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a b s t r a c t 

Benefiting from the fast development of human-carried mobile devices, crowd sensing has 

become an emerging paradigm to sense and collect data. However, reliability of sensory 

data provided by participating users is still a major concern. To address this reliability 

challenge, truth discovery is an effective technology to improve data accuracy, and has 

garnered significant attention. Nevertheless, many of state of art works in truth discovery, 

either failed to address the protection of participants’ privacy or incurred tremendous over- 

head on the user side. In this paper, we first propose a privacy-preserving truth discovery 

scheme, named PPTDS-I, which is implemented on two non-colluding cloud platforms. By 

capitalizing on properties of modular arithmetic, this scheme is able to protect both users’ 

sensory data and reliability information, and simultaneously achieve high efficiency and 

fault-tolerance. Additionally, for the scenarios with resource constrained devices, an effi- 

cient truth discovery scheme, named PPTDS-II, is presented. It can not only protect users’ 

sensory data, but also avoids user participation in the iterative truth discovery procedure. 

Detailed security analysis shows that the proposed schemes are secure under a compre- 

hensive threat model. Furthermore, extensive experimental analysis has been conducted, 

which proves the efficiency of the proposed schemes. 

© 2019 Elsevier Inc. All rights reserved. 

1. Introduction 

The proliferation of portable, mobile, and wearable devices (e.g., smart phones, tablet computer, smart glasses, etc.) in- 

stalled with various sensors (e.g., GPS, camera, compass, thermometer), has enabled crowd sensing to become an effective 

sensing paradigm [12,18,22] . In a typical crowd sensing system, sensing tasks, such as monitoring air quality, collecting 

health data, etc., are assigned to a large crowd of users carrying mobile devices. By collecting and analyzing the sensory 

data, such crowd sensing systems can serve a wide spectrum of applications for urban sensing [3] , smart transportation [2] , 

public opinion analysis [5] , and many others, which directly make a positive impact on people’s daily life. 

Although the benefits of crowd sensing services are undisputed, the sensory data furnished by different users may not 

be completely reliable or directly usable. Major reasons for this include lack of sensor calibration, background noise, poor 

sensor quality, and in some cases malicious deception. Thus, an important task in crowd sensing systems is to find reliable 
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and usable information before utilizing it in real time systems for public benefits. A potential solution is to aggregate the 

sensory data collected from users participating in the same task, and use the methods such as average or voting to estimate 

final results. However, the challenge here is that the traditional methods usually treat all users equally, which makes it 

difficult to derive accurate results. Thus, an ideal approach is to capture the difference between the sensory data and the 

object truths, and further assign different reliability weights to different users. This approach, also called truth discovery, has 

received considerable attention [26,28,40] . Most of existing truth discovery approaches use the following basic principle: The 

user who usually provides truthful information is assigned a higher weight, while the data is more likely to be selected as 

the truth value if it is provided by a user with a higher weight. 

This fundamental principle can significantly improve data accuracy in crowd sensing systems, but existing truth discovery 

schemes do not consider protecting users’ privacy. In fact, if users’ private information cannot be protected, users are usually 

reluctant to provide or share their sensory data. For example, by aggregating opinions from multiple users, some challenging 

problems can be easily tackled [4] . However, personal information such as professions and education levels may also be 

inferred from their answers. Similarly, aggregated medical treatment outcomes can provide valuable information for testing 

new drugs, but may result in a risk of disclosing users’ health status. 

To address these problems, several schemes have been proposed [29,30,36] . Miao et al. [29] proposed to protect users’ 

sensory data and reliability information by adopting threshold Paillier cryptosystem [6] . Although their mechanism is able to 

guarantee users’ privacy, it is not efficient, as each user needs to perform considerable amount of ciphertext-based calcula- 

tions. To improve efficiency, Xu et al. [36] and Miao et al. [30] further proposed EPTD and L-PPTD respectively. Nevertheless, 

both schemes cannot achieve fault tolerance, i.e., if some users stop reporting data, these schemes will not work. In a 

nutshell, there is still a need to design a reliable, efficient, and privacy-preserving scheme for truth discovery, which can 

guarantee privacy of each user, and can adapt to the scenarios where users or devices do not report data for certain time 

periods. 

In the light of above mentioned needs, in this paper we present a privacy-preserving truth discovery scheme (PPTDS) 

for crowd sensing systems. The proposed scheme is implemented by using two non-colluding clouds and employing some 

properties under the modulo. The three-fold contributions of PPTDS scheme are given below. 

• Firstly, we propose PPTDS-I to protect users’ sensory data and weight information. In this scheme, two clouds coop- 

eratively estimate the object truths without disclosing users’ private information. In addition, to reduce computational 

overhead incurred on the user side, the sensitive information is perturbed by adding random numbers, and all complex 

ciphertext-based operations are outsourced to the cloud platforms. 

• Secondly, to further reduce computational and communication overhead of each user, we propose PPTDS-II, suited for the 

applications where only sensory data needs protection. In this scheme, each user is only required to provide perturbed 

sensory data along with encrypted random values for initialization of the truth discovery procedure. 

• Thirdly, we present detailed analysis to prove that both PPTDS schemes can protect users’ privacy, and personal or iden- 

tifiable information is not disclosed to others. In addition, extensive experiments have been conducted to show the 

efficiency of PPTDS-I and PPTDS-II schemes. 

