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a b s t r a c t

Internet of Things (IoT) cloud provides a practical and scalable solution to accommodate the data
management in large-scale IoT systems by migrating the data storage and management tasks to
cloud service providers (CSPs). However, there also exist many data security and privacy issues
that must be well addressed in order to allow the wide adoption of the approach. To protect data
confidentiality, attribute-based cryptosystems have been proposed to provide fine-grained access
control over encrypted data in IoT cloud. Unfortunately, the existing attributed-based solutions are
still insufficient in addressing some challenging security problems, especially when dealing with
compromised or leaked user secret keys due to different reasons. In this paper, we present a practical
attribute-based access control system for IoT cloud by introducing an efficient revocable attribute-
based encryption scheme that permits the data owner to efficiently manage the credentials of data
users. Our proposed system can efficiently deal with both secret key revocation for corrupted users
and accidental decryption key exposure for honest users. We analyze the security of our scheme with
formal proofs, and demonstrate the high performance of the proposed system via experiments.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Internet of Things (IoT) cloud provides a scalable solution for
storing and managing IoT data. It consists of a set of things
(i.e., sensors) connected to the cloud through the Internet to
provide (Internet of) Things as a Service (TaaS). By centraliz-
ing the large amount of IoT data in the cloud, the data owner
can reduce the cost of data management and enjoy productivity
enhancements and flexible data sharing with other data users.
Along with the development of IoT cloud, an increasing number of
IoT ecosystems have been integrated with the cloud, e.g., Google
Cloud IoT, iDigi, Nimbits, ThingSpeak, etc.

∗ Corresponding author.
E-mail address: gyang@uow.edu.au (G. Yang).

With the development of IoT cloud, data sharing becomes one
of the important and useful services. The data owners of IoT
networks can provide the data sharing services to various data
users (or service subscribers) via the cloud. The data users may
acquire the data sharing service by purchasing and subscripting
the services from the owners of IoT networks. However, data
privacy and access control must be addressed for protecting the
benefit of the data owners. Specifically, the could service provider
(CSP) is an untrusted entity who may have the intention to
obtain the data for financial gains or other incentives. Hence,
some security mechanisms are needed to protect data privacy and
enforce access control in IoT cloud. Attribute-based encryption is
a useful cryptographic tool for such a need. It can provide fine-
grained access control over encrypted data that will be shared
to multiple users. However, to make ABE really practical in IoT
cloud, some additional security issues must be well addressed.

https://doi.org/10.1016/j.future.2019.02.051
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Specifically, the following issues must be addressed securely and
efficiently for a large-scale IoT cloud.

(1) User Revocation: Supporting user revocation is a fundamen-
tal requirement since the data service subscribers may change or
misuse their subscribed services. To protect the interests of the
IoT network owners, an efficient and secure revocation mech-
anism must be designed. The existing revocation mechanisms
can be categorized into two methodologies: direct revocation and
indirect revocation. In direct revocation setting, the IoT network
owner publishes a revocation list and the data service subscribers
are required to synchronize this revocation list all the time to
keep it up-to-date, which makes it not suitable for large-scale
systems. In the case of indirect revocation, the IoT network owner
periodically broadcasts the key-updating material to all non-
revoked users for updating their credentials via a public channel.
The indirect revocation is efficient and practical, nevertheless, it
still faces a problem that revoked data service subscribers still can
access the old data they were authorized to access before being
revoked.

(2) Revocable Storage: To address the above problem, Sahai
et al. [1] introduced the concept of revocable storage, which
allows a CSP to update the encrypted data without accessing any
secret information and the updated ciphertexts are no longer
decryptable by revoked users. However, designing an efficient
ABE scheme with revocable storage is a non-trivial task. In the
original scheme introduced in [1], two ABE instances are used in
the construction, which makes the scheme rather inefficient.

(3) Decryption Key Exposure Resistance: The above security
issues are related to handling corrupted/revoked users. When ap-
plying the indirect revocation approach for ABE, another security
issue that should be considered is the exposure of ephemeral
decryption keys belonging to honest users during a revocation
epoch. In practice, decryption key exposure could happen due to
key leakage attacks [2] or side-channel attacks [3]. We found that
in many existing revocable ABE (RABE) systems [1,4–7], exposure
of an ephemeral decryption key leads to the compromise of
the user’s long-term secret key (and hence the decryption keys
corresponding to all the revocation epochs).

