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Abstract Unmanned aerial vehicles (UAVs) rely on

global positioning system (GPS) information to ascertain

its position for navigation during mission execution. In the

absence of GPS information, the capability of a UAV to

carry out its intended mission is hindered. In this paper, we

learn alternative means for UAVs to derive real-time

positional reference information so as to ensure the conti-

nuity of the mission. We present extreme learning machine

as a mechanism for learning the stored digital elevation

information so as to aid UAVs to navigate through terrain

without the need for GPS. The proposed algorithm

accommodates the need of the on-line implementation by

supporting multi-resolution terrain access, thus capable of

generating an immediate path with high accuracy within

the allowable time scale. Numerical tests have demon-

strated the potential benefits of the approach.

Keywords Unmanned aerial vehicles (UAVs) �
Extreme learning machines (ELM) �
Terrain-based navigation

1 Introduction

Unmanned aerial vehicles (UAVs) are useful for military

and law enforcement operations [1–3] such as environ-

mental surveillance, battlefield assessment, ordnance

delivery, resource assessment, etc. This trend is likely to

continue with UAVs poised to replace what used to be

high-risk human-in-the-loop missions (particularly in situ-

ations that are hazardous for human operators). During

mission execution, UAVs rely on global positioning system

(GPS) information to ascertain its position for navigation.

However, GPS devices rely on information from global

navigation satellite system (GNSS) about global positional

information, including the longitude, the latitude and the

time when the signal was released from the satellites.

When signals lapse, it can cause a breakdown of infor-

mation, causing the GPS device to operate in an erroneous

mode or possibly shutting down. Moreover, there are cer-

tain atmospheric indicators which can cause the inaccurate

mapping of certain areas, such as vast waterways or terrain,

large structures, electronic interference, or dense foliage.

All these can affect signal reception resulting in positional

errors or even false readings.

In the absence of GPS information, the capability of a

UAV to carry out its intended mission is hindered. In this

sense, the UAV is incapacitated and if the disruption is too

serious, the success of the mission is jeopardized. It is

E. M. Kan (&) � M. H. Lim

Intelligent Systems Center,

Nanyang Technological University,

Singapore, Singapore

e-mail: ka0001ay@ntu.edu.sg

M. H. Lim

e-mail: emhlim@ntu.edu.sg

Y. S. Ong � A. H. Tan

School of Computer Engineering,

Nanyang Technological University,

Singapore, Singapore

e-mail: asysong@ntu.edu.sg

A. H. Tan

e-mail: asahtan@ntu.edu.sg

S. P. Yeo

Center for Microwave and RF,

National University of Singapore,

Singapore, Singapore

e-mail: eleyeosp@nus.edu.sg

123

Neural Comput & Applic (2013) 22:469–477

DOI 10.1007/s00521-012-0866-9



therefore necessary to find alternative means for UAVs to

derive positional reference information to ensure the con-

tinuity of the mission. In recent years, there have been

significant progresses made in terrain-based navigation

[4, 5] due to more widespread availability of sensors that

can directly sense terrain while the platform carrying the

sensor is in motion. The technique of terrain based navi-

gation has been utilized by cruise missiles and aircrafts

over land, aiding the navigation system based on terrain

information in order to increase the estimation accuracy.

In principle, Delaunay triangulation (DT) interpolation is

directly applicable to estimate elevations of points in terrain

modeling. However DT requires more floating point

parameters to represent a terrain [3]. In the case of UAV

where the amount of memory allocated for storage of terrain

data is preferably small so that much of the memory

resources can be dedicated to other components onboard the

UAV. Not denying the fact that the current level of tech-

nology have resulted in cheap and readily available memory

resources, a more compact and efficient representation of

geographical and terrain data is still advantageous.

Our focus here is to explore a connectionist approach as

a basis for deriving positional reference information based

on the terrain data captured by the UAV onboard sensor.

The objective is to estimate the state of the UAV (position

and attitude) and a map of the surrounding environment

simultaneously based on limited sensing capabilities. The

sensed terrain information is correlated with existing ref-

erence data to derive the navigation estimate. We present a

scheme based on extreme learning machine (ELM) [6–10]

as a mechanism for learning the stored digital elevation

information to perform the estimation or map building for

UAV navigation without the need for GPS or other derive

positioning information. In earlier work [3], ELM training

algorithm was applied to dramatically speed up the rate at

which the network learns a priori available maps. The

results presented in [3] show superior mean square error

(MSE) performance of the ELM over other approaches.

