
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

6-2019 

CoRRN: Cooperative Reflection Removal Network CoRRN: Cooperative Reflection Removal Network 

Renjie WEN 

Boxin SHI 

Haoliang LI 

Ling-Yu DUAN 

Ah-hwee TAN 
Singapore Management University, ahtan@smu.edu.sg 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Citation Citation 
WEN, Renjie; SHI, Boxin; LI, Haoliang; DUAN, Ling-Yu; TAN, Ah-hwee; and KOT, Alex C.. CoRRN: Cooperative 
Reflection Removal Network. (2019). IEEE Transactions on Pattern Analysis and Machine Intelligence. 
1-14. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5178 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Renjie WEN, Boxin SHI, Haoliang LI, Ling-Yu DUAN, Ah-hwee TAN, and Alex C. KOT 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/5178 

https://ink.library.smu.edu.sg/sis_research/5178


0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2921574, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACATIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

CoRRN: Cooperative Reflection Removal
Network

Renjie Wan, Student Member, IEEE, Boxin Shi, Member, IEEE, Haoliang Li, Student Member, IEEE,
Ling-Yu Duan, Member, IEEE, Ah-Hwee Tan, Member, IEEE, and Alex C. Kot, Fellow, IEEE

Abstract—Removing the undesired reflections from images taken through the glass is of broad application to various computer vision
tasks. Non-learning based methods utilize different handcrafted priors such as the separable sparse gradients caused by different
levels of blurs, which often fail due to their limited description capability to the properties of real-world reflections. In this paper, we
propose a network with the feature-sharing strategy to tackle this problem in a cooperative and unified framework, by integrating image
context information and the multi-scale gradient information. To remove the strong reflections existed in some local regions, we
propose a statistic loss by considering the gradient level statistics between the background and reflections. Our network is trained on a
new dataset with 3250 reflection images taken under diverse real-world scenes. Experiments on a public benchmark dataset show that
the proposed method performs favorably against state-of-the-art methods.

Index Terms—Reflection removal, deep learning, statistic loss, cooperative framework.

F

1 INTRODUCTION

R EFLECTIONS observed in front of the glass significantly
degrade the visibility of the scene behind the glass. By ob-

structing, deforming or blurring the background scene, reflections
cause many computer vision systems likely to fail. Reflection
removal aims at enhancing the visibility of the background scene
while removing the reflections.

Reflection removal is challenging due to its obviously ill-posed
nature – the number of unknowns is twice the number of equa-
tions. Besides, the similarities between the properties of the back-
ground and reflections make it more difficult to simultaneously
remove the reflections and restore the contents in the background.
To solve this problem, many non-learning based reflection removal
methods are proposed. They rely on the handcrafted image priors
observed under special circumstances, e.g., the gradient prior for
different blur levels between background and reflection [1], [2],
[3], the ghosting effects [4], the non-local content similarity [5],
and so on.

While these methods can reasonably solve the problem when
their assumptions are satisfied, the specific priors they rely on are
often violated in real-world scenarios, since the low-level image
priors only describe a limited range of the reflection properties
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Mixture image 𝐈 Background 𝐁 Reflection 𝐑

Result from FY17 [7] Result from CRRN [8] Our result

Fig. 1: An example of the image triplet with mixture image I,
background B, and reflection R from ‘SIR2’ dataset [6] and the
reflection removal results obtained by using FY17 [7], CRRN [8],
and our method.

and may project the partial observation as the whole truth. For
example, when the structures and patterns of the background
are similar to those of the reflections, the non-learning based
methods have difficulty in simultaneously removing reflections
and recovering the background [9]. On the other hand, many
non-learning based methods [1], [10] adopt a two-stage pipeline,
where they first locate the reflection regions (e.g., by classifying
the background and reflection edges [1], [10]) and then restore
the background layers based on the edge information using the
method proposed by Levin et al. [3], [11]. However, locating
reflection regions itself is a very challenging task, so existing
methods mainly rely on some heuristic observations [1], or have
to involve user interaction [3], which are not applicable in many
scenarios.

To capture the reflection properties more comprehensively,
recent methods start to explore deep learning techniques to solve
this problem [7], [12]. The CEINet proposed by Fan et al. [7]
is the seminal work that has introduced an end-to-end frame-
work to solve the reflection removal problem for the first time.
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Fig. 2: The framework of CoRRN. It consists of three sub-networks to estimate the background and reflections in a cooperative manner.
The IdecN is closely guided by the associated gradient features from GdecN with the same resolution at different upsampling stages.

Benefiting from the deep learning framework, they have shown
improved modeling ability that captures a variety of reflection
image characteristics [9], [13]. However, they still adopt the two-
stage pipeline for gradient inference and image inference as many
non-learning based methods [1], [3], which do not fully explore the
multi-scale information for background recovery. Moreover, they
mainly rely on the pixel-wise losses (L2 and L1 loss), that may
generate blurry predictions [14], [15], [16]. Last but not least, the
two methods [7], [12] are mainly trained with synthetic images
which can never capture the comprehensive information in real-
world image formation process completely.

To address the above issues, CRRN [8] proposes a concurrent
framework to make use of the multi-scale information and in-
troduces a perceptually motivated loss to suppress the blurring
artifacts. However, in CRRN [8], the two concurrent network
owns two independent but similar encoder networks, which cannot
efficiently seek common ground and reserve differences across
different tasks. On the other hand, though CRRN [8] introduces
a framework guided by the multi-scale gradient features, the
gradient features from the initial stage still contain artifacts caused
by reflections, which result in the residual edges for the final
estimated results. At last, as shown in Figure 1, though the
perceptually motivated loss enhances the visual quality of the
final estimated result, it is still difficult for CRRN [8] to remove
the locally strong reflections due to the ignorance of the inherent
relationship between the background and reflection.

