete image content than previous methods.

The framework of our method is illustrated in Figure 2.
Given the input mixture image I, we consider the reflection
removal as image restoration with complementary priors to
restore the missing contents, which is similar to [9] in the patch
matching stage, but we utilize the internal patch recurrence
from the input mixture image itself instead of relying on

external database like [9], which extends the practicability
of our method to more diverse scenes. In the removal stage,
we model the gradient distributions of B and R with long-
and short-tail distributions respectively, to avoid the direct
dependency on commonly assumed image properties (e.g., blur
levels [5] or ghosting effect [2]) and hence better suppress
artifacts by residual reflections. Our major contributions are
summarized as follows:

• We build a R3 framework by automatically detecting
regions with and without strong reflections and applying
customized processing on different regions for more
thorough reflection removal and more complete image
content restoration;

• We develop a new content prior based on the internal
patch recurrence to effectively restore missing contents
covered by reflections;

• We integrate the content prior with newly designed
gradient priors that distinctively model the distributions
of reflection R and background B to achieve robust
separation in a jointly optimized manner.

Our method is evaluated on a real world dataset of 50 scenes
with the mixture images and ground truth background and
shows superior performance both quantitatively and visually.

The remainder of this paper is organized as follows.
Section II introduces relevant prior works. Section III
and Section IV describe the proposed reflection removal
method and its corresponding optimization solution, respec-
tively. Experimental results and discussions are presented in
Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

In addition to reflection removal, our method is also related
to patch based image restoration and sparse representation.
We will briefly review relevant prior works about these three
topics in the following paragraphs.

A. Reflection Removal

Previous work on reflection removal can be roughly cate-
gorized as single image and multiple image based methods.
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Fig. 2. The framework of our method. In the patch matching stage, we obtain reference patches from intermediate results of background in the detected
reflection dominant regions using internal patch recurrence; then in the removal stage, the information from reference patches are used to refine the sparse
codes of the query patches to generate the content prior. With the content prior and long-tail gradient prior, the background image B is recovered; based on
the short-tail gradient prior, the reflection R is also estimated.

The single image approaches exploit the special properties of
the background and reflection layers to deal with the highly
ill-posed nature of this problem. Different priors are employed
to make this problem more tractable: For example, Levin and
Weiss [7] adopted the sparsity priors to decompose the input
image. However, their method relied on the users to label
the background and reflection edges, which is quite labor-
intensive and may fail in textured regions. Li and Brown [5]
made use of the different blur levels of the background and
reflection layers. Recently, Shih et al. [2] adopted the GMM
patch prior to model the ghosting effects of the reflections.
Nikolaos et al. [10] adopted the Laplacian data fidelity term
to solve this problem. However, the requirements for the
properties of the background and reflection layers (different
blur levels [5], [8], visible ghosting effects [2]) make them
difficult to handle many general scenes when these properties
are weakly observed.

Multiple image based methods remove the reflection by
using a set of images taken from different viewpoints [1], [11].
By exploiting the motion cues between the background and
reflection from multiview captures and assuming the glass is
closer to the camera, the projected motion of the two layers
is different due to the visual parallax. The motion of each
layer can be represented by using parametric model, such
as the translative motion [12], the affine transformation [11],
and the homography [11]. In contrast to the fixed parametric
motion, dense motion fields provide a more general modeling
of layer motions represented by per-pixel motion vectors.
Existing reflection removal methods estimate the dense motion
fields for each layer using the optical flow [13], SIFT flow [3],
[14], [15], the pixel-wise flow field [1]. Special capture con-
ditions and camera settings, such as flash and no-flash image
pair [16], different focuses [17], and light field cameras [18]
also provide useful cues for reflection removal. Although the
multiple image methods show more reliable results when input

data are appropriately prepared, the requirement for special
facilities or capturing limits such methods for practical use,
especially for mobile devices or image downloaded from the
Internet.

B. Patch Based Image Restoration

Patch based image restoration has been used as a strong
prior to solve a variety of ill-posed vision problems. It makes
use of the patch recurrence property and can be roughly
divided into two categories: internal methods and external
methods. For internal methods, references patches are found
from the noisy image itself; while for external methods refer-
ence patches are extracted from an external database of patches
from clean images. Popular internal methods include the
non-local means algorithm [19], BM3D [20], LPG-PCA [21]
etc., and external methods include the EPLL [22], external-
BM3D [23], dictionary-based methods [24], and so on.

