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Learning ADL Daily Routines with Spatiotemporal

Neural Networks
Shan Gao, Member, IEEE, Ah-Hwee Tan, Senior Member, IEEE, and Rossi Setchi, Senior Member, IEEE,

Abstract—The activities of daily living (ADLs) refer to the
activities performed by individuals on a daily basis and are
the indicators of a person’s habits, lifestyle, and wellbeing.
Learning an individual’s ADL daily routines has significant
value in the healthcare domain. Specifically, ADL recognition
and inter-ADL pattern learning problems have been studied
extensively in the past couple of decades. However, discovering
the patterns performed in a day and clustering them into
ADL daily routines has been a relatively unexplored research
area. In this paper, a self-organizing neural network model,
called the Spatiotemporal ADL Adaptive Resonance Theory
(STADLART), is proposed for learning ADL daily routines.
STADLART integrates multimodal contextual information that
involves the time and space wherein the ADL is performed. By
encoding spatiotemporal information explicitly as input features,
STADLART enables the learning of time-sensitive knowledge.
Moreover, a STADLART variation named STADLART-NC is
proposed to normalize and customize ADL weighting for daily
routine learning. A weighting assignment scheme is developed
that facilitates the assignment of weighting according to ADL
importance in specific domains. Empirical experiments using
both synthetic and real-world public data sets validate the per-
formance of STADLART and STADLART-NC when compared
with alternative pattern discovery methods. The results show
STADLART could cluster ADL routines with better performance
than baseline algorithms.

Index Terms—ADL sequence, fusion ART, activity pattern,
spatiotemporal features

I. INTRODUCTION

The activities of daily living (ADLs), as used by healthcare

professionals, refer to the daily self-care activities performed

by an individual in his or her place of residence, outdoors,

or both. In the elderly healthcare domain, ADLs are usually

used to measure the functional status of an elderly patient.

Generally speaking, there are two subcategories of ADLs:

basic ADLs (BADLs) [1], which refer to the daily activities

used in maintaining basic wellbeing, and instrumental ADLs

(IADLs) [2] [3], which help an individual live independently

and respectably in a community. Shopping, social activity, and

finance management are some examples of IADLs. Because

ADLs are indicators of people’s wellbeing, health issues faced

by the elderly are largely reflected in ADLs. For example, a

longer length of time taken for a particular ADL may indicate

certain physical or cognitive disfunctions. The knowledge of

ADLs and their patterns could help caregivers discover issues,

predict future health conditions, and advise the elderly. ADLs

that build up elderly tenants’ daily lives, such as grooming,

shower, breakfast, watching TV, housework, and exercise, are

particularly of interest.

An ADL sequence, S, refers to an ordered set of ADLs.

Formally, we define

S = (A1,A2, ...,An) (1)

and

Ai =< ai, si, ei, li > for i = 1, ... , n, (2)

where ai denotes the activity ID, si denotes the activity

starting time, ei denotes the activity ending time, li denotes

the location of the ADL, and n denotes the total number

of identified ADLs. As shown in this definition, the set of

ADLs, as well as their spatiotemporal information, are of

great importance in ADL sequences. In real life, different

applications have different sets of ADLs. The time when the

ADLs occurred represents the order of the ADLs. The duration

of an ADL also carries important information (e.g., wellness

value). For example, exercise for 10 minutes is different than

exercise for 2 hours.

An ADL routine refers to an ADL sequence that describes

a person’s ADLs in a day. A routine can be viewed as a

template that captures certain regularities in the ADL order,

occurrence time, and duration. A person may have different

ADL routines for different days [4]. ADL daily routines are

important in the healthcare domain because they largely reflect

a person’s wellness. In real life, people give ADL routine

advice to others for wellness purposes, for example, going out

for a walk after dinner or not going to sleep too late. Beyond

the healthcare for elderly people, activity routine learning

could also provide knowledge for related domains such as

manufacturing and office scenarios. To define an ADL daily

routine in a computational model, we view a routine as the

template of an ADL sequence that tolerates a certain level of

variation in the ADL order, starting time, and duration.

A mathematical model of an ADL daily routine on any

given day poses a challenge. First, ADL routines contain

sets of an indefinite number of ADLs, and the number of

ADLs within a day largely depends on the context of the

day, as well as other factors, such as the time of the year or

weather. Second, defining the set of ADL-related features, for

example ADL types, temporal features, and spatial features,

to be used in daily routine clustering is another problem. In

particular, ADL temporal information may contain the starting

time, duration, and related day information, whereas the spatial

information may contain the room information and locations

within rooms. The selection and multimodal representation of

features will affect clustering performance. Furthermore, user-

related information should be taken into consideration. This

information provides another set of features that gives a better

representation of a person’s individualized connection between

the spatiotemporal features of ADLs and his or her daily
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routine, and this understanding could provide better detection

of activity patterns and recommendation services.

Daily routine applications are usually domain-specified that

only a set of ADLs are of interest. In public ADL data sets [5],

ADLs are usually collected (or annotated) from sensory inputs,

and some ADLs (e.g., meal preparation) may be identified

frequently throughout a day. In extreme cases, a single ADL

type could take more than half of the total number of ADLs.

