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An Exact Single-Agent Task Selection Algorithm for the Crowdsourced Logistics

Chung-Kyun Han and Shih-Fen Cheng∗

School of Information Systems, Singapore Management University
ckhan.2015@phdcs.smu.edu.sg, sfcheng@smu.edu.sg

Abstract

The trend of moving online in the retail industry has
created great pressure for the logistics industry to
catch up both in terms of volume and response time.
On one hand, volume is fluctuating at greater mag-
nitude, making peaks higher; on the other hand,
customers are also expecting shorter response time.
As a result, logistics service providers are pressured
to expand and keep up with the demands. Expand-
ing fleet capacity, however, is not sustainable as ca-
pacity built for the peak seasons would be mostly
vacant during ordinary days. One promising solu-
tion is to engage crowdsourced workers, who are
not employed full-time but would be willing to help
with the deliveries if their schedules permit. The
challenge, however, is to choose appropriate sets
of tasks that would not cause too much disruption
from their intended routes, while satisfying each
delivery task’s delivery time window requirement.
In this paper, we propose a decision-support algo-
rithm to select delivery tasks for a single crowd-
sourced worker that best fit his/her upcoming route
both in terms of additional travel time and the
time window requirements at all stops along his/her
route, while at the same time satisfies tasks’ deliv-
ery time windows. Our major contributions are in
the formulation of the problem and the design of an
efficient exact algorithm based on the branch-and-
cut approach. The major innovation we introduce is
the efficient generation of promising valid inequal-
ities via our separation heuristics. In all numerical
instances we study, our approach manages to reach
optimality yet with much fewer computational re-
source requirement than the plain integer linear
programming formulation. The greedy heuristic,
while efficient in time, only achieves around 40-
60% of the optimum in all cases. To illustrate how
our solver could help in advancing the sustainabil-
ity objective, we also quantify the reduction in the
carbon footprint.

∗Contact Author

1 Introduction
In recent years, retail activities have increasingly moved on-
line, and this trend has created substantial pressure for the
logistics industry to catch up both in terms of volume and
response time. Despite the best efforts from the logistics in-
dustry, the spiking nature of the demands (mostly caused by
shopping holidays such as Black Fridays) has made capac-
ity planning more challenging than ever. On the other hand,
the pursuit for shorter response time means that most logis-
tics service providers are facing the touch decision on how
best to increase their service capacity. Increasing fleet sizes
is a quick fix yet it would not be sustainable, as capacity built
for the peak seasons would be mostly vacant during ordinary
days. As a result, the increasing numbers of half-filled trucks
plying the streets have posted serious challenges to the city
management [Guo et al., 2019].

A promising alternative that could address these challenges
is the crowdsourced logistics paradigm, which centers around
the idea of utilizing part-time workers driving their own ve-
hicles to complete the delivery tasks. Utilizing crowdsourced
workers has the benefit of not having to commit to capacities
that are only required during demand peaks. Having crowd-
sourced workers also makes last-mile logistics more sustain-
able; as crowdsourced workers could integrate deliveries into
their own schedule and make deliveries en route to their actual
destinations. This concept is most famously demonstrated by
Walmart, who asks selected employees to help with last-mile
deliveries on their way home.

From the perspective of crowdsourced workers who only
commit on an ad hoc basis, the major hurdle of performing
crowdsourced deliveries lies in having to go through the list
of tasks and find ones that are most compatible with his/her
own itinerary in terms of time and location. A worker might
have to follow a particular route and pass through a number
of predetermined locations within designated time windows
(we define such route as a worker’s routine route), while only
has limited amount of time for delivery tasks. Individual tasks
might also have requirements on the delivery time windows.
Taking into account all these requirements is non-trivial, and
it is no wonder that most crowdsourced workers would just
adopt very simple heuristics, such as choosing tasks that are
around their final destinations.

In this paper, we aim to provide a single-agent planning
algorithm that takes into account worker’s routine route re-
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quirements and tasks’ delivery time windows. In pursuing
this research, we make the following major contributions:

• First, we formulate the problem as an integer linear pro-
gram (ILP). The major innovations are the inclusion of
aggregated pickup points and a crowdsourced worker’s
routine route.