These two categories have their own strengths and lim-
itations. Internal methods suffer from the rare-patch effect.
Though this issue can be ameliorated in external methods by
using a large database of patches, the external approaches are
computationally expensive. Under high noise levels, internal
approaches are generally more effective than the external
approaches unless specific databased are employed [25].

C. Sparse Representation

By assuming the signals or images only have a small
number of non-zero entries w.r.t. some representation bases,
the sparse representation has shown its effectiveness in many
low-level image processing and high-level computer vision
tasks, e.g., image denoising [26], image deblurring [27], and
anomaly detection [28]. The sparse representation is also
widely used in the signal and image separation problems.
Jafari et al. [29], [30] adopted the sparse dictionary for the
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Fig. 3. Two examples of the detected reflection dominant regions (white pixels in the rightmost column) with their corresponding images of background,
mixture images, and reference of reflections identified by humans (red pixels in the third column). At the bottom row, we show two examples of the patch
matching results (the patch brightness ×2 for better visualization). Given the mixture patch with reflections, we show its corresponding ground truth without
reflections (extracted from B) and the reference patches found using Equation (9) and Equation (10) (extracted from I, with dashed box as the searching
window), respectively. The reference patches found using Equation (10) are more similar to ground truth than the patches found using Equation (9).

separation of speech mixtures. Bobin et al. proposed the multi-
channel morphological component analysis (MMCA) [31] and
generalized morphological component analysis (GMCA) [32]
to separate the mixture images, by assuming that each source
is sparse in its corresponding domain and can be modeled as
the linear combination of a number of sparse morphological
components. Such methods only perform well when prior
knowledge about the sparse domain of each source is available.
To address this limitation, Abolghasemi et al. [33] proposed
a method to adaptively obtain the sparse domain from the
mixture image using the K-SVD. We recommend the readers
to check the survey in [34] for more methods and details.

III. PROPOSED METHOD

We formulate the reflection removal as the maximum a
posteriori (MAP) estimation problem, which is expressed
using the Bayes’ theorem as

{B̂, R̂} = argmax
B,R

f (B, R, σ 2|I)

= argmax
B,R

f (I|B, R, σ 2) f (B) f (R)

= argmin
B,R

L(I|B, R, σ 2) + L(B) + L(R), (2)

where f (·) is the prior distribution and L(·) = − log( f (·)).
As commonly adopted by many reflection removal meth-
ods [5], [7], we assume the background and reflection dis-
tributions are independent, so we have f (B, R) = f (B) f (R).
The noise term n in Equation (1) is assumed to follow i.i.d.
Gaussian distribution with the standard deviation as σ , then

the likelihood model is represented as

L(I|B, R, σ 2) = 1

2σ 2
�I − B − R�2

2 . (3)

L(B) is our unified prior which is formulated as

L(B) = Lc(B) + Lg(∇B), (4)

where Lc(B) is the content prior and Lg(∇B) is the gradient
prior.

In the following, we will first introduce how we determine
the regions with and without strong reflections, then we
introduce the detailed formulation of content prior based on
the region labels, and finally we introduce our gradient priors
for background and reflection, respectively.

A. Detecting Regions With and Without Reflections

As shown in Figure 1, in many real world scenarios, visually
obvious reflections only dominate a part of the whole image
plane, which we call reflection dominant region. Analogously,
for other small regions showing less obvious or no visual
artifacts caused by reflections, we call them reflection non-
dominant regions. The reflection (non-)dominant regions can
be automatically detected by checking the difference between
the input mixture image and the results from single-image
reflection removal algorithms [2], [5], [7], [8].

We borrow the idea in [8] which makes use of slightly
different blur levels between the background and reflection
due to the depth of field to differentiate the two types of
regions. Similar to [8], we first calculate the KL divergence
between the input mixture image and its blurred version to get
a background map denoted as EB, which indicates the pixels



WAN et al.: R3 WITH UNIFIED CONTENT AND GRADIENT PRIORS 2931

belonging to the background. Then, based on the fact that
the reflections are generally with small image gradients [35],
the initial reflection map E �

R is obtained by choosing the
image gradients below a threshold (set as 0.3). Combin-
ing EB obtained before, the refined reflection map ER is
obtained as

ER = EB � E �
R, (5)

where EB denotes not operation over EB and � is the
element-wise multiplication. Such an operation enhances ER
with many misclassified pixels in E �

R removed. Finally,
we apply a dilation operation S over ER to further merge
isolated pixels and regions in ER as

D = S(ER). (6)

The dialtion operator S(·) we use is a non-flat ball-shaped
structuring element with neighborhood and height values all
set as 5. D(·) is a binary matrix, whose element as 1 indicates
reflection dominant regions and 0 indicates non-dominant
regions.