The remainder of this paper is organized as follows. Related work is discussed in Section 2 . In Section 3 , we introduce 

the problem definition including system model, security model, and design goals. In Section 4 , we describe necessary pre- 

liminary information. The PPTDS-I scheme and PPTDS-II scheme are presented in Sections 5 and 6 respectively. Then, we 

show the performance evaluation in Section 7 . Lastly, we draw the conclusion in Section 8 . 

2. Related work 

As an effective technology to extract reliable and truthful information, truth discovery has received considerable atten- 

tion and many schemes targeting different applications have been proposed [16,26,28,40] . However, these schemes do not 

consider the protection of participating users’ privacy. In fact, due to the sensitivity of users’ sensory data, numerous users 

have shown great concern about their private information and usually refuse to offer their data if the privacy concerns can- 

not be solved [11,17,21] . Thus, some recent privacy-preserving truth discovery works have been proposed [29,30,36,44,45] . 

In [29] , Miao et al. proposed a scheme called PPTD which can protect users’ privacy when conducting truth discovery. Al- 

though high accuracy and strong privacy can be guaranteed, it introduces tremendous computational and communication 

overhead on the user side. To address this challenge, Xu et al. [36] proposed a lightweight and privacy-preserving truth 

discovery scheme based on [35,46] . In this scheme, each user is allocated a random value to perturb the raw data before 

delivering the data to the cloud. With the aggregated random values, the cloud is able to recover the summation of the 

raw data without disclosing each user’s private information. However, the challenge is that if some users do not send per- 

turbed data timely, this scheme will not work, as some of the random values are missing. Miao et al. [30] presented another 

lightweight and privacy-preserving truth discovery scheme via two non-colluding cloud platforms. Similar to [36] , each user 

is also assigned random values to perturb the sensory data, weight, and weighted data. The difference is that the perturbed 

data is uploaded to a cloud S A , while the random values are sent to another cloud S B . By cooperating with each other, the 

two clouds can estimate the truthful values without disclosing any user’s information. However, we find that if cloud S B 
observes some users’ perturbed data, it is able to recover the raw data, since it holds the corresponding random values. 

In [45] , Zheng et al. proposed two schemes for single-server and two non-colluding server models respectively. However, 
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Fig. 1. System model. 

in their second design, users are still required to submit data in the iteration phase. In [44] , Zheng et al. adopted Garbled 

Circuit (GC) to design privacy-preserving truth discovery schemes. Nevertheless, it is not efficient in generating the garbled 

circuit. 

With respect to the crowd sensing systems, we also discuss some privacy protection mechanisms in this work, which 

have been recognized in many areas [9,13,14,34,42,43] . Here we introduce some representative methods including (1) 

anonymization [1,33] , which can achieve privacy protection by removing the information exchanged between participat- 

ing users and other parties, (2) perturbation [7,19,32] , which adds noises to the raw data to complete privacy protection 

before sending them to others, and (3) cryptology [8,10,11,20,41] , in which the data is encrypted by using appropriate en- 

cryption tools such as Paillier cryptosystem to realize privacy protection. Specifically, in [24] , Li et al. proposed a privacy- 

preserving multisubset data aggregation scheme in smart grid based on Paillier cryptosystem. In [25] , Li et al. proposed a 

privacy-preserving prepayment scheme based on a power request and trading scheme in smart grid. Xu et al. [37] further 

proposed a fully Homomorphic encryption-based Merkle Tree construction to authenticate unbounded data. Finally, multi- 

party protocols have been widely studied [15,38,39] , which inspired us to use two non-colluding cloud servers to design the 

privacy-preserving truth discovery schemes. 

3. Problem definition 

3.1. System model 

The system model shown in Fig. 1 is mainly composed of three kinds of entities: a trusted authority (TA), users, and 

the cloud server. TA is fully trusted and it initializes secret keys for all users. Each user sends the encrypted data to the 

cloud, and the cloud is responsible to conduct truth discovery procedures and return the aggregated results to all users. 

Generally, the problem of truth discovery is formalized as follows. Assume there are M objects { o m } M 
m =1 in the sensing task 

and K participating users { u k } K k =1 . Each user u k observes the sensory data x k m for object o m , and we use w k to denote the 

weight of u k . The goal of our scheme is to estimate the object truths { x ∗m } M 
m =1 , while protecting each user’s privacy from 

being disclosed to others. 

3.2. Security model 

Under the security model, TA is considered as fully trusted, while the cloud and users are honest-but-curious, which 

means they will follow the protocols formally, but are curious about users’ privacy. Specifically, the cloud and some malicious 

users may try to infer the privacy of participating users because of curious or greedy forces. On the other side, users are 

usually paid for participating in sensing tasks, thus they are also motivated to deduce others’ sensory data for economic 

benefits. Although the entities are semi-honest, we assume there is no collusion in this work, which is based on similar 

assumption in [29,30,36] . 
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3.3. Design goals 

Keeping in view the system and security model, the goal of this paper is to design a reliable, efficient and privacy- 

preserving truth discovery scheme for crowd sensing systems. In particular, the following design goals should be guaranteed. 

• Privacy: The scheme should preserve privacy, such that each user’s sensitive information is not disclosed to any other 

entity. 

