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Abstract

Due to their aptitude in both accurate data processing and human comprehen-

sible reasoning, neural fuzzy inference systems have been widely adopted in var-

ious application domains as decision support systems. Especially in real-world

scenarios such as decision making in financial transactions, the human experts

may be more interested in knowing the comprehensive reasons of certain advices

provided by a decision support system in addition to how confident the system

is on such advices. In this paper, we apply an integrated autonomous computa-

tional model termed genetic algorithm and rough set incorporated neural fuzzy

inference system (GARSINFIS) to predict underpricing in initial public offerings

(IPOs). The difference between a stock’s potentially high value and its actual

IPO price is referred as money-left-on-the-table, which has been extensively

studied in the literature of corporate finance on its theoretical foundations, but

surprisingly under-investigated in the field of computational decision support

systems. Specifically, we use GARSINFIS to derive interpretable rules in deter-

mining whether there is money-left-on-the-table in IPOs to assist the investors

in their decision making. For performance evaluations, we first demonstrate

∗Corresponding author
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how to balance between accuracy and interpretability in GARSINFIS by simply

altering the values of several coefficient parameters using well-known datasets.

We then use GARSINFIS to investigate the IPO underpricing problem. The en-

couraging experimental results show that we may yield higher initial returns of

IPOs by following the advices provided by GARSINFIS than any other bench-

marking model. Therefore, our autonomous computational model is shown to

be capable of offering the investors highly interpretable and reliable decision

supports to grab the money-left-on-the-table in IPOs.

Keywords: neural fuzzy inference system, interpretable rules, initial public

offering, financial decision support system, IPO underpricing

1. Introduction

Neural fuzzy inference system (NFIS) [1] or also widely known as fuzzy

neural network (FNN) synthesizes the human cognitive and reasoning processes

by tolerating imprecise information and handling ambiguous situations. NFIS

solves complex problems using linguistic models consisting of highly intuitive5

and easily comprehensible fuzzy rules. The hybridization integrates both the

learning aptitude of neural networks and the transparency of fuzzy systems.

To better preserve the semantic meanings of the linguistic models, certain

level of the rule base’s legibility has to be guaranteed. The interpretability

improvement is “regarded as one of the most important issues in data-driven10

fuzzy modeling” [2]. Because accuracy and interpretability are two contradicting

objectives, an ideal system (see Figure 1) is usually not available. In most cases,

a satisfactory balance between the aforementioned two contradictory objectives

is made based on the complexity and purpose of the underlying application.

In this paper, we illustrate how we leverage the trade-off between accuracy15

and interpretability in an NFIS termed genetic algorithm and rough set incorpo-

rated neural fuzzy inference system (GARSINFIS). In a nutshell, GARSINFIS

self-organizes its network structure with a small set of control parameters and

constraints. Moreover, it employs and fine-tunes the inference rule base, which

2



Figure 1: Illustration of the trade-off between accuracy and interpretability.

is autonomously derived by an iterative clustering algorithm termed genetic20

algorithm based rough set clustering (GARSC). Because knowledge reduction

is performed and the formations of clusters are iteratively optimized, the de-

rived rule base is highly interpretable and reliable. For performance evaluations,

we first conduct experiments on well-known datasets of different complexity to

demonstrate the different configuration options of GARSINFIS. We then inves-25

tigate the underpricing problem in initial public offerings (IPOs) by applying

GARSINFIS to predict whether there is money-left-on-the-table.

IPO refers to a type of public offering in which shares of a company are sold

to the general public through a securities exchange for the first time. During

IPO, many companies choose to purposely lower their stocks’ price to create30

more incentives for the potential investors. The difference between the stock’s

potentially high value and its purposely lowered IPO price is referred as money-

left-on-the-table. However, due to various reasons, there is not always money-

left-on-the-table in IPOs, which means the investors may lose money, or on

the other hand, miss the opportunity to grab the money-left-on-the-table. Al-35

though this problem has been extensively studied in the literature of corporate

finance on its theoretical foundations, surprisingly, there are only few studies

3



carried out to investigate this problem using computational models for prac-

tical decision supports. Moreover, to the best of our knowledge, there is only

one computational model proposed in the literature, which derives interpretable40

rules to assist the decision making of the investors. In this paper, we collect a

dataset comprising 28 years of IPOs in U.S. and follow the experts’ prior study

[3] to generate fifteen robust determinants for investigations.

Our main contributions in this paper are summarized as follows:

1. We introduce the dynamics of an autonomous clustering algorithm and a45

neural fuzzy inference system with detailed mathematical formulations.

2. We analyse and highlight both the low-level and high-level interpretability

properties of the overall system.

3. We demonstrate how the balance between accuracy and interpretability

may be straightforwardly altered by assigning different values to a few50

coefficient parameters using well-known datasets.

4. We show that our hybrid intelligent system is capable of offering the

investors highly interpretable and reliable decision support to grab the

money-left-on-the-table in IPOs.

The rest of this paper is organized as follows. Section 2 reviews relevant55

literature. Sections 3 and 4 present the preliminaries of rough set theory and

genetic algorithm, respectively. Section 5 introduces the GARSC clustering

algorithm. Section 6 presents the system architecture of GARSINFIS, which

employs and fine-tunes the fuzzy rules derived by GARSC. Sections 7 and 8 re-

port the experimental results of applying GARSINFIS in different configurations60

on well-known datasets and own-collected IPO dataset, respectively. Section 9

concludes this paper and proposes future work.

2. Related Work

In this section, we review the literature in two relevant research fields, namely

interpretability improvement in NFISs and financial decision support systems.65

4



2.1. Improvement of Interpretability in NFISs

There are two major approaches proposed in the literature to improve the in-

terpretability of an NFIS, namely reducing the complexity after the construction

of the model and defining constraints before the construction process. In terms

of model complexity, the latter approach is generally more complex due to the70

varies constraints considered during the learning process, however, as a form of

compensation, the resulting models are usually more interpretable. For the first

approach, many methods have been proposed, such as rule aggregation [4], rule

removal [5], rule transformation [6], feature selection [7], and knowledge reduc-

tion (on both rules and features) [8–10]. The second approach mainly focuses75

on controlling the quality and quantity of the derived membership functions

[11, 12] and also focuses on defining constraints on both membership functions

and rules [13, 14]. Only a few prior studies [15–17] provide options or device

parameters to leverage the trade-off between accuracy and interpretability. In

this paper, we show that our model can also be easily configured to leverage80

such trade-off by simply altering several coefficient parameter values.

2.2. Existing Financial Decision Support Systems

Due to their desirable high-level accuracy, NFISs or neural networks in gen-

eral have been adopted in various financial application domains as decision sup-

port systems. To predict the likelihood of bank failures, Wang et al. extracted85

nine fiancial covariates [18]. To study bank risk contagion, Cerchiello et al. fur-

ther expanded the data sources, i.e., from both financial markets and financial

tweets [19]. Along the same line of research, Ronnqvist and Sarlin relied on the

text analysis of public news on bank distress and government interventions [20].

In another well-known financial application domain, i.e., stock price prediction,90

a recent study [21] reported the influence of varying input window length on

the prediction of stock price movement directions. Moreover, decision support

systems for stock exchanges generally favour accuracy (normally in terms of

RMSE, e.g., [22]) much more than interpretability. In this paper, we strive for

5



a better leverage of the trade-off between both accuracy and interpretability in95

an NFIS model for IPO underpricing prediction.

Although computational models have been widely adopted to assist in vari-

ous financial applications, surprisingly, there are only a limited number of prior

studies on the prediction of IPO underpricing. The first well-known IPO pricing

study using neural networks was conducted back in 1995 [23], wherein Jain and100

Nag closely approximated the pricing of IPOs according to IPO first day closing

price. Similarly, Robertson et al. [24] and Reber et al. [25] also constructed neu-

ral network models to predict the post-IPO market price. Alternatively, Yao

and Zhou employed rough set theory and support vector machine to identify

the most influential factors in Chinese IPOs [26]. Only recently, a comprehen-105

sive study on using machine learning models to predict the initial returns of

IPOs was published [27]. However, in [27], none of the investigated models may

easily generate human interpretable rules, which means the decision support

systems would be all “black-boxes”. To the best of our knowledge, the only

interpretable rule-based model used to predict IPO underpricing was proposed110

in [28]. Although Quintana et al. reported in [28] that their rule-based de-

cision model optimized by genetic algorithm (GA) outperforms the regression

approach, they only include seven financial covariates in their study and the

overall data sample size is 840. In this paper, we include fifteen input variables

following the experts’ suggestions [3] and our data sample size is 5,203. We115

select Quintana’s GA model [28] as one of the benchmarking models when we

investigate the IPO underpricing problem.

