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Abstract: 

Clustering is an important unsupervised learning method in machine learning and data mining. Many existing clustering 
methods may still face the challenge in self-identifying clusters with varying shapes, sizes and densities. To devise a more 
generic clustering method that considers all the aforementioned properties of the natural clusters, we propose a novel 
clustering algorithm named Anchor Points based Clustering (APC). The anchor points in APC are characterized by having 
a relatively large distance from data points with higher densities. We take anchor points as centers to obtain intermediate 
clusters, which can divide the whole dataset more appropriately so as to better facilitate further grouping. In essence, based 
on the analysis of the identified anchor points, the relationship among the corresponding intermediate clusters can be better 
revealed. In short, the difference in local densities (densities within neighboring data points) of the anchor points 
characterizes their different properties, that is to say, all the intermediate clusters may fall into one or multiple identified 
levels with different densities. Finally, based on the properties of anchor points, APC spontaneously chooses the 
appropriate clustering strategies and reports the final clustering results. To evaluate the performances of APC, we conduct 
experiments on twelve two-dimensional synthetic datasets and twelve multi-dimensional real-world datasets. Moreover, 
we also apply APC to the Olivetti Face dataset to further assess its effectiveness in terms of face recognition. All 
experimental results indicate that APC outperforms four classical methods and two state-of-the-art methods in most cases. 

Keywords: Density based clustering, Anchor data points, Local density analysis 

1. Introduction 

Clustering is an important and effective way of information acquisition without labels. It has been successfully applied in 
many fields, such as community detection [1], [2], [3], behavioral pattern analysis [4], biological information processing 
[5], [6], image processing [7], [8], financial data analysis [9], [10], [11], etc. More and more applications incorporate 
clustering algorithms to better deal with datasets with arbitrary shapes, sizes and densities. 

In fact, although many clustering algorithms obtain effective results in various applications, they may not well identify 
clusters with varying shapes, sizes and densities. K-means can easily identify convex shape clusters [12], but it may fail in 
identifying non-convex ones. DBSCAN (acronym of Density Based Spatial Clustering of Applications with Noise) is well 
known to be good at discovering clusters with uniform densities [13], but it may fail in detecting clusters of different 
densities [14]. SC (acronym of Spectral Clustering) is a clustering method based on graph theory [15], [16]. It works well 
on clusters with similar distribution, where similar distribution means that clusters are similar in terms of their shapes, 
structures and number of data points. However, SC is not good at identifying clusters of varying distributions. OPTICS 
(acronym of Ordering Points To Identify the Clustering Structure) generates an augmented cluster-ordering graph, which is 
subsequently used to analyze and extract clusters [17], [18]. However, it is difficult to determine the precise boundary of 
clusters using the augmented cluster-ordering graph. 

DPC (acronym of Clustering method by fast search and find of Density Peaks) [19] is a recently proposed ingenious 

method [20]. For N data points in a dataset the similarities between data points are defined as 

 and then the elements in S, which is the set of all Sij, are sorted in descending order to form a vector 

. DPC generates 
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Fig. 1. Clustering results generated by DPC on Flame [23] dataset. 

Fig. 2. Anchor points (data points in the red rectangle) identified by APC. 

Fig. 3. Gaps and local density levels identified in two datasets. The yellow bins represent the gaps and the remaining area in the red rectangle represents the respective 
local density levels. 

a two-dimensional decision graph (see Fig. 1 (a)) according to two 

computed parameters, namely the local density ρ and the mini- 

mum distance between one data point and another with higher 

density δ [21] . DPC suggests that the data points with large ρ and 

δ values are appropriate to be selected as cluster centers, which 

represent density peaks [19] . Subsequently, each remaining data 

point is sequentially assigned to its nearest higher density neigh- 

bor so as to form clusters. The local density of data point x i is com- 

puted as follows: 

ρi = 
∑ 

j 

e −( 
‖ x i −x j ‖ 

d c ) 2 
, (1) 

where d c = s pct·N ·(N −1) / 200 . Parameter pct is user-defined to regulate 

the value of d c . Parameter δ of data point x i is defined as 

δi = min 
j: ρ j >ρi 

S i j . (2) 
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Fig. 4. Step-by-step demonstrations of APC dynamics using the Compound dataset (in this case, num _ le v el ≥ 2 ). Parameter values being used: pct = 1 . 9 , mdelta = 1 . 37 , 
x num = 10 , k = 42 , MinPts = 3 and E ps = 0 . 85 . 

DPC has the ability of identifying outliers. Specifically, as the 

simple illustrations shown in Fig. 1 , DPC can help to identify out- 

liers with a clear definition: outliers often have relatively lower ρ
and higher δ (see Page 3 of the original DPC paper [19] ). As shown 

in the bottom left of Fig. 1 (a), the two data points (corresponding 

to the two data points in the top left of Fig. 1 (b)) in the green rect- 

angle have relatively lower ρ and higher δ to be considered as out- 

liers. According to [22] , DPC can be regarded as a clustering-based 

outliers detection technique that normal data instances belong to 

large and dense clusters, while outliers either belong to small or 

sparse clusters [22] . In addition to finding outliers, DPC can also 

help to categorize all the data points into different levels based on 

their local densities. These advantages of DPC constitute why we 

use DPC’s key mechanisms to remove outliers. 

To identify clusters with varying shapes, sizes and densities, in 

this paper, we propose a novel clustering algorithm named Anchor 

Points based Clustering (APC). As a widely adopted assumption, if 

a data point is far away from its nearest higher density neighbor, 

it is likely to be a cluster center [19] . We refer certain data points 

to anchor points, which have relatively large δ values (both ρ and 

δ values in APC are computed in the same way as DPC does). The 

concept of anchor points (also known as representatives or land- 

marks in literature) has also been exploited in existing large-scale 

spectral clustering methods [24,25] , which select anchor points by 

random selection or K-means based selection. Although both use 

anchor points to perform the clustering task, the usage differs. Our 

method selects anchor points to identify the data structure com- 

plexity via the density peak clustering approach, while the anchor 

points based spectral methods [24,25] aim to alleviate the large 

computational overhead. 

We use local density ρ to analyze the intrinsic data structure of 

the underlying dataset becasue local density ρ is an effective vari- 

able used to describe the spacial characteristics of data points. Af- 

ter anchor points are identified by APC, they are chosen as cluster 

centers and each remaining data point is sequentially assigned to 

its nearest higher density neighbor to produce intermediate clus- 

ters. Moreover, all the anchor points are autonomously categorized 

into different levels based on their local densities. Anchor points 

belong to the same level (having similar local densities) and those 

belong to other levels are treated differently. If certain anchor 

points have similar local densities, the corresponding intermedi- 

ate clusters belonging to the same local density level are deemed 

as having similar densities as well. At this stage, the key factor af- 

fecting the clustering results is whether there are connected data 

points (or connected points in short) [13] . The reason is as fol- 

lows: connected points refer to the data points that locate near the 

boundaries of the natural clusters and they are ambiguous in the 

decision of which clusters they belong to. If there is only one local 

density level of anchor points identified in the dataset, we simply 

employ the DPC dynamics to proceed with the clustering process, 

because DPC works well on identifying clusters with similar densi- 

ties (i.e., the clusters have highly identifiable single density peaks 

belonging to the same local density level). On the other hand, if 

anchor points are found in multiple density levels, we employ the 

improved DBSCAN dynamics to identify clusters, because DBSCAN 

works well on handling the connected points. 
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Fig. 5. Flowchart of the proposed APC algorithm. 