In this work, in contrast to the conventional two-stage frame-
work used in other methods [7], [12] and the concurrent model
in CRRN [8], we propose the Cooperative Reflection Removal
Network (CoRRN) by using one shared encoder network as illus-
trated in Figure 2. The proposed model consists of three coopera-
tive sub-networks: the context encoder network (CencN) to extract
contextual information, the gradient decoder network (GdecN) to
estimate the gradient of the background, and the image decoder
network (IdecN) to estimate the background and reflection. IdecN
and GdecN share the feature information extracted by CencN.
Such a feature sharing strategy is supposed to improve the learning
efficiency and prediction accuracy [17]. On the other hand, we
add the feature enhancement layers between IdecN and GdecN
to partly suppress the reflection artifacts existing in the gradient
features from GdecN. At last, besides the gradient constraints

from GdecN, we introduce a new statistic loss for IdecN based
on the gradient level statistics to better remove the locally strong
reflections. Our major contributions are summarized as follows:

• We propose a unified reflection removal network with a
multi-scale guided learning strategy. It is composed by
three cooperative sub-networks with improved learning
efficiency and prediction accuracy.

• We further introduce the gradient feature enhancement
layers to suppress the reflection artifacts in the gradient
features and design a statistic loss by considering the
inherent relationship of the gradient level statistics to deal
with the locally strong reflections.

• We capture a large-scale reflection image dataset to gener-
ate diverse and realistic training data, which improve the
generality and practicability of our method.

As an extension of CRRN [8], CoRRN has better performances
and generalization ability than CRRN [8] and the recent state-of-
the-art methods [7], [18] based on the experimental results on a
publicly available benchmark dataset with real-world images [6].

The remainder of this paper is organized as follows. Section 2
introduces relevant existing works. Section 3 and Section 4 intro-
duce the preparation for the training dataset and our proposed
method, respectively. Experimental results and discussions are
prepared in Section 5. Finally, we conclude the paper in Section 6.

2 RELATED WORK

2.1 Deep learning based image-to-image translation

In recent years, deep learning has achieved promising perfor-
mances on image-to-image translation problems. Most current
approaches design their method based on a paired model by using
a dataset with input-output examples to learn a parametric trans-
lation function. For example, Cai et al. [19] proposed a dehazing
method by using the maxout network. Yang et al. [20] proposed a
multi-task learning framework to estimate the background and rain
layer simultaneously. Recently, Qu et al. [21] also introduced an
end-to-end and fully automatic framework to address the problems
existed in the shadow removal problems. In addition, the paired
model also shows its superiority in other different tasks, including
image denoising [22] and super resolution [23].
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Reflection images Synthesized mixture images

Fig. 3: Samples of captured reflection images in the ‘RID’ and the corresponding synthetic images using the ’RID’. From left to right
column, we show the diversity of different illumination conditions, focal lengths, and scenes.

On the other hand, the unpaired settings are also introduced to
solve these problems based on the generative adversarial network,
when the training data with pixel-correspondence are difficult
to obtain. For example, Qian et al. [24] designed a network
to treat the rain streaks differently to model their distinctive
characteristics. In this paper, we exploit a cooperative network
to remove reflections by using the paired model.

2.2 Reflection removal
Reflection removal has been widely studied for several decades.
Previous work can be roughly classified into two categories. The
first category solves this problem using the non-learning based
methods. Due to the ill-posed nature of this problem, different
priors are employed to exploit the special properties of the back-
ground and reflection layers. For example, Levin et al. [3] adopted
the sparsity priors to decompose the input image. However, their
method relies on the users to label the background and reflection
edges, which is quite labor-intensive and may fail in textured
regions. Li et al. [2] made use of the different blur levels of the
background and reflection layers. Nikolaos et al. [25] adopted the
Laplacian data fidelity term to solve this problem. Shih et al. [4]
used the GMM patch prior to remove reflections with the visible
ghosting effects and they also show that the object recognition
accuracy (e.g., food, car, etc.) can be improved after the reflection
removal. The handcrafted priors adopted by these methods are
based on the observations of some special properties between
the background and reflection (e.g., different blur levels [1], [2])
which is often violated in the general scenes especially when
these properties are weakly observed. Some other methods in this
category remove reflections by using a set of images taken from
different viewpoints [26], [27]. By exploiting the motion cues
between the background and reflection from multiview captures
and assuming the glass is closer to the camera, the projected
motion of the two layers is different due to the visual parallax. The
motion of each layer is represented by using parametric models,
such as the translative motion [28], the affine transformation [27],
and the homography [27]. Through the combination of the motion
and traditional cues, the non-learning based methods using the
multiple images as the input show more reliable results when the
input data are appropriately prepared. However, the requirement
for special facilities of capturing limits such methods for practical
use, especially for mobile devices or images downloaded from the
Internet.

Another category solves the problem by using the learning
based methods. Since the deep learning has achieved promising
results in both high-level and low-level computer vision prob-
lems, its comprehensive modeling ability also benefits reflection
removal problems. For example, Paramanand et al. [12] proposed
a two-stage deep learning approach to learn the edge features of
the reflections by using the light field camera. The framework

introduced by Fan et al. [7] exploited the edge information
when training the whole network to better preserve the image
details. Though the deep learning based methods better capture
the image properties, the conventional two-stage framework they
adopt as many non-learning based methods [1], [3], [11] ignores
the inherent correlations, which also degrades their performances.