To reduce the weights of each individual occurrence of the

same ADL types, it is necessary to normalize the weighting

of each ADL. On the other hand, in different application

domains, for example, in finding eating habits or measuring

exercise patterns, various ADLs contribute differently and have

different importance in the clustering of daily routines. Hence,

an ADL weight assignment algorithm and a systematical

weight assignment scheme are needed.

In the current paper, we propose a three-layer self-

organizing neural network model called the Spatiotemporal

ADL Adaptive Resonance Theory (STADLART). Through the

learning process that occurs across the three layers, STADL-

ART is capable of learning spatiotemporally distinct ADLs and

ADL daily routines by using encoded time, space, and activity

information across multimodal pattern channels. STADLART

models ADL and ADL daily routines in two different layers,

forming a deep neural network. The newly introduced spa-

tiotemporal features enable STADLART to organize ADLs

based on their spatiotemporal features. Also, STADLART

applies an algorithm adding weight normalization according to

the number of the same type of ADLs in a day. This algorithm

is capable of weight customization for different application

domains. To facilitate this algorithm, a weight assignment

scheme and a set of newly designed cluster measurements

are proposed to incorporate expert knowledge on daily routine

clustering in different applications.

Empirical experiments on a synthetic data set and public

data set [5] were conducted to validate the performance

of STADLART. The public CASAS data set is published

by Washington State University [5] and contains long-term

sensory data captured from several testbeds using real human

participants. The CASAS data set is popular in the ambient

intelligence field for studies on ADL-related problems. The

experimental results show that STADLART, together with the

ADL weight assignment algorithm, could cluster ADL daily

routines according to different application requirements.

The rest of this paper is organized as follows: Section II

provides a literature review on the related work. Section III

provides a brief introduction on the fusion ART models. Sec-

tion IV introduces the proposed STADLART neural network,

including its data fields. Section V introduces the learning

mechanism of STADLART. Section VI introduces the ADL

weights normalization and customization algorithms and a

weights assignment scheme. Section VII and Section VIII

show the experimental results and discuss the limitations of

STADLART. Finally, Section IX concludes the paper.

II. RELATED WORK

A. ADL recognition and pattern learning

There has been extensive research on human activity recog-

nition [6] [7] [8] and behavior tracking [9]. These works

focus on the recognition of users’ activities and behavior

through sensor data, which makes learning the routine of

daily activities possible. For activity pattern discovery at the

ADL level, researchers [10] have formulated human activity

modeling as a spatiotemporal pattern-matching problem on top

of the sequence of symbolic information produced by a sensor

network. The proposed algorithm generates a transitional prob-

ability model between key ADLs to represent human activity

patterns.

In the literature [11], Episode Discovery (ED) [12] was

applied to an ADL stream to find regular patterns. This work

also proposed a set of measures, for example, the accuracy of a

rule and compression rate, to evaluate the episode finding per-

formance. In another work [13], episode patterns are studied in

ADL streams using the terms regularity (the time gaps between

the occurrences are bounded), periodicity (some occurrences

form repeating cycles of time intervals), and time intervals.

Periodicity is mined using Gaussian Misture models (GMM),

and frequency is mined using a frequent episode lattice (FEL).

In our previous work [4], a multimemory neural network

architecture named ADLART was proposed, which incorpo-

rates EM-ART (episodic memory adaptive resonance theory)

[14] [15] to learn ADL sequence patterns. In EM-ART, the

events in an episode are decayed exponentially, so that the

most recent events have more weight in the code competition

than the earlier events. This setting is not suitable for ADL

daily routine learning because all ADLs in the same day

should have the same level of importance, regardless of when

they occur. In ADLART, an ADL daily routine is modeled

as an episode of ADLs, using the normalized starting time

over the day as the node activation values. The episode of

an ADL daily routine is stored in both episodic memory and

sematic memory. The sematic memory represents the routines

for various days. However, there are several limitations of the

ADLART model. First, because of the time representation of

ADLs, ADLART only captures the starting time of ADLs,

which loses the important ADL duration information. Second,

ADLART does not incorporate the spatial information of

ADLs.

B. Temporal information representation in neural networks

Generally speaking, there are at least two approaches to

modeling activity temporal information in a neural network. In

the first approach, temporal information, for example, activity

sequences, are modeled as time series. In recurrent neural

networks (e.g., LSTM) and spiking neural networks [16]

[17], temporal relationships are implicitly modeled as input

iterations. On the other hand, time could be explicitly encoded

as the activation of input nodes [4]. Moreover, if complement

coding [18] is applied, the encoded time and the complement

code could be used to learn a range of time in a continuous

space. This approach provides the possibility for temporal

features to be used in clustering activities.
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C. Customizable feature weights

For k-means and fuzzy k-means based clustering algorithms,

feature weighting algorithms [19] [20] [21] [22] are proposed

to automatically calculate a set of feature weights to maximize

the specific internal cluster evaluation measures, for example,

accuracy, F-1 score, and normalized mutual information.

For clustering algorithms that are based on the adaptive

resonance theory (ART), fuzzy ARTMAP with adaptively

weighted distances (FAMawd) [23] substitutes the regular L1-

norm with a weighted L1-norm to measure the distances

between categories and input patterns. The distance-related

weights are a function of a category’s shape, allowing for bias

in the direction of a category’s expansion during learning. An-

other work, FAMRFW [24], extended FAMawd with another

new distance measure.