1.1. Our contributions

In this work, we introduce a novel data storage and sharing
system for the IoT cloud as shown in Fig. 1 by presenting an
efficient and scalable ciphertext-policy attribute-based encryp-
tion scheme with revocable storage and decryption key exposure
resistance to support fine-grained access control for dynamic user
groups. We also correct an error in a time encoding mechanism
introduced in a previous revocable attribute-based encryption
scheme [7].

Sahai et al. [1] first introduced a generic construction of RABE
with revocable storage. However, their work has some short-
comings. First, the computational and communication costs of
their scheme are high since two ABE instances are required to
achieve the indirect revocation with revocable storage. Moreover,
decryption key exposure attacks are not considered in Sahai
et al.’s scheme. Based on the above observations, our idea is to
replace the underlying scheme by a more efficient primitive and
also allow the decryption key to be re-randomizable to remove
the relationship among the secret key, the decryption key and the
key-updating material to resist decryption key exposure attacks.

To demonstrate the feasibility of our idea, we present a con-
crete RABE scheme based on Rouselakis–Waters ABE [8] and
Waters IBE [9] to provide key re-randomization to realize de-
cryption key exposure resistance. Our concrete RABE also allows
the untrusted CSP to update ciphertexts for realizing ciphertext
revocation. We also present performance analysis to demonstrate
that our proposed scheme is competitive in computational cost,
functionality and security.

1.2. Related work

Boneh and Franklin [10] proposed the first practical IBE in
the random oracle model and pointed out the importance of
efficient revocation in IBE. They provided a revocation mecha-
nism that requests each user to update the corresponding secret
key periodically by representing the identity id as the identity
appending current date id ∥ t . Unfortunately, this approach
is impractical since a secure channel is required for the KGC
to distribute the secret key to every non-revoked user in each
revocation epoch. To improve the efficiency of user revocation
in IBE, Boldyreva et al. [4] introduced the concept of indirect
revocation, which is to divide the decryption key into a secret
key and a public key-updating material. In each revocation epoch,
the KGC broadcasts the key-updating material via the public
channel and the non-revoked users use the key-updating material
to update the corresponding secret key to be the decryption
key in the new revocation epoch. Libert and Vergnaud [11] then
improved the security by proposing a secure RIBE scheme in the
adaptive model. Seo and Emura [12] and Watanabe et al. [13]
further improved the security by considering the decryption key
exposure attack and pointed out that the previous IBE schemes
with indirect revocation are insecure in this strong model.

Given that traditional PKE and IBE only provide a coarse-level
of access control, Sahai and Waters [14] introduced attribute-
based encryption (ABE) to provide access control over encrypted
data at a fine-grained level. To enrich expressiveness of access
control policies, Goyal et al. [15] introduced key-policy ABE (KP-
ABE) and Bethencourt et al. proposed ciphertext-policy ABE (CP-
ABE) [16], respectively. To improve the performance, Attrapadung
et al. [17] proposed the first constant-size ABE scheme and Lewko
et al. [18] presented the first fully secure ABE. Rouselakis and
Waters [8] then further improved the efficiency in large attribute
universe setting by reducing the size of parameters. After that,
a variety of ABE systems, including traceable ABE [19,20], out-
sourced ABE [21], anonymous ABE [22,23], have been proposed.
However, user revocation was not considered in the above sys-
tems.

Similar to PKE and IBE, efficient user revocation is also essen-
tial in the ABE setting. Pirretti et al. [24] extended the revocation
method in the IBE setting [10] to ABE by extending the attribute
with a timestamp, i.e., by appending a timestamp to an attribute
att ∥ t . Bethencourt et al. [16] then introduced a bit representa-
tion to provide integer comparisons in the timestamp. However,
it still needs a secure channel between the KGC and all non-
revoked data users in each revocation epoch. Since the concept
of indirect revocation [4] was proposed, many following works
for RABE [1,5–7] have been introduced by applying this method.
Unfortunately, there does not exist a solution to prevent key
exposure attack in ABE setting while it has been well studied
in IBE setting [13,25]. Some other works related to revocation
and revocable storage, such as revocable predicate encryption [26,
27] and self-update encryption [28,29], also did not consider
decryption key exposure attack.

1.3. Paper organization

In Section 2, we introduce some preliminaries related to our
proposed system. In Section 3, we provide the system model
including the system architecture and the threat model. In Sec-
tion 4, we present our concrete construction of RABE and its
application in IoT cloud. The security analysis is presented in
Section 5, followed by the performance analysis in Section 6.
Finally, we summarize this work in Section 7.
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Fig. 1. System model in IoT cloud.