• Second, we propose a branch-and-cut algorithm which
can solve the problem exactly. To make the algorithm
efficient, we introduce several classes of valid inequali-
ties that would tighten the formulation and speed up the
algorithm.

• Finally, we demonstrate how our approach could reach
optimality in all numerical instances with far fewer com-
putational resources when compared against the ILP ap-
proach. We also quantify the large optimality gaps ex-
perienced by a real-world-inspired greedy heuristic. To
conclude the experiments, we highlight how the crowd-
sourcing paradigm could help in reducing carbon emis-
sion if planned appropriately using our approach.

2 Related Literature
Optimization problems dealing with the last-mile logistics are
categorized in two threads depended on whether or not de-
tails about a routing problem are considered in an optimiza-
tion model. With some assumptions and approximations on
the routing part, Winkenbach et al. (2016) and Huang et
al. (2018) solve network design problems, and Wang et al.
(2016) deal with an assignment problem. Some researchers
target optimization problems considering a routing sequence
for each vehicle or worker. Various heuristics are suggested
for large-scale last-mile delivery problems. Gansterer et al.
(2017) model a multi-vehicle profitable pickup and delivery
problem and suggest a method based on the general vari-
able neighborhood search. Behrend et al. (2019) address an
item-sharing and crowd shipping problem and suggest an ex-
act solution method incorporating a set packing formulation
and a labeling algorithm. Stenger et al. (2013) and Arslan
et al. (2019) consider a pickup and delivery problem utiliz-
ing ad hoc drivers or subcontractors for the last mile delivery.
Stenger et al. (2013) solve the problem with an adaptive vari-
able neighborhood search and Arslan et al. (2019) propose a
rolling horizon framework. Holland et al. (2017) deal with a
practical routing problem of United Parcel Service, a logistics
company, and share the results of the ORION algorithm con-
sisting of an adaptive large neighborhood search, Lagrangian
relaxation, and simulated annealing.

In the crowdsourcing area, most researchers consider a task
to happen only at a particular location, and the focuses are
mostly on how optimization techniques can be utilized to
solve different problem formulations [Kazemi and Shahabi,
2012; Chen et al., 2015; Deng et al., 2016; Cheng et al., 2017;
Tran et al., 2018; Behrend et al., 2019]. These models are not
directly applicable to our problem, as delivery tasks contain
both a pick-up point and a drop-off point, with the implicit
assumption that a task must be picked up before it can be
dropped off.

Wang et al. (2016) and Arslan et al. (2019) have formu-
lated and studied the crowdsourced logistics planning prob-

lems and proposed scalable optimization approaches to solve
these problems. There are also a few field trials on proving
the concept; e.g., Kim (2015) has piloted a crowdsourcing
delivery system and Sun et al. (2018) have developed a sys-
tem for the online delivery route recommendation for a single
agent. However, to the best of our knowledge, no past work
explicitly considers both a worker’s pre-existing routine route
with time windows and also individual tasks’ time windows.

3 The Problem Formulation and the Integer
Linear Programming Model

Let K denote the set of all tasks. For task k ∈ K, let rk, vk,
and wk be the reward, volume, and weight respectively. The
pickup and delivery nodes of task k ∈ K are represented by
hk and nk respectively. Let P be the set of all pickup nodes
and D the set of all delivery nodes. We assume that each
task is uniquely represented by its delivery node, even though
some of tasks might share the same physical delivery loca-
tion. For cases where delivery locations are identical, they are
still treated as different nodes, but the traveling distance be-
tween these nodes will be set to zero. However, pickup nodes
can be shared among multiple tasks. LetR represent the set of
nodes associated with a routine route sequence including the
origin node, o, the destination node, d, and other nodes where
the crowdsourced worker has to visit in sequence. The visit-
ing precedence among R is specified by ci,j , where ci,j = 1
indicates that i is to be visited before j. Note that by defini-
tion co,j = 1, ∀j ∈ R\{o} and ci,d = 1, ∀i ∈ R\{d}. There
are resource limits on the volume, weight and travel time and
they are denoted by v, w and u respectively.