These measures make assumptions of the shapes of clusters

in the sample space, and the feature weights assignment

algorithms try to find weights to fit into these cluster shapes.

However, for learning ADL daily routines, it is usually ex-

pert knowledge in different application domains that provides

cluster shape assumptions. As features, different ADLs are

weighted differently in different applications. For example,

in food-related studies, meal-related ADLs are important,

whereas in physical-wellness-related applications, the body-

movement-related ADLs are of more interest.

III. FUSION ART

Various models of ART and their supervised learning ver-

sions have been used for pattern analysis and recognition tasks.

Within the family of ART models, there is a group of networks,

known as fusion ART [14], formerly the multichannel adaptive

resonance associative maps (multichannel ARAM) [25], that

formulates cognitive codes that associate multimodal patterns

across multiple input channels. Self-organizing is an important

feature of fusion ART in the sense that when no learned node is

matched, the network will autonomously use the uncommitted

node to represent the new pattern.

Based on a generic multi-channel architecture (see Figure

1), the dynamics of fusion ART are summarized as follows:

Fig. 1. The generic fusion ART architecture

Input fields: Let F k
1 denote the input field that holds the input

patterns of channel k.

Input vectors: Let Ik = (Ik1 , Ī
k
1 , ..., I

k
n, Ī

k
n) denote the input

vector of channel k for k = 1,...,n, where Iki ∈ [0, 1] are the

input signal values and Īki = 1 − Iki . Complement coding

serves to normalize the magnitude of the input vectors and has

been found effective in fuzzy ART systems when it comes to

prevent the problem of code proliferation [18].

Category field: Let Fi, where i > 1, indicate the category

field. In the standard multichannel ART, there is only one

category field F2.

Activity vectors: Let xk denote the activity vector for input

field F k
1 , and y = (y1, y2, ..., ym) denote the activity vector of

F2. Initially, xk = Ik for k = 1, 2, ..., n.

Weight vectors: Let wk
j denote the weight vector associated

with the jth node in F2 for learning the input patterns in F k
1 .

Initially, F2 contains only one uncommitted node with the

weight vectors containing all 1s.

Parameters: Each field’s dynamics are determined by the

choice parameters αk ≥ 0, learning rate parameters βk ∈
[0, 1], contribution parameters γk ∈ [0, 1], and vigilance

parameters ρk ∈ [0, 1].
Code activation: Given the activity vectors x1, x2, ..., xk, for

each F2 node j, the choice function Tj is as follows:

Tj =

n∑

k=1

γk
|xk ∧wk

j |

αk + |wk
j |
, (3)

where the fuzzy AND operator ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡

∑
i pi

for vectors p and q. Fundamentally, the choice function Tj

computes the similarity of the activity verctors with their

respective weight vectors of the F2 node j with respect to

the norm of individual weight vectors.

Code competition: The F2 node with the highest choice

function value is identified by the code competition pro-

cess. The winner is indexed at J, where TJ = max{Tj :
for all F2 node j}. When a category choice is made at node

J, yJ = 1 and yj = 0, ∀j 6= J. This indicates a winner-take-all

strategy.

Template matching: Upon code competition, the template-

matching process takes place to check if resonance is oc-

curring. For each channel k, the match function is given as

follows:

mk
J =

|xk ∧wk
J |

|xk|
≥ ρk. (4)

The match function computes the similarity of the activity

and weight vectors with respect to the norm of the activity

vectors. The match function works together with the choice

function to achieve stable coding and maximize code com-

pression. The template-matching value of the chosen node J

is checked to see whether it meets the vigilance criterion. If

any of the vigilance constraints are violated, a mismatch reset

occurs by setting the choice function TJ to 0 for the duration of

the input presentation. The search process will keep selecting

other F2 nodes until resonance occurs. If the uncommitted

node in F2 is identified as the winner, after learning it becomes

committed, a new uncommitted node is created and added to

F2.

Template learning: Once a node J is selected for learning, in

each channel k, the weight vector is updated by the learning

rule shown in the following:
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w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ). (5)

The learning rule adjusts the weight values towards the

fuzzy AND of their original values and the respective weight

values. This is designed to learn by encoding the common

attribute values of the input vectors and the weight vectors.

For an uncommitted node, the learning rate βk are typically

set to 1. For committed nodes, βk can be set to 1 for fast

learning or below 1 for slow learning in a noisy environment.

IV. STADLART ARCHITECTURE

To learn daily ADL routines, we propose a self-organizing

neural network model called the Spatiotemporal ADL Adap-

tive Resonance Theory (STADLART), which is a three-layer

fusion ART network, as shown in Figure 2. The first layer

consists of the input fields that represent the information of the

ADL type, time, day, and space. The second layer contains the

spatiotemporal ADL field, wherein the category nodes encode

the associations of ADL types and spatiotemporal information.

The third layer contains the ADL routine field, wherein the

ADL routine nodes encode the sequential combinations of

the spatiotemporal ADLs. Across the three layers, the ADL

patterns (F1 layer) are generalized into spatiotemporally distin-

guished ADLs (F2 layer) and then into ADL daily routines (F3

layer). A detailed description of the three layers is discussed

in the following subsections.