The parameters of hidden neurons need not be tuned and

can be randomly generated according to any continuous

probability distribution. ELM achieves this by avoiding

iterative optimization of the hidden neuron parameters

(input weight vector and the biases for additive hidden

neurons and the centers and impact factors for radial basis

function hidden neurons). The advantages of the ELM are

that it has only one tunable parameter, specifically the

number of neurons, and its training algorithm consists of

only a single step. Thus the ELM needs far less memory

than that needed by other approaches. Additionally, the

ELM offers a fast decomposition of a function at different

levels of resolution as shown by Yeu et al. [3]; therefore it

can be implemented online to reduce the computational

cost dramatically. In the remaining part of this paper, rather

than focusing on discussions over the practical motivation

of terrain-based navigation problem, a more thorough

discussion on the application of ELM to the problem is

presented.

2 Problem formulation

In this paper, a terrain-based navigation problem is defined

as deriving positional reference information based on the

state of the vehicle (position and attitude) and a map of the

surrounding environment captured by onboard sensors.

Various sensors (e.g., cameras, radars, laser scanners,

satellite imagery) having different range and resolution

characteristics are employed to collect information about

the environment the vehicle operates in. A computationally

efficient terrain modeling method, specifically adopted for

on-line implementation, should therefore choose the

expedient information from all these sensors, and use the

on-board computational resources to aid UAVs navigate

through terrain without the need of GPS. We provide a

survey on various terrain modeling methods and compare

their performances with the ELM training algorithm for

terrain based navigation.

2.1 Delaunay triangulation (DT)

The Delaunay triangulation for a set N of points in the

plane is the triangulation DT(N) of N such that no point in

N is inside the circumcircle of any triangle in DT(N). DT

has a time complexity of O(N log N) and interpolation

algorithms based on DT are widely used in terrain eleva-

tion estimation because DT minimizes the coarseness of

the estimated terrain over all possible data-independent

triangulations [11]. The accuracy of the terrain model

computed by DT can be significantly influenced by the

selection scheme used for the sample points [12, 13]. In

this paper, we adopt a uniform random selection scheme

for choosing the sample points from the raw dataset. The

sample points are triangulated using their (x, y) coordinates

and the elevation information of any point not in the

sample set can be interpolated using Eq. 1:

z ¼ axþ byþ c ð1Þ

In Eq. 1, a, b and c are the coefficients that

parameterized the plane defined by the vertices of the

smallest triangle in DT(N) that encloses the interpolated

point.

2.2 Resilient back propagation (R-BP)

With most neural networks using sigmoid functions in their

hidden layers, one of the side-effects of implementing BP
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is that the gradient calculated may be too small in mag-

nitude even when the current iteration is still far from the

optimal solution. This is due to the nature of the gradient of

sigmoid functions approaching to zero rapidly when the

inputs get large. R-BP [14] addresses this issue by ignoring

the magnitude of the gradient in the calculation of the

update function for the next iteration, choosing to use just

the direction (or sign) of the consecutive gradients to

determine whether the update value should be increased or

decreased in magnitude. Consecutive gradients in the same

direction will have a boost in the update value while a

switch in the direction will result in a reduction of the

update factor.

2.3 Quasi-Newton back propagation (QN-BP)

QN-BP [15] follows the typical Newton’s method but

without the computation of the Hessian matrix, H, of the

network at each iteration. QN-BP involves the generation

of a sequence of matrices F(k) that represent increasingly

accurate approximation of H-1. QN-BP offers a fast

alternative to conjugate gradient methods in optimizing a

NN. In spite of it being a fast optimization algorithm for

BP trained NN, QN-BP requires additional memory for

retaining the approximate Hessian matrix. As such QN-BP

is normally found in smaller networks with lower neuron

count.

2.4 One-step secant back propagation (OSS-BP)

OSS-BP [16] improves upon QN-BP’ memory requirement

by not storing the complete Hessian matrix for every iter-

ation. Instead, OSS-BP assumes that the previous Hessian

matrix is an identity matrix. As such, a new search direc-

tion can be computed less expensively without involving

matrix inversion.