Fig. 6. Illustration of determining MinPts and Eps values in APC. As shown, in Compound dataset, the annotated point (283,0.85) is identified as inflection point (valley). 
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Fig. 7. Result comparisons on Jain. 

Fig. 8. Result comparisons on Spiral. 

In a nutshell, our proposed APC algorithm synthesizes the ad- 

vantages of two well-known methods DPC and DBSCAN: DPC can 

easily detect outliers (data points with lower ρ and higher δ val- 

ues) and DBSCAN is good at identifying clusters with uniform den- 

sities. Nonetheless, we did not straightforwardly combine DPC and 

DBSCAN to derive APC. Instead, empowered by our proposed au- 

tonomous density analysis on the intrinsic structure of the dataset, 

APC adopts the key mechanisms of DPC and DBSCAN in a unified 

clustering framework to perform the clustering procedures in an 

autonomous manner according to the analyzed local density dis- 

tribution. As the experimental results shown, APC outperforms six 

benchmarking methods in most cases. The main contributions of 

this paper are summarized as follows: 

(i) We propose a novel clustering method named APC to iden- 

tify clusters of different shapes, sizes and densities from a 

new perspective, which relies on the identified density lev- 

els of anchor points. 

(ii) We propose a new data structure analysis method based 

on systematic analysis on the local density levels of anchor 

points. 

(iii) We demonstrate the effectiveness of APC using both widely 

adopted synthetic datasets and real-world ones. 

The rest of this paper is organized as follows. In Section 2 , we 

review related work. In Section 3 , we present the details of our 

proposed APC method. In Section 4 , we report the experimental 
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Fig. 9. Result comparisons on Flame. 

Fig. 10. Result comparisons on Aggregation. 

results with discussions. In Section 5 , we conclude the paper and 

propose future work. 

2. Related work 

In recent years, many clustering algorithms have been proposed 

that can well handle various types of cluster formations [26,27] . 

For example, a series of methods extending KNN ( K Nearest Neigh- 

bor) and SNN (Shared Nearest Neighbor) have been proposed. Du 

et al. proposed an improved DPC algorithm based on KNN and PCA 

(Principal Component Analysis) to solve the issue that DPC may 

overlook certain clusters and get inferior results on high dimen- 

sional data [28] . Xie et al. improved DPC by adopting new points 

assignment strategies based on KNN in order to enhance its ro- 

bustness [29] . Liu et al. introduced KNN to compute the two pa- 

rameters of DPC and finally aggregated clusters if they are den- 

sity reachable [30] . Parmar et al. propose a residual error-based 

DPC algorithm to better identify overlapping clusters [31] . Xu de- 

veloped a density peak based hierarchical clustering method (Den- 

PEHC), which directly generates clusters on each possible cluster- 

ing layer, and introduces a grid granulation framework to enable 

DenPEHC to cluster large-scale and high-dimensional datasets [32] . 

Mehmood et al. firstly found the local density regions and subse- 

quently merged the density connected regions to form meaning- 

ful clusters [33] . Chen et al. proposed a novel clustering algorithm 

named CLUB, which finds density backbone of clusters on the ba- 

sis of KNN and SNN [34] . However, it is hard for CLUB to deal 

with clusters that violate the nearest neighbor rule (i.e., closer data 
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Fig. 11. Result comparisons on R15. 

Fig. 12. Result comparisons on Compound. 

points are more likely to be merged into a cluster). Ren et al. pro- 

posed two-steps deep density-based image clustering, firstly used 

deep convolutional autoencoder and t-SNE to obtain 2-dimensional 

features, then merged local clusters into final results by their den- 

sity relationship [35] . Ren et al. also proposed two-steps parallel 

boosted clustering to address the scalability issue [36] . In addi- 

tion, K-dist graph [37] is often used to divide a dataset into sub- 

sets with different densities. Specifically, K-dist graph is a two- 

dimensional graph, wherein y-axis represents sorted distance be- 

tween k th nearest neighbor and each data point and x-axis rep- 

resents corresponding data points. Gaonkar and Kedar presented 

their method to autonomously determine the input parameters 

values of DBSCAN by K-dist graph [38] . However, it is difficult for 

these methods based on K-dist graph to find drastic changes be- 

tween two density levels and across cluster boundaries in many 

datasets. There are also studies in the literature using the differen- 

tial evolution method to form clusters with different densities [39] . 

Nonetheless, the local clusters with uniform densities may often be 

ignored. 

As a brief summary, it is difficult for the afore-reviewed clus- 

tering methods to identify clusters with arbitrary shapes, sizes and 

densities. Prior studies often consider a single trait of natural clus- 

ters, for example, DBSCAN mainly considers whether the density of 

different natural clusters are similar or not and DPC mainly consid- 

ers whether the natural clusters have single density peak. In this 

research, we address this issue from a new perspective that we 
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Fig. 13. Result comparisons on 2circles. 

Fig. 14. Result comparisons on Pathbased. 

consider the whole structure of a dataset based on local density 

levels. All data points in a dataset are categorized into different 

local density levels based on the identified anchor points. Subse- 

quently, our clustering method autonomously selects the appropri- 

ate clustering strategy (see Section 3.3 ) to further obtain the final 

clustering results. 

3. Density levels of anchor points based clustering 

In this research, we propose a novel Anchor Points based Clus- 

tering (APC) algorithm to identify clusters with arbitrary shapes, 

sizes and densities. APC consists of three main processes: (i) APC 

selects anchor points that have relatively higher δ values from 

the decision graph. (ii) Subsequently, the number of local density 

levels of anchor points are determined, which roughly represent 

the complexity of the intermediate clusters. (iii) Finally, APC au- 

tonomously chooses appropriate clustering strategies based on the 

identified local density levels to obtain the final cluster formation. 

We introduce the technical details of APC in the following subsec- 

tions. 

3.1. Anchor points identification 

Data points with higher δ values are likely to be chosen as cen- 

ters based on the intuitive definition of δ. In our proposed APC 

method, we first only consider δ values and use a rectangle to 
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Fig. 15. Result comparisons on T48. 