3 DATASET PREPARATION

3.1 Real-world reflection images for data-driven meth-
ods
Real-world image datasets play important roles in studying
physics-based computer vision [29] and face anti-spoofing [30]
problems. Although the reflection removal problem has been
studied for several decades, publicly available datasets are rather
limited. The data-driven methods need a large-scale dataset to
learn the reflection image properties. As far as we know, ‘SIR2’ [6]
is the largest reflection removal image datasets, which provides
approximately 500 image triplets composed of mixture, back-
ground, and reflection images, but its scale is still not sufficient for
training a complicated neural network. Considering the difficulty
in obtaining the image triplet like ‘SIR2’, an alternative solution to
the data size bottleneck is to use the synthetic image dataset. The
recent deep learning based method [7] provides a reasonable way
to generate the reflection images by taking the regional properties
and blurring effects of the reflections into consideration to make
their data similar to the images taken in the wild. However,
the ignorance of other reflection image properties (e.g., ghosting
effects, various types of noise in the imaging pipeline) may
degrade the training and thus limits its wide applicability to real-
world scenes.

To facilitate the training of our proposed method for general
compatibility on real data, we construct a large-scale Reflection
Image Dataset called ‘RID’, which contains 3250 images in total.
We then use the captured reflection images from the ‘RID’ to
synthesize the input mixture images.

To collect reflection images, we use a Nikon D5300 camera
configured with varying exposure parameters and aperture sizes
under a fully manual mode to capture images in different scenes.
The reflection images are taken by putting a black piece of paper
behind the glass while moving the camera and the glass around,
which is similar to what have been done in [6], [26].

The ‘RID’ has the following two major characteristics, with
example scenes demonstrated in Figure 3:

• Diversity. We consider three aspects to enrich the diversity
of the ‘RID’: 1) We take the reflection images at different
illumination conditions to include both strong and weak
reflections (the first row in Figure 3 left); 2) we adjust
the focal lengths randomly to create different blur levels
of reflection (the second row in Figure 3 left); 3) the
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reflection images are taken from a great diversity of both
indoor and outdoor scenes, e.g., streets, parks, inside of
office buildings, and so on (the third row in Figure 3 left).

• Scale. The ‘RID’ has 3250 images in total with approxi-
mately 2000 reflection images from the bright scenes and
other reflection images are from the relatively dark scenes
to meet the request of data-driven methods.

3.2 Training data generation
The commonly used image formation model for reflection removal
is expressed as:

I = B+R, (1)

where I is the mixture image, B is the background layer, and
R is the reflection layer. The synthetic mixture image I used for
training can be directly generated by adding the reflection image
and the background image from the natural image dataset (e.g.,
COCO dataset [31]) and the reflection image dataset. However,
this setting makes the generated images too bright and unnatural,
which may influence the generalization ability of the whole
training dataset.

To address this issue, we employ a linearly additive weighting
scheme by setting B = αBo and R = βRo, where Bo denotes
the original background image from the natural image dataset, Ro

denotes the reflection image from ‘RID’, and α and β are the
mixing coefficients used to balance the combination of Bo and
Ro. During our training stage, we use the synthetic mixture image
I as the input to the whole network, the weighted background
image B and weighted reflection image R as the corresponding
ground truth.

To ensure a sufficient amount of training data, α and β are
randomly sampled in [0.8, 1] and [0.1, 0.5], respectively, and we
further augment the generated image with two different opera-
tions: (1) Rotation: randomly rotate images by 90◦, 180◦ or 270◦;
(2) Flipping: flip images horizontally with a probability of 0.5. In
total, our training dataset includes 14754 images.

4 PROPOSED METHOD

In this section, we describe the design methodology of the pro-
posed reflection removal network, the optimization using the pro-
posed complementary loss functions, and the details for network
training.

4.1 Network architecture
According to Equation (1), given the observed images with reflec-
tions I, our task here is to estimate B. Traditionally, reflection
removal problems can be solved by a maximum-a-posteriori
(MAP) estimation [5], [18] as follows:

{B?,R?} = argmin
B,R

L(I|B,R, σ2) + Lb(B)

+ Lg(∇B) + Lr(R),
(2)

where Lb, Lg , and Lr are the priors enforced on B, ∇B, and R,
respectively. The multi-task learning framework in Equation (2)
has been adopted by many previous methods [3], [18], [26] due
to its ability in exploring the inherent correlations between the
estimations of B, R, and ∇B. We embed such a multi-task
learning framework into a cooperative model based on the U-Net
structure [32]. Different from previous methods that mainly adopt
the gradient priors [2] or content prior [18], our model learns the

Mixture image Input gradient

Estimated gradient Reference gradient

Fig. 5: The estimated gradient generated by the gradient inference
network, compared with the reference gradient obtained by using
Sobel filter.

priors of B, R, and ∇B from the large scale training dataset and
then embed them into the estimation process implicitly.

As shown in Figure 2, our model takes the mixture images as
the input and contains three cooperative sub-networks: a context
encoder network (CencN), an image decoder network (IdecN),
and a gradient decoder network (GdecN). The three cooperative
networks estimate B and R under the guidance of ∇B, which
can be trained by using multiple loss functions based on their
corresponding ground truths. Given the mixture image I, the whole
prediction process can be concluded as follows:

(B?,R?,∇B?) = F(I, θ), (3)

where F is the network to be trained with θ consisting of all CNN
parameters to be learned and B?, R?, and∇B? are the estimated
results corresponding to their ground truth B, R, and ∇B.