• Efficiency: The scheme should be efficient, such that the computational costs of tasks performed at the user end should 

be as minimum as possible. In addition, to save bandwidth costs, the communication overhead of each user should be 

minimal. 

• Fault-tolerance: The scheme should achieve fault-tolerance, such that even if some users stop sending their data to the 

cloud, the proposed scheme is still able to estimate the object truths accurately. 

4. Preliminary 

In order to better present the schemes, we first introduce the basics of truth discovery and properties of modulo 

arithmetic. 

4.1. Truth discovery 

The general procedure of truth discovery mainly consists of two phases: weight update and truth update. In the 

following, we will give the detailed description of these. 

4.1.1. Weight update 

In this step, each user’s weight information will be calculated on the basis of distance between their sensory data and 

the object truths. Generally, the weight of each user w k can be obtained as w k = f ( 
∑ M 

m =1 d(x k m , x 
∗
m )) , where f is a function 

holding decreasing property, and d (x k m , d 
∗
m ) denotes a distance function. Without loss of generality, a weight calculating 

function widely used in truth discovery approaches [23,26,30] is used in this paper, 

w k = log 

(∑ K 
k =1 

∑ M 
m =1 d(x k m , x 

∗
m ) ∑ M 

m =1 d(x k m , x 
∗
m ) 

)
. (1) 

According to Eq. (1) , a user is assigned a higher weight if the sensory data is closed to the ground truth. 

4.1.2. Truth update 

After each user calculates the weight, the object truth can be estimated as 

x ∗m = 

∑ K 
k =1 x 

k 
m · w k ∑ K 

k =1 w k 

. (2) 

Note that, the selection of distance function depends on data types used in different application scenarios. In this paper, 

two common data types (i.e., continuous data and categorical data) are discussed. 

In case of continuous data, a widely approved distance function d(x k m , x 
∗
m ) = (x k m − x ∗m ) 

2 is adopted to calculate the dif- 

ference between the sensory data and the object truth. In case of categorical data, as described in [29] , the sensory data 

is defined as a vector x k m = (0 , . . . , 1(q th ) , . . . , 1) T , which represents u k selecting q th answer for object o m . Hence, the dis- 

tance between x k m and x ∗m is defined as d(x k m , x 
∗
m ) = (x k m − x ∗m ) 

T (x k m − x ∗m ) . Combing the above phases, the general procedure 

of truth discovery is summarized in Algorithm 1 . 

Algorithm 1: Truth Discovery Algorithm. 

Input : Sensory data: { x k m } K,M 
k,m =1 

Output : Object truths: { x ∗m } M 
m =1 

1 Initialize the object truths [ x ∗1 , x 
∗
2 , · · · , x ∗M ] and send them to each user. 

2 for iteration = 1 , 2 , · · · , iteration max do 

3 for k = 1 , 2 , . . . , K do 

4 Update each user’s weight based on Eq. (1); 

5 for m = 1 , 2 , . . . , M do 

6 Update the object truth based on Eq. (2); 

7 return { x ∗m } M 
m =1 ; 
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Fig. 2. Work flow of PPTDS-I scheme. (The labels for data flow correspond to steps discussed in initialization and iteration phases of Algorithm 2 ). 

4.2. Properties under modulo n 2 

Select two large safe primes p, q , where p = 2 p ′ + 1 , q = 2 q ′ + 1 and p ′ , q ′ are also two primes. Based on p, q , compute 

n = pq and λ = 2 p ′ q ′ . From this, the following properties of modulo n 2 can be utilized. 

First, for any message x ∈ Z ∗
n 2 

, we have x n λ ≡ 1 mod n 2 . This property has been widely used in designing Paillier Ho- 

momorphic encryption mechanisms, and has also been proven in [31] . Second, for any { x i ∈ Z n } m 
i =1 , we have the following 

property, 

m ∏ 

i =1 

(1 + n · x i ) ≡
( 

1 + n ·
m ∑ 

i =1 

x i 

) 

mod n 2 . (3) 

This property can be proven by mathematical induction, and the detailed proof is given in [27] . 

5. PPTDS-I scheme 

The proposed work in this paper has two schemes. Here we first present the working of PPTDS-I, followed by detailed 

analysis of security and efficiency. The goal of PPTDS-I scheme is to accurately estimate truthful values for objects, while 

preventing the disclosure of sensory data and weight information to other system entities. Similar to [30,44,45] , we also 

involve two non-colluding cloud platforms to realize this goal. As shown in Fig. 2 , S A and S B are denoted as two cloud 

platforms. After receiving the distance (i.e., 
∑ M 

m =1 d(x k m , x 
∗
m ) ) calculated by each user, S A and S B cooperatively calculate the 

summed distances without letting each cloud obtain the raw data. With this summed distance, each user is able to compute 

their weight and weighed data. After receiving the weight information, S A and S B will estimate the object truths via a similar 

cooperation mechanism. 
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5.1. PPTDS-I mechanism 

The work flow of PPTDS-I can be observed in Fig. 2 . We introduce the detailed procedure of PPTDS-I from two aspects: 

Initialization phase and Iteration phase. 

5.1.1. Initialization phase 

TA is a trusted third entity, and it is assumed to bootstrap the whole system. Given two security numbers κ and l , TA first 

selects two safe prime numbers p, q as p = 2 p ′ + 1 , q = 2 q ′ + 1 , where | p| = | q | = κ, and p ′ , q ′ are also two prime numbers. 