Fig. 16. Result comparisons on T710. 

choose anchor points from the decision graph, which is generated 

in the same way as in DPC (see Section 1 ). The coordinate of the 

lower left corner of the rectangle is selected as (0, mdelta ) and that 

of the upper right corner is selected as (max( ρ i ), max( δi )). The de- 

termination of this rectangle only relies on one parameter mdelta , 

which denotes the cutoff value of δ to define the range of anchor 

points. All the data points fall in the rectangle are selected as an- 

chor points (see the red rectangles in Fig. 2 ). APC takes anchor 

points as cluster centers, then the remaining data points are sub- 

sequently assigned according to their densities and distance to the 

neighboring anchor points to form all the intermediate clusters. 

Then, these intermediate clusters are further processed to form the 

final clusters (see Section 3.3 ). The reason of obtaining the inter- 

mediate clusters is to decompose the potentially complex cluster 

structure into relatively simpler intermediate cluster generation. 

The value of mdelta greatly affects the overall performance of 

APC. If its value is set too small, the intermediate clusters may 

include many outliers and borderline data points (the data points 

with smaller δ and ρ values on the decision graph). If the value of 

mdelta is set too large, the intermediate clusters may not represent 

simple clusters with unique density peaks. 

Therefore, in terms of setting the value of mdelta , we make sure 

it fulfills the following criterion: all the data points with larger 

ρ values and larger δ values fall in the afore-introduced selection 



Y. Wang, D. Wang and W. Pang et al. / Neurocomputing 400 (2020) 352–370 361 

Fig. 17. Result comparisons on T88. 

Fig. 18. Result comparisons on T58. 

rectangular (see Fig. 2 ). Specifically, in here, a larger value means 

the value is larger than the median value. The rationality of setting 

the value of mdelta as such is to enable the further determination 

of cluster belongingness of all the outliers as they are selected as 

anchor points and centers to form intermediate clusters. The for- 

mation of intermediate clusters and the further processing are ex- 

pected to improve the overall clustering results. 

3.2. Local density levels of anchor points 

We propose a method to determine whether the local density 

levels of the identified anchor points are distinguishable and com- 

pute the number of local density levels, denoted num _ l e v el . With 

reference to the red rectangles outlining the anchor points areas 

in the decision graph shown in Fig. 3 (a) and (b), we segment each 

rectangular into x num ∈ Z + bins along the X-axis ( ρ), then the av- 

erage interval value x inte can be computed as 

x inte = ( � max (ρi ) � ) /x num . (3) 

Moreover, the m th bin along the X-axis, denoted BIN m , is de- 

fined as 

BIN m = { (ρ, δ) ∈ G | (m − 1) x inte ≤ ρ ≤ mx inte , 0 

≤ δ ≤ � max (δi ) � } , m ∈ [1 , x num ] , (4) 

where G represents the set of all data points within the decision 

graph. If two or more continuous bins have no anchor points, we 

call these continuous bins a gap. As such, the gap represents dis- 

tinguishable difference between anchor points in different density 
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Fig. 19. Clustering results obtained by APC on Olivetti Face dataset. 

levels. The region of a single gap, denoted GAP , can be defined as 

follows: 

GAP = { (ρ, δ) ∈ G | mx inte ≤ ρ ≤ (m + num _ bin ) x inte , 0 

≤ δ ≤ � max (δi ) � } , num _ bin ≥ 2 , (5) 

where num _ bin represents the number of bins in the correspond- 

ing gap. We use GAP to determine the number of local density 

levels. For example, in Fig. 3 (a), if we set pct = 5 , mdelta = 1 , 

x num = 10 , then x inte = 3 . 1 (see (3) ). The yellow area represent a 

gap that num _ bin = 8 . The remaining area within the red rectan- 

gle represent a single local density level. In Fig. 3 (b), if we set 

pct = 1 . 9 , mdelta = 1 . 37 , x num = 10 , then x inte = 1 . 5 , num _ bin = 2 . 

The yellow gap divides the anchor points into two local density 

levels. 

3.3. Clustering based on local density levels of anchor points 

Based on the number of local density levels identified, APC au- 

tonomously adopts appropriate strategies to further determine the 

final cluster formation delineated in the following two subsections. 

3.3.1. When num _ le v el = 1 

If all identified anchor points fall into one local density level 

(see Fig. 3 (a)), the corresponding intermediate clusters have simi- 

lar densities. As introduced in Section 1 , connected points may af- 

fect clustering results. In this case, the connected points between 

different neighboring intermediate clusters can be correctly as- 

signed, because they have relatively lower local densities. As such, 

the intermediate clusters are reported as final results without fur- 

ther processing. When num _ le v el = 1 , APC has three parameters, 

namely pct, mdelta and x num . 

3.3.2. When num _ le v el ≥ 2 

In this situation, we use two-step strategies to identify clusters: 

(i) Extracting outliers from the whole dataset. (ii) Grouping the re- 

maining data points for each local density level. Specifically, the 

key mechanisms of DPC are used to extract the outliers. Outliers 

often have lower local density and are located at the leftmost local 

density level [22] . Thus, outliers can be easily identified by adopt- 

ing the key mechanisms of DPC. 

(i) Extracting outliers from the whole dataset. We use PL to de- 

note the set of data points belonging to the leftmost local 

density level (the number of data points in PL is denoted as 

ε). Obviously, PL comprises the edge points of natural clus- 

ters (data points with lower ρ and lower δ values) and out- 

liers in the dataset (data points with lower ρ but higher 

δ values) (see Fig. 4 (b)). To further distinguish which data 

points in PL should be considered as outliers, we employ an 

improved K-dist graph method to assess their densities. As 

introduced in Section 2 , K-dist graph [37] is a useful tool to 

divide a dataset into subsets with different densities. In this 

research, we extended it by using the averaged distance to 

its k nearest neighbors instead. Specifically, we use kavg j to 

denote the average distance from data point PL j to its k near- 

est neighbors in PL as follows: 

ka v g j = 
1 

k 

∑ 

k 

‖ P L j , P L k ‖ , (6) 

where k denotes the number of nearest neighbors in PL for 

PL j and ‖ · ‖ computes the Euclidean distance between two 

data points. When ∀ x j , ka v g ( j+1) � 2 ka v g j , the outliers outc 

are determined in an autonomous manner as follows 

outc = 

{{ P L 1 , . . . , P L j } , j > ε/ 2 , 

{ P L ( j+1) , . . . , P L ε ) } , j ≤ ε/ 2 , 
(7) 
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when none of x j is subject to ka v g ( j+1) � 2 ka v g j , all the data 

points in PL can be merge into a new cluster because they 

have similar and lower local density. We refer this additional 

process of distinguishing outliers to the purifying algorithm 

(see Subalgorithm Purifying in Algorithm 1 ). The intuition 

of taking 2 kavg j as the threshold to differentiate whether a 

gap exists is that density is empirically deemed as signifi- 

cantly different when the value of ka v g ( j+1) is doubled (see 

detailed elaborations in Section 4.1 ). 