A. Encoding ADLs in STADLART

In STADLART (see Figure 2), the input fields in F1 encode

the ADL type, time, day, and spatial information.

1) ADL field: In different problem domains, the sets of

ADLs used are different [1][2][3]. In STADLART, the set of

ADLs are selected by considering the significance they have

on wellbeing and availability in the public data sets. The list

of ADLs used in STADLART is summarized in Table I.

The ADL field represents the type of the input ADL event.

Let

xa = (xa
1 , x̄

a
1 , x

a
2 , x̄

a
2 , ..., x

a
8 , x̄

a
8) (6)

denote the activity vector, where xa
i indicates the ADL type,

while x̄a
i is its complement. Although in the current settings

the observed activities are assumed to be totally certain (xa
i to

be 1 or 0), the model is capable of handling the fuzzy inputs

[0, 1] interval.

TABLE I
ADL TYPES USED BY STADLART

Index ADL Index ADL

1 Meal Preparation 5 Washing Dishes

2 Eating 6 Toilet

3 Working 7 Outside

4 Sleeping 8 Housekeeping

Our work adopts the ADL set used and annotated in the

CASAS data set. In problem domains where the input samples

contain unrecognized activities “other activity”, our model will

simply treat the “other activity” as a type of ADL and learn

routines with “other activity” as part of the routine. However,

as the “other activity” category is broad and unknown, it may

not be very useful. Moreover, if later a new ADL type is

identified, it is possible create new nodes in the xa and create

their links to the next layer. This process is similar to the

template matching and node creation described in Section III

and this will not affect the previous learnt associations of other

nodes.

2) Time field: In STADLART, the time field F t
1 represents

the starting time and duration of the activities performed by

the user. In particular, F t
1 contains a vector with a normalized

(over a day) starting time and the complement of the normal-

ized ending time.

Let

xt = (xt
1, x̄

t
2) (7)

denote the activity vector, where xt
1 represents the normalized

starting time over a day, while x̄t
2 represents the complement of

the normalized ending time. Based on fuzzy ART, this scheme

that consists of a pair of complement-coded activity values

(start time and complement of end time) is sufficient to encode

a time interval.

3) Day field: The day field F d
1 contains the day type

information, including day of week and special days. Let xd

denote the activity vector of F d
1 . We have

xd = (xd
1, x̄

d
1, x

d
2, x̄

d
2, ..., x

d
12, x̄

d
12), (8)

where xd
n indicates the activation value of the nth day type,

while x̄d
n is its complement. In STADLART, we identify a

total of 12 day types, as listed in Table II.

TABLE II
DAY INFORMATION INPUT

Index Day Type Index Day Type

1 Monday 7 Sunday

2 Tuesday 8 Weekday

3 Wednesday 9 Weekend

4 Thursday 10 Public Holiday

5 Friday 11 Sick Day

6 Saturday 12 Vacation

More than one element could be activated at the same time

in the day information vector xd. For example, if a public

holiday falls on Monday, the values of xd
1, xd

8, and xd
10 will

be 1s while others will be 0s. Complement coding is then

applied accordingly.

4) Spatial field: The ADL field F s
1 represents the spatial

information of the input ADL event. Let xs denote the activity

vector in this field, and we have

xs = (xs
1, x̄

s
1, x

s
2, x̄

s
2, ..., x

s
6, x̄

s
6), (9)

where xs
n indicates the spatial information, for example, room

types or being outdoors, of the target ADL, while x̄s
n is its

complement. Referring to the literature on activity recognition,

six room types (including outside are considered in STADL-

ART, as listed in Table III. One example for xs could be having

a shower in the washroom, which is represented as an input
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Fig. 2. STADLART model

vector of xs = (0,1,0,1,0,1,1,0,0,1,0,1) (with the odd elements

representing the complement of the even elements).

TABLE III
SPATIAL TYPES

Index Room

1 Living Room

2 Bedroom

3 Kitchen

4 Washroom

5 Reading Room

6 Outside

B. Encoding Daily ADL Routines

An ADL daily routine refers to an ADL sequence that

describes a person’s ADLs in a day. The self-organizing

spatiotemporal ADL layer F2 contains one field that stores the

spatiotemporal ADL categories associated with all the input

information. Every basic ADL type may have multiple spa-

tiotemporal ADL categories inside the F2 layer. For example,

exercising in the morning in the living room is a different

spatiotemporal ADL from exercising in the afternoon in the

bedroom. The activity vector y is learned from the F1 layer,

and a winning node will be identified in y. Let another vector

y′ denote the ADLs performed in a day, and we have

y′ = (y1, ȳ1, y2, ȳ2, ..., ym, ȳm), (10)

where m is the number of spatiotemporal ADL categories in

the F2 layer, and ym indicates whether the mth spatiotemporal

ADL category is performed in the day, while ȳm is its

complements. y′ is used to learn the next F3 layer. The

activities in y′ form a day’s ADL sequence. In other words,

y′ has the size of all learned spatiotemporal ADLs, and the

spatiotemporal ADLs performed in the current day have their

activation value set to 1, while those not performed have their

activation values set to 0.