3. Rough Set Theory for Knowledge Reduction

Rough set theory was first proposed by Pawlak [29] to investigate the intrin-

sic relations or knowledge embedded in a given dataset, which can be in turn120

used to reduce the dimensionality of the underlying dataset [30]. Rough sets

are often compared to fuzzy sets [31], which use membership functions to define

the degree of the belongingness. In comparison, rough set uses approximations

6



Table 1: A Simple Illustration of a Decision Table

U

A

C D

weight height body size

1 light short small

2 heavy tall big

to model the relationships between subsets of data. It has been suggested to

integrate both theories in one system to exploit their complements [32].125

3.1. Construction of Decision Tables

To perform knowledge reduction, rough set theory employs decision logic

language to model the knowledge representation system (KRS). Such a system S

comprises a non-empty and finite set U , which denotes the universe of discourse,

and a non-empty and finite set A, which denotes the primitive attributes, i.e.,130

S = (U,A).

A decision table can then be defined based on a KRS. Assume in S = (U,A),

we know the condition attributes C and decision attributes D, i.e., C,D ⊂ A,

then a decision table T = {U,C,D} can be constructed as S with distinguished

(C,D) pairs (see Table 1). Moreover, in the context of clustering, each row in135

T may represent a cluster of data samples [33].

3.2. Relationship Approximations in Rough Set Theory

In rough set theory, the indiscernible relation IND(G) over knowledge G is

defined as follows:

IND(G) = {(p, q) ∈ U2 | ∀r ∈ G, r(p) = r(q)}. (1)

The set of all correspondence relations IND(G) is denoted as U/IND(G).

Furthermore, relationships in rough set theory are approximated by the lower

and upper approximations [29]. When IND(G) is provided, these approxima-

tions are defined as follows:

GQ =
⋃
{P : P ∈ U/IND(G), P ⊆ Q}, (2a)

7



GQ =
⋃
{P : P ∈ U/IND(G), P ∩Q 6= φ, P ⊆ Q}. (2b)

Specifically, the lower approximation GQ denotes the set of elements that can

be definitely distinguished by G and Q, and upper approximation GQ denotes140

the set of elements that can be probably distinguished by G and Q.

3.3. Attribute Removal and Feature Selection in Rough Set Theory

In rough set theory, knowledge reduction is performed based on two fun-

damental definitions called reduct and core [29]. Reduct denotes a subset of

knowledge that necessarily defines all the essential relations and core denotes145

the subset of primary knowledge that only comprises the commonly shared

knowledge among all reducts.

In a decision table T = {U,C,D}, an attribute k is dispensable if and only

if IND(C) = IND(C − {k}). Otherwise, k is indispensable. Moreover, C is

independent if ∀k ∈ C is indispensable. Attribute removal is carried out during150

the procedure of identifying independent C with minimal cardinality. If an

attribute k is dispensable in all relations, it may be excluded from C. As such,

feature selection is performed during the process of excluding all dispensable

attributes.

Based on the afore-defined indispensable relations, Y ⊆ X is a reduct of X,155

if Y is independent and IND(X) = IND(Y ). The core of X is defined as the

overlapping portions of all reducts, i.e. CORE(X) =
⋂

REDUCT(X).

3.4. Knowledge Reduction in Rough Set Theory

Knowledge reduction is carried out during the procedure of identifying a

reduct of the decision table. Specifically, when given a dataset, if the data160

are continuous and the separation boundaries in every dimension are known,

the continuous data can be discretized into categorical values. As such, by

removing all the dispensable attributes based on rough set approximations and

further merging the duplicates, we obtain a simplified set of decision rules.

8



4. Genetic Algorithm to Optimize Boundary Separations165

Genetic algorithm (GA) [34] is designed based on the dynamics of natural

selection and mechanics of natural genetics [35]. In the beginning of a typical

GA procedure, a population of artificial creatures referred as chromosomes are

randomly initialized. Then in each generation, certain highly fit chromosomes

are selected in pairs as parents to produce offspring. This reproduction process170

is regulated by the crossover operations. Moreover, certain chromosomes are

then selected for mutation, wherein their genes are varied. Over the iterative

productions of new generations of chromosomes, better solutions are obtained.

The production process ends when any termination criterion is met. Although

GA is regulated in a random manner, it efficiently “exploits historical informa-175

tion to speculate on new search points with expected improvements” [35].

Because rough set theory only deals with categorical values, if the underlying

dataset is continuous, discretization is required first. As such, we employ GA to

optimize the selections of separation boundaries in each input dimension. The

relevant GA strategies adopted by our clustering algorithm are introduced in180

the following section.

5. GARSC: Genetic Algorithm based Rough Set Clustering

GARSC [36] incorporates the advantages of both genetic algorithm [34] and

rough set theory [29]. Specifically, we employ genetic algorithm to look for de-

sirable feature segmentations and use rough set theory to perform knowledge185

reduction [37]. Based on rough set knowledge reduction, any categorical infer-

ence rule set can be prominently reduced without discarding any indispensable

knowledge. This great property of rough set theory can be really beneficial in

improving the legibility of a set of inference rules [38], i.e., reducing the number

of retained features, the number of employed rules, and the number of argu-190

ments kept in each inference rule. Please note that the crisp rules reducted by

rough set approximations are transformed into fuzzy ones by deriving Gaussian

fuzzy membership functions accordingly (see Figure 2). Specifically, suppose in

9



Figure 2: Illustration of transferring crisp membership functions to fuzzy ones.

dimension x, we select (n − 1) number of separation boundaries, then x can

be discretized into n regions. Therefore, the determination of a Gaussian type195

fuzzy membership function fGi(x) = exp(−‖x−ci‖
2

2σ2
i

) only requires the computa-

tion of mean ci and standard deviation σi of all the data points in the ith region

xi. Subsequently, the generated fuzzy rules are employed by GARSINFIS (see

Section 6) for performance evaluation as a solution candidate.

The procedure of transforming the crisp membership functions to fuzzy ones200

is necessary to better deal with the non-overlapping in crisp separations adopted

by rough set theory. Instead, we employ fuzzy membership functions (MFs)

to tolerate imprecise information for better performance in unforeseen circum-

stances. This particular step of knowledge transfer naturally prevents the result-

ing fuzzy MFs from separating or overlapping too much with their neighbours,205

which makes the fuzzy rules more interpretable. Moreover, as the MFs are gen-

erated in each individual dimension without normalization and transformation,

the representations of the associated fuzzy semantic labels are deemed highly

interpretable. The necessity of transformation from crisp membership functions

to fuzzy ones is also empirically shown in Section 7.1.210

5.1. Predefined Discretization Constraints

Before introducing GARSC in detail, we first define a couple of constraints

being applied on data discretization. The first constraint is the maximal number

of separation boundaries allowed in each dimension. It is easy to infer that this

restriction subsequently defines the maximal number of fuzzy MFs that might be215
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devised in each dimension. Nonetheless, the actual number of fuzzy MFs derived

is also affected by the knowledge reduction procedure. In any dimension, the

minimal number of separation boundaries really in use is zero, which denotes

that the corresponding dimension is not included in the reducted inference rule

base. Furthermore, this number of maximal number of separation boundaries220

allowed in each dimension should not be large so as to avoid the employment of

a large number of fuzzy MFs, which degrades the interpretability of the overall

model.

The second constraint is on the minimal distance to be guaranteed between

any neighbouring separation boundaries in the same dimension. This restriction225

ensures the relatively high level of generation possessed by the derived fuzzy

membership functions. As such, any neighbouring membership functions are

well separated. We use mindis to denote this minimal distance requirement and

present its definition as follows:

mindisj =
ubj − lbj

max(nopj ,M)
, (3)

where j denotes the jth dimension, ubj and lbj denote the maximal value and the230

minimal value seen in the jth dimension, respectively, nopj denotes the count

of all different values seen in the jth dimension that for each corresponding

conditional attribute value, its associated decision attribute has more than one

values, and M denotes the predefined minimal number of separation bins in

each dimension, which is assigned to 10 unless specified otherwise.235

5.2. Attribute and Rule Removal

In rough set theory, a decision table is independent when all its dispensable

attributes have been removed. Therefore, we can obtain an independent decision

table by performing attribute removal to find the reduct of the original decision

table with the minimal cardinality. If in all rules, some attributes are always240

dispensable, they shall be removed from the reasoning process. As such, we

actually perform feature selection along the knowledge reduction process.
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The reduction of decision rules is similar to attribute reduction. Besides

the merging of duplicate rules, an inference rule is dispensable if and only if

the performance of the resulting rule base does not decline after the rule being245

removed. This removal procedure is often denoted as the pruning of redundant

rules. Furthermore, rules share the same conditional attribute values but differ

in the decision attribute are named inconsistent rules. The removal of these

rules is required to preserve the integrity of the inference rule base [39]. The

confidence of the ath rule conf(a) is computed as follows:250

conf(a) = min

(
card(Uj(aj) ∩ da)

card(Uj(aj))

)
,∀j ∈ C, (4)

where card computes cardinality, Uj denotes the union function of decision at-

tributes of each individual decision rule that has the same categorical value on

the jth dimension, aj denotes the categorical value of the ath rule on the jth

dimension, and da denotes the decision attribute value of the ath rule.