Algorithm 1: Anchor Points based Clustering. 

Input : dataset D and parameters pct , mdelta , x num , k , MinPts and E ps 
Output : assigned cluster indices 

1 based on the density distribution in D , generate a 2-dimensional decision 
graph using pct (see (1) and (2); 

2 identify anchor points in the generated decision graph using mdelta (see 
Section~3.1); 

3 further categorize local density bins among the identified anchor points 
using x num (see Section~3.2); 

4 num _ bin ← number of bins in gaps (see (5)); 
5 num _ le v el ← number of identified local density levels; 
6 if num _ le v el ≥ 2 then 
7 PL ← data points in the leftmost local density level; 
8 obtain the outlier cluster outc in PL by applying Subalgorithm 

Purifying ; 
9 for i = 1 → num _ le v el do 

10 obtain clusters dbs _ clusters and outliers dbs _ outliers in the i th local 
density level by applying DBSCAN with MinPts and E ps ; 

11 further process dbs _ clusters by applying Subalgorithm MCO ; 
12 update cluster centers by finding density peaks; 
13 assign dbs _ outliers to their nearest centers; 

14 end 

15 else 
16 anchor points become cluster centers and other data points are assigned 

to their nearest higher density cluster centers; 

17 end 
18 output the clustering index assignments; 

19 Subalgorithm Purifying ( PL, k ) 
20 ka v g ← sorted average distance from data points to its k nearest 

neighbors (see (6)); 
21 ε ← size of PL ; 
22 for j = 1 → ε do 
23 if ka v g( j + 1) ≥ 2 ka v g( j) then 
24 if j > ε/ 2 (see (7)) then 
25 remove data points of PL from j + 1 to ε ; 
26 else 
27 remove data points of PL from 1 to j ; 
28 end 
29 the remaining data points in PL form the outlier cluster outc; 

30 else 
31 all the data points in PL can be merge into a new cluster; 
32 end 

33 end 

34 Subalgorithm Micro-Clusters Optimization (MCO) ( dbs _ clusters ) 
35 num _ dbc ← size of dbs _ clusters ; 
36 LDC ← local density of cluster centers in dbs _ clusters (see (8)); 
37 λ ← 0; 
38 for n = 1 → num _ dbc do 
39 if LDC n < mean (LDC) see (9) then 
40 λ = λ + 1 ; 
41 end 

42 end 
43 obtain λ micro-clusters; 
44 if num _ dbc > 2(λ + 1) then 
45 merge the micro-clusters into the nearest non-micro-cluster centers; 
46 end 

(ii) Grouping the remaining data points for each local den- 

sity level. At this stage, there are ( | D | − | outc | ) number of 

data points awaiting for further processing, which comprise 

anchor points, data points belonging to intermediate clus- 

ters, and remaining outliers (not identified in the previous 

stages). Because DBSCAN works well on identifying clusters 

of different sizes and handling the connected points at the 

same time, we employ the key mechanisms of DBSCAN to 

group the remaining ( | D | − | outc | ) number of data points in 

each density level. These data points will be either identi- 

fied as within the respective clusters, denoted dbs _ clusters, 

or outliers, denoted dbs _ outliers . The number of clusters ob- 

tained by applying DBSCAN is denoted as num _ dbc. 

We use LDC to denote the local densities of all the cluster cen- 

ters for dbs _ clusters as follows: 

LDC = { ρi | x i ∈ C} , (8) 

where C denotes all cluster centers in dbs _ clusters . In dbs _ clusters, 

if the local density of the n th cluster is smaller than the mean 

value in LDC , we consider it as a micro-cluster mc : 

mc = 

{ 

dbs _ clusters n | LDC n < 
1 

num _ dbc 

num _ dbc ∑ 

i =1 

(LDC i ) 

} 

. (9) 

We use λ to denote the number of identified micro-clusters. 

Generally speaking, Centers of micro-clusters have lower local den- 

sity and the corresponding micro-clusters may not qualify as the 

ultimate clusters according to DPC that a cluster center has higher 

local density ρ and higher δ. Moreover, based on our empir- 

ical studies, if λ is too small, i.e., num _ dbc > 2(λ + 1) , micro- 

clusters should be merged into their nearest non-micro-clusters 

(see detailed elaborations in Section 4.1 ). Specifically, when the 

number of micro-clusters ( λ) is too few, i.e., less than half of 

num dbc , these micro-clusters are merged into other core clusters 

with higher density centers. After the merging of micro-clusters, 

we update the cluster centers by finding density peaks. For out- 

liers in dbs _ outliers, they are merged into their nearest clusters, 

wherein the distance is computed as the distance from the outlier 

to the cluster center. We refer to this process of further processing 

of clusters as the micro-cluster optimization (MCO) algorithm (see 

Subalgorithm MCO in Algorithm 1 ). 

When num _ le v el ≥ 2 , APC requires six parameters, namely pct, 

mdelta, x num , k, MinPts and Eps . The latter three parameters are 

not being used for single density level (i.e., when num _ le v el = 1 ) 

and they are required by the improved K-dist graph method ( k ) 

and DBSCAN ( MinPts and Eps ), respectively. An example shown in 

Fig. 4 demonstrates the step-by-step dynamics of APC when mul- 

tiple local density levels are identified. 

We present the pseudocodes of our proposed APC algorithm in 

Algorithm 1 . Moreover, for more intuitive illustration of the dy- 

namics of APC, we also present the flowchart of APC in Fig. 5 . 

Our method synthesizes the advantages of both DPC and DB- 

SCAN to form a systematic density-based clustering method. As 

shown in Algorithm 1 , the computation complexity of APC is O ( n 2 ), 

which is on the same order of magnitude as DPC and DBSCAN. The 

effectiveness of APC is assessed on multiple synthetic and real- 

world datasets. The experimental results are reported in the fol- 

lowing section. 

4. Experimental results 

In this section, we use twelve synthetic datasets, twelve real- 

world datasets, and the Olivetti Face dataset to evaluate the per- 

formance of our proposed APC method. The properties of the 

synthetic and real-world datasets are listed in Table 1 . Jain, Ag- 

gregation, Compound, Spiral, Flame, Pathbased and R15 datasets 

are downloaded from University of Eastern Finland 1 . Large scale 

datasets T48, T58, T710 and T88 are downloaded from Karypis Lab 2 

1 http://cs.uef.fi/sipu/datasets/ 
2 http://glaros.dtc.umn.edu/ 

http://cs.uef.fi/sipu/datasets/
http://glaros.dtc.umn.edu/
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Table 1 
Dataset features. 