Then TA calculates n = pq and λ = lcm (p − 1 , q − 1) = 2 p ′ q ′ . Assume there are K users, TA generates K random values [ s 1 , 

s 2 , ���, s K ], such that, 

K ∑ 

k =1 

s k ≡ 0 mod λ. (4) 

TA selects a random number h , and calculates h n ·s k for each user u k . In addition, TA chooses a secure cryptographic hash 

function H : {0, 1} ∗ → {0, 1} l , selects a random value r k for u k , and computes its corresponding key as t k = H(r k ) . After that, 

h n ·s k and t k are sent to u k , λ is sent to S A , and { t k } K k =1 are sent to S B . Then, the following steps are executed. 

Step I: Each user u k selects random values αk , { βk 
m } M 

m =1 , and γ k to perturb the distance, weighted data and weight 

respectively in each iteration. Then, it encrypts the random values as, 

c k 1 = (1 + n · αk ) · h n ·s k mod n 2 , (5) 

c k 2 ,m = (1 + n · βk 
m ) · h n ·s k mod n 2 , (6) 

c k 3 = (1 + n · γk ) · h n ·s k mod n 2 , (7) 

where 1 ≤ m ≤ M . The key t k is used to compute C k 1 = AES t k (c k 1 ) , C k 2 = AES t k (c k 2 ) , and C k 3 = AES t k (c k 3 ) . Following this, the 

ciphertexts are uploaded to S B . Since the random values are doubly encrypted, they are only known to the users. 

Step II: After receiving the ciphertexts from each user, S B begins to decrypt the ciphertexts by using t k , and calculates 

summations 
∑ K 

k =1 αk , { ∑ K 
k =1 β

k 
m } M 

m =1 , and 
∑ K 

k =1 γk . Particularly, we select c k 1 to show how to obtain the aggregated values, 

S 1 = 

K ∏ 

k =1 

c k 1 mod n 2 

= 

K ∏ 

k =1 

(1 + n · αk ) · h n ·s k mod n 2 

= 

K ∏ 

k =1 

(1 + n · αk ) · h n ·
∑ K 

k =1 s k mod n 2 . (8) 

Note that 
∑ K 

k =1 s k = L · λ, where L is an integer. Thus, Eq. (8) equals to 1 + n · ∑ K 
k =1 αk mod n 2 , and we have 

K ∑ 

k =1 

αk = 
S 1 − 1 

n 
. (9) 

Similarly, { ∑ K 
k =1 β

k 
m } M 

m =1 and 
∑ K 

k =1 γk can be also obtained. Then, the summations are sent to S A . Note that, the above 

procedures are only executed once during the whole PPTDS-I procedure. 

5.1.2. Iteration phase 

In this phase, S A first initializes the ground truths for all objects, and delivers them to each user. 

Step Q1: When a user u k receives the object truths, it first calculates the distance between x k m and x ∗m as d(x k m , x 
∗
m ) = 

(x k m − x ∗m ) 
2 , and then computes the summation of distances for all objects (i.e., 

∑ M 
m =1 d(x k m , x 

∗
m ) ). To protect users’ privacy, 

the summation is further perturbed by adding the random value (i.e., αk ) before sending to S A . 

Step Q2: After receiving the perturbed distance from each user, S A aggregates all ciphertexts to obtain ∑ K 
k =1 

∑ M 
m =1 d(x k m , x 

∗
m ) + 

∑ K 
k =1 αk , and computes the summation of distances (i.e., 

∑ K 
k =1 

∑ M 
m =1 d(x k m , x 

∗
m ) ) by subtracting ∑ K 

k =1 αk , which has been obtained in the initialization phase (see Eq. (9) ). Then, S A sends the summed distance to all users. 

Step Q3: On receiving the summation, u k will calculate its weight w k according to Eq. (1) , and compute the weighted data 

as { w k · x k m } M 
m =1 , which will be further perturbed by adding γ k and { βk 

m } M 
m =1 respectively. The perturbed weight information 

is then sent to S A . 

Step Q4: Based on the ciphertexts received from all users, S A first calculates the summation of perturbed weighted 

data as { ∑ K 
k =1 (w k · x k m + βk 

m ) } M 
m =1 . Similarly, the summation of weighted data (i.e., { ∑ K 

k =1 w k · x k m } M 
m =1 ) can be obtained by 
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subtracting { ∑ K 
k =1 β

k 
m } M 

m =1 . Following the same analysis, the summation of weight can be obtained by calculating 
∑ K 

k =1 (w k + 

γk ) −
∑ K 

k =1 γk . With the above information, S A is able to estimate the object truths { x ∗m } M 
m =1 according to Eq. (2) , and then 

sends them to all users. 

In this phase, step Q1 ∼ Q4 are iterated until the convergence criterion is satisfied. Note that, we only consider continuous 

data in PPTDS-I. If the sensory data provided by users are categorical, the distance is different, which can be easily computed 

by using the equation d(x k m , x 
∗
m ) = (x k m − x ∗m ) 

T (x k m − x ∗m ) . Thus, to a certain extent, the categorical data is another special case 

in our proposed scheme. Combing the above phases, the general procedure of PPTDS-I can be described by Algorithm 2 . 

Algorithm 2: PPTDS-I Algorithm. 