Within each inconsistent rule set, only one rule should be kept by following255

three selection criteria: i) preserve the rule that has the maximal confidence

value, ii) if confidence value ties, preserve the rule that covers the most number

of data samples, and iii) if the number of data samples still ties, preserve a

random selected rule with equal probability.

5.3. Commonly Adopted Strategies in Genetic Algorithms260

In genetic algorithms, the number of chromosomes exist in one generation is

known as the population size. Therefore, to evaluate more number of solution

candidates, we may set a larger population size.

GARSC uses real numbers to construct chromosomes. Specifically, each

gene of a chromosome represents a separation boundary in the corresponding265

dimension. Please note that although GARSC confines the maximal number of

separation boundaries allowed in each dimension, the actual number of parti-

tions in use varies, i.e., chromosomes (consisting of separation boundaries in all

dimensions) in GARSC do not have a fixed length.
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When producing a new generation of chromosomes, GARSC applies the270

elitism replacement strategy [35]. Specifically, when producing chromosomes in

the next generation G(t + 1), a certain number of chromosomes in the current

generation G(t) shall be directly kept in G(t+1). The number is determined by

the elitism ratio µ ∈ [0, 1) and the population size. Generally speaking, to avoid

domination of certain species especially in the early generations, µ is normally275

set to relatively small values.

The stopping criterion of GARSC is defined as when GA reaches the pre-

determined number of generations. This generation number should be set care-

fully to allow GA to converge.

5.4. Fitness Evaluation of Chromosomes280

The fitness evaluation function examines the performance of the correspond-

ing chromosome. Because the fitness function characterizes the optimal solution

that GA tries to search for, it is often considered as the most important com-

ponent in GA. Because the aim of GARSC is to derive comprehensive inference

rules without degrading accuracy, we integrate both interpretability and accu-

racy terms in its fitness function f(x) as follows:

f(x) = τ1(1− a)
NOD

NOF︸ ︷︷ ︸
1

+ τ2
nof

NOF︸ ︷︷ ︸
2

+ τ3
nor

NOD︸ ︷︷ ︸
3

+ τ4
noa

NOF · NOD︸ ︷︷ ︸
4

+ τ5
mse

NOF︸ ︷︷ ︸
5

, (5)

where x denotes the chromosome under evaluation, τ1, . . . , τ5 denote the pre-

determined coefficient values, a denotes the accuracy of solution x on the under-

lying dataset, NOD denotes the number of data samples, NOF denotes the total

number of dimensions exist in the underlying dataset, nof denotes the number

of features (dimensions) included in the inference rule base, nor denotes the

number of rules in the inference rule base, noa denotes the aggregated number

of arguments in the antecedent part of all rules, and mse denotes the mean

squared error that

mse =
1

NOD

NOD∑
i=1

(yi − ŷi)2, (6)
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where yi denotes the value of prediction and ŷi denotes the value of ground

truth. Please note that capital letters are used to denote constant values and

small letters are used to denote variables. Terms 1 and 5 in (5) relate to accuracy

and the remaining terms relate to interpretability. A chromosome with smaller

fitness value is a better solution candidate to the underlying problem.285

5.5. Selection of Parents to Produce Offspring

During the production of offspring to be evaluated in the next generation,

each pair of parents are selected from the current generation based on their fit-

ness values. Generally speaking, parents normally have relatively better fitness

values than those not being selected. Among all parent selection strategies, we290

adopt tournament selection [40], in which the competition among candidates

can be easily regulated by tournament size m and selection probability s.

Prior to the selection of two parents to produce offspring by applying the

crossover operator, m number of candidates are first randomly chosen for con-

sideration. These candidates are then sorted in the ascending order (because the295

fitness function is to be minimized) based on their fitness values. Subsequently,

the selection starts from the beginning of the sorted list until one fulfils the

selection criterion. Specifically, the selection probability of the ith candidate

s(i) is defined as follows:

s(i) = s(1− s)i−1, 0.5 < s ≤ 1. (7)

The tournament size m determines the stressfulness of less fit chromosomes300

being selected as parents. Specifically, for a relatively less fit chromosome, its

chance of getting selected as a parent will increase with a smaller m value, but

decrease with a larger m value. Moreover, to prevent early domination of certain

highly fit chromosomes or often formally known as premature convergence in

the early generations of GA, s should be set to a smaller value so that less fit305

chromosomes still have relatively higher chances of being selected. On the other

hand, to fine-tune the highly fit chromosomes with more in-depth exploitation
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in the late generations, s should be set to a larger value. As such, we define the

tournament selection probability s as follows:

s = 0.5

(
1 +

icg

NOG

)
, (8)

where icg denotes the index of the current generation and NOG denotes the310

predefined total number of generations until GA terminates. Because icg ∈

[1,NOG], s for each generation in GA forms an arithmetic progression series in

the [0.5 + 0.5
NOG , 1] interval, which precisely fulfils the constraining requirement

defined in (7).

5.6. Modified Crossover Operator for Varying Length315

When a pair a parents have been selected, they produce offspring that

partially inherit their genes through a crossover operation. Nonetheless, the

crossover rate determines whether the selected pair of parents will eventually

exchange their genes so that only their offspring are kept in the next genera-

tion or themselves shall be kept alternatively. Due to the adoption of elitism320

replacement strategy, in GARSC, we always set the crossover rate to 100%.

To deal with the varying length of different chromosomes that comprise dif-

ferent numbers of separation boundaries across all the input dimensions, we

propose a modified uniform crossover operator and illustrate its usage in Fig-

ure 3. Akin to normal uniform crossover operators, a binary control string of325

length equals to NOF is randomly generated. In each position of this string,

the corresponding binary value determines a child should inherit the gene from

which parent. As such, there shall be no misunderstanding in the dimensionality

and length of the corresponding genes when producing the offspring.

Please recall that GARSC performs feature selection (see Section 5.2), there-330

fore, it is common for a chromosome has empty gene in the respective input

dimension as represented by the square brackets “[ ]” in Figure 3. As such, it is

possible that a produced offspring consists of only empty genes in every dimen-

sion. To deal with this exception, the “empty” offspring shall be reinitialized to

a random “non-empty” chromosome.335
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Figure 3: An example of applying the modified uniform crossover operator.

5.7. Modified Mutation Operators for Gene Replacement

To deal with chromosomes customized for GARSC, which comprise separa-

tion boundaries across all input dimensions, we propose three modified mutation

operators. Specifically, one of the following three operators shall be applied on

the selected gene for mutation based on equal probability: i) add one randomly340

selected separation boundary if it does not violate any constraint, ii) remove

one separation boundary if the gene is non-empty, and iii) vary the value of a

randomly selected separation boundary if the new value does not violate any

constraint.

Akin to probability s used in the tournament selection strategy, the muta-

tion rate mr defining the probability of mutating each individual gene should

increase from smaller values in the early generations to larger values in the late

generations. As such, we define mr as follows:

mr =
1

NOF
+

(NOF− 1) · icg

NOF ·NOG
. (9)

5.8. Computational Complexity Analysis345

Because GARSC iteratively optimizes the inference rule base, in this subsec-

tion, we further analyze its computational complexity. First of all, when dealing

with each individual solution candidate, the computationally heavy procedures

of GARSC are identified as decision table construction, rule transformation

(from crisp rules to fuzzy ones), and knowledge reduction. Furthermore, the350

complexity of knowledge reduction is determined by three major procedures,

namely attribute reduction, conflict rule removal, and redundant rule removal.

The complexity of each major procedure is reported in Table 2. As shown, the
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Table 2: Computational Complexity of Individual Solution Candidate

Procedure Complexity

Decision table construction O(NOF ·NOD)

Rule transformation O(NOF ·NOD)

Knowledge reduction (attribute) O(nor2 · nof)

Knowledge reduction (conflict rule) O(nor2)

Knowledge reduction (redundant rule) O(nor ·NOF ·NOD2)

Overall O(nor ·NOF ·NOD2)

overall complexity is mainly determined by redundant rule removal, wherein the

performance of the fuzzy inference rule set is iteratively evaluated.355

At the end of each generation of GA, GARSC produces a new population of

solution candidates for performance evaluations in the subsequent generation.