2.5 Levenberg-Marquardt back propagation (LM-BP)

LM-BP [17] provides a middle ground between traditional

GD-BP and QN-BP. LM-BP makes use of the approxi-

mation of the Hessian matrix as shown in Eq. 2:

H ¼ JT J ð2Þ

where J is the Jacobian matrix that comprises of the first

derivative of the errors with respect to the network weights

and biases. The corresponding gradient is given by Eq. 3:

g ¼ JT e ð3Þ

where e is the network error vector.

2.6 ELM

The architecture of ELM [6–9] is similar to that of a single-

layer feed-forward neural network; the only difference is

that there is no bias for the output neuron. Every neuron in

the input layer is connected to all other neurons in the

hidden layer. All hidden layer neurons are also provided

with a bias. The activation function for the output neuron

layer is linear, while that of the hidden neuron layer can be

any piecewise continuous function. The extreme learning

machine employs a completely different algorithm for

calculating weights and biases that can significantly reduce

the amount of time needed to train a neural network. In the

case of extreme learning machines, the weights and biases

between the hidden layer and input layer neurons are ran-

domly assigned. For an extreme learning machine having

‘‘j’’ hidden layer neurons trained on a data set having ‘‘k’’

training cases and ‘‘i’’ input neurons, the activation of all

hidden layer neurons is calculated for every training case

using the following formula.

Hjk ¼ gðRðWjiXikÞ þ BjÞ ð4Þ

where g(�) is any nonlinear piecewise continuous activation

function, Wji is the weight between the ith input neuron and

jth hidden layer neuron, Bj represents the bias for the jth

hidden layer neuron, Xik is the input at the ith input neuron

of the kth training case, and Hjk is the matrix containing

activation of the jth hidden layer neuron for the kth training

case. The activation of all the hidden layer neurons for all

training samples is represented by a matrix H, which has

k rows and j columns. The H matrix is called the hidden

layer output matrix of the neural network. The weights

between hidden layer neurons and the output neuron are

determined by performing a least-squares fit to the target

values in the training set against the output of the hidden

layer neurons for each training case. In mathematical

notation, this is equivalent to solving the following linear

system.

Hk�jbj�1 ¼ Tk�1 ð5Þ

b ¼ ðb1. . .bjÞj�1 ð6Þ

where b is a vector representing weights between hidden

layer neurons and the output layer neuron.

T ¼ ðT1. . .TkÞk�1 ð7Þ

where T is the vector representing targets for all training

cases. To obtain the weights, the above system is solved by

multiplying the Moore-Penrose pseudo-inverse of the

H matrix with T.

b ¼ H0T ð8Þ
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b = vector of weights between hidden layer and output

layer neurons, H0 ¼ Moore-Penrose pseudoinverse of

matrix H, and T = vector containing targets for the

training case. This completes the training of the network.

Thus training of an extreme learning machine involves

only two steps: (1) random assignment of weights and

biases to hidden layer neurons and calculation of the hid-

den layer output matrix H; (2) calculation of output

weights using the Moore-Penrose pseudo-inverse of matrix

H using the values of targets for training cases.

The training process is fast as it involves finding the

Moore-Penrose inverse of the hidden layer matrix, which is

done much faster than normal epoch based training algo-

rithms such as Levenberg-Marquardt; also the training only

relies on a closed-form solution and does not involve any

kind of nonlinear optimization routines. Consequently, the

training time is significantly reduced and the only param-

eter left to be tuned is the number of hidden layer neurons

[6–9]. The extreme learning machine works by making use

of a large number of random nonlinear projections of input

space. Each neuron corresponds to a single projection. In

the case of a conventional artificial neural network each of

these projections is tuned. In the case of the extreme

learning machine linear regression is performed on these

projections; projections that match the curve get higher

weights. This way a line is fitted to the training points in

the space of hidden layer neurons. The universal approxi-

mation capability of ELM has been rigorously proven in an

incremental method by Huang et al. [6–9].In selecting the

method for calculating Moore-Penrose inverse [18], sin-

gular value decomposition (SVD) is chosen for its capa-

bility in calculating the Moore-Penrose inverse for all

matrices including singular cases.

3 Implementation

3.1 Navigational terrain

In our simulations, we exploit the terrain digital elevation

model (DEM) used in the earlier work [3] as a navigational

space for UAV. The raw data set consists of 1,000 9 1,000

elevation data in a square uniform grid. The visualization

of the terrain is as shown in Fig. 1. In all simulations, the x,

y coordinates of the data points and the elevation value

z are scaled and shifted such that {-1 B x, y B 1

and 0 B z B 1}.