To make each estimation tasks leverage information form
other tasks, the three cooperative networks share the convolutional
layers from each other. The whole network is constructed on the
basis of CencN to extract the context information with the global
structure and high-level semantic information of the scenes. For
GdecN, it adopts the information from the shallower layers of
CencN as the input and estimates ∇B. It can extract the image
gradient information from the multiple scales and guide the whole
image reconstruction process. IdecN takes the feature informa-
tion from the deeper layer of CencN as the input and extracts
background feature representations by using the multi-context
information to estimate B and R. The detailed architecture of
CencN, GdecN, and IdecN will be introduced in the following
sections.

4.1.1 Context encoder network (CencN)
CencN is on the basis of the VGG16 model [13] originally
designed for the high-level computer vision tasks. VGG16 mod-
el [13] contains five convolutional blocks with thirteen 3 × 3
convolutional layers, five max-pooling layers, and three fully
connected layers. As illustrated in Figure 2, we replace the fully
connected layers at the last stage of VGG16 model [13] with a
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Fig. 4: Visualization of the gradient activations in our context encoder network after each max-pooling layer (MP). The activation maps
from left to right correspond to the output maps from shallower to deeper layers in the context encoder network. Note that the activations
from the reflections are suppressed through propagation while the activations closely related to the background are amplified. It shows
that the learned filters in deeper convolutional layers tend to capture information related to the background while the details related to
the reflection are kept in the shallower layers.

3 × 3 convolutional layer [21] in CencN to make it adapt to our
image-to-image translation problems. From Figure 4, due to the
substantially increasing receptive field size, CencN successfully
suppresses the sparse reflection residues and extract the global
information of the scenes from the shallower to deeper layers
gradually. It can also facilitate the training of the successive
networks.

4.1.2 Gradient decoder network (GdecN)

GdecN is designed to learn a mapping from I to ∇B. As
illustrated in Figure 4, the shallower layer of CencN contains more
local information related to small details of the whole images. To
make a balance between the receptive field size and the available
image information, we use the fourth layer of CencN as the input
of GdecN to make full use of the image details to estimate the
gradient. In GdecN, the features from CencN are upsampled and
combined to reconstruct the output gradient without the reflection
interference. In order to better preserve the sharp details and avoid
the gradient vanishing problems, the features from CencN are
linked to its corresponding layers in GdecN with the same spatial
resolution. An example result shown in Figure 5 demonstrates
that GdecN successfully removes the gradients from reflection and
remain the gradient belonging to the background.

4.1.3 Image decoder Network (IdecN)

IdecN is a multi-task learning network to learn a mapping from
I to B and R. Since sparse reflection residues are gradually
removed from shallower layers to deeper layers in CencN, we
directly adopt the last layer of CencN as the input to IdecN to
avoid the interference from the reflection. As shown in the part
labeled as ‘Feature extraction layers A/B’ of Figure 2, IdecN
consists of two feature extraction layers to extract multi-context
and scale-invariant features and five transposed convolutional
layers to upsample the feature maps gradually. We adopt the
‘Reduction-A/B layers’ from Inception-ResNet-v2 [33] as the
‘Feature extraction layers A/B’1 in IdecN. The two models are
able to extract the scale-invariant and multi-context features due
to its multi-size kernels [34]. However, they are seldom used
in image-to-image problems because of its decimated features
caused by pooling layers. To make it fit our problem, we make
two modifications: First, the pooling layers in the original model
are replaced by two convolutional layers with 1 × 1 and 7 × 7
filter sizes, respectively; second, the stride of all convolutions
are decreased to 1. The transposed convolutional layers in this

1. The details of the two layers can be found in the supplementary materials.

part have a parallel framework which is composed of three sub-
layers, as shown in the part labeled as ‘Transposed conv layers’
in IdecN of Figure 2. Similar to GdecN, the feature maps from
CencN are linked to its corresponding layers in IdecN with the
same spatial resolution to avoid the gradient vanishing problem.
In the last stage, due to the narrow intensity range of the residual
(I − B) [9] and the close similarity between the input mixture
images and output background images, we adopt the residual
network to estimate the reflection images R by regarding it as
the differences between I and B, which increases the stability of
the final estimation.

4.1.4 Multi-scale guidance
Gradient features are widely adopted in existing layer separation
problems (e.g., reflection removal [2] and intrinsic image decom-
position [35], [36]) based on the observation that one layer is
with larger gradient values and the other layer is with smaller
gradient values. This observation suggests that the background
pixels with larger gradient values and reflection pixels with smaller
gradient values can be better differentiated in the gradient domain.
Thus, we also embed such gradient priors into the image decoder
network to increase the stability of the final solutions. Due to the
multi-scale strategy used in our network, we extend the traditional
single-scale gradient embedding scheme into a multi-scale scheme
by concatenating the output of each transposed convolutional
layers in GdecN with the output of transposed convolutional layers
in IdecN at the same level, which is labeled as the ‘Multi-scale
guided inference’ in Figure 2.

This multi-scale guidance strategy above has shown its su-
periority in CRRN [8]. However, we find that the feature maps
from the GdecN still show obvious artifacts related to reflections
if they were used directly, especially for those feature maps from
the initial stage of GdecN. It may lead to the residual edges in
the final estimated results. Inspired by the feature enhancement
step proposed in [37], we add the feature enhancement layers with
7 × 7 kernel size between IdecN and GdecN to map the features
with reflections to a feature space with relatively fewer reflections,
which is labeled as the ‘Feature enhancement layer’ in Figure 2.