Input : Sensory data: { x k m } M,K 
m,k =1 

Output : Object truths: { x ∗m } M 
m =1 

1 Step I: Each user generates random values and sends them to S B after encryption; 

2 Step II: S B aggregates the encrypted random values and delivers them to S A for decryption; 

3 Step Q1: Each user calculates the difference between x k m and x ∗m , and perturbs it before sending to S A ; 

4 Step Q2: S A aggregates all perturbed distances and calculates the summation of distance by subtracting the summed 

random values. Then, S A sends the summed distance to all users; 

5 Step Q3: Each user calculates the weight and weighted data, and perturbs them by adding random values. Then, the 

perturbed weight information is sent to S A ; 

6 Step Q4: S A calculates the object truths based on the perturbed weight information and summed random values, and 

then sends the object truths { x ∗m } M 
m =1 to all users; 

7 Repeat Step Q1 ∼ Q4 until convergence criterion is satisfied. 

8 return the object truths { x ∗m } M 
m =1 ; 

Fault tolerance: Due to device malfunctioning, network delay, or intent to break the system, some users ( u b and u c for 

example) may not submit their data in a given time frame. In this case, the summations calculated by S B cannot be used, as 

the perturbed data of u b and u c are not available. To deal with this problem, S A explicitly reports the information that “u b 
and u c have not provided their data” to S B and S B will recompute the summations as 

S ′ 1 = 

K ∏ 

k =1 ,k 	 = b,c 

c k 1 mod n 2 

= 

( 

1 + n ·
K ∑ 

k =1 ,k 	 = b,c 

αk 

) 

· h n ·
∑ K 

k =1 ,k 	 = b,c s k mod n 2 , (10) 

S ′ 2 ,m = 

( 

1 + n ·
K ∑ 

k =1 ,k 	 = b,c 

βk 
m 

) 

· h n ·
∑ K 

k =1 ,k 	 = b,c s k mod n 2 , (11) 

S ′ 3 = 

( 

1 + n ·
K ∑ 

k =1 ,k 	 = b,c 

γk 

) 

· h n ·
∑ K 

k =1 ,k 	 = b,c s k mod n 2 . (12) 

Then, S ′ 
1 together with { S ′ 

2 ,m } M 
m =1 and S ′ 

3 are sent to S A . Note that, S B will not response if S A sends a report that only one user 

does not upload its data, since S A can obtain the user’s random value by calculating the difference between two returned 

aggregations. 

On receiving the above information, S A uses the secret key λ to decrypt the summation as 

S ′′ = 

( 

1 + n ·
K ∑ 

k =1 ,k 	 = b,c 

M k 

) λ

· h λ·n ·∑ K 
k =1 ,k 	 = b,c s k mod n 2 

= 

( 

1 + n · λ ·
K ∑ 

k =1 ,k 	 = b,c 

M k 

) 

mod n 2 , (13) 

where M k denotes αk , { βk 
m } M 

m =1 , or γ k , and M k can be obtained by computing 

K ∑ 

k =1 ,k 	 = b,c 

M k = 
S ′′ − 1 

n · λ . (14) 

Thus, even though some users may not submit their data timely, our proposed PPTDS-I is still workable. In summary, the 

proposed PPTDS-I achieves fault-tolerance. 
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5.2. Security analysis 

In order to prove that the proposed PPTDS-I scheme can protect the sensory data & weight information of each user, we 

perform the following analysis. 

Theorem 1. Suppose there are K > 3 users, and at least two users provide sensory data for each object. PPTDS-I guarantees 

privacy of each user’s sensory data and weight information if there is no collusion among the entities. 

Proof. First, we establish that the private information can be protected on user side. For a user u k , besides the sen- 

sory data { x k m } M 
m =1 and the weight w k , it is aware of the object truths { x ∗m } M 

m =1 and the summation of distances (i.e., ∑ K 
k =1 

∑ M 
m =1 d(x k m , x 

∗
m ) ). However, based on the assumption that the number of participating users is more than 3, u k cannot 

know other users’ private information. 

Then, for the cloud S B , the data provided by each user and the aggregated ciphertext can be expressed as a valid Paillier 

ciphertext i.e., c k = (1 + n · M k ) · h n ·s k , if we consider the item αk , β
k 
m , γk , and the aggregated random values as a message M k . 

Since the secret key λ is only known by S A , S B cannot recover M k , i.e., it cannot obtain each user’s individual random values. 

Although S B can obtain the plaintexts of 
∑ K 

k =1 αk , 
∑ K 

k =1 β
k 
m , and 

∑ K 
k =1 γk by using the properties under the modulo n 2 , it still 

has no way to recover each individual random value from these summations. For the cloud S A , besides the perturbed data 

{ ∑ M 
m =1 d(x k m , x 

∗
m ) + αk } K k =1 , { w k · x k m + βk 

m } K,M 
k,m =1 , and { w k + γk } K k =1 , S A also receives the summations of random values from 

S B . Similarly, based on these summations, it cannot deduce any information which is private to each user. Moreover, S A may 

observe the perturbed random values sent from each user. However, since the random value is encrypted as C k = AES t k (c k ) , 

as long as there is no collusion between S A and S B , it cannot obtain the random value even though it holds the secret key λ. 

From the above analysis, the presented PPTDS-I scheme is able to protect the privacy of the sensory data and weight 

information of each user. �

5.3. Efficiency analysis 

In order to evaluate the efficiency of the proposed PPTDS-I scheme in terms of computational cost and communication 

overhead, we perform the following analysis. 