To illustrate the terrain based navigation scenario, con-

sider a UAV navigating through the terrain (as shown in

Fig. 1) based on limited sensing capabilities. The UAV

updates the map of the surrounding environment simulta-

neously based on the state of the UAV (position and atti-

tude). The objective of the UAV is to navigate through the

terrain while circumventing the obstacles over a certain

elevation threshold. Since the real-time terrain based nav-

igation problem at the finest resolution is computationally

prohibitive, the proposed approach accommodates the need

of the on-line implementation by limiting the amount of

time to process.

3.2 ELM training algorithm

We make use of ELM training algorithm to achieve this

remarkable speed improvement by using randomly initial-

ized hidden neuron parameters and only iteratively com-

pute the output weight vector. The algorithm greatly cuts

down the training time of neural networks (NN), in contrast

to the conventional training methods such as back-propa-

gation method. It is therefore capable of generating a ter-

rain model that offers data compression as well as

reasonably good approximation of the actual terrain. Due to

their nonlinear nature, ELM inherently performs data

compression, and thus, a trained network yields a very

compact representation of the terrain. Based on the repre-

sentation of the terrain, an UAV is competent to navigate

through the terrain that may comprise of different resolu-

tions. Figure 2 shows an example of the multi-resolution

approximation of the environment.

We employ the ELM training algorithm to perform the

required multi-resolution terrain access. It is assumed that

the UAV navigates over the terrain, while modeling the

terrain with the elevation data gathered from a proximity

sensor. The input data to the algorithm are given by the raw

data of the terrain captured by the onboard sensor, which is

then down sampled into a 100 9 100 map with 10K data

points, a 200 9 200 map with 40k data points and a

300 9 300 map with 90k data points. For each sensory

region, 10% of the data points are randomly selected to

Fig. 1 Visualization of Las Vegas, NV DEM
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form the triangle map for DT and the training set for the

ELM with sigmoid additive hidden neurons (the ELM is

thus denoted as ELM-SIG in this case) over a set of 5–200

neurons. The remaining data points are used to test the

accuracies of the terrain model obtained from the algo-

rithm. The training algorithm inherently performs adaptive

nonlinear interpolation and exploits the height information

of the terrain points. The idea is to employ high resolution

close to the elevation threshold, and a coarse resolution at

large distance from elevation threshold based on the cur-

rent location of the UAV.

Both additive and RBF hidden neuron types of ELM

have been tested in our simulations. ELM-SIG network has

been compared with DT learning algorithm where the

output of the ith hidden neuron is

Gðai; bi; xÞ ¼
1

1þ expð�ðai � xþ biÞÞ
ð9Þ

We also compare BP-RBF network with ELM-RBF.

Gaussian activation function is used in all these algorithms,

and the output of the ith hidden neuron of ELM-RBF is as

per Eq. 10

Gðai; bi; xÞ ¼ expð�bijjx� aijj2Þ ð10Þ

For ELM, the hidden neurons parameters (ai, bi) are

randomly generated from (-1, 1)n 9 (0, 1) based on a

uniform probability distribution. For BP and ELM, the

number of hidden nodes is gradually increased by an

interval of 5 and the nearly optimal number of nodes for BP

and ELM are then selected based on cross-validation

method. In each case, ten trials were carried out. Our

comparisons use the average of the results of these trials.

Where applicable, the mean value of the absolute

percentage errors is calculated as follows:

Mean of absolute % error ¼
RN

i¼1j Oi�ti
ti
� 100%j

N
ð11Þ

where Oi is the real output of the network, ti is the target

output corresponding to the ith tested data point, and N is

the number of tested data points.

Figures 3, 4 and 5 show the relationship between the

generalization performance of ELM and its network size

for terrain modeling. As observed from these figures, the

generalization performance of ELM is very stable on a

wide range of number of hidden nodes. For DT, we itera-

tively increase the number of sample points selected to

form the triangulation for each terrain size and compare the

accuracy performance with the ELM. Without lost of

generality, we focus our attention on 50 hidden neurons.