The complexity of this generation procedure is determined by the population

size P , tournament size m, and the number of features in use nof, i.e., O(P ·

m · nof). Because in this work, P is always smaller than NOD2 (see Table 4360

and Section 8.1), m is set to a small value, and nof ≤ NOF, the complexity

of this procedure is always smaller than the overall complexity of dealing with

an individual solution candidate (see Table 2). Therefore, the complexity of

GARSC in one GA generation is O(P · nor ·NOF ·NOD2). As such, the overall

complexity of GARSC is determined as O(NOG · P · nor ·NOF ·NOD2).365

Furthermore, because GARSINFIS simply uses the fuzzy inference rules de-

rived by GARSC to organize its network structure and set the weight vectors

accordingly (if zero-order TSK rules are employed, see more technical details

in the subsequent section), the computational complexity of whole model is the

same as that of GARSC.370

6. GARSINFIS: Genetic Algorithm and Rough Set Incorporated Neu-

ral Fuzzy Inference System

GARSINFIS (see Figure 4) is a six-layer, feed-forward, and partially con-

nected architecture [36]. In each layer, neurons are not connected to each other
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Figure 4: The network architecture of GARSINFIS.

but only connected to neurons in the adjacent layers. For the antecedent and375

consequent parts of the fuzzy rules (derived by GARSC), we use rectangular

boxes to represent their corresponding neurons in the condition and consequence

layers, respectively. GARSINFIS employs TSK type of fuzzy rules R [41, 42] as

follows:

Ri : IF x1 is A(1,i) ∧ · · · ∧ xN is A(N,i)

THEN yi = α(0,i) + α(1,i)x1 + · · ·+ α(N,i)xN , (10)

380

where xn denotes the nth input attribute, A(n,i) denotes the fuzzy linguistic

label of the ith rule on the nth input attribute, N denotes the total number of

attributes, yi denotes the output of the ith rule, and α(n,i) denotes the coefficient

associated to xn in the ith rule.

TSK type of fuzzy rules have been widely adopted in the literature [43–47]385

due to their high precision in function approximation. To improve the legibility

of TSK rules, the authors of [48] adopt sparse regularization such that more

consequent coefficients can be approximated to zero. Moreover, if the conse-

quent part of the rules are simplified to yi = α(0,i), they are named zero-order

TSK rules (e.g., [49]). In this paper, GARSINFIS simply employs the zero-order390
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TSK rules derived by GARSC, if higher level of legibility is preferred.

6.1. Input layer

Neurons in the input layer, termed as linguistic neurons, receive and trans-

form the input vector into fuzzy singletons in the respective dimension. Because

feature selection has been performed during clustering, not all input features in395

the given dataset are actually in use. The input function f Ii and output function

oIi of linguistic neurons are defined as follows:

f Ii = xi ; oIi = f Ii , (11)

where xi denotes the ith element of input vector X and i ∈ {1, ..., N1}, N1 =

nof ≤ NOF.

6.2. Condition Layer400

Neurons in the condition layer, termed as input label neurons, compute

the activations of the corresponding fuzzy membership functions (MFs). The

number of input label neurons in the ith dimension Ti equals to the number of

fuzzy MFs formulated in the corresponding dimension. Moreover, the maximal

value of Ti is restricted by the maximal number of separation boundaries allowed405

in GARSC. The input function f IIij and output function oIIij of input label neurons

are defined as follows:

f IIij = −
(oIi − cIIij)2

2σII
ij

2 ; oIIij = exp(f IIij ), (12)

where cIIij denotes the mean of the jth cluster in the ith dimension, σII
ij denotes

the corresponding standard deviation, and j ∈ {1, ..., TN2
}, N2 = N1.

6.3. Rule-base Layer410

Neurons in the rule-base layer, termed as rule-base neurons, perform fuzzy

reasoning based on the activation values received from the condition layer. The

number of inputs received by each rule-base neuron equals to the number of
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arguments exist in the corresponding fuzzy rule. Since attribute reduction has

been performed on the antecedent parts of the rules during clustering, rule-base415

neurons may not be connected to condition neurons in every dimension. The

input function f IIIk and output function oIIIk of rule-base neurons are defined as

follows:

f IIIk = min(oIIij) ; oIIIk = f IIIk , (13)

where k ∈ {1, ..., N3}, N3 = nor.

6.4. Normalization Layer420

Neurons in the normalization layer, termed as normalization neurons, nor-

malize the activation values of all fuzzy rules. The normalization of rule firing

strength should not be omitted and its necessity has been analysed in [50]. The

input function f IVl and output function oIVl of normalization neurons are defined

as follows:425

f IVl =
oIIIl∑
oIIIk

; oIVl = f IVl , (14)

where l ∈ {1, ..., N4}, N4 = N3.

6.5. Consequence Layer

Neurons in the consequence layer, termed as consequence neurons, compute

the prediction of each rule according to the normalized rule firing strength re-

ceived from the normalization layer. The input function fVm and output function430

oVm of consequence neurons are defined as follows:

fVm = c0 + c1x1 + · · ·+ cN1
xN1

; oVm = oIVm fVm, (15)

where c0 denotes a constant, ci denotes the coefficient associated to the ith

attribute, and m ∈ {1, ..., N5}, N5 = N4.

The rules produced by GARSC is zero-order, i.e., ci = 0,∀i ∈ {1, ..., N1}. In

complex applications or by user requirements, zero-order rules may be extended435
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into first-order ones to further increase accuracy with the price of decreasing

legibility. Specifically, GARSINFIS employs the recursive least squares (RLS)

algorithm to estimate the optimal coefficient matrix W ∗. Assume there are P

training data samples and let ap denotes the pth row of the weighted input

matrix A, then W ∗ can be recursively estimated as follows:440

S0 = γI,

W0 = [c10 · · · cM0

MN︷ ︸︸ ︷
0 · · · 0]T ,

Sp = Sp−1 −
Sp−1a

T
p apSp−1

1 + apSp−1aTp
, p = 1, · · · , P,

Wp = Wp−1 + Spa
T
p (Dp − apWp−1)︸ ︷︷ ︸

prediction error

,

W ∗ = WP , (16)

where γ denotes a large positive value, I denotes the identity matrix, cm0 denotes

the consequent part of the mth zero-order TSK rule, M = nor, N = nof, Sp

denotes the error covariance matrix of the pth input vector, and D denotes the

matrix of ground truth.445

6.6. Output Layer

The only neuron in the output layer, termed as the output neuron, accumu-

lates the inputs received from the consequence layer and output the prediction

value. The input function fVI and output function oVI of the output neuron

are defined as follows:450

fVI =
∑

oVm ; oVI = fVI. (17)

Altogether, GARSINFIS comprises six layers, where each layer performs

the corresponding non-fuzzy or fuzzy operation. Specifically, the input layer

designates vectored input data to the corresponding linguistic variables. As

GARSC performs feature selection, not all the linguistic variables are going to

be used in this layer. Condition layer provides fuzzy membership functions used455

for each of the linguistic variables employed. Rule-base layer fires the antecedent
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part of fuzzy rules and passes the firing strengths to all the nodes in the next

layer. Normalization layer normalizes the rule firing strengths and passes them

to the respective nodes in the next layer. Consequence layer computes the

consequence part of fuzzy rules using the normalized rule firing strengths and460

passes the results to the single neuron in the following layer. Output layer

computes the final non-fuzzy output of the network.

6.7. Interpretability Properties of GARSINFIS

Based on the detailed introductions on GARSC and GARSINFIS, we list the

desirable interpretability properties of the overall NFIS model in this section.465

These properties are summarized from prior studies [2, 51–53]. Moreover, the

first six properties represent low-level interpretability, i.e., optimization of MFs

on fuzzy set level, and the last four properties represent high-level interpretabil-

ity, i.e., derivation of compact and consistent fuzzy rule base [2].

i) Completeness: The entire universe of discourse U of any input dimension

should be covered by the derived MFs, i.e., every datum should belong to at

least one fuzzy membership function (MF) µi(x):

∀x ∈ U,∃µi(x) ∈ F : µi(x) > 0, (18)

where F denotes the set of all MFs. Because GARSINFIS employs Gaussian470

type of MF, U is covered by each MF.

ii) Convexity: The membership value of a datum belonging to any interval

should not be lower than the lower membership value at the boundaries of the

interval:

∀a, b, x ∈ U : a ≤ x ≤ b→ µi(x) ≥ min(µi(a), µi(b)). (19)

Gaussian type of MF is convex because it monotonically decreases along either

direction starting from the centroid.

iii) Distinguishability: Each MF should represent a clear semantic mean-

ing, which is distinguishable from the others in the same input dimension. In
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other words, each MF should not overlap too much with its neighbors:

∀µi(x), µi+1(x) ∈ F : max
x∈U

(min(µi(x), µi+1(x))) ≤ t, (20)

where t denotes the desired overlap threshold. This property is intuitively real-

ized by the discretization of each input dimension based on the selected separa-475

tion boundaries (see Figure 2 and Section 5.1).

iv) Normality: An MF is normal if there is at least one datum has full

membership value:

∃x ∈ U : µi(x) = 1. (21)

The centroid of every Gaussian type of MF has full membership value of one.