Our problem is defined on a complete directed graph G =
(N,A), where N = P ∪ D ∪ R. Each node i is associated
with a time window [αi, βi]. We denote ti,j as the time it
takes to travel from i to j.

There are two types of decision variables: xi,j indicates
whether arc (i, j) should be included in the final solution (1
if yes, 0 if no); and µi denotes when the agent visits node i.

We aim to maximize the sum of collected rewards, which
is formulated as follow:

max
∑
k∈K

rk
∑
j∈N

xj,nk
, (1)

where the reward of task k can be collected when there is an
in-flow to the delivery node nk.

We divide constraints into three groups. The first group
of constraints deals with flows between nodes. Equations (2)
and (3) ensure that all nodes in the routine route are visited,
and the agent starts from o and ends in d. Equation (4) turns
the final route into a Hamiltonian cycle, which helps to sim-
plify the representation of valid inequalities for the branch-
and-cut algorithm. Equation (5) eliminates self-loops. Equa-
tion (6) enforces that a delivery of task k at nk is only possible
if the pickup node hk is visited. Finally, Equation (7) ensures
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flow conservation at all pickup/delivery nodes.∑
j∈N

xo,j =
∑
j∈N

xj,d = 1, (2)

∑
j∈N\{i}

xi,j =
∑

j∈N\{i}

xj,i = 1, ∀i ∈ R \ {o, d}, (3)

xd,o = 1, (4)
xi,i = 0, ∀i ∈ N (5)∑

j∈N
xnk,j ≤

∑
j∈N

xj,hk
, ∀k ∈ K, (6)

∑
j∈N

xi,j =
∑
j∈N

xj,i ≤ 1, ∀i ∈ P ∪D. (7)

The second group of constraints deals with visiting prece-
dence of nodes and time windows. Equation (8) initializes
the arrival time at the origin node. In Equation (9), the con-
stant M is large enough to ensure that this constraint is only
active when xi,j = 1, which implies that µj is greater than
µi by at least ti,j . Equation (10) enforces time windows for
all nodes. Equation (11) enforces binary precedence relation-
ship encoded in ci,j . Finally, Equation (12) ensures that the
agent always visits the pickup node before the delivery node.
If the final route does not include task k, the second term of
the right-hand-side will make the constraint inactive.

µo = αo, (8)
µi + ti,j ≤ µj +M(1− xi,j), ∀(i, j) ∈ A \ {(d, o)}, (9)

αi ≤ µi ≤ βi, ∀i ∈ N, (10)
ci,j · µi ≤ µj , ∀i, j ∈ R, (11)

µhk
≤ µnk

+M(1−
∑
j∈N

xj,nk
), ∀k ∈ K. (12)

The final group of constraints deals with agent’s resource
limits. Equations (13), (14), and (15) ensure that agent’s vol-
ume, weight, and time limits are observed.∑

k∈K

vk
∑
j∈N

xj,nk
≤ v, (13)

∑
k∈K

wk

∑
j∈N

xj,nk
≤ w, (14)

∑
(i,j)∈A\{(d,o)}

ti,jxi,j ≤ u. (15)

4 The Valid Inequalities
This section describes several problem-specific valid inequal-
ities that may be able to tighten bounds of the linear relaxation
of the original model introduced in the previous section. We
demonstrate the impact of the inequalities through numerical
experiments in another section.

There are additional notations to represent the inequalities
concisely. Given a node set S ⊆ N , let x(S) be the total
flows between nodes associated with S, which is mathemat-
ically represented by x(S) =

∑
i,j∈S xi,j and, similarly, let

x(T ) =
∑

(i,j)∈T xi,j . Additionally, let δ(S) is the set of

edges connecting nodes in the set S and those of the comple-
ment of the set, mathematically δ(S) = {(i, j) ∈ A | i ∈
S, j /∈ S} and K(S) denotes the set of tasks whose delivery
nodes are included in set S, K(S) = {k | nk ∈ S, k ∈ K}