The F3 layer is the ADL daily routine layer. The nodes

inside the F3 layer are learned from the ADL vector y′ of

the F2 layer, and each node represents a unique ADL daily

routine of the user. The activity vector of F3 is denoted by z.

The detailed spatiotemporal information of each component

of the ADLs could be retrieved by tracing them down through

the STADLART architecture.

V. LEARNING AND RETRIEVAL OF DAILY ROUTINES

A. Model Training

The STADLART neural network consists of three layers.

The F2 layer focuses on individual ADLs, while the F3 layer

combines the ADLs from the F2 layer to form the daily

ADL sequences. In the training phase, STADLART needs

to go through two steps to start learning. First, STADLART

learns through the F1 layer to the F2 layer for each ADL

input. STADLART learns other individual ADLs in the same

way until all ADLs in the day have been learned. Second,

STADLART will learn the F3 layer from the ADLs sequence.

The training algorithm is summarized in Algorithm 1.

B. Daily Routine Readout

After training the STADLART model, each node in the F3

layer encodes the learned daily ADL routines. By reading the

activation values of spatiotemporal ADLs associated with the

daily routine categories, a list of routines can be generated

from the F2 layer. At the F1 layer, the learned starting

time, duration, and spatial information associated with the

spatiotemporal ADL categories can be retrieved.
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Algorithm 1 STADLART training process

Require: A sequence of ADLs, each in the form of

(xa,xt,xd,xs)
Ensure: Learn an ADL routine

1: for each input ADL (xa,xt,xd,xs) do

2: Compute activity vector y in the F2 layer using input

patterns (xa,xt,xd,xs)
3: The winning F2 node learns a spatiotemporal ADL

category

4: Update the performed spatiotemporal ADL list y′

5: end for

6: Update activity vector z in the F3 layer using input

patterns y′

7: The winning F3 node learns an ADL routine category

from z

C. Spatiotemporal Information Retrieval

The spatiotemporal characteristic of STADLART allows

the retrieval of a particular ADL by using the user’s spatial

and temporal preference. This is STADLART’s capability

for learning the ADL spatiotemporal patterns of the user.

Specifically, for a particular ADL type input xa, STADLART

will activate every category j in the F2 layer using the choice

function

T 2
j =

n∑

k=1

γk
2

|xk ∧wk
j |

αk
2 + |wk

j |
(11)

revised from Formula (3).

All the spatiotemporal ADL nodes in the F2 layer that

match the ADL type xa will be selected. The spatial and

temporal information associated with the selected categories

will be retrieved and output. The algorithm is summarized in

Algorithm 2.

Algorithm 2 Retrieve spatiotemporal information using ADL

Require: ADL vector xa from F a
1

Ensure: xs, xt, and xd associated with ADL type xa

1: read in the ADL vector xa from F a
1

2: Activate every category j in F2 by choice function TF2

j =
∑n

k=1 γ
k
2

|xk∧w
k
j |

αk
2
+|wk

j
|

3: while selecting a new category J and TF2

J > 0 do

4: Readout the xt, xd, and xs associated with J

5: end while

VI. ADL WEIGHT NORMALIZATION AND

CUSTOMIZATION

A. ADL weight normalization

With real-life ADL data, for example, [5], ADLs are usually

collected (or annotated) based on sensory inputs. As such,

certain ADLs (e.g., meal preparation) may occur frequently

in a day. For example, a stove may be turned on and off

seven times a day, and thus, seven meal preparation ADLs

would be logged. To normalize the contribution of ADLs in

a day, a weighting scheme is introduced and applied to the

STADLART choice function (Formula (11)):

T 2
j =

n∑

k=1

γk
2

|n(xk ∧wk
j )|

αk
2 + |nwk

j |
. (12)

where n is the feature normalization vector for ni = 1/ai,
where ai is the count of spatiotemporal ADL type i in the

day. On different days, n is counted separately. The new

algorithm is named STADLART-N. With the introduction of

n, the frequently occurred ADLs will have less weight for each

of their occurrences while the less frequent ADLs will have a

higher weight for each occurrence. For example, if there are

seven meal preparation ADLs identified within one day, after

applying the normalization vector, a, each meal preparation

ADL contributes one seventh compared with before.

B. Customizable ADL weights

Besides feature normalization for the different frequencies

of ADLs, in different application domains, different ADLs

play different roles, bringing in different level of importance.

To emphasize the ADLs of interest in specific applications,

similar to the feature weight normalization vector, a feature

weight customization vector, c, is introduced to the choice

function (Formula (11)) in the ADL daily routine learning

algorithm

T 2
j =

n∑

k=1

γk
2

|nc(xk ∧wk
j )|

αk
2 + |ncwk

j |
. (13)

where ci is the weight vector that assigns weights to ADL

i according to its importance. The new algorithm is named

STADLART-NC. To formalize c systematically, a five-level

scale is used to measure the importance of each ADL and

assign corresponding weight values. As shown in Table IV,

very important ADLs will have their weight equal to 1 while

other ADLs will have their weight below 1 according to their

domain knowledge.