4.2 Loss function

Previous methods mainly adopt the pixel-wise loss function [7].
It is simple to calculate, but produces blurry predictions since
it cannot capture the comprehensive property of the image dis-
tributions. To suppress the blurring artifacts and provide more
visually pleasing results, we take the statistic similarity and human
perception into considerations when designing our loss function.
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Heavy-tailed Distribution Kurtosis DistributionBackground Mixture images

The gradient statistics between the background and mixture images

Fig. 6: An example of the background and its corresponding mixture images (left part) and the gradient level statistics comparison
between the patches with and without reflection by using the heavy-tailed and kurtosis distribution (right part).

4.2.1 SSIM Loss
To generate the results consistent with the human perception.
We adopt the perceptually motivated structural similarity index
(SSIM) [38] to measure the similarity between the estimated B?

and R? and their corresponding ground truth. SSIM is defined as

SSIM(z, z?) =
(2µzµz? + c1)(2σzz? + c2)

(µ2
z + µ2

z? + c1)(σ2
z + σ2

z? + c2)
, (4)

where c1 and c2 are the regularization constants, µz and µ?
z are

the means of z and z?, σz and σz? are the variances of z and z?,
and σzz? is their corresponding covariances. SSIM measures the
similarity between two images from the luminance, the contrast,
and the structure. To make the values compatible with the common
settings of the loss function in deep learning, we define our loss
function for IdecN as

LSSIM(z, z?) = 1− SSIM(z, z?), (5)

so that we can minimize it as that in the pixel-wise loss functions.
In GdecN, the luminance and contrast components in SSIM

become undefined. We, therefore, omit the dependence of contrast
and luminance in the original SSIM and define the loss function
for GdecN as

LSI(z, z?) = 1− SI(z, z?). (6)

SI is used to measure the structural similarity between two images
as demonstrated in [6], which is defined as

SI =
2σzz? + c2

σ2
z + σ2

z? + c2
, (7)

where all parameters share similar definitions as Equation (5).

4.2.2 Statistic Loss
Though the SSIM loss produces more visually pleasing results
and suppresses the blurring artifacts, it is still difficult for them
to deal with the locally strong reflections due to the ignorance of
some essential differences between the images with and without
reflections. As the example in Figure 1 shows, the results from
CRRN [8] and FY17 [7] still display obvious residual edges, since
they only consider pixel-wise loss or the SSIM loss.

One essential difference between the images with and without
reflections can be found from their gradient level statistics. The
general principle that gradient follows a heavy-tailed distribu-
tions has been known in this community for years [39]. By
sampling image patches from the regions covered by reflections

and their corresponding background, we plot their heavy-tailed
distribution in Figure 6. Though their heavy-tailed distributions
all have similar structures, the reflections widen the distributions
and make the peak weaker since the strong reflections cover
regions with rich textual information. Such phenomena have been
utilized by previous methods [2], [3] by assuming the distributions
with the same mean but different standard deviation values to
discriminate the background and reflection. However, these lower-
order statistics has limited ability to distinguish the reflection and
background due to the large overlapping regions between the two
probability distributions obtained by using this assumption. Thus,
different from previous methods [1], [2] that mainly consider the
lower-order statistics, we further take higher-order statistics into
considerations. The higher-order statistics, such as the kurtosis, are
mainly used to measure the deviation of a distribution. It is defined
on the forth moments to describe the peakedness and shape of the
heavy-tailed distribution, which can be described as follows:

K(a) =
E[(a)4]

(E[(a)2])2
− 3, (8)

where E[·] is the expectation operator for a data vector a and
the −3 operator is to make normal-distribution kurtosis approach
zero [39]. From Figure 6, since the reflections widen the heavy-
tailed distributions, its corresponding kurtosis becomes smaller.
The smaller overlapping regions in the kurtosis manifest the
potential discriminative ability when applying it to our task.

We, therefore, propose a statistic loss to evaluate the similarity
of the gradient level statistics between the estimated results and
their corresponding ground truth by considering the lower- and
higher-order moments on the basis of maximum mean discrepancy
(MMD). As a kind of distribution divergence measurement derived
from kernel embedding, MMD can measure the similarity of two
distributions based on all-order moments as used in the two-
sample testing problem [40], [41]. Given two images z and z?,
MMD is defined as follows:

LMMD(z, z?) = ‖E[φ(z)]− E[φ(z?)]‖2

=
1

n2

n∑
i=1

n∑
i′=1

k(zi, zi′) +
1

m2

m∑
j=1

m∑
j′=1

k(z?j , z
?
j′)

− 2

mn

n∑
i=1

m∑
j=1

k(zi, z
?
j ),

(9)

where i, i′, j, and j′ denote the pixel indices, m and n denote the
number of elements in z and z∗, respectively, k(·, ·) = φ(·)φ(·)>
is a Gaussian kernel, and φ(·) is an implicit feature mapping [42],
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which can match different order moments of the statistics [43].
The example of φ can be found in the supplementary materials.

To build the statistic loss, we first translate the two input
images z and z? to their gradient domains as follows:

pzx = softmax([∇xz]) pzy = softmax([∇yz]),

pz?x = softmax([∇xz
?]) pz?y = softmax([∇yz

?]),
(10)

where ∇x and ∇y denote the the derivative filters [1,−1] and
[1,−1]>, respectively, [·] denotes the vectorization operation, and
the softmax function normalizes the input into a tensor, where
the summation of all elements equals to one. Then, our statistic
loss is defined as follows:

LSL(z, z?) = LMMD(pzx, pz?x) + LMMD(pzy, pz?y). (11)

Finally, we observe that using SSIM loss or the statistic loss
alone may cause changes of brightness and shifts of colors which
makes the final results become dull [44], due to its insensitiveness
to uniform bias, so we further introduce the L1 loss for the
background layer to better balance brightness and color.