4.1 The Subtour-Elimination Constraints

The following inequality represents the simple subtour-
elimination constraint and, generally, S is a proper subset of
the whole nodes, S ⊂ N :

x(S) ≤ |S| − 1 or x(δ(S)) ≥ 2. (16)

Whereas this inequality can be easily adopted to the general
pickup and delivery problem, some modifications are needed
for orienteering problems because it is not mandatory to visit
all nodes. [Fischetti et al., 1998] deals with this issue by in-
troducing additional binary variables denoting whether or not
a node is visited by the final tour. Whereas, we put our fo-
cus on defining the subsets more finely. In our problem, if a
set S is the superset of the set of routine nodes, S ⊇ R, the
subtour-elimination constraints may not be applicable. When
a set S ⊇ R does not include pickup nodes of K(S), the sug-
gested constraints are valid, which also means the set S is not
a valid set if S \ {hk | k ∈ K(S)} = ∅.

4.2 The Capacity Constraints

Both the volume and weight limits are dealt with by the fol-
lowing inequality simultaneously:

x(S) ≤ |S| −max{1, dv(S) / ve , dw(S) / we},
or (17)

x(δ(S)) ≥ 2×max{1, dv(S) / ve , dw(S) / we},

where S ⊆ N \ {o, d}, v(S) =
∑

k∈K(S) vk and w(S) =∑
k∈K(S) wk. Intuitively, the second term of the right-hand

side represents the number of times that flows must enter and
leave set S to service all nodes in the set considering the ca-
pacity limits. Whereas other researchers generally deal with
one-dimensional capacity inequalities, we consider the vol-
ume and weight constraints together and use the one tighter
than another.

4.3 The Routine Sequence Constraints

Based on the common precedence inequality [Ruland and
Rodin, 1997], we devise a problem-specific valid inequality.
The following is the mathematical formulation of the new in-
equality:

x(S) ≤ |S| − (1 + f(S)),

or (18)
x(δ(S)) ≥ 2× (1 + f(S)),

where a set S includes the origin node, o ∈ S, not the des-
tination node, d /∈ S , and f(S) is the number of times that
flows enter and leave the boundary of the set S to retain the
original sequence of the routine route.
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4.4 The Infeasible Path Constraints
Given a directed path P = {i1, i2, ..., ip}, where |P| = p,
and the path violates any constraints, the following inequality
is valid:

p−1∑
k=1

xik,ik+1
≤ p− 1. (19)

The purpose of this inequality is to forbid a (sub) path formed
by a fractional solution of the linearized model, but infeasible
in an integer solution in advance. In our branch-and-cut algo-
rithms, which will be introduced in the next section, we use
constraints such as time windows, the travel time limit and
the retainment of the routine route to capture infeasible paths
and produce valid inequalities.

4.5 The Enforced Delivery Constraints
The following inequalities can tighten bounds by manipulat-
ing a feature of aggregated pickup nodes:∑

j∈N
xi,j ≤

∑
k∈Ki

∑
j∈N

xnk,j , ∀i ∈ P, (20)

where Ki = {k | hk = i, k ∈ K} is the set of tasks shar-
ing the same pickup node i, given node i ∈ P . Following
inequalities (20), any out-flow is enforced to at least one de-
livery node if the associated task’s pickup node has any out-
flows. Whereas other inequalities introduced earlier suffer
from finding effective subsets in advance, we can add all these
valid inequalities to the model at the root node of a branch-
and-bound tree.

5 The Branch-and-Cut Algorithm
The branch-and-cut (BnC) approach is a popular method for
solving optimization problems, and most commercial solvers
dealing with integer linear programs (ILPs) have adopted
this approach. Basically, it consists of the branch-and-bound
(BnB) process and the cutting-plane method, which tightens
the bound of linearly relaxed ILPs.

A key design challenge for the BnC approach is to add only
the promising cuts (valid inequalities). For each BnB node,
the BnC approach first solves the linearly relaxed problem
(LP). If this solution from the LP model is integral and has
better objective value than the previous incumbent solution,
it becomes the new incumbent solution.