TABLE IV
ASSIGNMENT OF ADL WEIGHT ACCORDING TO ITS IMPORTANCE

ADL importance weight

Not Important 0.2

Less Important 0.4

Normal 0.6

Important 0.8

Very Important 1.0

VII. EXPERIMENTS ON SYNTHETIC DATA

A. Synthetic Data Generation

The performance of STADLART is first evaluated using a

synthetic data set that is generated using a set of predefined

ADL routines. The experiments on synthetic data are served to

verify the veracity of the output that the samples are generated

from few templates and the model could generates clusters

that corresponding to the templates which is hidden from

the model. To gain more confidence on veracity, real-world
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scenarios will be gradually added to the synthetic data making

it more “real”. In the first experiment, five synthetic ADL

routines were created, with each one describing a specific

type of day, namely the normal day, the wake up early day,

the hungover day, the outing day, and the housework day.

About 2,000 samples (days of ADLs) are generated. When

generating a daily ADL sequence sample, the day is first

randomly assigned a routine template, and then, all the ADL

types are generated according to the assigned routine template,

with every ADL having a 15-minute random variation in the

starting time and duration.

A normal day routine, which is an example of a normal

day, as shown in Figure 3, starts at 7:00. The person performs

personal hygiene (Toilet) and has breakfast (Eating) before

8:00. Lunch preparation (MealP) is around 10:00, followed by

having the lunch (Eating) before noon. The person prepares

dinner (MealP) at 16:00, and dinner (Eating) starts at 18:00.

The dishes are washed (WashDish) shortly after finishing

dinner and finally the person goes to sleep (Sleep) at about

22:00. In the “wake up early” day routine, the person wakes

up at about 6:00, and every ADL is performed about one hour

earlier. While in the “hungover” day routine, the person wakes

up late, near noon, with no breakfast, and all other ADLs are

postponed by around one hour. In the “outing day” routine and

the “housework” day routine, there are outside ADL types and

housework ADL types that distinguish these two types of days

from other days.

B. Experiment and Evaluation

STADLART is trained throughout the experiments with

setting the slow learning ART parameter to β = 0.2. Con-

sequentially, a spatiotemporal ADL in a routine that is not

observed in the subsequence inputs of this routine will have

its association strength decreased gradually.

In fusion ART networks, the vigilance parameters control

the level of generalization. In this set, STADLART was run

with the vigilance parameters of both F1 and F2 fields set to

0.8, 0.85, 0.9, and 0.95. The number of categories learned in

the F3 layer are listed in Table V. With the vigilance values

of 0.85 and 0.9, STADLART learned exactly five daily routine

categories. Comparing the readouts of the F3 layer with the

synthetic data, it is clear that the categories in the F3 layer

represent the routine templates in the synthetic data set.

TABLE V
THE NUMBER OF DAILY ROUTINE CATEGORIES GENERATED USING

DIFFERENT VIGILANCE VALUES

Vigilance Categories

0.80 4

0.85 5

0.90 5

0.95 17

1.00 220

Using the experiment with ρ2 = 0.85 as an example, Figure

4 shows a learned daily routine category that corresponds to

the normal day routine template.

The extended periods of ADLs, for example, eating, in the

learned categories occur because of two main reasons. The

first reason is that ADL generation has a 15-minute random

variation and thus has longer ADL periods. The second reason

is that the generation of ADLs spans multiple days.

Because the templates for generating samples provide the

label information, the STADLART output clusters are eval-

uated with external evaluation indices, specifically accuracy,

F-1 score, normalized mutual information (NMI), and the

Jaccard index. STADLART is compared with our previous

work ADLART, baseline algorithms (namely K-means), and

the LSTM network (the implementation in deeplearning4j

project [26] is used). Because of the limitation of ADLART,

ADLs at different times of the day (e.g., morning, afternoon,

and evening) are identified as different features, for example,

meal preparation in the morning is considered a different

feature from meal preparation in the afternoon. However,

ADLs of the same type within the same part of day are only

counted once. For K-means, each input sample is an ADL

routine containing a fixed number of ADLs (if the ADLs are

not performed in the day the fields will left 0s). Each cluster

center represents one routine learned from several samples.

The difference of element ADLs between the new set of

ADLs and the cluster center is calculated as the distance. It is

weighted in temporal and spatial differences.

TABLE VI
THE EXTERNAL INDEX SCORES FOR THE SYNTHETIC DATA SET

Algorithm Accuracy F-1 NMI Jaccard Index

STADLART 0.99 0.94 0.92 0.91

ADLART 0,95 0.88 0.88 0.85

K-means 0.94 0.88 0.87 0.84

LSTM 0.99 0.93 0.92 0.90

As shown in Table VI, STADLART outperformed the ADL-

ART model and baseline clustering algorithms. The advantage

of STADLART is largely because of the spatiotemporal fea-

tures that could differentiate the same type of ADLs based on

their temporal differences. At the same time, LSTM shows a

similar level of performance with STADLART on the synthetic

data set.

VIII. EXPERIMENT ON REAL-LIFE DATA SET

A. CASAS Data Set and Preprocessong

The CASAS data set consists of a total of 38 data sets that

contain sensory inputs collected from well-equipped testbeds

in several cities across the world. The 17th data set was chosen

for the following experiment. The data set, collected from the

testbed in Aruba, contains the sensory readings of an elderly

female tenant over a period of 220 days. The data collected

are primarily sensory readings with annotated ADLs as ground

truths, which are taken as the inputs for STADLART. For

the real-word data set, the result will be checked against the

original data set manually and verify whether the generated

routines are representative.