Combining the above terms, our complete loss function be-
comes

L =LSSIM(B,B?) + γLSL(B,B?) + δL1(B,B?)

+LSSIM(R,R?) + εLSL(R,R?) + LSI(∇B,∇B?),
(12)

where γ, δ, and ε are the weighting coefficients and the coefficients
for other three terms are all set to 1.

4.3 Implementation and training details
We have implemented our model using PyTorch2. In our training
strategy, CencN is based on a pretrained VGG16 model [13], then
it is connected with GdecN and IdecN, and the entire network is
fine-tuned end-to-end, which grants the three sub-networks more
opportunities to cooperate accordingly. The learning rate for the
whole network training is initially set to 10−4 for the first 30
epochs and then decreases to 10−5 for the next 20 epochs.

Previous works that use deep learning to solve the inverse
imaging problems [45], [46] or layer separation problems [20]
mainly optimize the whole network on patches with resolution
n×n cropped from the whole images. However, many real-world
reflections only occupy some regions in an image like the regional
‘noise’ [6], we call it regional properties of reflections. Training
with the patches without obvious reflections could potentially
degrade the final performance. To avoid such negative effects,
our model is trained using whole images with different sizes.
We adopt a multi-size training strategy by feeding images of
two sizes: coarse-scale 96 × 160 and fine-scale 224 × 288, to
make the network scale-invariant. For the weighting coefficients
in Equation (12), we empirically set γ, δ, and ε in Equation (12)
to 0.6, 0.5, and 0.6, respectively.

5 EXPERIMENTS

To evaluate the performance of our method, we conduct the
comparison between our method with state-of-the-art reflection
removal methods on the SIR2 dataset [6]. The SIR2 dataset [6]

2. Please refer to http://pytorch.org/

TABLE 1: Quantitative evaluation results using five different error
metrics, and compared with Baseline, FY17 [7], NR17 [25],
WS18 [18], and LB14 [2].

SSIM SI SSIMr SIr PSNR
Baseline 0.887 0.919 0.828 0.871 22.761

Ours 0.903 0.923 0.880 0.905 24.194
FY17 [7] 0.864 0.882 0.822 0.850 22.650

NR17 [25] 0.858 0.894 0.844 0.877 21.987
WS18 [18] 0.856 0.893 0.841 0.869 21.576
LB14 [2] 0.827 0.896 0.804 0.867 18.585

contains image triplets taken by using the postcards, solid objects,
and objects from the wild scenes. We first use all image triplets to
evaluate both quantitative benchmark scores and visual qualities.
We then conduct experiments to compare the influence of the re-
flection blur levels to the final performances and the generalization
ability with FY17 [7]. Finally, we compare our methods with
CRRN [8] and also do a self-comparison experiment to justify
the necessity of the new strategies proposed in our method. We
resize images from SIR2 dataset [6] to 224 × 288 for landscape
images and 288 × 224 for portrait images. For the images used
in the generalization comparison with FY17 [7], we set the image
size to 224×320 for landscape images and 320×224 for portrait
images.

We adopt SSIM [38] and SI [6] as error metrics for our quan-
titative evaluation, which are widely used by previous reflection
removal methods [2], [6], [26]. Due to the regional properties of
reflections, we experimentally observe that many existing reflec-
tion removal methods [1], [2], [25] may downgrade the quality
of whole images, although they can remove the local reflections
cleanly. The original definitions of SSIM and SI, which evaluate
the similarity between B and B? in the whole image plane, may
not reflect the performance of reflection removal unbiasedly. We,
therefore, define the regional SSIM and SI, denoted as SSIMr

and SIr , to complement the limitations of global error metrics.
We manually label the reflection dominant regions and evaluate
the SSIM and SI values at these regions similar to the evaluation
method proposed in [18], [21].

5.1 Comparison with the state-of-the-arts

We compare our method with state-of-the-art single-image reflec-
tion removal methods, including FY17 [7], NR17 [25], WS18 [18],
and LB14 [2]. We also adopt the comparisons between the mixture
images and the ground truth as the baseline. For a fair comparison,
we use the codes provided by their authors and set the parameters
as suggested in their original papers. For FY17 [7], we follow
the same training protocol introduced in their paper to train their
network using our training dataset.

5.1.1 Quantitative comparison.
The quantitative evaluation results using four different error met-
rics and compared with four state-of-the-art methods are summa-
rized in Table 1, where the errors between the input images and the
corresponding ground truth are used as the baseline. The numbers
displayed are the mean values over all 500 image triplets in the
SIR2 dataset [6]. As shown in Table 1, our method consistently
outperforms other methods and the baseline for all four error
metrics. The higher SSIM values indicate that our method recovers
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SSIM: 0.898 SSIM𝑟: 0.865

SSIM: 0.958SSIM𝑟: 0.973

SSIM: 0.925SSIM𝑟: 0.906

SSIM: 0.938SSIM𝑟: 0.963

SSIM: 0.958SSIM𝑟: 0.960
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SSIM: 0.956 SSIM𝑟: 0.963