v) Small number of MFs: The number of MFs in each dimension should

be kept within the maximal number (7 ± 2) of conceptual entities that human

can efficiently handle [54]. This property is realized by setting the maximal480

number of partitions allowed in each dimension (see Section 5.1).

vi) Unimodality: An MF is unimodal if there is only one datum has full

membership value:

∃p, q ∈ U : µi(p) = µi(q) = max
x∈U

µi(x)⇒ p = q. (22)

Gaussian type of MF is unimodal because only the centroid has full membership

value of one.

vii) Consistency: The inference rule base is consistent if there are no con-

tradictory rules. In GARSC, only one rule from every inconsistent rule set is485

retained (see Section 5.2).

viii) Readability of single rule: The number of arguments in the an-

tecedent part of each rule should not exceed 7± 2 [54]. Moreover, fewer words

may be recalled if they have longer spoken duration [55] or they have similar

speech sounds [56]. Therefore, the antecedent part of each rule should employ490

a small number of arguments with short and distinctive linguistic labels. This

property is realized by performing attribute reduction and the discretization

of each input dimension based on the maximal number of partitions allowed
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(see Figure 2, Sections 5.1 and 5.2) and its score is incorporated in the fitness

function (term-4 of (5)).495

ix) Small number of features: The employment of only a subset of the

original features decreases the dimensionality of the problem and increases the

readability of the rule base. This property is realized by performing feature

selection (see Section 5.2) and its score is incorporated in the fitness function

(term-2 of (5)).500

x) Small number of rules: The employment of a smaller number of rules

increases the legibility of the rule base if the model’s accuracy is retained. This

property is realized by performing rule removal (see Section 5.2) and its score

is incorporated in the fitness function (term-3 of (5)).

Although it is widely accepted that Mamdani type of fuzzy rules [57] are505

more comprehensible than TSK ones because the consequent parts of Mamdani

rules are fuzzy sets and those of TSK ones are linear functions, it is stated in [2]

that interpretability of TSK fuzzy model should be evaluated based on how well

the local linear models fit the non-linear global model in the respective local

regions. In GARSINFIS, zero-order TSK rules are derived first to maximize510

the level of interpretability. Based on the complexity of the application or by

user requirements, zero-order rules may be extended into first-order ones (see

Section 6.5) to increase accuracy.

7. Experimental Results on Well-Known Datasets

Different configurations of GARSINFIS used in this paper are summarized515

in Table 3. Please note that the coefficient values presented in Table 3 are

simply selected for demonstration purposes, the balanced between accuracy and

interpretability may be easily adjusted by assigning the corresponding coefficient

parameters (see (5)) to any combinations of real numbers.

All the datasets used in this section (see Table 4) are downloaded from520

UCI [58]. In each experiment scenario (see Sections 7.1 to 7.3), two adjacent

configurations from Table 3 are applied for comparisons to show performance
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Table 3: Different GARSINFIS Configurations Evaluated

Id Configuration Details

1 GARSINFIS-crisp employs crisp inference rules, its identified separation

boundaries are different from those of the fuzzy configuration

2 GARSINFIS-a&i focuses on both accuracy and interpretability: τ1,...,5 = 1,

i.e., f(x) = (1− a)NOD
K

+ nof
NOF

+ nor
NOD

+ noa
NOF · NOD

+ mse
NOF

3 GARSINFIS-a focuses on accuracy only (rules are still simplified): τ1,5 = 1,

τ2,3,4 = 0, i.e., f(x) = (1− a)NOD
K

+ mse
NOF

4 GARSINFIS-1 extends the zero-order TSK fuzzy rules derived by

GARSINFIS-a into first-order ones (see Section 6.5)

Table 4: Summary of UCI Datasets in Use

Dataset NOF NOD Population size NOG

iris 4 150 100 30

wine 13 178 100 60

thyroid 5 215 200 80

ionosphere 32 351 200 10

glass 9 214 200 20

material 60 208 200 20

improvement. Furthermore, in each experimental run, two thirds of randomly

selected data are used to train GARSINFIS (half of the training dataset are

used for model construction and the remaining half are used for validations for525

rule removal, see Section 5.2) and the remaining are used for testing. The same

pairs of the training and testing datasets are then used by the benchmarking

models to ensure all of them are compared on equal basis. Performance of all

models is averaged over ten runs to remove randomness.

The commonly adopted GARSINFIS’s control parameters in all experiments530

are introduced as follows: i) in any input dimension, we only allow a maximal of

two separation boundaries (i.e., each dimension comprises at most three fuzzy

membership functions), ii) we set the elitism ratio to 0.1, and iii) we set the

tournament size to two. The other two parameter values (i.e., population size

and number of iterations) used in each experiment are listed in Table 4.535
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For benchmarking models, we select the following ones: C4.5 [59], Naive

Bayes [60], SVM [61], MLP [62], RBF [62], ANFIS [63] (in this paper, ANFIS

employs the fuzzy c-means (FCM) clustering algorithm [64]), DENFIS [65] (em-

ploys evolving clustering method (ECM) [66]), RS-POPFNN [9] and RS-HeRR

[10]. Among these benchmarking models, only C4.5, RS-POPFNN and RS-540

HeRR performs feature selection and all the other models use all input features.

Moreover, in terms of the number of derived rules, we report the number of

tree leaves in C4.5, the number of hidden neurons employed by MLP, and the

number of radial basis neurons used by RBF. Because MLP and RBF do not

produce interpretable rules, the corresponding number of neurons (determined545

by trial-and-error) listed in the number of rules column (see Tables 5 to 10 and

14) are presented in parentheses and are not used for comparison.

7.1. Performance Improvement by Employing Fuzzy Rules

In this subsection, GARSINFIS-a&i and GARSINFIS-crisp (the two mod-

els are optimized separately, not directly transformed) are applied to the iris550

classification and wine recognition datasets. As shown in Tables 5 and 6,

GARSINFIS-a&i achieves higher accuracy and employs more compact infer-

ence rule bases than GARSINFIS-crisp. These results illustrate the necessity

of representing the crisp clustering results using fuzzy membership functions to

better deal with imprecise information and unforeseen circumstances. Among555

all models, although GARSINFIS-a&i only achieves the best accuracy on the

training dataset in wine recognition, the rest measures are still competitive to

the respective winners with small difference.

7.2. Accuracy Increase without Sacrificing Interpretability

In this subsection, GARSINFIS-a and GARSINFIS-a&i are applied to the560

thyroid diagnosis and ionosphere detection datasets. As shown in Tables 7

and 8, when comparing to GARSINFIS-a&i, GARSINFIS-a achieves higher ac-

curacy but worse interpretability by employing only accuracy focused fitness
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Table 5: Results on UCI Iris Dataset

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-a&i 98.90 96.60 98.13 2.3 3.4

GARSINFIS-crisp 96.10 95.20 95.80 2.2 3.7

C4.5 94.90 94.60 94.80 2.1 4.1

Naive Bayes 95.50 96.20 95.73 4 N.A.

SVM 96.10 97.20 96.47 4 N.A.

MLP 97.00 95.60 96.53 4 (6)

RBF 98.70 94.80 97.40 4 (6)

ANFIS 99.70 96.40 98.60 4 4.6

DENFIS 100.0 95.20 98.40 4 13.4

RS-POPFNN 97.90 94.80 96.87 3.9 13.4

RS-HeRR 97.90 95.60 97.13 2.3 8.5

Table 6: Results on UCI Wine Dataset

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-a&i 100.0 94.31 98.09 3.5 5.6

GARSINFIS-crisp 96.13 93.66 95.30 3.8 5.9

C4.5 90.88 94.13 91.97 4.0 5.6

Naive Bayes 97.13 97.48 97.25 13 N.A.

SVM 98.82 97.82 98.49 13 N.A.

MLP 97.21 97.48 97.30 13 (11)

RBF 100.0 97.82 99.27 13 (6)

ANFIS 100.0 96.98 98.99 13 3.7

DENFIS 100.0 96.98 98.99 13 42.8

RS-POPFNN 99.83 92.12 97.26 12.5 90.5

RS-HeRR 100 94.63 98.21 4.8 73.0

function (see Table 3). This finding illustrates how the balance between ac-

curacy and interpretability may be effortlessly adjusted by assigning different565

values to the respective coefficients. Among all models, although GARSINFIS-a

only achieves the best accuracy in the testing dataset in ionosphere detection,

the rest measures are still competitive to the respective winners with acceptable

difference.
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Table 7: Results on UCI Thyroid Dataset

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-a 98.40 95.40 97.40 3.2 4.3

GARSINFIS-a&i 97.77 94.83 96.79 2.8 4.0

C4.5 91.70 93.49 92.28 3.2 5.9

Naive Bayes 96.30 97.91 96.84 5 N.A.

SVM 87.72 89.96 88.47 5 N.A.