5.3.1. Computational costs 

The computations performed on the user end are all in plaintext. Hence, compared against traditional ciphertext-based 

calculations, fewer computational cost will be introduced. More specifically, during the initialization phase, every user gen- 

erates some random values, and encrypts them by performing addition and multiplication operations, which costs O (1) for 

distances, O ( M ) for weighted data, and O (1) for weight. Although big integer multiplications are used in our scheme, we 

emphasize the fact that, they are performed only once during the whole process. In the iteration phase, each user calculates 

the perturbed distance, weighted data, and weight information to calculate the weight w k , which cost O ( M ), O ( M ), and O (1) 

respectively. 

Contrary to this, in the cloud since ciphertexts are valid Paillier ciphertexts, overhead is observed, as it dominates the 

overall computational costs. For cloud S B , in the initialization phase, it performs O ( KM ) decryption operations to obtain the 

perturbed random values, and O ( KM ) ciphertext multiplications to calculate the summations. For the cloud S A , O ( K ) additions 

are required to aggregate { ∑ M 
m d(x k m , x 

∗
m ) + αk } K k =1 , { w k + γk } K k =1 , and O ( KM ) additions are needed to aggregate { w k · x k m + 

βk 
m } K,M 

k,m =1 in each iteration. 

5.3.2. Communication overhead 

To evaluate the communication overhead, we mainly consider the amount of communication instances between different 

parties in PPTDS-I. 

On the user side, in the initialization phase, each user uploads encrypted random values to S B , which is a one-time cost. 

In each iteration, perturbed data (i.e., 
∑ M 

m =1 d(x k m , x 
∗
m ) + αk , { w k · x k m + βk 

m } M 
m =1 , and w k + γk ) is required to be uploaded to S A . 

Thus, the total number of communication instances introduced on each user is 4 t + 2 , where t is the number of iterations. 

In the initialization phase for S B , it delivers the summations of random values to S A . In each iteration, S A needs to deliver 

the summed distance, together with the estimated object truths to each user. Hence, the total number of communication 

instances for cloud S A and S B is 4 t + 2 and 1 respectively. 

6. PPTDS-II framework 

Although PPTDS-I achieves high efficiency on the user side, each user still needs to perform calculations on distance, 

weight, and weighted data, let alone the upload of data to the cloud for truth and weight update. Thus, we design PPTDS-II 
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Fig. 3. System model of PPTDS-II. (The labels of data flow correspond to steps shown in Algorithm 3 ). 

to create a more efficient truth discovery scheme suited for scenarios where only the sensory data needs protection. Similar 

to PPTDS-I, PPTDS-II also contains the initialization and iteration phase, as illustrated in Fig. 3 . 

6.1. Initialization phase 

Step I: u k generates random values { αk 
m } M 

m =1 for the objects { o m } M 
m =1 . Then, the sensory data is perturbed by adding 

random values (i.e., ̃  x k m = x k m + αk ), and all perturbed data is sent to S A . 

Step II: To protect the privacy of random values, u k selects random values s k m and r k m to encrypt αk 
m as C k 

m 1 = AES t k ((1 + 

n · αk 
m ) · h n ·s k m ) , and (αk 

m ) 
2 as C k 

m 2 = AES t k ((1 + n · (αk 
m ) 

2 ) · h n ·r k m ) . Then, { C k 
m 1 , C 

k 
m 2 } M 

m =1 are delivered to S B . 

Step III: S B first decrypts the ciphertexts and obtains the perturbed random values. Then, the process of Eq. (8) , S B 

calculates the ciphertext of summed (αk 
m ) 

2 for each user u k as 
∏ M 

m =1 (1 + n · (αk 
m ) 

2 ) · h n ·r k m mod n 2 , which equals to (1 + n ·∑ M 
m =1 (α

k 
m ) 

2 ) · h n ·
∑ M 

m =1 r 
k 
m mod n 2 . Then S B delivers the summed ciphertext to S A . 

Step IV: On receiving the ciphertext, S A recovers each user’s summation of (αk 
m ) 

2 , i.e., 
∑ M 

m =1 (α
k 
m ) 

2 , as 

(1+ n ·∑ M 
m =1 (α

k 
m ) 

2 ) λ·h λ·n ·∑ M 
m =1 r 

k 
m mod n 2 −1 

n ·λ . 

6.2. Iteration phase 

S A starts this phase by generating random object truths (i.e., { x ∗m } M 
m =1 ). 

Step Q1: Based on the object truths, S A first calculates { ̃  x k m − x ∗m } K,M 
k,m =1 , and then sends them to S B . 

Step Q2: S B calculates the ciphertext C k for each user u k as 
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C k = 

M ∏ 

m =1 

((
1 + n · αk 

m 

)
· h n ·s 

k 
m 
)2( ̃  x k m −x ∗m ) 

mod n 2 

= 

M ∏ 

m =1 

(
1 + n · 2 

(˜ x k m − x ∗m 

)
· αk 

m 

)
· h n ·s 

k 
m ·2( ̃  x k m −x ∗m ) mod n 2 

= 

( 

1 + n ·
M ∑ 

m =1 

2 
(˜ x k m − x ∗m 

)
· αk 

m 

) 

· h n ·
∑ M 

m =1 s 
k 
m ·2( ̃  x k m −x ∗m ) mod n 2 . (15) 

Then, all the ciphertexts { C k } K k =1 are sent to S A . 