We show examples of the reflection detection results cal-
culated from Equation (5) and Equation (6) in the rightmost
column of Figure 3. Comparing with the manually labelled
reference and the mixture image, we observe that pixels
with strong reflections and covering large areas are correctly
detected as reflection dominant regions. Misclassified pixels
covering some sparse regions show little influence to the next
stage of operations. The detected reflection dominant regions
will be used in two parts of the following processings: 1) the
patch matching step for content prior which will be introduced
in the next subsection and 2) the optimization stage which will
be introduced later in Section IV.

B. Content Prior

The proposed R3 solution utilizes the patch recurrence
property within the input mixture image itself. Given qi ,
an image patch overlaid with reflections and centered at
position i , the patch recurrence property aims at using the
estimation of qi with the L nearest patches {pi,l }L

l=1 from its
surroundings to restore it. We assume that we have already
obtained a set of reference patches {pi,l }L

l=1 for now. Then
the estimation of qi , denoted as ui , can be obtained as the
weighted average of {pi,l }L

l=1 as follows:

ui =
L∑

l=1

vi,l pi,l . (7)

Here, vi,l is the similarity weight expressed as vi,l =
exp(−�pi,l − qi�2

2/2σ 2)/c; c is the normalization constant
to guarantee

∑
l vi,l = 1 and the parameter σ controls the

tolerance to noise due to illumination changes, compression,
and so on.

We adopt the NCSR model [36] as the content prior and it
can be formulated as follows:

Lc(B) =
∑

i

�αi − βi�1, s.t . Mi B = Dαi , (8)

where Mi is the matrix extracting an image patch of size N×N
from the background image B; D denotes the dictionary built

from the mixture image I and αi is the sparse coefficients
corresponding to qi . Then βi is the nonlocal estimation of αi

in the sparse domain. Equation (8) minimizes the difference
between αi and βi , which means that the missing contents
in the mixture patch qi can be restored by its similar patch
ui . Without losing generality, we choose the K-PCA dictio-
naries [36], [37] as D. To be specific, the image patches are
extracted from the input mixture image I, and clustered into K
clusters using K-means. For each cluster, a dictionary of PCA
bases is learned to encode the patches in this cluster. Due to
the orthogonal property of the PCA bases, αi and βi can be
easily computed as αi = D�qi and βi = D�ui . Please refer
to [36] and [37] for more details.

Patch Matching: Here, we explain how to obtain the ref-
erence patches {pi,l }L

l=1 in Equation (7). If external images
with similar contents to the ground truth of background B
are available, patch matching can be accurately performed by
searching the whole image and measuring the l2 distance [9].
For each qi , its reference patches {pi,l }L

l=1 are searched within
WH (i), a window with size H × H , using l2 distance:

d(qi , pi,l ) = �qi − pi,l�2, ∀l ∁ WH (i). (9)

Such a process is illustrated in Figure 2 and Figure 3.
Note that such an approach can provide quite clean patches

only when the input mixture image contains some land-
marks or objects that can be retrieved from an external
database. To provide a more broaderly applicable solution,
the patch matching should be performed within the input
mixture image itself. However, we cannot directly apply the
simple matching strategy in Equation (9), due to that 1) the
mixture images include regions with strong reflections (while
external patches are all clean) and 2) these strong reflections
make the simply l2 distance measuring rather unreliable.
To address these two problems, we develop our patch matching
solution as guided by the reflection (non-)dominant regions
detected in Section III-A with a robust distant function:

d(qi , pi,l ) = ρs(qi , pi,l ) + λρr (qi , pi,l ),

∀l ∁ WH (i),
∑

D(pi,l ) < N/2 (10)

Some reference patches found using Equation (10) may still
contain reflections, which affect the accuracy of the patch
matching and the subsequent reflection removal. To eliminate
these negative effects and make sure that enough reference
patches can be found, we add the constraint

∑D(pi,l ) < N/2
in Equation (10) to require that fewer than half of all pixels
in a patch (note N is total number of pixels of a patch) are
labelled as reflection dominant, i.e., we limit the searching of
reference patches only within reflection non-dominant regions.
qi denotes as a patch being processed by TV-decomposition
and λ is a balancing weight.