2. Preliminaries

2.1. Notations

Let N denote the set of all natural numbers, and for n ∈ N, we
define [n] := {1, . . . , n}. If s is a string, then s[i] is the ith bit of s.
Let u⃗ := (u1, u2, . . . , uℓ) be a vector of dimension ℓ in Zℓ

p.

2.2. Bilinear map

Let G and GT be two cyclic multiplicative groups of prime
order p and g be a generator of G. The map e : G × G → GT
is said to be an admissible bilinear pairing if following properties
hold.

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) =
e(u, v)ab.

2. Non-degeneration: e(g, g) ̸= 1.
3. Computability: it is efficient to compute e(u, v) for any

u, v ∈ G.

We say that (G,GT ) are bilinear map groups if there exists a
bilinear pairing e : G× G→ GT as above.

2.3. Assumptions

We recall the definition of decisional Bilinear Diffie–Hellman
(BDH) assumption [9]. It is defined via the following game: Ini-
tially, the challenger takes the security parameter λ as input to
run the group generation algorithm. Next, it picks a random group
generator g ∈ G, and three random exponents a, b, c ∈ Z3

p . Then
the challenger sends g, ga, gb, gc, e(g, g)z to distinguish the value
z is abc or a random value.

Definition 1 (Decisional BDH Assumption). We say that the deci-
sional BDH assumption holds if all polynomial probabilistic time
attackers have at most a negligible advantage in λ in the above
game.

Rouselakis and Waters [8] introduced a q-type assumption
(refers to q-1 assumption) based on decisional parallel bilinear
Diffie–Hellman exponent assumption. It is defined via the follow-
ing game: Initially, the challenger takes the security parameter λ

as input to run the group generation algorithm. Next, it picks a
random group generator g ∈ G, and q + 2 random exponents
a, s, b1, b2, . . . , bq ∈ Zq+2

p . Then the challenger sends the attacker
the group description and all of the following terms:

g, g s

gai , gbj , g sbj , gaibj , gai/b2j ∀(i, j) ∈ [q, q]

gaib/b2
j′ ∀(i, j, j′) ∈ [2q, q, q] with j ̸= j′

gai/bj ∀(i, j) ∈ [2q, q] with i ̸= q+ 1

g saibj/bj′ , g saibj/b2j′ ∀(i, j, j′) ∈ [q, q, q] with j ̸= j′

The challenger also tosses a random coin b ← {0, 1} and if
b = 0, it sends the attacker the term e(g, g)sa

q+1
, otherwise, it

gives a random term R ∈ GT . Finally, the attacker returns a guess
b′ ∈ {0, 1}.

Definition 2 (q-1 Assumption). We say that the q-1 assumption
holds if all polynomial probabilistic time attackers have at most
a negligible advantage in λ in the above game.

2.4. RABE

We present the definition and the security model for the RABE
schemes. Our security definition refines definitions in RIBE with
decryption key exposure resistance [13] and RABE with revocable
storage [1].

Definition 3 (RABE). An RABE scheme with an attribute set Ω

that supports policies P and the bounded system lifetime T , an
identifier space I and the message space M consists of nine
algorithms given below.
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Init(λ) → pp: The probabilistic initialization algorithm takes
a security parameter λ ∈ N as input, and outputs a public
parameter pp.
Setup(pp,N , T )→ (pk,msk, rl, st): The probabilistic setup algo-
rithm takes the public parameter pp, the number of system users
N and the bounded system lifetime T as input, and outputs a
public key pk, a master secret key msk, a revocation list rl and a
state st .
KeyGen(st, S, id) → (skid, st): The probabilistic key generation
algorithm takes the state st , an attribute set S ⊆ Ω and an
identifier id ∈ I as input, and outputs the secret key skid and
the state st .
KeyUpdate(msk, st, t, rl) → kut : The probabilistic key update
algorithm takes the master secret key msk, the state st , the time
t ∈ T and the revocation list rl as input, and outputs the
key-updating material kut .
DKGen(pk, skid, kut ) → dkid,t/⊥: The probabilistic decryption
key generation algorithm takes the public key pk, the secret key
skid and key-updating material kut as input, and outputs the
decryption key dkid,t or a failure symbol ⊥.
Enc(pk,A, t,m) → c: The probabilistic encryption algorithm
takes the public key pk, an access structure A ∈ P , the time t ∈ T
and a message m ∈M as input, and outputs a ciphertext c .
CTUpdate(pk, c, t ′) → c ′/⊥: The probabilistic ciphertext update
algorithm takes the public key pk, a ciphertext c and a timestamp
t ′ ∈ T as input, and outputs a ciphertext c ′ or a failure symbol ⊥.
Dec(pk, dkid,t , c) → m/⊥: The deterministic decryption algo-
rithm takes the public key pk, the decryption key dkid,t and a
ciphertext c as input, and outputs a message m ∈M or a failure
symbol ⊥.
Rev(rl, id, t) → rl: The deterministic revocation algorithm takes
the revocation list rl, an identifier id ∈ I and the timestamp t ∈ T
as input, and outputs the revocation list rl.