MLP 95.32 96.79 95.81 5 (7)

RBF 98.60 97.07 98.09 5 (6)

ANFIS 97.84 91.21 95.63 5 11.6

DENFIS 100.0 95.96 98.65 5 13.2

RS-POPFNN 93.18 91.67 93.10 5 25.6

RS-HeRR 95.53 92.88 94.65 3.8 29.5

Table 8: Results on UCI Ionosphere Dataset

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-a 94.70 90.77 93.39 8.3 19.2

GARSINFIS-a&i 93.59 90.51 92.56 7.9 18.9

C4.5 97.99 90.60 95.53 7.6 11.5

Naive Bayes 82.88 83.68 83.14 31 N.A.

SVM 90.34 85.56 88.75 32 N.A.

MLP 99.36 88.80 95.84 32 (19)

RBF 93.63 90.60 92.62 32 (6)

ANFIS 100.0 84.24 94.75 32 24.6

DENFIS 99.91 80.17 93.33 32 93.6

RS-POPFNN 98.21 82.39 92.94 27.1 151.3

RS-HeRR 100.0 87.26 95.75 6.7 146.2

7.3. Further Accuracy Increase Using More Complex Rules570

In this subsection, GARSINFIS-1 and GARSINFIS-a are applied to the

glass identification and material discrimination (sonar) datasets. As shown in

Tables 9 and 10, when comparing to GARSINFIS-a, GARSINFIS-1 achieves

higher accuracy by extending the zero-order TSK fuzzy rules into first-order

ones. Please note that the decrease in interpretability is not represented in575
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Table 9: Results on UCI Glass Dataset

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-1 80.50 68.03 76.34 7.1 19.5

GARSINFIS-a 78.29 66.63 74.40 7.1 19.5

C4.5 62.44 66.48 63.79 8.4 20.4

Naive Bayes 46.32 49.09 47.24 9 N.A.

SVM 61.53 57.93 60.33 9 N.A.

MLP 65.62 67.18 66.07 9 (13)

RBF 80.24 66.75 75.74 9 (12)

ANFIS 83.04 60.17 75.42 9 7.1

DENFIS 84.37 63.53 77.43 9 21.6

RS-POPFNN 78.68 62.03 73.13 9 102

RS-HeRR 93.56 64.80 83.97 7.1 93.7

Table 10: Results on UCI Sonar Dataset

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS-1 92.72 72.59 86.01 8.6 21.1

GARSINFIS-a 90.70 69.38 83.53 8.6 21.1

C4.5 97.84 70.82 88.83 11.6 13.6

Naive Bayes 73.78 70.26 72.60 60 N.A.

SVM 88.40 77.31 84.70 60 N.A.

MLP 99.21 81.21 93.21 60 (33)

RBF 96.47 81.20 91.38 60 (10)

ANFIS 100.0 73.84 91.28 60 4.4

DENFIS 98.92 77.03 91.62 60 71.7

RS-POPFNN 100.0 70.01 90.00 24.2 137.3

RS-HeRR 100.0 72.85 90.95 6.1 120.7

the number of selected features and employed rules. It is the consequent parts

of the rules become less legible but fine-tune the model to achieve higher ac-

curacy. This finding demonstrates a way to increase accuracy by sacrificing

interpretability. Among all models, GARSINFIS-1 achieves the best accuracy

in the testing dataset in glass identification and satisfactory accuracy in the rest580

measures.
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It is worth mentioning that in both Tables 9 and 10, RS-HeRR selects the

least number of features and ANFIS employs the least number of rules. However,

RS-HeRR employs significantly more number of rules than other models except

RS-POPFNN, and RS-HeRR suffers much more from the over-fitting problem585

(manifested as the accuracy difference between training and testing datasets,

e.g., in glass identification, the difference of GARSINFIS-1 is 80.5%−68.03% =

12.47% and that of RS-HeRR is 93.56% − 64.8% = 28.76%). Moreover, the

determination of the number of clusters in FCM employed by ANFIS demands

extra effort through trial-and-error. To better compare the performance of all590

models in various aspects, we provide a set of comprehensive comparisons in the

following subsection.

7.4. Performance Benchmarks on All Datasets

The computational time taken by GARSINFIS on each dataset (we use the

model shown in the first row of Tables 5 to 10) is reported in Table 11. Please595

note that the computational time was recorded using a notebook equipped with

Intel(R) Core(TM)2 DUO CPU at 2.53GHz each and 3G physical RAM and

GARSINFIS was implemented using MATLAB. Moreover, for the derivation

of the theoretical computational complexity O(NOG · P · nor · NOF · NOD2),

please refer to Section 5.8. As shown in Table 11, the actual computational600

time and the theoretical computational complexity are highly consistent with

the correlation computed as 0.82. Due to the reason that although the other

benchmarking models were all run using the same computer, they were imple-

mented using different programming languages, their actual computational time

was not reported in this paper for comparisons. Nonetheless, because the other605

benchmarking models do not employ iterative algorithms such as GA, their

computational time is significantly smaller than that of GARSINFIS. However,

we deem that GARSINFIS does not require excessive computational resources,

because for all the UCI datasets used in this paper, GARSINFIS managed to

obtain competitive accuracy with a great level of interpretability (see the latter610

part of this subsection) within a maximum of two hours (see Table 11),
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Table 11: Computational Time Taken by GARSINFIS (in second)

Dataset Iris Wine Thyroid

Computational time 50.40 ± 6.37 1434.17 ± 188.33 599.65 ± 46.43

Theoretical complexity 102e+6 154e+7 177e+7

Dataset Ionosphere Glass Sonar

Computational time 5123.92 ± 450.55 5439.76 ± 252.17 6957.30 ± 227.78

Theoretical complexity 168e+8 357e+7 243e+8

For performance comparisons between the two GARSINFIS models applied

on each dataset (the models shown in the first two rows of Tables 5 to 10), we

run single-factor ANOVA tests to validate whether there is a real difference in

performance. The ANOVA test results suggest that all the difference between615

the two models in terms of accuracy (i.e., train, test and whole) is statistically

significant with P-Value of 0.05.

To better benchmark the performance of GARSINFIS against other models

in terms of accuracy, relative comparisons of the following measures are defined:

i) Relative accuracy on the whole dataset airelative = aiwhole/a
G
whole, where i de-620

notes the ith model and G denotes GARSINFIS (the model shown in the first

row of Tables 5 to 10). This measure roughly shows the correctness and com-

pleteness of each derived model in capturing the characteristics of the whole

dataset. ii) Relative level of generalization girelative = (aitrain − aitest)/(aGtrain −

aGtest), which evaluates whether each model suffers from the over-fitting prob-625

lem. iii) Relative accuracy on the testing dataset tirelative = aitest/a
G
test, which

evaluates the ability of each model to predict unforeseen data. iv) Relative num-

ber of employed rules rirelative = ri/rG. v) Relative number of selected features

f irelative = f i/fG. The results of these measures are shown in Figure 5.

Although GARSINFIS achieves only a middle level of accuracy on the whole630

dataset (see Figure 5(a)) and generalization (see Figure 5(b)) among all mod-

els, it performs better than most NFISs for most datasets (except for wine

and material when comparing to ANFIS and DENFIS) on the testing accu-

racy (see Figure 5(c)). However, ANFIS does not self-organize its network

31



iris wine thyroid ionosphere glass material

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

data set

re
la

tiv
e 

ac
cu

ra
cy

 o
n 

th
e 

w
ho

le
 d

at
a 

se
t

 

 

GARSINFIS
C4.5
NB
SVM
MLP
RBF
ANFIS
DENFIS
RS−POPFNN
RS−HeRR

(a) Relative comparison on airelative

iris wine thyroid ionosphere glass material
−1

0

1

2

3

4

5

6

7

8

data set

re
la

tiv
e 

le
ve

l o
f g

en
er

al
iz

at
io

n

 

 

GARSINFIS
C4.5
NB
SVM
MLP
RBF
ANFIS
DENFIS
RS−POPFNN
RS−HeRR

(b) Relative comparison on girelative

iris wine thyroid ionosphere glass material
0.85

0.9

0.95

1

1.05

1.1

data set

re
la

tiv
e 

ac
cu

ra
cy

 o
n 

th
e 

te
st

in
g 

da
ta

 s
et

 

 

GARSINFIS
C4.5
ANFIS
DENFIS
RS−POPFNN
RS−HeRR

(c) Relative comparison on tirelative

iris wine thyroid ionosphere glass material
0

2

4

6

8

10

12

14

16

18

data set

re
la

tiv
e 

nu
m

be
r 

of
 e

m
pl

oy
ed

 r
ul

es

 

 

GARSINFIS
C4.5
ANFIS
DENFIS
RS−POPFNN
RS−HeRR

(d) Relative comparison on rirelative

iris wine thyroid ionosphere glass material
0

1

2

3

4

5

6

7

data set

re
la

tiv
e 

nu
m

be
r 

of
 s

el
ec

te
d 

fe
at

ur
es

 

 

GARSINFIS
C4.5
RS−POPFNN
RS−HeRR
the other models

(e) Relative comparison on f irelative

Figure 5: Visualization on the defined relative comparisons.

structure and DENFIS employs much more number of rules than GARSINFIS635

does (see Figure 5(d)). It is also encouraging to learn that among all NFISs
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that perform knowledge reduction (i.e., RS-POPFNN, RS-HeRR and GARSIN-

FIS), GARSINFIS always obtains comparable or better testing accuracy (see

Figure 5(c)). It is clearly shown in Figure 5(d) that C4.5, GARSINFIS, and

ANFIS employ lesser number of rules than the other models do. However, C4.5640

uses crisp rules that highly likely lead to its inferior testing accuracy and AN-

FIS requires extra effort in identifying the optimal number of clusters through

trial-and-error (due to the employment of FCM). GARSINFIS and RS-HeRR

perform best in terms of feature selection (see Figure 5(e)). However, RS-HeRR

employs significantly more number of rules. In summary, GARSINFIS produces645

competitive accuracy with a great level of interpretability.