Taking the intrinsic image structure into consideration,
we define the first robust distance term ρs by making use of
the image gradient information as a structure-aware criterion:

ρs(qi , pi,l ) = �qi − pi,l�2 + η�∇qi − ∇pi,l�2. (11)

We then define the second robust distance term ρr to specif-
ically handle the patches in the reflection dominant regions.
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Fig. 4. Some sample images of the background B and reflection R and their corresponding long-tail and short-tail gradient distributions.

Due to the interference of the reflections, the candidate patches
may not be truly relevant to the mixture patch. Consider-
ing the fact that the reflections are more related with the
low-frequency component of images [38], we apply the
TV-decomposition [39] to pre-process the input mixture
image I, so that structures with large gradient values are
retained and the low-frequency components are filtered out.
ρr is defined as

ρr (qi , pi,l ) = �qi − pi,l�2 + η�∇qi,l − ∇pi,l�2. (12)

Equation (10) is simply a linear combination of ρs and ρr ,
which shows a balance between the original mixture patch qi

and the TV-decomposed qi . In the reflection non-dominant
regions, ρs can easily find sufficient numbers of patches,
thus λ is given a smaller value to decrease the influence
of ρr ; in contrast, we need a larger λ in the reflection
dominant regions. Since the searching of reference patches is
limited only within reflection non-dominant regions, we need
a larger H for patches from the reflection dominant regions
to increase the searching window size for matching sufficient
numbers of reference patches. Comparing with the vanilla
solution using Equation (9), our region-aware robust strategy
in Equation (10) could find reflection-free patches with much
closer appearances to the ground truth, as shown by the two
examples in the bottom row of Figure 3.

C. Gradient Prior

The gradient priors play important roles in the reflection
removal stage, as shown in Figure 2. A popular choice is fitting
the heavy tailed gradient distribution such as the Laplacian
mixtures [7] to both background and reflection. We find such
a homogeneous processing cannot take advantages of our
R3 framework. Since the regional reflections only cover a part
of the whole image, its corresponding gradient distributions
should be different from the distributions of the background
image, due to its sparser property. Therefore, we design the
gradient prior of B and R in a heterogeneous manner using
different types of distributions.

Assumption Verification: To verify the above assumptions,
we capture mixture images (through the glass) with ground
truth background (by removing the glass) and reflection
images (by putting a black sheet of paper behind the glass)
to analyze the gradient properties. Following such a three-step
procedure, we capture image triplet for 50 different scenes in
the wild (150 images in total), with a DSLR camera under

fully manual control.1 All images are not corrected to the
linear response. These scenes include substantial real-wrold
objects of complex reflectance (car, tree leaves, glass windows,
etc.), various distances and scales (residential halls, gardens,
and lecture rooms, etc.), and different illuminations (direct
sunlight, cloudy sky light, and twilight, etc.).

Nine (out of 50) sample scenes used in our analysis are
shown in Figure 4 and the corresponding average gradient
distributions (over 50 scenes) are plotted next to them. The
plotted distributions clearly show that the background and
reflection images belong to the long-tail and short-tail dis-
tribution, respectively. Similar heterogeneous distributions are
reported in [5], but their observations are only applicable to
images where the background is in focus and reflection is
out of focus. Our analysis here shows such heterogeneous
distributions also apply to images with the reflection being in
focus. We adopt the prior proposed in [40], which regularizes
the high frequency part by manually manipulating the image
gradients, to fit our gradient distribution for background as

Lg(∇B) =
∑

x

φ(∇B(x)), (13)

where

φ(∇B(x)) =
⎧
⎨

⎩

1

�2 |∇B(x)|2, if |∇B(x)| < �,

1, otherwise,
(14)

where x is pixel locations. Lg(·) approximates L0 norm by
thresholding a quadratic penalty function parameterized by
� to avoid the distribution dropping too fast. Such a prior
restores sharper edges belonging to the background image
with less noise. Based on the proof in [40], Equation (14)
is equivalent to

φ(∇B(x)) = min
lmx

{|lmx |0 + 1

�
(∇mBx − lmx )

2}, (15)

where m ∁ {h, v} corresponding to the horizontal and vertical
directions, respectively; l is an auxiliary variable and x is the
pixel position.