Data preprocessing was performed on the raw CASAS

data set. First, the ADL type Enter Home is combined with

the ADL type Leave Home. The duration of Leave Home

is hence the time span from Leave Home to Enter Home.

Second, the ADL type “Resperate” has only six instances.
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Fig. 3. Synthetic routine templates

Fig. 4. A sample of a learned ADL routine

TABLE VII
ANNOTATED ADL TYPES IN THE PREPROCESSED CASAS DATA SET

ADL Count

Meal Preparation 1604

Eating 257

Working 171

Sleeping 400

Washing Dishes 65

Bed to Toilet 157

Leave Home 318

Housekeeping 33

Because it is not significant, this ADL type is removed. Third,

there are 2,910 instances of the ADL type “relax” over the

220 days, with an occurrence count of more than 10 times per

day spanning very short intervals each. This ADL type has

no significance in differentiating the daily routine and is thus

also removed. In the CASAS data set, dates were given instead

of days of the week. Therefore, a conversion with reference

to a calendar was performed. Because ADL are recognized

from fixed sensors (stove, water tap, door, sofa, etc.) in the six

rooms, the ADLs are associated with fixed spatial information.

The final set of used ADL types is shown in Table VII, giving

a total of 3,005 ADL samples.

With this preprocessed data set, in later subsections, ex-

periments are conducted to test the generalization behavior

of STADLART in terms of categories learned in different

layers with different parameter configurations. After doing

this, STADLART is compared with baseline algorithms, ADL-

ART, and LSTM. Finally, the feature normalization and cus-

tomization versions, STADLART-N and STADLART-C, are

evaluated.

B. Experiments on spatiotemporal ADL category generaliza-

tion

In this experiment, we look at the spatiotemporal ADL

category layer. The ADL types associated with temporal and

spatial information are recognized and stored in this layer. We

evaluate the generalization behavior and find the key ADL

categories to represent a user’s ADL preference. We conduct

this experiment in a fast learning setting, for example, with

a learning rate of 1.0. The contribution parameters are set to

0.4 for ADL type, 0.4 for temporal, and 0.2 for spatial. As

discussed in the previous subsection, the vigilance parameter

values for all the fields are set to 1.0, which means all

nodes in the spatiotemporal ADL category represent an ADL

type with a fixed temporal and spatial category. As a result,

we generated 375 spatiotemporal ADL categories from the

3,005 input samples. In other words, each spatiotemporal ADL

category represents about five inputs.

Among the 375 categories, the top 10 categories represent

33, 32, 23, 22, 22, 21, 20, 20, 19, and 19 inputs. At the

same time, there are 100 categories that represent only one

input and 62 categories that represent two inputs. The top

categories mostly represent Sleep, Meal Preparing ADL, and

Leave Home. This is because these three ADLs appear in the

most number of input instances.
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C. Experiment on daily routine categories generation

In this experiment, the learning process from the Spatiotem-

poral ADL category layer, F2, to the ADL daily routine

category layer, F3, is evaluated. F2 contains the learned spatial

temporal ADL categories that this person performed in his

daily life. The last step is to learn the ADL daily routines that

could be used to describe his personal behavior or lifestyle.

In the first experiment, fast learning is used, that is, learning

rate β = 1.0. The relationship between the choice of the

vigilance parameter value of spatiotemporal ADL field and

the number of daily routine categories generated are shown in

Figure 5.

Fig. 5. The number of daily routine categories generated with different
vigilance parameter values

Vigilance parameters ρ2 and ρ3 are chosen to be 0.9 and

0.2 for F2 and F3, respectively. Because more generalization

is preferred, ρ3 for learning daily routines is set to a low

value. Based on 220 samples, the STADLART model learned

a total of 19 daily routines from the CASAS data set. To verify

the veracity of the result, the top five routines are manually

examined by randomly picking up five days of that routine and

checking the raw data. The top three routines represent 25, 20,

and 17 days, respectively. The common ADL types in the top

two routines are shown in Figure 6. In the first routine, it can

be seen that the elderly woman visits the toilet regularly in

the morning between 4:00 and 6:00. However, in the second

routine, on certain days, the elderly woman prepares meals

throughout the day, and she may be preparing a big dinner with

her visiting daughter.The result of the manual verification is

consistent with the learnt routines. From the results, we could

see that in reality, the activity routines are more diverse than

the synthetic data, and there is no single dominant daily routine

over the 220 days. However, certain interesting ADL patterns

can be observed.

D. Comparing STADLART with other algorithms

Because the routines are not labeled in the CASAS data set,

the results from STADLART are compared with the ADL-

ART and baseline algorithms using an intercluster measure.

Specifically, the overall average silhouette width [27] is used,

which indicates the quality of the underlying structure of the

clusters: a higher value indicates a stronger structure. For

Fig. 6. Two ADL routines learned by STADLART

ADLART and other clustering algorithms, the CASAS data set

is preprocessed much like how the synthetic data set that ADLs

in different parts of day are treated as different features. The

evaluation results from clustering the spatiotemporal ADLs

and ADL routines are shown in Table VIII. The results

show that the learned clusters from the CASAS data set are

less structural than the clusters learned from the synthetic

data, and STADLART outperforms ADLART and the baseline

clustering algorithms, e.g., K-means. Because of the small

sample size (220 in the CASAS data set), other deep neural

networks such as LSTM do not significantly out perform the

baseline algorithms.