Type ID Datasets #Samples #Dimensions #Natural 
clusters 

Synthetic 1 Jain 373 2 2 
Synthetic 2 Spiral 312 2 3 
Synthetic 3 Flame 240 2 2 
Synthetic 4 Aggregation 788 2 7 
Synthetic 5 R15 [40] 600 2 2 
Synthetic 6 Compound [41] 399 2 6 
Synthetic 7 2circles 600 2 2 
Synthetic 8 Pathbased 300 2 2 
Synthetic 9 T48 8000 2 N / A 
Synthetic 10 T58 8000 2 N / A 
Synthetic 11 T710 10,000 2 N / A 
Synthetic 12 T88 8000 2 N / A 

Real-world 1 Ecoli 178 13 8 
Real-world 2 Sonar 208 60 2 
Real-world 3 Wine 178 13 3 
Real-world 4 Iris 150 4 3 
Real-world 5 Liver 345 6 2 
Real-world 6 Vehicle 846 18 4 
Real-world 7 German 1000 24 2 
Real-world 8 Pima 768 8 2 
Real-world 9 Abalone 4177 8 3 
Real-world 10 Gesture 1747 18 5 
Real-world 11 Wine-white 4898 11 7 
Real-world 12 Wine-red 1599 11 6 

and they have no ground-truth defined. Dataset 2circles 3 is artifi- 

cial and has multiple centers in the natural cluster. All the real- 

world datasets, namely Ecoli, Sonar, Wine, Iris, Liver, Vehicle, Ger- 

man, Pima, Abalone, Gesture, Wine-white and Wine-red, are down- 

loaded from the UCI dataset repository 4 . 

4.1. Parameters setting of APC 

As introduced in Section 3.3 , APC requires six parameters at 

most in order to identify clusters with varying shapes, sizes and 

densities. To minimize the effort on parameter values optimization, 

we set certain parameters to constant values based on preliminary 

sensitivity tests. We first perform sensitivity tests on x num using 

eight synthetic datasets with given ground-truth (see Table 1 ). The 

results are reported in Appendix A . Because APC obtains consistent 

results on all datasets for x num ∈ { 6 , 7 , . . . , 10 } . For the subsequent 

experiments included in this paper, we always set x num to 10. 

We also test the sensitivity of parameter k used in the k -dist 

graph method to identify the outliers (see Section 3.3.2 ). Specif- 

ically, we test two values of k : ε/3 and 2 ε/3, where ε denotes 

the size of PL . The results are shown in Appendix B . Because APC 

obtains perfect results on all datasets using either k value being 

tested. For the subsequent experiments included in this paper, we 

always set k to 2 ε/3. 

3 https://github.com/mlyizhang/corepoints-clustering.git 
4 http://archive.ics.uci.edu/ml/datasets.html 

Furthermore, we present the sensitivity test on the threshold 

value used in the distinguishing criterion of ka v g ( j+1) � 2 ka v g j 
in the purifying algorithm from 1.4 kavg j to 3 kavg j . As shown in 

Table 2 , 2 kavg is shown as a robust value for all the datasets that 

have multiple local-density levels. 

Similarly, we present the sensitivity test on the threshold value 

used in the distinguishing criterion of num dbc > 2(λ + 1) in the 

MCO algorithm from 2(λ + 0 . 5) to 2(λ + 5) . As shown in Table 3 , 

the performance of APC is insensitive to such threshold value. 

Therefore, for all experiments in this paper, we use 2(λ + 1) . 

Based on the previous introductions of setting two parameter 

values to constants, APC only has four user-defined parameters 

(two in certain circumstances, see Section 3.3.1 ). In the remainder 

of this subsection, we present the heuristic methods that we used 

to fine-tune the remaining four parameters as follows. 

(i) pct : This parameter is inherited from DPC. We can determine 

the value of pct by analyzing the decision graph. When the 

value of pct gradually increases from 0, δ values of certain 

data points become obviously greater than the others. In this 

situation, it is easier for users to find cluster centers with 

obviously higher δ values. As such, the corresponding pct 

value is determined. Based on our experience, pct ∈ (0, 10] 

is good enough for most datasets. For each synthetic dataset 

studied in this paper, parameter pct may be taken from a 

range of values to obtain the best results. For example. APC 

always obtains best results ( ARI = 1 . 00 , NMI = 1 . 00 ) on the 

Aggregation dataset when pct ∈ [3.3, 4.3]. By following such 

a heuristic method, it is not difficult to find a reasonable pct 

value. 

(ii) mdelta : This parameter is used in APC to obtain anchor 

points. The rational of setting the value of mdelta is to en- 

able the further determination of cluster belongingness of all 

the outliers as they are selected as anchor points and cen- 

ters to form intermediate clusters. For datasets with multi- 

ple local-density levels, if the value of mdelta is chosen to 

identify all the outliers as anchor points, the ultimate re- 

sults are definitely the best. Otherwise, a few outliers will be 

overlooked, then the results may also be close to the best. A 

heuristic visual guideline when clustering datasets with dif- 

ferent local density levels is that the setting of mdelta should 

lead to the selection of densely distributed data points with 

lower local densities (potentially outliers) in the decision 

graph as anchor points. As such, the possibility of having 

outliers overlooked is relatively smaller, which may lead to 

better results. For datasets with single local density level, 

mdelta should lead to the inclusion of all obvious cluster 

centers based on the DPC’s assumption, i.e., data points with 

higher ρ and higher δ values should be selected as cluster 

centers. 

(iii) MinPts and Eps : These two parameters are inherited from 

DBSCAN. The original DBSCAN paper [13] presents a parame- 

ter setting method using K-dist graph. When inflection point 

(the bottom of a “valley” in a plot) occurs in the K-dist plot, 

the corresponding distance to its k th nearest neighbour will 

be selected as Eps , and MinPts is set to k . In APC, we adopt 

Table 2 
Performance of APC (ARI values) from 1.4 kavg j to 3 kavg j . 

Datasets 1.4 kavg j 1.6 kavg j 1.8 kavg j 2 kavg j 2.2 kavg j 2.4 kavg j 2.6 kavg j 2.8 kavg j 3 kavg j 

Compound 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 
2circles 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Pathbased 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Sonar 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
German 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
Vehicle 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

https://github.com/mlyizhang/corepoints-clustering.git
http://archive.ics.uci.edu/ml/datasets.html
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Table 3 
Performance of APC (ARI values) from 2(λ + 0 . 5) to 2(λ + 5) . 

Datasets 2(λ + 0 . 5) 2(λ + 1) 2(λ + 2) 2(λ + 3) 2(λ + 4) 2(λ + 5) 

Compound 1.00 1.00 1.00 1.00 1.00 1.00 
2circles 1.00 1.00 1.00 1.00 1.00 1.00 
Pathbased 1.00 1.00 1.00 1.00 1.00 1.00 
Sonar 0.04 0.04 0.04 0.04 0.04 0.04 
German 0.08 0.08 0.08 0.08 0.08 0.08 
Vehicle 0.11 0.11 0.11 0.11 0.11 0.11 

Table 4 
Descriptions on the parameters used by each algorithm. 