The gradient distribution of R belongs to short-tail distrib-
ution partly due to the higher blur levels of R [5]. However,
as we show in Figure 4, the majority of regions in R have
brightness values closing to zero, i.e., its gradient distribution
should also have the sparse property when compared with the
background. Therefore, we model it using a L0-regularized

1Similar data capture procedure has been conducted in [1] for a smaller
scale quantitative evaluation.
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prior as

L(R) = �∇R�0, (16)

where � · �0 counts the number of non-zero values in ∇R.
Such a prior enforces the sparsity property of R in its gradient
domain.

By substituting Equation (3), Equation (15), Equation (8),
and Equation (16) into Equation (2), our complete energy
function is represented as

{B̂, R̂} = argmin
B,R,αi

�I − B − R�2
2 + ω

∑

i

�Mi B − Dαi�2
2

+ ξ
∑

i

�αi − βi�1 + δ
∑

m∁{h,v}
�∇mR�0

+ γ
∑

m∁{h,v}

∑

x

{|lmx |0 + 1

�
(∇mBx − lmx )

2}, (17)

where i denotes the i -th patch or atoms, x is the pixel position,
and B̂, R̂ are the intermediate results of B, R generated at each
iteration. It will be optimized in the next subsection.

IV. OPTIMIZATION

The direct minimization of Equation (17) is difficult due
to the multiple variables involved in different terms. Thus,
we divide the original problem into several subproblems by
following the half-quadratic splitting technique [41] advocated
by the previous methods in image deblurring and denois-
ing [26]. The proposed algorithm iteratively updates the vari-
ables, reduces the objective function values in each iteration,
and finally converges to a local minima. We summarize each
step of our method as Algorithm 1, and the details are
described in the following paragraphs.

A. Solving for αi

Given fixed B and R, Equation (17) becomes a l1 minimiza-
tion problem:

α̂i = argmin
αi

ω�Mi B − Dαi�2
2 + ξ

∑

i

�αi − βi�1. (18)

With fixed βi , Equation (18) can be solved iteratively by the
surrogate based algorithm [42]:

αi
(t+1) = Sτ (v

(t)
i − βi ) + βi , (19)

where v
(t)
i = D�(Mi B−Dαi

(t))/c+αi
(t), Sτ (·) represents the

soft-thresholding operator with threshold τ = ξ/ωc, and c is
a constant to guarantee the convexity. Equation (19) balances
the influence of βi to αi , and a larger τ generally allows
a quicker convergence. Due to the orthogonal properties of
the local PCA dictionaries D, the sparse coding problem of
Equation (18) can be solved in just one step [43].

B. Solving for B

When R and αi are fixed, B can be estimated by solving
the following optimization problem:

B̂ = argmin
B

�I − B − R�2
2 + ω

∑

i

�Mi B − Dαi�2
2

+ γ
∑

m∁{h,v}

∑

x

{|lmx |0 + 1

�
(∇mBx − lmx)

2}, (20)

Algorithm 1 Region-Aware Reflection Removal Algorithm

whose closed-form solution can be easily obtained by alter-
nating between updating l and computing B. Updating l is
calculated as

l =
{

∇B, if |∇B| > �,

0, otherwise.
(21)

With l being fixed, the closed-form solution for Equation (20)
is obtained similar to the strategy adopted by previous
method [44]:

B̂ =F−1

(F(I) −F(R) +γF(
∑

i Mi
�Dαi ) + 1

�2 FL

E +γF(
∑

i Mi
�Mi ) + 1

�2 F2
D

)
. (22)

E is a matrix with all elements being equal to one; F(·)
and F(·)−1 denotes the Fourier transform and its inverse
transform, respectively; F(·)∗ is the corresponding complex
conjugate operator; and FL = ∑

m∁{h,v} F(∇m)∗F(lm) and
FD = ∑

m∁{h,v} F(∇m)∗F(∇m), where ∇h and ∇v are the
horizontal and vertical differential operators, respectively.