The fact that GARSINFIS only achieves a competitive level of accuracy well

demonstrates the trade-off between the two contradicting objectives, i.e., accu-

racy and interpretability. As aforementioned in the context of Figure 1, an ideal

system is usually not available. GARSINFIS strives for better interpretability650

(instead of excellence in accuracy) without sacrificing accuracy. Nonetheless,

in the following section, we show that GARSINFIS achieves high level of both

accuracy and interpretability in a real-world financial application.

8. Decision Making in IPO Investments

Investing in IPO may be profitable on average, but as many other invest-655

ments, it is risky and the return is subject to many determinants. In the litera-

ture of corporate finance, there are numerous empirical studies on the influenc-

ing factors of the first day or initial returns of IPOs (e.g., [67, 68]). However,

existing IPO studies in the financial aspect usually focus on each individual vari-

able’s incremental effect in explaining IPO’s initial return, e.g., whether certain660

strategy adopted by IPO issuer is a significant explanatory variable. However,

to our surprise, only a couple of studies, including those in the computer science

research field, have documented the corresponding decision support strategies

for investments in IPOs to grab the money-left-on-the-table. Therefore, in this

paper, we apply GARSINFIS on real-world IPO data and further investigate665
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whether it can provide interpretable and reliable decision supports in IPO in-

vestments.

8.1. Design of Experiments

Recently, the financial researchers summarised and identified the most robust

determinants of IPO underpricing [3] among all that had been investigated in670

the literature. Based on the findings reported in [3], we select fifteen financial

covariates in this study and present them in Table 12. These variables span

across determinants of the intrinsic value of the stock, the sentiment of market

participants, and the strategies of IPO issuers and underwriters. Furthermore,

we select earning ratio of the first day return as the dependant variable, which675

quantifies the return of the investment.

Because all relevant IPO data are publicly available, we collected the public

information (by merging multiple databases and deriving the variables listed

in Table 12) of all IPOs in U.S. from 1986 to 2013 (28 years). Specifically,

we followed the convention of financial studies on IPO underpricing to exclude680

American depositary receipts (ADRs), closed-end funds, real estate investment

trusts, financial institutions (SIC codes 6000-6999), unit offerings, and IPOs

with an offer price below five dollars per share. Moreover, after removing missing

values, in the end, the size of the IPO dataset is 5,203. Furthermore, based

on the dependant variable, i.e., earning ratio of the first day return rfdri =685

P fdc
i −P

IPO
i

P IPO
i

× 100%, where P fdc
i denotes the first day closing price of the ith

IPO and P IPO
i denotes the offering price of the ith IPO, we categorize all data

samples into three intuitive categories as listed in Table 13.

In the literature of finance, researchers mostly use regression models to test

the significance of individual variables. In these regression models, every vari-690

able is assigned with a corresponding coefficient, i.e., every input feature takes

into account. Therefore, in financial decision support systems, if we assume

the investors have primitive financial background knowledge, they would not

mind the decision rules employing many input features and each rule consisting

of many arguments. What they really would mind are the unnecessarily large695
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Table 12: List of Financial Covariates Used in IPO Underpricing Prediction

ID Variable Description

1 Ln of firm sale Ln of annual firm sales (REVT) reported within one year

prior to IPO issue date

2 Offer price revision 100( Offer Price - Original Middle Filling Price Range
Original Middle Filling Price Range

),

where Original Middle Filling Price Range =

1
2

(Original Low Filling Price + Original High Filling Price)

3 Ln of news stories Ln(1 + News Stories) where News Stories = Fulltext

search hits of the IPO company name in the 6 months

prior to the IPO issue date.

4 Total liab to asset The ratio of Total Liabilities (LT) to Total Assets (AT)

ratio reported within one year prior to the IPO issue date.

5 Investment bank IB Mkt Sharei,t = 100(
IB Proceedsi,t

Total IPO Proceedst
) for

market share investment bank i and year t

6 Avg undprcg in Average IPO first trading day return in the 30 days

prv 30 days prior to the IPO issue date

7 Avg prc rvs in Average Offer Price Revision of IPOs in 30 days

prv 30 days prior to the IPO issue date

8 Prior 30 day µ̂CRSP
t = 1

30

∑t−1
i=t−31CRSP Equal Weighted Index

CRSP EW index Returni, where t is the IPO issue date

9 Ln(1 + Ln(1+ Secondary Shares Retained
Shares Offered

), where Secondary

shrs rtnd/shrs ofrd) Shares Retained = Shares Outstanding Total Shares

Sold (includes overallotment shares)

10 Offer revision Equals Offer Price Revision if Offer Price Revision < 0,

from orgnl flng otherwise = 0.

11 Ln inds mkt Rolling 12 month average of the industry market value

value to sales to sales ratio

12 Ln price to Ln( Offer Price + Shares Outstanding
Annual Firm Sales

), where Annual Firm Sales

sales ratio (REVT) are reported within one year prior to IPO issue date

13 Prior 30 days µ̂FFlnd
j,t = 1

30

∑t−1
i=t−31Fama French Industry Returni,j ,

industry rtrn where t is IPO issue date and j is one of 49 Industry Groups

14 Prior 30 days Standard deviation of µ̂FFlnd
j,t

SD of industry rtrn

15 Prior 30 days µ̂NASDAQ
t = 1

30

∑t−1
i=t−31NASDAQ composite returni,

NASDAQ rtrn where t is the IPO issue date
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Table 13: IPO Categorization Based on Their First Day Return

ID Characteristic # samples Percentage Categorization criterion

1 Not worth buying 1,425 27.39% rfdri ≤ 0

2 Worth buying 2,463 47.34% 0 < rfdri < 25%

3 Definitely worth buying 1,315 25.27% 25% ≤ rfdri

number of rules, which might be overwhelming in a negative sense. Therefore,

based on these preferences, we assign the coefficient parameter values in (5) ac-

cordingly that τ1 = τ3 = τ5 = 1 and τ2 = τ4 = 0, i.e., the fitness function in this

IPO underpricing study is set as f(x) = (1− a)NOD
K + nor

NOD + mse
NOF . Moreover,

to avoid degrading the interpretability, GARSINFIS employs zero-order rules.700

We use the same set of constraints and parameter values as those reported in

Section 7, except we set population size to 100 and the number of generations

to 10. Furthermore, all the benchmarking models used in Section 7 are also

used in this study. In addition, we include another two benchmarking models,

namely linear regression and Quintana’s model [28]. Because Quintana’s model705

actually employs a pool of rules, which consists of more number of rules than

the population size (accumulated across all generations), in this paper, we set

its number of rules to its population size and assign the same population size

and number of generations as GARSINFIS for comparison purposes. Further-

more, to demonstrate the capability of GARSINFIS in terms of discovering the710

most essential knowledge to perform accurate predictions on unseen data, we

randomly select 20% of the IPO data for training and the remaining for testing.

8.2. Experimental Results

The averaged results of ten independent runs are shown in Table 14. It is

encouraging to find that GARSINFIS achieves the best accuracy on the testing715

datasets with the least number of selected features (even though we did not

specifically construct the fitness evaluation function to minimize the number of

selected features). Furthermore, although GARSINFIS employs more number

of rules than ANFIS, both of them employs significantly much lesser number
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Table 14: Experimental Results on IPO Underpricing Prediction

Model Train% Test% Whole% # Fea. # Rule

GARSINFIS 53.80 51.21 51.63 9.5 15.5

C4.5 84.44 46.94 54.44 15 112

Naive Bayes 47.76 48.97 48.73 15 N.A.

SVM 53.58 50.40 51.04 15 N.A.

MLP 69.91 49.61 53.67 15 (26)

RBF 78.82 47.64 53.88 15 (9)

ANFIS 82.51 47.50 54.50 15 11.2

DENFIS 84.67 48.47 55.71 15 64.3

RS-POPFNN 85.15 48.85 56.11 13.9 170.3

RS-HeRR 87.49 49.71 57.27 10.2 155.6

Regression 56.31 50.77 51.88 15 N.A.