Algorithm (Parameters in use) Parameter description 

K-means ( k ) k : predefined number of clusters 

DBSCAN ( Eps, MinPts ) Eps : radius of underlying neighborhood 
MinPts : minimum number of data points 
within the neighborhood 

SC ( σ , k ) σ : parameter of Gaussian kernel function 
k : predefined number of clusters 

OPTICS ( k ) k : number of nearest neighbors 

DPC ( pct ) pct : ratio to define cutoff distance d c 

DPC-KNN-PCA ( pct, d, k ) pct : same as pct used in DPC 
d : dimensionality to be reduced to by applying PCA 
k : number of nearest neighbors 

APC ( pct, mdelta ) pct : same as pct used in DPC 
or ( pct, mdelta, Eps, MinPts ) mdelta : threshold to identify anchor points 

Eps and MinPts : same as those used in DBSCAN 

Table 5 
Performance comparison on synthetic datasets. 

Algorithms ARI NMI Algorithms ARI NMI 

Dataset Jain Dataset Spiral 
K-means 0.6977 0.3181 K-means 0.3277 −0.0061 
DBSCAN 1.0000 1.0000 DBSCAN 1.0000 1.0000 
SC 1.0000 1.0000 SC 1.0000 1.0000 
OPTICS 0.9624 0.9041 OPTICS 0.9529 0.9315 
DPC 1.0000 1.0000 DPC 1.0000 1.0000 
DPC-KNN-PCA 0.5692 0.5420 DPC-KNN-PCA 0.2652 0.3367 
APC 1.0000 1.0000 APC 1.0000 1.0000 

Dataset Flame Dataset Aggregation 
K-means 0.7528 0.4880 K-means 0.8097 0.7588 
DBSCAN 0.9659 0.9280 DBSCAN 0.9828 0.9749 
SC 0.9769 0.9501 SC 0.9503 0.9364 
OPTICS 0.9405 0.8696 OPTICS 0.7429 0.6717 
DPC 1.0000 1.0000 DPC 1.0000 1.0000 
DPC-KNN-PCA 1.0000 1.0000 DPC-KNN-PCA 0.9957 0.9884 
APC 1.0000 1.0000 APC 1.0000 1.0000 

Dataset R15 Dataset Compound 
K-means 0.9016 0.8938 K-means 0.6422 0.5379 
DBSCAN 0.9018 0.8942 DBSCAN 0.9103 0.8774 
SC 0.9175 0.9100 SC 0.6127 0.4942 
OPTICS 0.9800 0.9787 OPTICS 0.8863 0.8369 
DPC 0.9928 0.9942 DPC 0.6368 0.5263 
DPC-KNN-PCA 0.9928 0.9942 DPC-KNN-PCA 0.5448 0.7423 
APC 0.9928 0.9942 APC 1.0000 1.0000 

Dataset 2circles Dataset Pathbased 
K-means 0.4983 −0.0017 K-means 0.6620 0.4618 
DBSCAN 1.0000 1.0000 DBSCAN 0.6288 0.4577 
SC 1.0000 1.0000 SC 0.8197 0.7275 
OPTICS 1.0000 1.0000 OPTICS 0.7414 0.5365 
DPC 0.5043 0.0042 DPC 0.6600 0.4572 
DPC-KNN-PCA 0.0012 0.0021 DPC-KNN-PCA 0.5448 0.7423 
APC 1.0000 1.0000 APC 1.0000 1.0000 
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Table 6 
Performance comparison on real-world datasets. 

Algorithms ARI NMI Algorithms ARI NMI 

Dataset Ecoli Dataset Sonar 
K-means 0.4070 0.6070 K-means 0.0064 0.0088 
DBSCAN 0.2829 0.4118 DBSCAN 0.0093 0.0927 
SC 0.4087 0.5375 SC −0.0045 0.045 
OPTICS 0.3444 0.6148 OPTICS 0.0029 0.036 
DPC 0.4467 0.5507 DPC 0.0085 0.0105 
DPC-KNN-PCA 0.1721 0.4580 DPC-KNN-PCA −0.0046 0.0049 
APC 0.4531 0.4630 APC 0.0381 0.2329 

Dataset Wine Dataset Iris 
K-means 0.3711 0.4288 K-means 0.7302 0.7582 
DBSCAN 0.1978 0.3531 DBSCAN 0.5681 0.7337 
SC 0.3885 0.4327 SC 0.7445 0.7777 
OPTICS 0.2370 0.4032 OPTICS 0.5438 0.6925 
DPC 0.3910 0.4308 DPC 0.6314 0.7112 
DPC-KNN-PCA 0.2614 0.3336 DPC-KNN-PCA 0.7243 0.7747 
APC 0.3910 0.4308 APC 0.8766 0.8581 

Dataset Liver Dataset Vehicle 
K-means −0.0054 0.0009 K-means 0.0757 0.1001 
DBSCAN 0.0274 0.1139 DBSCAN 0.0973 0.2555 
SC −0.0035 0.0021 SC 0.1103 0.1454 
OPTICS 0.0015 0.1444 OPTICS 0.0012 0.0050 
DPC −0.0016 0.0045 DPC 0.0901 0.1335 
DPC-KNN-PCA 0.0067 0.1524 DPC-KNN-PCA 0.0298 0.3381 
APC 0.0304 0.0457 APC 0.1140 0.2443 

Dataset German Dataset Pima 
K-means 0.0609 0.0158 K-means 0.1046 0.0536 
DBSCAN 0.0810 0.0056 DBSCAN 0.0023 0.0042 
SC 0.0285 0.0021 SC 0.1040 0.0597 
OPTICS −0.0042 0.0001 OPTICS 0.0062 0.0005 
DPC 0.0042 0.0027 DPC 0.0218 0.0058 
DPC-KNN-PCA 0.0571 0.0237 DPC-KNN-PCA 0.0131 0.0035 
APC 0.0846 0.0769 APC 0.1507 0.0908 

Dataset Abalone Dataset Gesture 
K-means 0.1294 0.1258 K-means 0.1897 0.2292 
DBSCAN 0.0457 0.0969 DBSCAN 0.4379 0.3891 
SC 0.0851 0.0991 SC 0.2422 0.2662 
OPTICS 0.0006 0.0065 OPTICS 0.3081 0.5472 
DPC 0.1507 0.1312 DPC 0.0652 0.1488 
DPC-KNN-PCA 0.1311 0.1228 DPC-KNN-PCA 0.1400 0.2054 
APC 0.1507 0.1312 APC 0.4671 0.3922 

Dataset Wine-white Dataset Wine-red 
K-means 0.0156 0.0338 K-means 0.002 0.0356 
DBSCAN 0.0065 0.0392 DBSCAN 0.0048 0.0973 
SC 0.0107 0.0264 SC 0.0057 0.0301 
OPTICS 0.0031 0.0014 OPTICS 0.0013 0.0022 
DPC 0.0186 0.0166 DPC 0.0486 0.0268 
DPC-KNN-PCA 0.0086 0.0315 DPC-KNN-PCA 0.0100 0.0376 
APC 0.0312 0.1386 APC 0.0627 0.2020 

Table 7 
Corresponding parameter values adopted by each clustering algorithm (the sequence of presenting the pa- 
rameters values follows the sequence of introduction in Table 4 ). 