DT (N) requires a storage of 13.5N floating points [19]. In

the case for ELM-trained NN, the N sample points are only

required during the training of the network; thereafter,

these sample points can be discarded. The only data that

the network requires to be stored are the hidden node

parameters, which depend on the dimension of the inputs

and the number of hidden neurons implemented. In our

terrain modeling case, the dimension of the inputs is 2 and

the number of hidden neurons used is L, which is much

lesser than the number of known sample points N, i.e. L�
N. With L hidden neurons, we have a total of 2L intercon-

nections between input and hidden layer, giving us 2L input

weights and L hidden neuron biases. Together with L

output weights, a total of 4L parameters will be needed for

the network to describe the same terrain model. A typical

50-node single-layer NN would need 200 parameters to

model a terrain. For DT to maintain equivalent memory

consumption, it would have resulted in a highly low-reso-

lution model using only 15 samples. Yeu et al. [3] have

conducted a good comparison of the memory requirement

between DT-based interpolation and ELM. It is clear in [3]

that as the terrain size increases, DT would require much

more data points to represent the terrain, whereas ELM

maintains a very much lower neuron count, and hence,

much smaller memory is required. The generated terrain

model (within a sensory region based on the current loca-

tion of the UAV) can be used to build a network by con-

sidering the elevation threshold of the topography. Once

this network is available, navigation routes can be deter-

mined for different routing objectives (i.e., shortest path;

safest path; traveling salesman problem) to aid UAVs to

Fig. 2 The multi-resolution representation with altitude ranging from

1,000 to 4,000 m
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navigate through the terrain efficiently without the need of

GPS. The following section provides a detailed description

of the network generation procedure within the sensory

region.

3.3 Generation of nodes in a trained network

To begin with, the density at which the nodes that will

constitute the vertices of the network that are to be gen-

erated latitudinally and longitudinally is specified. The

number of nodes will serve as a basis for constructing

the neural networks for terrain segments. In principle,

depending on the profile of the terrain that the network is

trained to represent, different resolutions may be employed

to enhance efficiency. Nodes below the elevation threshold

are extracted and used for the generation of links. Thus, the

nodes above the elevation threshold are discarded; given

that at those elevations the UAVs could be in danger. The

number of rows and columns determine the density of

the nodes to capture equally likely the characteristics of the

terrain structure obtained from the multi-resolution terrain

modeling.

3.4 Generation of links in a trained network

The output from the node generation procedure is a grid

with nodes placed at the center of the vertices which are

below the elevation threshold. These nodes form a set of

potential nodes for the UAV to navigate through. Two

important parameters are identified for terrain based navi-

gation: (1) the link length and (2) the maximum elevation

on the link. These parameters are based on the operation of

the UAVs; the purpose, logistics, and safety of the mission.

A desirable maximum and minimum length need to be

specified (i.e., MIN B link length B MAX) for the links.

The maximum elevation of the links is considered a con-

straint ensuring that at any given time, the link connecting

two nodes does not cross over an area with elevation

greater than the elevation threshold. The output of this

stage is a set of links connecting a subset of the nodes

resulting from the node generation process. The elevation

of the nodes in the center of each vertex has values below

the elevation threshold. Those nodes characterized by low

resolution are located in the low elevation areas. Given the

flat areas that characterize low elevation areas, links can

generally be connected in all directions without exceeding

the elevation threshold. An illustration of the resulting

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8
100 x 100

Number of Hidden Neurons

M
ea

n 
of

 A
bs

ol
ut

e 
P

er
ce

nt
ag

e 
E

rr
or

Fig. 3 Mean of absolute percentage error against number of hidden

nodes for a 100 9 100 map of terrain
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Fig. 4 Mean of absolute percentage error against number of hidden

nodes for a 200 9 200 map of terrain
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Fig. 5 Mean of absolute percentage error against number of hidden

nodes for a 300 9 300 map of terrain
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network based on the current location of UAV (star) is

shown in Fig. 6.

Through the generated network, UAVs are able to

estimate their own position in the environment and navi-

gate to target location to accomplish their missions without

the need of GPS. An outline of the ELM procedure for the

proposed approach is listed in Fig. 7.

All simulations for the ELM algorithms, BP algorithms

and DT are carried out in MATLAB 7 environment run-

ning on a Core 2 Quad 2.67 GHz central processing unit

(CPU) and 2 GB double-data-rate random access memory

(DDR RAM). By utilizing ELM training algorithm, the

computational cost is significantly reduced. The corre-

sponding performance accuracies in terms of mean square

error (MSE), training times and testing times are shown in

Tables 1, 2 and 3.