Step Q3: After receiving the ciphertexts, similar to step IV, S A can also use λ to obtain 
∑ M 

m =1 2( ̃  x k m − x ∗m ) · αk 
m by comput- 

ing 
C λ

k −1 
n ·λ . Then, each user’s summation of distance can be calculated as 

sumd k = 

M ∑ 

m =1 

(˜ x k m − x ∗m 

)2 −
M ∑ 

m =1 

2 
(˜ x k m − x ∗m 

)
αk 

m + 

M ∑ 

m =1 

(αk 
m ) 

2 

= 

M ∑ 

m =1 

(
x k m − x ∗m 

)2 
. (16) 

Then, S A can estimate the weight of u k following Eq. (2) . 

Step Q4: Based on the estimated weight, S A calculates the weighted data for each object (i.e., { p k m = w k · (x k m + αk 
m ) } K,M 

k,m =1 ), 

and then sends { w k } K k =1 to S B . 

Step Q5: Similar to Eq. (15) , S B calculates the ciphertext C m for each object o m as 
∏ K 

k =1 ((1 + n · αk 
m ) · h n ·s k m ) w k mod n 2 . 

Then, the ciphertexts of all objects (i.e., { C m } M 
m =1 ) are sent to S A . 

Step Q6: After receiving the data from S B , S A begins to update the object truth as 

x ∗m = 

∑ K 
k =1 p 

k 
m − C λm −1 

n ·λ∑ K 
k =1 w k 

= 

∑ K 
k =1 w k · (x k m + αk 

m ) −
∑ K 

k =1 w k · αk 
m ∑ K 

k =1 w k 

= 

∑ K 
k =1 w k · x k m ∑ K 

k =1 w k 

. (17) 

In this phase, step Q1 ∼Q6 will be iteratively conducted until the number of desired iteration is reached or convergence 

criterion is satisfied. The detailed procedure of PPTDS-II can be seen in Algorithm 3 . 

Algorithm 3: PPTDS-II Algorithm. 

Input : Sensory data: { x k m } M,K 
m,k =1 

Output : Object truths: { x ∗m } M 
m =1 

1 Step I: Each user perturbs the sensory data using random values, and then sends the perturbed data to S A ; 

2 Step II: Each user encrypts the random values and sends the ciphertexts to S B ; 

3 Step III: S B aggregates the encrypted random values and delivers the result to S A ; 

4 Step IV: S B decrypts the ciphertext to obtain the summed random value; 

5 Step Q1: S A calculates { ̃  x k m − x ∗m } M,K 
m,k =1 and sends them to S B . 

6 Step Q2: S B calculates the encrypted distance Info and sends them to S A ; 

7 Step Q3: S A estimates the weight information; 

8 Step Q4: S A sends the weight to S B ; 

9 Step Q5: S B calculates the weighted random value in ciphertexts and sends them to S A after aggregation; 

10 Step Q6: S A performs the truth estimation; 

11 Repeat Step Q1 ∼ Q6 until convergence criterion is satisfied. 

12 return the object truths { x ∗m } M 
m =1 . 

Fault tolerance: PPTDS-II can achieve fault tolerance by performing similar operations as in PPTDS-I. 
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6.3. Security analysis 

Theorem 2. Suppose there are K > 3 users and M > 3 objects, and at least two users provide sensory data for at least two objects. 

PPTDS-II guarantees the privacy of each user’s sensory data if there is no collusion among the entities. 

Proof. In PPTDS-II, each user only takes part in the initialization phase. Thus, we only need to prove that the sensory data 

is not disclosed to the cloud. 

For the cloud S A , it knows the ciphertexts { ̃  x k m } K,M 
k,m =1 and { C k 

m 1 , C 
k 
m 2 } K,M 

k,m =1 . Without random values { αk 
m } K,M 

k,m =1 and the 

AES secret keys { t k } K k =1 , S A cannot decrypt the above ciphertexts. Besides the ciphertexts, S A also knows the plaintexts 

{ ∑ M 
m =1 (α

k 
m ) 

2 } K 
k =1 , { 

∑ K 
k =1 2( ̃  x k m − x ∗m ) · αk 

m } M 
m =1 , 

∑ K 
k =1 w k · x k m , { w k } K k =1 . However, with the assumption that the number of users 

and objects is larger than 3, S A cannot learn anything about each user’s sensory data based on these summations. 

For the cloud S B , it knows the ciphertexts { C k 
m 1 , C 

k 
m 2 } K,M 

k,m =1 , { ̃  x k m − x ∗m } K,M 
k,m =1 , { C k } K k =1 , { C m } M 

m =1 , and the plaintexts { w k } K k =1 . 

Nevertheless, without the secret key λ and the random value { αk 
m } K,M 

k,m =1 , the above ciphertexts cannot be decrypted. Hence, 

each user’s sensory data will not be disclosed to cloud S A and S B . In summary, PPTDS-II can guarantee the privacy of each 

user’s sensory data. �

6.4. Efficiency analysis 

The efficiency of this scheme is also evaluated in terms of computational and communication costs. 