Datasets Parameters 

K-means DBSCAN SC OPTICS DPC DPC-KNN-PCA APC 

Elico 8 (0.1.2) (0.5,8) 8 0.2 (2,2,3) (4,0.1,0.1,2) 
Sonar 2 (1,2) (0.05,2) 12 0.1 (4,58,2) (5,0.8,3,2) 
Wine 3 (20,2) (46,3) 8 0.1 (2,12,2) (0.1,262,-,-) 
Iris 3 (1,2) (0.1,2) 4 0.8 (4,3,2) (0.8,1.03,-,-) 
Liver 2 (4.9,2) (10,2) 6 6 (2,3,5) (6,21.27,6,3) 
Vehicle 4 (0.5,2) (1,4) 10 2 (1,8,6) (0.1,0.68,2,2) 
German 2 (8.1,2) (1,2) 6 1 (1,8,6) (0.5,10.6,9,2) 
Pima 2 (0.5,2) (0.1,2) 4 1 (0.5,7,3) (1,0.18,-,-) 
Abalone 3 (0.1,10) (1,3) 3 10 (2,8,8) (10,0.9,-,-) 
Gesture 5 (0.4,2) (1,5) 5 3 (1,12,3) (3,0.32,2,2) 
Wine-white 7 (0.3,5) (1000,7) 7 9 (0.5,5,8) (9,1.52,-,-) 
Wine-red 6 (1,3) (1000,6) 6 9 (0.8,8,9) (9,2.1,-,-) 
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Table 8 
Performance comparisons on Olivetti Face dataset. 

Metric K-means (10) DBSCAN (0.85/2) SC(10/2) OPTICS (10) DPC ( d c = 0 . 07 ) DPC-KNN-PCA (1/20/5) APC (1/0.91) 

ARI 0.6545 0.5918 0.6164 0.4838 0.6023 0.6790 0.7464 
NMI 0.8213 0.7979 0.7797 0.7416 0.7802 0.8263 0.8635 

the same procedure to obtain these two parameter values. A 

simple illustration is shown in Fig. 6 : for Compound dataset, 

we plot the K-dist graph ( k is set to 3 because the inflec- 

tion point is much easier to be found). The inflection point is 

identified at the (283, 0.85) location (283 is the index of that 

data point). Then, MinPts and Eps are set to 3 and 0.85, re- 

spectively. For all the applicable datasets studied in this pa- 

per, we first find their respective inflection points and then 

fine-tune the values heuristically. This fine-tuning procedure 

has been applied to APC, DBSCAN and other benchmarking 

methods (following their respective fine-tuning procedures) 

to make the performance comparison on a fair basis. 

4.2. Benchmarking models 

For performance comparisons, we select four classical clustering 

methods, namely K-means, DBSCAN, SC, OPTICS and two state-of- 

the-art methods DPC and DPC-KNN-PCA (downloaded from https:// 

github.com/mlyizhang/DPC- KNN- PCA.git ) [28] , which all have been 

briefly reviewed in this paper. The parameters used by all the al- 

gorithms are listed in Table 4 . In terms of evaluation metrics, we 

adopt both adjusted rand index [42] , ARI ∈ [ −1 , 1] and normalized 

mutual information [43] , NMI ∈ [0, 1]. In order to ensure the fair- 

ness of performance evaluation, we obtain the best results of all 

algorithms from extensive experiments by heuristically tuning all 

the parameters. 

4.3. Experiments on synthetic datasets 

Figs. 7 –18 show the clustering results obtained by K-means, DB- 

SCAN, SC, OPTICS, DPC, DPC-KNN-PCA and APC algorithms on the 

twelve synthetic datasets. Moreover, we summarize the results in 

Table 5 . To better demonstrate the procedures of APC, we also 

show the identified gaps and local density levels (see Section 3.2 ) 

of all eight synthetic datasets with provided ground-truth (see 

Table 1 ) in Appendix C . Please note that for those four datasets 

without provided ground-truth, we only show the clustering re- 

sults (see Figs. 15 to 18 ) and are not able to report the evaluation 

metrics in Table 5 . 

As shown in Table 5 , DPC achieves good results on Jain, Spi- 

ral, Flame, Aggregation, R15 and T58 datasets. This is not surpris- 

ing because the clusters in these datasets have only one density 

peak rather than multiple ones. Jain, Spiral, 2circles, T48, T58 and 

T710 datasets comprise clusters with uniform densities rather than 

varying density, so DBSCAN works well on them. For the convex 

datasets R15 and T58 (the silhouette of each letter is approximately 

convex), K-means obtains good results on them. SC obtains ideal 

results on only Jain, Spiral, 2circles and Flame, because each natu- 

ral cluster in these datasets have close proximity distribution. OP- 

TICS obtains good results on Jain, Spiral, Flame, R15 and 2circles, 

because the densities of different natural clusters are analogous. 

On the other hand, it is relatively more difficult to distinguish pre- 

cise cluster boundaries in datasets Jain, Spiral and Flame, so OP- 

TICS only gets sub-optimal results on them. DPC-KNN-PCA achieves 

good results on Flame, Aggregation, R15 and T58 because they are 

convex. Nonetheless, despite of the various characteristics of these 

datasets, APC always obtains the best clustering results in terms of 

both ARI and NMI as shown in Table 5 . 

Generally speaking, the performance of clustering algorithms 

may be affected by the dataset’s intrinsic structure, such as convex 

shape or non-convex, one density peak or multiple ones, uniform 

densities or varying, breaking the nearest neighbor rule or obey- 

ing it, existence of connected points or not, etc. Nonetheless, APC 

adopts a novel approach that it assumes all the natural clusters in 

a dataset can be categorized into different local density levels. As 

shown with experimental results, APC is able to well handle all the 

various cluster types. Therefore, APC is shown to be able to identify 

clusters with arbitrary shapes, sizes, and densities. 

4.4. Experiments on real-world datasets 

Table 6 presents the experimental results of applying the seven 

afore-compared clustering algorithms on twelve UCI datasets (see 

Table 1 ). The corresponding parameter values used by all algo- 

rithms are listed in Table 7 . 