The gain in the tables refers to gain value in the acti-

vation function. Research studies [20, 21] show that gain of

the activation function have a significant impact on training

time. Thus higher values of gain can cause instability. In

this case, the ELM surpasses all the other BP algorithms in

the training time even though all networks use the same

number of hidden neurons. ELM also achieves competitive

accuracy compared to all the other BP networks. Since all

Fig. 6 Generated network within the sensory region

Fig. 7 Overview of the proposed approach

Table 1 Performance comparison on a 100 9 100 map of terrain

Test MSE Train time Gain Test time

ELM 0.04462 0.0414 0.00 0.0981

LM-BP 0.01105 0.4923 9.801 0.1404

QN-BP 0.04311 0.8883 18.414 0.1413

QSS-BP 0.04889 1.4913 31.518 0.1539

R-BP 0.04614 1.2942 27.324 0.1404

DT 0.00126a 0.0594

a Requires larger memory consumption

Table 2 Performance comparison on a 200 9 200 map of terrain

Test MSE Train time Gain Test time

ELM 0.04462 0.0567 0.00 0.1539

LM-BP 0.01105 0.5625 8.028 0.2115

QN-BP 0.03735 1.2096 18.297 0.1971

QSS-BP 0.04113 2.475 38.385 0.1962

R-BP 0.04785 1.379 20.97 0.2106

DT 0.000787a 0.0954

a Requires larger memory consumption

Table 3 Performance comparison on a 300 9 300 map of terrain

Test MSE Train time Gain Test time

ELM 0.0401 1.1583 0.00 2.25

LM-BP 0.0099 6.0192 3.78 2.9385

QN-BP 0.0305 15.9059 11.457 2.9673

QSS-BP 0.03816 29.007 21.636 2.925

R-BP 0.03573 15.4125 11.079 2.9394

DT 0.000122a 2.034

a Requires larger memory consumption
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networks have the same topology and use the same acti-

vation function, they have the same testing or query time

(query time is independent of the algorithm used for

training). As for the comparison with DT, ELM scores

similar total time taken to complete the terrain modeling. It

should be noted that at 10% training proportion, DT is

storing about 13.5 times the number of training points in

the generated terrain model. Hence, in terms of memory

consumption, ELM and DT are considerably not equiva-

lent. It has been shown in [3] that to achieve equivalent

MSE performances with ELM, DT would have to exploit

significantly larger number of parameters in its terrain

model. As the terrain size increases, DT will require much

more data points to represent the terrain, whereas ELM

maintains a very much lower neuron count, and hence,

much smaller memory is required. Therefore even though

DT can provide a more accurate representation of the ter-

rain, in situations where memory capacity is severely

limited, ELM would have offered a better solution. Table 4

shows the computational cost of the proposed navigation

approach. The algorithm computes the multi-resolution

representation using the ELM algorithm and it takes 1.592

s for execution. On the other hand, DT and BP algorithms

require much longer time for execution, compared to ELM.

With the knowledge of the execution time of the proposed

approach, autopilot manages not only to execute the basic

tasks such as data acquisition and processing, inner loops

control, and etc., but also to plan a route in a seamless

manner within the allowable time scale. Thus, the proposed

approach is scalable and can be tailored to the available

computational resources.

4 Conclusion

In this paper, we derive positional reference information

based on the terrain data captured by the UAV onboard

sensors. The proposed procedure has the following advan-

tages. First, it considers elevation threshold based on multi-

resolution representation. Second, it incorporates elevation

for the links in the network. Third, it creates a network

based on the terrain model, which in turn allows this net-

work to be used for routing a fleet of vehicles. And finally

it uses ELM as a mechanism for learning the stored ele-

vation data which introduces competitive solution for

UAVs to navigate through terrain without the need of GPS.

On the whole, this paper has shown how ELM can be used

as representation of patterns or models. The further work is

to consider training the input weights with R-ELM [22] and

FIR-ELM [23] so as to improve the performance under

noisy environment. In the context of memetic computing

[24], an ELM can be perceived as a meme. By exploiting

the recurrence or persistency of patterns [25, 26] spanning

over a region described by its DEM, the efficacy of ELM

can be further improved. Further enhancement can be

achieved by means of reconfigurable and context inde-

pendent hardware such as that presented in [27].
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