SSIM: 0.935 SSIM𝑟: 0.914

SSIM: 0.934 SSIM𝑟: 0.939

SSIM: 0.934 SSIM𝑟: 0.951

SSIM: 0.958 SSIM𝑟: 0.915

SSIM: 0.909 SSIM𝑟: 0.898

SSIM: 0.899 SSIM𝑟: 0.753

SSIM: 0.916 SSIM𝑟: 0.800

SSIM: 0.887 SSIM𝑟: 0.865

SSIM: 0.854 SSIM𝑟: 0.843

Fig. 7: Examples of reflection removal results on four wild scenes from ‘SIR2’ dataset [6], compared with FY17 [7], NR17 [25],
WS18 [18], and LB14 [2]. Corresponding close-up views are shown next to the images (with patch brightness ×2 for better
visualization), and SSIM and SSIMr values are displayed below the images. The complete results can be found in the supplementary
materials.

the whole background image with better quality, whose global
appearance is closer to the ground truth. The higher SI values
indicate that our method preserves the structural information more

accurately. The SSIM and SI values of other methods are all lower
than the baseline, which indicate that they may more seriously
distort the global structures when they remove reflections. The
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Fig. 8: Examples from the solid object dataset of ‘SIR2’ [6] with different reflection blur levels. The down arrow means that the
reflection blur levels increase. The complete results can be found in the supplementary materials.

higher SSIMr and SIr values mean that our method can remove
strong reflections more efficiently in the regions overlaid with
reflections than other methods. FY17 [7] shows the second best
average performance on SSIM. WS18 [18] and NR17 [25] have
similar performances.

5.1.2 Visual quality comparison.
We then show examples of estimated background images by our
method and four state-of-the-art methods in Figure 7 to check their
visual quality. In these examples, our method removes reflections
more effectively and recovers the details of the background images
more clearly, though some regions with small details are lost (e.g.,
the grass regions in the second column) as the gradient guided
framework may partly ignore the regions with small artifacts and
the convolution is applied to the whole image and its feature maps,
which may inevitably contaminate some regions with small arti-
facts. All the non-learning based methods (NR17 [25], WS16 [1],
and LB14 [2]) remove the reflections to some extent, but residual
edges remain visible for the reflections that are not out of focus.
LB14 [2] causes some color change in the estimated results.
It is mainly because of the insensitivity of the Laplacian data
fidelity term to the spatial shift of the pixel values [25]. Though

WS18 [18] and NR17 [25] can keep the color consistency and
achieve similarly good quantitative values in SSIM (e.g., the first
example), they all show some over-smooth phenomena when they
are not able to differentiate the background and reflection clearly
(e.g., the third examples in Figure 7 generated by NR17 [25] and
WS18 [18]) or in some highly textured regions.

The deep learning based method FY17 [7] is good at pre-
serving the image details and it does not cause the over-smooth
artifacts as the non-learning based methods. However, the network
in FY17 [7] is less effective in cleaning the residual edges
comparing to our method. The SSIM and SSIMr values below
each image also prove the advantage of our method.

5.1.3 The influence of the reflection blur levels
As a very important prior for the reflection removal problems,
the different blur levels between the background and reflections
play a very important role in the non-learning based methods,
including LB14 [2] and NR17 [25]. Even in recent deep learning
based method FY17 [7], they also follow such a blurring level
assumption to create their training data. In general, when the
reflection blur level increases, this problem becomes easier to
be solved. To evaluate the influence of the reflection blur levels
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Mixture image Ours FY17 [7]

Mixture image Ours FY17 [7] Mixture image Ours FY17 [7]

Fig. 9: The generalization ability comparison with FY17 [7] on their released validation dataset. Corresponding close-up views are
shown below the images (the patch brightness ×2 for better visualization). The complete results can be found in the supplementary
materials.

TABLE 2: Results by using images with different reflection blur
levels. The reflection blur levles are inversely proportional to the
values of ‘F-variance’.

F11 F16 F22 F32
Baseline 0.908 0.904 0.902 0.899

Ours 0.920 0.916 0.909 0.903
FY17 [7] 0.899 0.893 0.888 0.886

NR17 [25] 0.859 0.858 0.857 0.855
WS18 [18] 0.863 0.863 0.866 0.864
LB14 [2] 0.868 0.861 0.856 0.855

to the performance of our method, we conduct a more thorough
experiment based on the images taken by using seven aperture
sizes in the postcard and solid object dataset of SIR2 [8]. From
the results shown in Figure 8, though our method still remains
some not very obvious residue edges when the reflections is sharp
(the third and fifth column), it still performs much better than other
methods. From Table 2, though the performances of all methods
become worse when the reflections become sharp, our method

achieves much better results than other methods and the baseline.

5.1.4 Comparing generality with FY17 [7]

The applicability to general complicated data of deep learning
based methods is important yet challenging. Though the SIR2

dataset [6] has covered many indoor and wild scenes, it is a
dataset taken by using the purely flat surface and professional
devices (e.g., the DSLR camera) to take images. Such a strategy
still cannot cover some daily scenarios (e.g., the images taken
through the window glass with curved degrees or taken by using
mobile phones).

To better analyze the generalization ability of our method and
FY17 [7], we evaluate the performances of the two methods by
using the released validation dataset from the project website of
FY17 [7]3. Most images in their validation dataset are mainly
downloaded from the Internet, which covers more challenging
scenes. In this experiment, our network is still trained with our
dataset described in Section 3.2 and strategy in Section 4.3, but

3. https://github.com/fqnchina/CEILNet
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Ground truth vs. Mixture image
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Ground truth vs. Our model
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𝐷𝐾𝐿 = 0.106 𝐷𝐾𝐿 = 0.110
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Fig. 10: The distribution comparisons between CRRN [8], our method, and our method without the statistic loss (SL). DKL is the KL
divergence between two distributions. The similarity of two distributions is inversely proportional to the DKL values.