Quintana [28] 49.44 41.53 43.11 14.4 100

of rules than the other rule-based models. However, please recall that in this720

study, ANFIS employs FCM clustering method, whose cluster number needs

to be predetermined by trial-and-error. In addition, ANFIS is fully connected

and GARSINFIS is partially connected (see Figure 4). Therefore, ANFIS may

not be more interpretable than GASINFIS in this IPO underpricing prediction.

However, ANFIS certainly achieves lower prediction accuracy on unseen data725

samples. Comparing GARSINFIS to Quintana’s model [28], which is the only

rule-based model that had been applied to predict IPO underpricing, GARSIN-

FIS outperforms Quintana’s model in every aspect. This finding is not surprising

mainly due to the following two reasons: i) Quintana’s model employs interval-

based crisp rules, which may not perform well on unseen data and ii) Quintana’s730

model may require a significantly larger pool of rules (contradictory to the in-

terpretability requirement of financial decision support systems) to improve its

accuracy.

The averaged computational time taken by GARSINFIS is less than four

hours, i.e., 14039.95±2788.55 seconds (using the same computer as reported in735

Section 7.4). In IPO underpricing prediction, GARSINFIS spent significantly
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more amount of computational time than the other benchmarking models did,

including Quintana’s model [28], which also employs the same iterative algo-

rithm, i.e., GA. However, the time consuming optimization procedures employed

by GASINFIS are highly effective because it achieves the best accuracy on the740

testing dataset and subsequently yields the highest possible profits in IPO first-

day returns (see Section 8.4). Thus, for low frequency financial transactions,

such as investments in IPOs, GARSINFIS is definitely a trustworthy decision

support system that fulfils the response time requirement, especially the process-

ing time of GARSINFIS is significantly much smaller (due to the employment745

of a reducted inference rule set) than its training time (due to the employment

of an iterative optimization algorithm).

8.3. Presentation of Derived Interpretable Rules

To demonstrate the interpretability of the rules derived by GARSINFIS, we

select one set of rules derived in one of the ten runs as examples. Specifically, we750

visualize the generated fuzzy membership functions in each of the nine selected

features in Figure 6 and list all the ten derived rules in Table 15. This set of

derived rules achieve 51.64% accuracy on the testing dataset. As clearly shown

in Table 15 that this set of rules possess high-level interpretability, not only

because they use less number of features and employ less number of rules (see755

Table 14), but also because each rule is more legible that on average, each rule

only consists of 3.2 arguments in the antecedent part.

8.4. Further Investigations on Financial Returns

To intuitively show the performance of each model in terms of financial

returns in IPO investments, we simply implement the following strategies:760

1. If the decision support system suggests an IPO is definitely worth buying,

an investor will invest x% of available money.

2. If the decision support system suggests an IPO is worth buying, an investor

will invest x
2% of available money.
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Figure 6: Visualization on one set of the generated fuzzy membership functions.

3. If the decision support system suggests an IPO is not worth buying, an765

investor will not invest.

Moreover, to distinguish each model’s prediction performance for different types

of investors, we further set different values of x to the following three investment

behavioral patterns: i) for progressive investors, x = 80, ii) for normal investors,

x = 40, and iii) for conservative investors, x = 20. Based on these strategies,770

we compute how much returns (accumulated initial returns) each type of the

investor may yield on IPO investments by following the decision support sys-
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Table 15: One Set of the Derived Interpretable Fuzzy Rules

ID Rule interpretation

1 IF firm sales (#1) is large ∧ offer price revision (#2) is medium ∧

number of news (#3) is small ∧ IB market share (#5) is small ∧

prior underpricing (#6) is small ∧ NASDAQ return (#15) is small,

THEN it is not worth buying (i.e., do not invest)

2 IF offer price revision (#2) is small ∧ number of news (#3) is small ∧

NASDAQ return (#15) is small, THEN it is not worth buying (i.e., do not invest)

3 IF number of news (#3) is small ∧ IB market share (#5) is large ∧

prior offer price revision (#7) is large ∧ industry v2s ratio (#11) is large,

THEN it is not worth buying (i.e., do not invest)

4 IF number of news (#3) is small ∧ prior underpricing (#6) is medium ∧

prior offer price revision (#7) is small ∧ CRSP EW index (#8) is small,

THEN it is not worth buying (i.e., do not invest)

5 IF number of news (#3) is small ∧ CRSP EW index (#8) is small ∧

industry v2s ratio (#11) is large, THEN it is not worth buying (i.e., do not invest)

6 IF offer price revision (#2) is small ∧ number of news (#3) is large ∧

IB market share (#5) is large ∧ prior offer price revision (#7) is small,

THEN it is worth buying (i.e., invest moderately)

7 IF offer price revision (#2) is large ∧ number of news (#3) is large,

THEN it is definitely worth buying (i.e., invest progressively)

8 IF offer price revision (#2) is large ∧ IB market share (#5) is large,

THEN it is definitely worth buying (i.e., invest progressively)

9 IF offer price revision (#2) is large ∧ prior offer price revision (#7) is large,

THEN it is definitely worth buying (i.e., invest progressively)

10 IF prior underpricing (#6) is large ∧ NASDAQ return (#15) is large,

THEN it is definitely worth buying (i.e., invest progressively)

tem’s suggestions only. The final financial returns are listed in Table 16. In the

beginning of each simulation, an investor gets 100 dollars as the seed money.

We were surprised on the first sight of the seemingly overly large amount775

of returns listed in Table 16. To further validate the correctness of these re-

sults, we implement a purely random investment strategy that each time an

investor will not invest, invest x
2% of available money, or invest x% of available

money with equal probability. It turns out that even this random investment
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Table 16: Theoretical Financial Returns on IPO Investments

Model Prospective Normal Conservative

GARSINFIS 1.12e+56 4.03e+30 4.65e+16

C4.5 6.57e+52 8.24e+28 3.36e+15

Naive Bayes 9.22e+54 5.21e+29 7.66e+15

SVM 5.88e+55 8.50e+29 1.35e+16

MLP 3.81e+55 7.55e+29 1.30e+16

RBF 8.72e+51 5.79e+28 1.63e+15

ANFIS 9.53e+52 9.65e+28 3.82e+15

DENFIS 9.74e+50 1.89e+28 1.00e+15

RS-POPFNN 8.00e+53 2.97e+29 5.50e+15

RS-HeRR 1.55e+53 1.18e+29 4.03e+15

Regression 7.28e+55 2.70e+30 2.79e+16

Quintana [28] 2.95e+49 3.18e+27 9.13e+14

strategy may yield financial returns on the magnitude of e+47, e+26 and e+14780

according to the respective investment behaviors. This large amount of finan-

cial returns based on random investment decisions on some level shows the huge

amount of money-left-on-the-table in U.S. IPOs over 28 years. Nonetheless, all

the decision support systems listed in Table 16 perform better than the random

strategies. It is encouraging to see that GARSINFIS may help an investor to785

yield the largest amount of financial returns. It is also worth noting that the

small amount of difference in accuracy on the testing datasets (see Table 14) may

transform into a huge amount of difference in financial returns, e.g., compar-

ing GARSINFIS with regression, the averaged difference in testing accuracy is

51.21%− 50.77% = 0.44%, however, the averaged difference in financial returns790

is 1.12e+56−7.28e+55= 3.92e+55. To further investigate whether the potential

financial returns yielded by each model are statistically different, for each type

of investors (different columns in Table 16), we sort the financial returns and

apply single-factor ANOVA tests on the adjacent values. The ANOVA tests

suggest that all the financial returns yielded by various models are significantly795

different with P-Value of 0.05.
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Please note that the potential investment profits listed in Table 16 are com-

puted based on the theoretical basis. IPO investments in the real world may be

affected by many factors such as over-subscriptions, IPO volume, information

asymmetry, transaction fees, etc.800

9. Conclusion

In this paper, we introduce a hybrid intelligent system termed genetic algo-

rithm and rough set incorporated neural fuzzy inference system (GARSINFIS),

which may function as a data-driven decision support system. We first illustrate

how the trade-off between accuracy and interpretability may be easily leveraged805

in GARSINFIS using well-known benchmarking datasets. We then focus on ap-

plying GARSINFIS to grab money-left-on-the-table in IPOs. Empirical studies

show that GARSINFIS outperforms the other benchmarking models in the pre-

diction of IPO underpricing and may yield the most amount of financial returns

in IPO investments. The highly interpretable yet highly reliable rules derived810

by GARSINFIS may be well accepted by interested investors.

To further improve the accuracy of GARSINFIS in financial applications, we

will look into the employment of asymmetric membership functions to better

characterize financial covariates, which are normally positively skewed [69].
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