6.4.1. Computational costs 

In PPTDS-II, each participating user is only involved in the initialization phase. Following similar analysis in PPTDS-I, each 

user costs O ( M ) to encrypt { αk 
m } M 

m =1 and { (αk 
m ) 

2 } M 
m =1 , respectively. S B is involved in both initialization and iteration phases. In 

the initialization phase, it needs to conduct O ( KM ) decryption operations to recover the perturbed random values, and O ( KM ) 

ciphertext multiplication operations to obtain { ∑ M 
m =1 (α

k 
m ) 

2 } K 
k =1 . In the iteration phase, to calculate { C k } K k =1 and { C m } M 

m =1 , 

S B needs to perform O ( KM ) exponentiations and O ( KM ) ciphertext multiplications respectively. For S A , in the initialization 

phase, it needs to perform O ( K ) ciphertext exponentiations to recover { ∑ M 
m =1 (α

k 
m ) 

2 } K 
k =1 . In the iteration phase, S A first takes 

O ( KM ) to calculate { ̃  x k m − x ∗m } K,M 
k,m =1 , and conducts O ( K ) and O ( M ) ciphertext exponentiations to decrypt { C k } K k =1 and { C m } M 

m =1 

respectively. Additionally, it costs O ( M ) to compute the object truths { x ∗m } M 
m =1 . 

6.4.2. Communication overhead 

In PPTDS-II, as each user is only involved in the initialization phase, it only sends { ̃  x k m } M 
m =1 , and { C k 

m 1 , C 
k 
m 2 } M 

m =1 to S A and 

S B respectively. Hence, the total communication instances between each user and the cloud platforms is only 2. Note that, 

this is a one-time cost during the whole truth discovery process. For S B , in the initialization phase, it sends { ∏ M 
m =1 C 

k 
m 2 } K k =1 

to S A . In the iteration phase, to calculate the weight information, S A needs to send the perturbed data to S B , while S B returns 

{ C k } K k =1 in each iteration. To update the object truths, S A sends K user weights to S B , while S B returns M ciphertexts { C m } M 
m =1 . 

Thus, the total number of communication instances between cloud S A and S B is 4 t + 1 . 

7. Performance evaluation 

In this section, we evaluate our proposed PPTDS schemes in comparison to the PPTD scheme [29] . All schemes are 

implemented in Java, and the experiments are conducted on an Intel Core i7 2.5GHz system. The bit-length of n and l is set 

as 512 and 128 respectively. We set the number of iteration as 10, and obtain the average results for comparative analysis. 

Fig. 4 (a) illustrates the running time against varying number of users with the number of objects fixed at 100. Fig. 4 (b) 

on the other hand, plots the same against increasing number of objects with fixed 100 users. As can be seen, the running 

time increases with the number of users and objects, since more data needs to be encrypted. In Fig. 4 (a), when the number 

of users reaches 700, PPTDS-I takes 2.468 s to initialize the system, while PPTDS-II needs 3.860 s. The reason is that PPTDS-I 

executes multiplication operations to compute the aggregated random values. But for PPTDS-II, ciphertext exponentiations 

are performed. Similarly, when the number of objects ranges from 100 to 700, PPTDS-I also performs better than PPTDS-II, 

as illustrated in Fig. 4 (b). 

In Fig. 5 (a) and (b), we plot the running time by varying the number of users and objects in the iteration phase, where 

the number of objects and users is set as 100 in (a) and (b) respectively. From Fig. 5 (a), it is observed that the running 

time increases with varying degrees. PPTD consumes the most time among the three schemes. For example, when the 

number of users reaches 700, PPTD needs 1772.952 s, while PPTDS-I and PPTDS-II need 0.286 s and 44.517 s respectively. 

This is because in PPTD each user needs to perform time-consuming ( p, t )-threshold Paillier cryptosystem to decrypt the 

ciphertexts, while only ciphertext multiplications are required in the other two schemes. As PPTDS-II needs to perform 

ciphertext exponentiations to compute the distance and weighted data, it costs more time than PPTDS-I. Similarly, from 

Fig. 5 (b), it can be seen that the running time of PPTD is more than that of PPTDS when the number of objects is in the 

range of 10 0–70 0. When it reaches 700, PPTDS-I and PPTDS-II need 0.258 s and 39.361 s respectively, while PPTD takes 

419.912 s. This also confirms the efficiency of the proposed schemes. Although PPTDS-II takes more time than PPTDS-I, we 
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a b

Fig. 4. (a) Running time with varying number of users in initialization phase. (b) Running time with varying number of objects in initialization phase. 

a b

Fig. 5. (a) Running time with varying number of users in iteration phase. (b) Running time with varying number of objects in iteration phase. 

emphasize that all operations in PPTDS-II are executed in the cloud and the users do not need to participate in the iterative 

process, which makes it suitable for resource constrained devices on user side. 

8. Conclusion 

In this paper, we investigate how to realize efficient and privacy-preserving truth discovery in crowd sensing systems. 

Our first design is fit for the scenarios where users can join the iterative truth discovery procedure. Data perturbation and 

Paillier cryptosystem are used to protect users’ privacy. To further reduce users’ computational and communication costs, 

we also propose another non-iterative truth discovery scheme, which can be applied in the scenarios with requirement of 

sensory data protection but the users cannot perform large computations. In the future, we aim to address privacy concerns 

in different truth discovery mechanisms that use types of weight functions. 
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