TABLE VIII
THE OVERALL AVERAGE SILHOUETTE WIDTH FOR THE DATA SETS

Algorithm Synthetic-ASW CASAS-ASW

STADLART 0.93 0.32

ADLART 0.90 0.31

K-means 0.90 0.30

LSTM 0.93 0.30

E. Experiment on feature weight normalization and cus-

tomization

In this subsection, the original STADLART is first compared

with its feature weight normalization variation, STADLART-

N. After doing this, two application scenarios, including a

meal analysis and outing behavior analysis, are assumed, and

the feature weight customization variation, STADLART-C, and

normalization and customization variation, STADLART-NC,

are compared with the original STADLART.

In the first experiment, the feature weight normalization

variation, STADLART-N, is applied to the CASAS data set.

Similar to previous experiments, fast learning is used here with

a learning rate of β = 1.0. Vigilance parameters ρ2 and ρ3
are set to be 0.9 and 0.2 for F2 and F3, respectively.

TABLE IX
COMPARING STADLART AND STADLART-N USING THE CASAS DATA

SET

Algorithm Routines Membership of Top Three Routines

STADLART 19 25, 20, 17

STADLART-N 18 31, 28, 25
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As shown in Table IX, with feature weight normalization,

STADLART-N generalizes a similar number of routines to

STADLART on the CASAS data set. However, the top routines

now represent more entries in the data set. By reading out the

associations at F2 and F1 layers, the top two routines are

plotted in Fig. 7. Compared with the top routines generated

by ADLART (Fig. 6), which contain mostly meal preparation

ADL, STADLART-N generated more meaningful routines

from the data set.

Fig. 7. Top two ADL routines learned by STADLART-N

In the second experiment, two application scenarios are the

meal analysis and outing behavior analysis, with an emphasis

on eating and going on an outing ADL, respectively. Accord-

ing to the ADL weight assignment guideline in Table IV and

expert knowledge in the meal analysis experiment, the weight

of eating is set to “very important” (i.e., 1.0), the weight of

meal preparation is set to “normal” (i.e, 0.6), and all other

ADLs are set to be “not important” (i.e., 0.2). Similarly, in

the outing behavior analysis experiment, the outing ADL is

set to “very important” (i.e., 1.0), while all other ADLs are

set to be “not important” (i.e., 0.2). The experiment results

are summarized in Table X. From the results, it is seen that

with feature customization, STADLART-C and STADLART-

NC could cluster daily ADL sequences into routines while

focusing on key ADLs.

TABLE X
COMPARING STADLART, STADLART-C, AND STADLART-NC ON THE

CASAS DATA SET

Experiment Algorithm Routines

Meal STADLART 19

Meal STADLART-C 10

Meal STADLART-NC 8

Outing STADLART 19

Outing STADLART-C 7

Outing STADLART-NC 6

IX. CONCLUSION

In this paper, a spatiotemporal fusion ART neural network

model named STADLART has been presented to learn hu-

man daily activity routines. In contrast to the early work of

ADLART, STADLART takes into consideration the ADL start

time, duration, and spatial information. Experiments conducted

based on a synthetic data set have shown that STADLART

could learn ADL routines consistently with the ADL templates

that are used to generate synthetic data. For the CASAS

data set, STADLART manages to generalize some interesting

routines of a person’s life across days and provides information

for further investigation on the person’s behavior. In both

experiments, STADLART was compared with ADLART and

baseline clustering algorithms such as nearest neighbour and

K-means. The results show that STADLART outperformed the

baseline clustering algorithms in various aspects. Moreover, a

STADLART variation named STADLART-NC was presented

to normalize and customize ADL weights for different ADLs

in daily routines. The ADL weight normalization successfully

reduces the influence of ADL frequency while the ADL

weight customization promotes ADLs of interest from expert

knowledge. A guideline for ADL weight assignment on ADL

weighting customization is also provided for ease of use.

Experiments on the CASAS data set further demonstrate that

STADLART-NC could learn more meaningful daily routines

with normalized and customized ADL weighting for different

application configurations.

By utilizing the STADLART models, intelligent systems

will have the knowledge of typical life routines of the user.

Based on this knowledge, various applications are made possi-

ble. First of all, the intelligent system can detect abnormalities

of the user and notify caregivers or his relatives through

messages. The intelligent system can also make predictions

of the users following activities and give recommendations of

activities, or provide other activity advices. The user activity

routines also provide samples for long-term analysis, for

example, activity routine change pattern over the years for

certain age group.

Going forward, STADLART has some limitations to be

resolved. The normalization formula makes use of the total

number of the same ADLs performed in the day, making

STADLART not suitable for online learning as and when

partial ADLs are collected. An online adaptive normalization

method would be desirable to enhance the feature weighting

algorithm. Another limitation of STADLART is the lack of

automatic routine explanation capability. Currently, the learned

routines and activity patterns are explained manually. An auto-

matic algorithm for translating learned patterns to meaningful

symbolic representation will be an important direction for our

future research.
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