C. Solving for R

With all variables unrelated to R being fixed, the optimiza-
tion problem for R becomes

R̂ = argmin
R

�I − B − R�2
2 + δ�∇R�0. (23)

Equation (23) can be solved by introducing the auxiliary
variables g = (gh, gv ) w.r.t. the image gradients of ∇R
in horizontal and vertical directions, which is also adopted
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by [45]. Equation (23) can be expressed as

R̂ = argmin
R

�I − B − R�2
2 + μ�∇R − g�2

2 + δ�g�0. (24)

The values of g are initialized to be zeros. In each iteration,
the solution of R is obtained by solving

min
R

�I − B − R�2
2 + μ�∇R − g�2

2 (25)

The closed-form solution for the least squares problem above
can be easily obtained as

R = F−1

(
F(I) − F(B) + μFG

1 + μ
∑

m∁{h,v} F(∇m)∗F(∇m)

)
, (26)

where FG = F(∇h)∗F(gh)+F(∇v )
∗F(gv ). Finally, given R,

we compute g by

min
g

μ�∇R − g�2
2 + δ�g�0. (27)

Equation (27) is a pixel-wise minimization problem, whose
solution is calculated as

g =
⎧
⎨

⎩
∇R, |∇R|2 >

δ

μ
,

0, otherwise.
(28)

V. EXPERIMENT RESULTS

To evaluate the performance of reflection removal,
the majority of existing methods compare the visual quality
of the estimated background images on 3 to 5 sets of real
data [7], [8], or perform the quantitative evaluations using
the synthetic images [5], [10]. Due to the lack of real-world
dataset with ground truth, quantitative comparison using real
data has seldom been done. Thanks to the dataset introduced
in Section III-C, we compare our R3 method with state-
of-the-art methods for both quantitative accuracies (w.r.t. its
corresponding ground truth) and visual quality based on the
50 sets of real data. Though the images in our dataset are
taken by DSLR camera with high resolution, considering
the computation time and to make the image size compat-
ible to all evaluated algorithms, all images are resized to
400 × 500. Since the computations in our methods all belong
to the per-pixel computation, such kinds of operation does not
influence the final results, which are also adopted by previous
methods [2], [5].

The main parameters used in our method are set as follows:
δ, ω, and γ in Equation (17) are set to 0.004, 1.5, and 1,
respectively. Empirically, for the patches from the reflection
non-dominant regions, ξ in Equation (17) and Equation (18)
is set to 10.5 (with τ = 7); λ and the initial value of H
in Equation (10) are set to 1 and 30, respectively. For the
patches from the reflection dominant regions, ξ is set to 22.5
(with τ = 15); λ and the initial value of H are set to 0.01 and
10, respectively. μ in Equation (27) is set to 0.008. The patch
size is set to 7 × 7. L in Equation (7) is set to 8. The initial
value of � in Equation (14) is set to 0.05 and is divided by 2
in each iteration. H is added by 10 if the number of reference
patches found within current window is less than L.

TABLE I

QUANTITATIVE EVALUATION RESULTS USING FIVE DIFFERENT
ERROR METRICS AND COMPARED WITH AY07 [7],

LB14 [5], SK15 [2], WS16 [8], AND NR17 [10]

A. Error Metrics

We adopt the structural similarity index (SSIM) and local
mean square error (LMSE), which are widely used by previous
methods [5], [10], [46], as error metrics for quantitative
evaluation. To make the value of LMSE consistent with SSIM,
we convert it to a similarity measure as follows:

sLMSE(B, B∗) = 1 − LMSE(B, B∗), (29)

where B is the ground truth and B∗ is the estimated back-
ground image.

The luminance and contrast similarity in the original SSIM
definition are sensitive to the intensity variance, so we define
the structure index (SI) to focus only on the structural sim-
ilarity between B and B∗. SI shares similar format as the
error metric proposed in [47], but it omits the luminance and
contrast part in its original form as

SI = 2σBσB∗ + c

σ 2
B + σ 2

B∗ + c
, (30)

where σB and σ ∗
B are the variances of B and B∗, respectively,

and σBσ ∗
B is the corresponding covariance.

SSIM, sLMSE, and SI are error metrics evaluating the
global similarity between B and B∗. In our region-aware con-
text, the reflections only dominate a part of the whole image.
Based on our observations, though some methods [5], [8]
downgrade the quality of the whole images, they can remove
the local reflections quite effectively. We define the regional
SSIM and SI, denoted as SSIMr and SIr, to complement the
limitations of global error metrics. We manually label the
reflection dominant regions (e.g., like the third column of
Figure 3) and evaluate the SSIM and SI values at these regions
similar to the evaluation method proposed in [48].