For Sonar, Iris, Pima, German, Abalone, Gesture, Wine-white 

and Wine-red (eight out of twelve datasets) datasets, APC achieves 

the highest ARI and NMI scores. For the other four datasets, 

namely Elico, Wine, Liver and Vehicle, APC only gets the highest 

ARI values. However, the NMI values obtained by all algorithms are 

close. These experimental results demonstrate that APC is able to 

well handle various types of real-world datasets. 

4.5. Application in face recognition 

In this subsection, we apply APC to the Olivetti Face dataset for 

face recognitions [44] . The Olivetti Face dataset is contributed by 

AT&T Laboratories Cambridge, which can be downloaded online 5 . 

This dataset is a well recognised benchmark for face recognition 

tasks and it consists of 400 images of 40 persons (every person 

has 10 images), where each image has 112 × 92 pixels in greyscale. 

Both prior studies [45] and [19] use the first 100 images to as- 

sess their algorithms, so we adopt the same approach in our study 

as well. The similarity between two images is computed by com- 

plex wavelet structural similarity (CW-SSIM) [44] . For benchmark- 

ing state-of-the-art model DPC, its parameter is set to the same 

value used in [19] that d c = 0 . 07 . As shown in Table 8 , APC out- 

performs other models, especially the state-of-the-art models DPC 

and DPC-KNN-PCA in both evaluation metrics. Fig. 19 shows the 

face recognition results of APC, different colors represent different 

identified clusters. 

As shown in Fig. 19 , APC correctly and exclusively identifies 

the second, sixth, seventh and eighth persons. For the ninth and 

tenth persons, two images are mistakenly clustered. Three images 

are wrongly assigned for the fifth person. The application of APC 

in the face recognition again demonstrates the effectiveness of 

our method, which achieves better results than the state-of-the-art 

DPC and DPC-KNN-PCA algorithms. 

5. Conclusion and future work 

In this paper, we propose an effective clustering algorithm 

named Anchor Point based Clustering (APC). At most, APC requires 

5 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 

https://github.com/mlyizhang/DPC-KNN-PCA.git
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Table 9 
Performance of APC under different x num values. 

Datasets x num = 6 x num = 7 x num = 8 x num = 9 x num = 10 

ARI x inte ARI x inte ARI x inte ARI x inte ARI x inte 

Jain 1.0000 34.5000 1.0000 29.5714 1.0000 25.8750 1.0000 23.0000 1.0000 20.7000 
Spiral 1.0000 5.5000 1.0000 4.7143 1.0000 4.1250 1.0000 3.6667 1.0000 3.3000 
Flame 1.0000 3.0000 1.0000 2.5714 1.0000 2.2500 1.0000 2.0000 1.0000 1.8000 
Aggregation 1.0000 8.1667 1.0000 7.0000 1.0000 6.1250 1.0000 5.4444 1.0000 4.9000 
R15 0.9928 5.1667 0.9928 4.4286 0.9928 3.8750 0.9928 3.4444 0.9928 3.1000 
Compound 1.0000 2.5000 1.0000 2.1429 1.0000 1.8750 1.0000 1.6667 1.0000 1.5000 
2circles 1.0000 2.6667 1.0000 2.2857 1.0000 2.0000 1.0000 1.7778 1.0000 1.6000 
Pathbased 1.0000 0.8333 1.0000 0.7142 1.0000 0.625 1.0000 0.5556 1.0000 0.5000 

the setting of four user-defined parameters, or only two in certain 

circumstance, which may not incur too much overhead comparing 

to other similar methods. APC synthesizes the advantages of two 

well-known methods DPC and DBSCAN. Nonetheless, we did not 

straightforwardly combine DPC and DBSCAN to derive APC. Instead, 

empowered by our proposed autonomous density analysis on the 

structure of the underlying dataset, APC adopts the key mecha- 

nisms of DPC and DBSCAN in a unified clustering framework to 

perform the clustering procedures in an autonomous manner ac- 

cording to the analyzed local density distribution. According to the 

experimental results of synthetic datasets and real-world datasets, 

APC achieves significantly better results than DPC and DBSCAN. 

Apparently, by introducing two more parameters than DPC and DB- 

SCAN, our proposed APC method outperforms DPC and DBSCAN in 

almost all experiments (23 of 25 datasets). 

Most importantly, APC categorizes all the data points in a 

dataset into one or more local density levels through a system- 

atic approach. For example, Jain, Spiral, Flame, Aggregation and R15 

datasets are identified with one local density level, while Com- 

pound, 2circles and Pathbased datasets are identified with two lo- 

cal density levels (see Appendix C ). This novel analytical approach 

helps to autonomously reveal the intrinsic structure of the underly- 

ing dataset. We conduct extensive experiments on twelve synthetic 

datasets, twelve real-world datasets and one facial image clustering 

task that are all publicly available online to assess the effectiveness 

of APC. The experimental results show that APC performs better 

than all the classical and state-of-the-art benchmarking clustering 

algorithms. 

In the future, we will apply APC to more challenging applica- 

tion domains, such as detecting communities in social networks 

and RNA sequencing analysis. Moreover, we plan to look into other 

methods to synergize multiple clustering algorithms such as en- 

semble clustering techniques, which have shown promising perfor- 

mance [46–48] . 
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Appendix A. Performance of APC under different x num values 

We fix the heuristically determined parameters values of pct, 

mdelta, k, Eps , and MinPts to test the sensitivity of x num using 

eight synthetic datasets. The performances of APC are reported in 

Table 9 . It is clearly shown in Table 9 that APC obtains consistent 

results on all datasets for x num ∈ { 6 , 7 , . . . , 10 } . In this paper, we al- 

ways set x num to 10 for all experiments. 

Appendix B. Performance of APC under different k values 

We fix the heuristically determined parameters values of pct, 

mdelta, Eps , and MinPts , and as discussed in Appendix A , we set 

x num = 10 . Please note that among all the synthetic datasets, only 

three of them require the involvement of k , namely Compound, 

2circles and Pathbased, because there are more than one local den- 

sity levels found in these three datasets (see Section 3.3.2 ). The re- 

sults are shown in Table 10 . It is clearly shown in Table 10 that 

APC obtains perfect results on all datasets using either k value. In 

this paper, we always set k to 2 ε/3 for all experiments. 

Table 10 
Performance of APC under different k values. 

Datasets k = ε/ 3 k = 2 ε/ 3 
ARI ARI 

Compound 1.0000 1.0000 
2circles 1.0000 1.0000 
Pathbased 1.0000 1.0000 
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Fig. 20. Visualization of the identified gaps and local density levels for eight synthetic datasets (those provided with ground-truth). 

Appendix C. Visualization on gaps and local density levels 

We show the identified gaps and local density levels of eight 

synthetic datasets in Fig. 20 . Yellow areas in the red rectangles 

represent the gaps and the remaining bins in the red rectangles 

represent local density levels. 
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