Ground truth Mixture image Ours CRRN [8]Ours without SLOurs without GdecN

Fig. 11: Examples from the wild scene dataset with locally strong reflections compared with our model without statistic loss (SL) and
CRRN [8].

TABLE 3: Result comparisons of our model against CRRN [8],
our model without statistic loss (SL), with only L1 loss, and
without GdecN, respectively.

SSIM SI SSIMr SIr
Ours 0.903 0.923 0.880 0.905

CRRN [8] 0.884 0.916 0.858 0.890
Ours without SL 0.896 0.913 0.877 0.891
Ours (only L1) 0.879 0.908 0.853 0.886

Ours (without GdecN) 0.869 0.889 0.849 0.879

for FY17 [7] we use the model released in their website (trained
with their own data).

Due to the lack of ground truth, only the visual quality is com-
pared for this part of images. From the results shown in Figure 9,
it is not surprised that FY17 [7] performs well using their trained
model on their validation dataset, but our method also achieves
reasonably good results and performs even better in some images
(e.g., the examples in the first row and second row of Figure 9).
Recall that when FY17 [7] is trained with our data and tested on
the SIR2 dataset, its quantitative and qualitative performances are
below our method as shown in previous experiments.

5.2 Network analysis

In this section, we first compare our network structure with
CRRN [8], the preliminary version of CoRRN with the similar
structure which estimates B, R, and ∇B concurrently. At the
same time, we also analyze the influence of the proposed statistic
loss to the final performances. At last, we conduct several experi-
ments to evaluate the effectiveness of our cooperative framework.

5.2.1 Comparison with CRRN [8]
We first conduct several experiments to compare our network
with CRRN [8]. The major differences between CRRN [8] and
our method mainly exist in the encoder part and the statistic
loss. We propose a feature sharing strategy where IdecN and
GdecN share one same encoder network to make full use of the
context information. On the other hand, instead of only using the
perceptual and L1 loss like CRRN [8], we introduce a statistic
loss by considering the inherent properties of reflections to better
remove the locally strong reflections.

From the gradient level statistics shown in Figure 10, the
distributions of the final estimated results obtained by using our
model are the most similar to the ground truth both from the shape
of the distributions and the KL divergence values shown below
each figure.

At last, we evaluate the performances of our method and
CRRN by using four error metrics as shown in Table 3. The quan-
titative scores illustrated in Table 3 have shown that our method
performs better than CRRN [8] from an overall perspective. From
another two examples shown in the last column of Figure 11,
our method can better remove locally strong reflections when
compared with CRRN [8].

5.2.2 Ablation study for loss functions and network designs
In this section, we conduct several ablation studies to further
investigate the influence of different loss functions and network
designs to the final performances and the contributions of GdecN
to IdecN. From the results shown in Table 3 and the gradient
level statistics in Figure 10, our complete model can achieve
better performances than other models. The examples shown
in Figure 11 and Table 3 also prove the ability of the statistics
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Fig. 12: Extreme examples with saturated reflections, compared with FY17 [7], NR17 [25], WS18 [18], LB14 [2], and CRRN [8].

Mixture image Ground truth Our results Results after color balance

Fig. 13: One result from the postcard dataset obtained by our method and the corresponding results after color balance.

loss to remove locally strong reflections. When the statistics loss
is removed, the overall performances become similar to CRRN.

Then, to analyze the contributions of GdecN to IdecN, we train
another model by removing GdecN from the whole network. From
the results shown in Table 3, though the SSIMr and SIr values
are similar, the lower SSIM and SI values indicate that GdecN
can contribute to the image reconstruction process in IdecN. The
examples shown in Figure 11 also prove that the cooperative
model with GdecN and IdecN can better handle the locally strong
reflections.

6 CONCLUSION

We present a cooperative network to effectively remove reflection
from a single image. Unlike the conventional pipeline that re-
gards the gradient inference and image inference as two separate
processes [7], [12] or a two-stream concurrent model [8], our
network unifies them as a cooperative framework, which integrates
high-level image context information and multi-scale low-level
features. We further introduce a statistic loss based on the inherent
relationship of the gradient level statistics to suppress the local
strong reflections. Thanks to the collected real-world reflection
image dataset and the corresponding training strategy, our method
shows better performance than state-of-the-art methods for both
the quantitative values and visual qualities and it is verified to be
effectively generalized to other complicated data.

Limitations. The limitations of our method are as follows:

• Saturated reflections. Due to the loss of the background
information in the regions with saturated reflections, the
reflection removal problem has been degraded into an
image inpainting problem, which has been regarded as a
very challenging case for all reflection removal methods.
For example, as shown in Figure 12, when the background
information is completely lost in the white bulb area, al-
most all methods cannot remove the reflections efficiently.
However, even in this challenging examples, our method
still performs better than other methods.

• Color shift. With many convolutional layers in our net-
work, our method suffers from the color shift problem
in some specified situations, especially for the postcard
dataset. From Figure 13, though the reflections have been
efficiently removed, the estimated results become globally
darker when compared with the ground truth. However,
such kinds of problems can be easily alleviated by many
existing color balance methods. For example, we simply
try the method proposed in [47] to rescale the color
information in the estimated images to its ground truth.
The results after the rescaling become much better.

• Data generation. The diversity of capturing settings and
scenarios for the reflection images needs to be further im-
proved. These issues may limit the generalization ability of
our training dataset, which will be specifically considered
in our future work by including more diversified scenarios
and setups.
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