If the solution is fractional, a cutting-plane (or separation)
algorithm is applied to generate cuts (new constraints) which
could make the current fractional solution infeasible without
removing feasible solutions. The identified cuts are added to
the LP model, and the algorithm repeats the above procedure.
If we cannot find additional cuts, the algorithm executes the
BnB process.

In our research, we reply on CPLEX to execute standard
BnB process, but engage CPLEX via its APIs to generate and
insert new cuts. Cuts are generated by solving the separation
problem, yet an important design question is on how precisely
we should solve it. Solving the separation problem exactly
generates tighter bounds, but at the expense of longer execu-
tion time. On the other hand, we could also solve the separa-
tion problem heuristically, generating cuts more quickly, but

with looser bounds and potentially leading to more time spent
in the BnB procedure.

Except for the enforced delivery constraints (20), which
can be added in advance since their quantity is small, we de-
velop our own separation heuristics to generate all other types
of cuts. The basic idea of our heuristics is to iteratively con-
struct a route in a greedy manner based on the fractional flows
provided by the LP model until the route forms a cycle or
some constraints are violated.

The first heuristic is for the first three families of valid in-
equalities: the subtour elimination (SE) constraints, the ca-
pacity (CA) constraints, and the routine sequence (RS) con-
straints. In all three cases, we construct a path by starting
from a routine node i ∈ R \ {d} and adding a node j with the
highest in-flow from node i, i.e., j = argmaxj∈N xi,j . The
path construction proceeds until it forms a cycle or reaches
the destination. When the path forms a cycle, we consider it
as a valid cut and add it to the original ILP model if the path
satisfies one of the following sets of constraints ((21), (22),
and (23) correspond to SE, CA, and RS cuts respectively).

x(S) > |S| − 1, (21)
x(S) > |S| −max{1, dv(S) / ve , dw(S) / we}, (22)

x(S) > |S| − (1 + f(S)). (23)

Depending on the conditions on the definition of a set S, the
heuristic runs the above path construction procedure |R\{d}|
by setting each routine node as a starting node for the SE con-
straints. For the CA and the RS constraints, the heuristic exe-
cutes the procedure |R \ {o, d}| and |{o}| times respectively.

The second separation heuristic is similar to the first one,
but its purpose is to find an infeasible path. For each routine
node i ∈ R \ {d}, it constructs a path until the path reaches
the next routine node following the visiting sequence of the
routine route. Whenever the heuristic adds the next node in
the path construction, it checks the time window and the time
limit constraints, and also whether or not the precedence be-
tween routine nodes is retained. If it finds any violation, we
add an inequality (19) to the ILP model. To further boost
efficiency, the heuristic cuts off the path construction if the
in-flow of the next node is less than 0.5.

The standard BnC implementation requires separation
problems to be solved at all BnB nodes, yet we observe that
cuts generated at majority of the BnB nodes are not effective,
as they do not contribute to the tightening of LP bound (upper
bound). To eliminate time spent on solving unnecessary sep-
aration problems, we only solve separation problems when a
particular BnB node updates the LP bound.

6 The Numerical Experiments
This section explains procedures for generating synthetic
problem instances and compares our branch-and-cut algo-
rithm against a greedy heuristic and the ILP model. All
approaches are implemented in C++ and tested on identi-
cal hardware/software environment (a server with 4 Intel®
Xeon® Gold 6154 CPUs (a total of 72 cores) and 512GB
RAM, running Red Hat Linux v6.9). We use CPLEX 12.8,
a commercial solver, to solve ILP models using default set-
tings.
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6.1 Problem Instance Generation
We generate random problem instances based on the follow-
ing parameters:

• nr: The number of routine nodes, nr = |R|.
• np: The number of pickup nodes, np = |P |.
• nd: The number of delivery nodes, nd = |D|.
• ca: The agent’s volume and weight capacity limits.
• dt: The additional detour time the agent is willing to

spend on delivery tasks, expressed as the percentage of
traveling time to complete the agent’s routine route.