B. Comparison With the State-of-the-Arts

We compare our method with state-of-the-art single image
reflection removal methods, including AY07 [7], LB14 [5],
SK15 [2], WS16 [8], and NR17 [10]. We use the codes
provided by their authors and set the parameters as suggested
in their original papers. Except that for SK15 [2] we adjust
its pre-defined threshold (set as 70 in their code) that chooses
some local maxima values, since we find the default value
shows degenerated results on our data and we manually adjust
it for different images to make sure that a similar number
of local maxima values to their original demo are generated.
AY07 [7] requires the user annotations of background and
reflection edges, and we follow their guidance to do the
annotation manually.
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Fig. 5. Reflection removal results on three natural images under weak reflections, compared with AY07 [7], LB14 [5], SK15 [2], WS16 [8], and NR17 [10].
Corresponding close-up views are shown next to the images (the patch brightness ×2 for better visualization), and SSIM and sLMSE values are displayed
below the images.

1) Quantitative Evaluations: The quantitative evaluation
results using five different error metrics and compared with
five state-of-the-art methods are summarized in Table I, where
the errors between the input mixture images and the corre-
sponding ground truth are used as the baseline comparison.
The numbers displayed are the mean values over all 50 images

in our dataset. As shown in Table I, the proposed algorithm
consistently outperforms other methods for all five error
metrics. The higher SSIM and sLMSE values indicate that
our method recovers the whole background image with better
quality, whose global appearance is closer to the ground truth.
For SI values, all methods are lower than the baseline, which
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Fig. 6. Reflection removal results on three natural images under strong reflections, compared with AY07 [7], LB14 [5], SK15 [2], WS16 [8], and NR17 [10].
Corresponding close-up views are shown next to the images (the patch brightness ×2 for better visualization), and SSIM and sLMSE values are displayed
below the images.

is partly because all methods impair the global structures of
the input images. However, due to the the regional strategy
in our R3 method, it still beats other five methods and
achieve the second best result. The higher SI values tell
that our method preserves the structural information more
accurately. The higher SSIMr and SIr values mean that our
method can remove strong reflections more efficiently in the

reflection dominated regions than other methods. LB14 [5]
shows the second best result on SI; the most recent method
NR17 [10] shows the second best results on SSIM, sLMSE,
SSIMr and SIr.

2) Visual Quality Comparison: We then show examples of
estimated background images by our method and five other
methods in Figure 5 (three examples with weak reflections)
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Fig. 7. Results with and without reflection dominant region (the patch brightness ×1.3 for better visualization).

and Figure 6 (three examples with strong reflections) to check
their visual quality. In these examples, our method removes
the reflections more effectively and recovers the details of
the background image more clearly. NR17 [10] and LB14 [5]
remove the reflections to some extent, but from the results
shown in the third example of Figure 5 and Figure 6, some
residue edges remain visible for the reflections that are not
out of focus. LB14 [5] also causes a color change of the
input mixture image, where the results are much darker than
the ground truth. Both LB14 [5] and WS16 [8] show some
over-smooth artifacts, when they are not able to differentiate
the background and reflection clearly. When the edges can
be correctly labelled, AY07 [7] shows acceptable results in
some examples (e.g., the third example in Figure 5), but
the performance is poor when the edges cannot be clearly
differentiated by human labelling (e.g., the first example
in Figure 6). The performance of SK15 [2] is a bit degenerated
with these examples, and it shows some pacthy artifacts. When
the reflection is strong (e.g., the first example in Figure 6), our
method not only removes the undesired reflections, but also
restores the missing contents of the background caused by the
reflection, thanks to the region-aware content prior.

C. The Effect of the Reflection Dominant Region

Comparing with existing methods, region-aware processing
is unique in the proposed whole framework. To evaluate
whether it effectively recovers the details in reflection dom-
inant regions and avoid artifacts in reflection non-dominant
regions, we show recovered background image with and with-
out the reflection (non-)dominant region labelling. Two exam-
ples are shown in Figure 7. In both examples, the methods
without reflection dominant regions only attenuates the reflec-
tions but fails to remove them, but the region-aware approach
successfully removes the reflections; in the top example,

the image details (e.g., the patch in the red box) of the method
without the reflection dominant regions are rather blurred.

D. The Effect of the Gradient Prior

We conduct another experiment to show the effectiveness of
the gradient priors in Figure 8. Although for the image patches
in the red and green boxes, both reflections are removed
regardless of whether gradient priors are considered, the image
patches in the blue boxes clearly show that the gradient
prior helps keeping the sharpness of the edges so that the
structural information is better recovered in the background
image.