The x and y coordinates of all nodes are generated in the
range of [0, 1]. Our problem instances are characterized by
(nr, np, nd). For a particular set of (nr, np, nd), we first gen-
erate the agent’s routine route, which stays fixed for all ran-
dom instances in the set. The routine route always starts from
(0, 0), ends in (1, 1), with remaining routine nodes evenly
spread out along the x-axis but with randomly generated y
coordinates. Each task in the instance is characterized by a
pair of pickup and delivery nodes. As there are usually far
fewer pickup nodes (representing warehouses), we generate
them first. The delivery nodes are then generated one by one
randomly. A random task is then generated by associating
each delivery node with the closest pickup node.

Figure 1a illustrates an example with parameters (6, 4, 40).
The routine route contains 6 black circles that are connected
by lines. There are 4 pickup nodes, which are denoted as
squares in different colors. All delivery nodes are denoted as
either colored circles or crosses. The color of a delivery node
depends on the pickup node it is associated to. A delivery
node in cross means that it cannot be served feasibly due to
agent’s travel time limitation or time window constraints. A
delivery node in circle means that it can be served feasibly.

For all nodes in an instance, we also need to generate
their associated time windows, which are defined on the dis-
cretized planning horizon. The duration of the planning hori-
zon is Tod · (1+ dt), where Tod is the time it takes to traverse
the routine route, and we divide the planning horizon into 12
time periods of equal length. The time windows of routine
nodes are determined based on their orders in the visit se-
quence and the travel time between routine nodes. For pickup
nodes, the agent can visit them any time; for delivery nodes,
they will be randomly assigned one of three time windows:
periods 1 to 4, 5 to 8, or 9 to 12. A visualization of time win-
dows for the 40-task instance is given in Figure 1b, in which
the first 6 rows are for routine routes, the next 4 rows are for
pickup nodes, and the rest are for delivery nodes.

Finally, the volume and weight of a task are generated uni-
formly between 0 and 1, while the reward is the larger value
among volume and weight.

6.2 Performance Comparison
Besides the ILP model, the greedy heuristics, and our branch-
and-cut (BnC) approach with all the valid inequalities (cuts),
we also introduce variants of our BnC approach, where each
variant contains only one class of the valid inequality. We
include these variants to see the impacts of different classes
of valid inequalities. In our result presentation, we use the
following acronyms:

(a) Position of nodes. (b) Time window of nodes.

Figure 1: A 40-task problem instance with 4 pickup nodes.

• GH: the greedy heuristic that iteratively adds the feasible
task with highest reward.

• ILP: the ILP model is solved by using CPLEX 12.8.
• ALL: the BnC approach with all the cuts.
• SE: the BnC approach with subtour elimination cuts.
• CA: the BnC approach with capacity cuts.
• RS: the BnC approach with routine sequence cuts.
• IP: the BnC approach with infeasible path cuts.
• ED: the BnC approach with enforced delivery cuts.
The GH and ILP approaches are the baselines we compare

our BnC variants to. For all our numerical experiments, we
fix nr = 6, np = 4, and dt = 25%, and vary nd and ca.
For each configuration (nd, ca), we generate 20 random nu-
merical instances. As the ILP approach does not scale well,
we explore only configurations where we can solve the ILP
models exactly within 2 hours of wall clock time.

We summarize the performance comparisons of all config-
urations in Table 1 and Figure 2. As all our BnC variants
manage to solve all problem instances exactly, we use Ta-
ble 1 to summarize the performances of the ILP and the GH
approaches, and use Figure 2 to visualize the efficiency com-
parisons between the ILP approach and all BnC variants.

In Table 1, the first two columns are for nd and ca. The
third and fourth column denote the number of constraints
(rows) and decision variables (columns) of the ILP models.
The fifth column, avgG, shows the average optimality gaps
between GH and ILP, normalized by the ILP objective value.
In most cases, the optimality gaps between the GH and the
ILP approaches are more than 50%.

In terms of the execution time, the GH approach solves all
instances in less than a second while the solution time of the
ILP approach grows exponentially. Columns avgT and stdT
summarize the average and the standard deviation of the CPU
time in seconds. Generally speaking, the ILP approach solves
less restrictive problem instances (with higher ca) more effi-
ciently. The large standard deviation implies that the compu-
tation time is highly dependent on the problem data.