E. Comparison With WS17

The recent approach WS17 [9] also makes use of the
patch recurrence from several similar images and content
priors, by assuming that reflection-free images with similar
content are available from an external database. To make
their assumptions satisfied, we use images containing objects
which can be easily retrieved from an external database, and
provide both the input mixture image and external database to
WS17 [9]. The comparison between our method and WS17 [9]
are illustrated in Figure 9. With the help of an external
database, WS17 [9] shows superior performance in some parts
(the blue box in Figure 9). But our method still provides
comparable results to WS17 [9] with only internal image
recurrence, thanks to the robust patch matching in reflection
dominant regions. Note our method can be applied to much
broader categories of images.

F. Convergence Analysis

The last experiment shows the convergence of our algo-
rithm. As we have claimed in Section IV, a larger τ in
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Fig. 8. Results with and without the gradient priors (the patch brightness ×1.3 for better visualization).

Fig. 9. Comparison between our proposed method and WS17 [9] (the patch brightness ×1.3 for better visualization).

Equation (19) generally allows a quicker convergence of our
R3 method. In our settings, the patches from the reflection
dominant regions are given a larger τ values defined as
τ1 here and the patches from the reflection non-dominant
regions are assigned a smaller τ defined as τ2 here. We set
τ1 = 15 and τ2 = 7 in our experiments. To validate the

settings, we test different values by fixing one and chang-
ing another one. The performances with different values are
illustrated in Figure 10. By fixing τ2 = 7, τ1 is set to 10, 15
(the values used in our experiments), 100 and 200. A larger
τ1 can achieve better results in the first iteration and converge
faster under a larger value. By fixing τ1 = 15, τ2 is set to 5.5, 7
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Fig. 10. The convergence analysis of our proposed method under different
τ values.

(the values used in our experiments), 12.5, 15 and 20. A larger
τ2 decrease SSIM values after approximate six iterations,
which indicates that the image structure are impaired. It is
partly due to the over-smooth effect of the non-local image
prior we adopt, which is explained in [49]. A smaller τ2
achieves similar performances when compared with the value
used in our experiment. Considering the performance variation
with different τ , the parameters in our experiments (τ1 = 15
and τ2 = 7) can achieve good results and keep stable after six
iterations.

VI. CONCLUSION

We introduce reflection dominant regions to single image
reflection removal problem to efficiently remove reflections
and avoid artifacts caused by incompletely removed reflections
in an adaptive manner. We integrate the content prior and
gradient prior into a unified R3 framework to take account of
both content restoration and reflection suppression. By refining
the sparse coefficients learned from the mixture images with
the reference patches to generate a more accurate sparse reg-
ularization term. We show better performances than state-of-
the-art methods for both the quantitative and visual qualities.

Limitations: In spite of the effectiveness of our R3 method,
it also has several limitations:

• The patch selection step is computationally expensive.
Its complexity increases linearly with the window size.
However, our current implementation is an unoptimized
Matlab implementation, which takes three minutes for
the patch matching and fewer than 30 seconds for other
steps on a modern PC. Based on the experience in
denoising [23] with similar formulation, the computation
can be sped up by using more efficient programming
language (e.g., C++) and parallel implementations;

• Our method adopts the non-local image prior as the
content prior. As mentioned in [49], it is prone for the
non-local image priors to over-smooth highly textured
regions, especially in the case of strong artifacts. The
performance drops when the background is textured;

• Our method is based on the observation that reflection
only dominates a part of an image. However, in real

scenes, it is possible that the whole image is overlaid
with strong reflections; in such a case our method may
fail due to the ‘rare patch effect’ [50].

• Since our method utilizes the reference patches around
the mixture patch to remove the reflections, the informa-
tion of the background must be kept more or less. If very
strong reflections exist in a scene, the reference patches
cannot be found since very fews details of the background
are kept. In this situation, the reflection removal problems
degrades to an image inpainting problem;

• Though our method does not explicitly rely on image
priors (e.g., the blur levels [5] or ghosting effects [2]),
the reflection dominant region detection is based on the
depth of field of the input mixture image. When the depth
of field is not uniform, the detection may be less accurate.
In such a situation, our performance is similar to that in
Figure 7 where sharp edge information cannot be clearly
recovered.
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