To quantify the sustainability benefits of having crowd-
sourced workers, we compare the additional travel distance
required to finish the chosen delivery tasks (not including the
distance needed to traverse the worker’s own routine route)
against the required distance to serve the same set of selected
tasks with a dedicated vehicle. The presented ratio, saveC
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nd ca # rows # cols avgG avgT stdT saveC

20 5 1103 930 0.43 77 76 69%
20 10 1103 930 0.44 46 25 70%
40 5 2823 2550 0.54 1325 2161 70%
40 10 2823 2550 0.59 309 340 71%
60 5 5343 4970 0.51 5738 4909 73%
60 10 5343 4970 0.62 3835 6118 74%
80 5 8663 8190 0.51 29991 30560 69%
80 10 8663 8190 0.66 29712 26408 73%

Table 1: Parameter settings, performance comparisons, and savings
in carbon emissions of randomly generated problem instances.

in the table, is the saving in travel distance, normalized by
the distance traveled by a dedicated vehicle. As shown in the
table, by performing deliveries along crowdsourced worker’s
routine route, we can save around 70% of the travel distance.

The computational performances of our BnC variants are
visualized in Figure 2 using in the number of BnB nodes and
the amount of CPU time consumed. In both sub-figures, the y
values are computed as (ILP - BnC) / ILP. In other words, the
plotted values are the improvement of the BnC variant over
the ILP model. Improvements from all numerical instances
are summarized using box plots, where the box covers the
range from 25% (Q1) to 75% (Q3), with the line in the box
representing the median. The whiskers attached to the box
covers the range of [Q1−1.5(Q3−Q1), Q3+1.5(Q3−Q1)].
Any points that are not covered by the range of the whiskers
are labeled as outliers.

On the number of processed nodes, all cut variants are use-
ful in tightening bounds, which result in fewer explored BnB
nodes than that of the ILP solver. While the variant com-
bining all cuts (ALL) results in nearly 50% reduction in the
explored BnB nodes.

On the CPU time, we note that although medians and in-
terquartile ranges are in the positive realm for most cut vari-
ants (all except ED), their full range is quite variable, again
demonstrating a strong dependency of the computation time
on problem parameters. A positive note is that by combining
all cut variants, the median and the interquartile range im-
prove significantly, and almost all instances (except for a few
outliers) end up in the positive domain. The median improve-
ment of the BnC approach over the ILP solver is around 60%
when all cut variants are implemented.

7 Conclusions
In this paper, we propose a decision-support algorithm for a
single crowdsourced worker that suggests delivery tasks to
perform in his/her upcoming route, considering this worker’s
routine route, associated time window at all locations along
the route, and tasks’ delivery time windows. The problem
is a variant of the orienteering problem and the pickup and
delivery problem, where no known efficient algorithm exists.
We contribute to the understanding of this problem class by
first formulating this planning problem using an integer linear
programming (ILP) model. Since the ILP formulation is not
scalable, we come up with a new branch-and-cut (BnC) algo-
rithm to solve the same problem more efficiently. Our major
innovations are in the generation of a wide variety of valid

(a) Number of processed BnB nodes.

(b) CPU time.

Figure 2: Comparing the ILP formulation and our BnC variants with
various types of cuts.

inequalities and the modifications of the classical BnC pro-
cess so the computationally expensive separation problems
(for cuts generation) are only solved beneficial.

In our numerical experiments, we first demonstrate how
the ILP formulation can lead to significantly better solution
quality than a real-world-inspired greedy heuristics. We also
quantify the potential sustainability improvement by adopting
the crowdsourcing scheme in the last-mile logistics. We then
further drill down into our various BnC variants, and quan-
tify the pros and cons of including different classes of valid
inequalities. Finally, we show that combining all cuts while
using our separation heuristics lead to the best performance
gains computationally.

Our immediate next step is to generalize our approach so
that it could handle the planning of multiple agents simulta-
neously.
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