We describe the security model called indistinguishable
against chosen plaintext attack (IND-CPA) for RABE. Particularly,
the difference between the following model and the traditional
RABE model is that our model provides an additional oracle called
decryption key generation oracle, which allows the adversary to
query the short-term decryption key. Many RABE schemes [1,4–7]
are insecure under this model.

Definition 4 (IND-CPA in RABE). An RABE scheme with an at-
tribute set Ω that supports policies P and the bounded system
lifetime T , an identifier space I and the message space M con-
sists of nine algorithms given above. For an adversary A, we
define the following experiment:

ExpIND−CPA
A (λ,N , T )

pp← Init(λ);
(pk,msk, rl, st)← Setup(pp,N , T );
(m0,m1,A∗, t∗)← AO(pp, pk);
b← {0, 1};
c∗ ← Enc(pk,A∗, t∗,mb);
b′ ← AO(c∗);
If b = b′ return 1 else return 0.

O is a set of oracles, {OKeyGen(·, ·),OKeyUpdate(·),ORev(·, ·),
ODKGen(·, ·, ·)} and the details are given below:

• OKeyGen(·, ·) is the key generation oracle that allows A to
query an attribute set S ⊆ Ω and an identifier id ∈ I, and
it runs KeyGen(st, S, id) to return the secret key skid.

• OKeyUpdate(·) is the key update oracle that allows A to query
the time t ∈ T , and it runs KeyUpdate(msk, st, t, rl) to return
the key update kut .
• ORev(·, ·) is the revocation oracle that allows A to query

an identifier id ∈ I and the time t ∈ T , and it runs
Φ.Rev(rl, id, t) to update the revocation list rl.
• ODKGen(·, ·, ·) is the decryption key generation oracle that al-

lows A to query the attribute set S ∈ Ω , the timestamp t ∈
T and an identifier id ∈ I, and it runs DKGen(pk, skid, kut )
to return the decryption key dkid,t if the secret key skid and
the key update kut are available. Otherwise, it first runs
KeyGen(st, S, id) and Φ.KeyUpdate(msk, st, t, rl) to obtain
the secret key skid and the key update kut .

A is allowed to issue above oracles with the following restric-
tions:

1. OKeyUpdate(·) and ORev(·, ·) can be queried at the time t
which is greater than or equal to that of all previous
queries.

2. ORev(·, ·) cannot be queried at the time t if OKeyUpdate(·) was
queried at the time t .

3. If OKeyGen(·, ·) was queried on an identifier id ∈ I with an
attribute set S ⊆ Ω s.t. A∗(S) = 1, then ORev(·, ·) must be
queried on this identifier id at the time t ≤ t∗.

4. ODKGen(·, ·, ·) cannot be queried on any identifier id ∈ I
with the attribute set S s.t. A∗(S) = 1 at the challenge time
t∗ or any identifier id ∈ I has been revoked.

An RABE scheme is said to be IND-CPA secure if for any proba-
bilistic polynomial time adversary A, the following advantage is
negligible:

AdvIND−CPA
A (λ,N , T ) =

⏐⏐ Pr[ExpIND-CPA
A (λ,N , T ) = 1] − 1/2

⏐⏐.
An RABE scheme is said to be selective IND-CPA secure if A is
requested to send the challenge access structure and time (A∗, t∗)
at the beginning of adversarial game.

2.5. Linear secret sharing scheme

We recall the definition of linear secret sharing scheme (LSSS),
as defined in [1]. A LSSS policy is of the type (M, ρ) where M is
an n × l matrix over the base field F and ρ is a map from the
set [n] to the attribute universe Ω . A policy (M, ρ) satisfies an
attribute set S ⊆ Ω if 1 = (1, 0, . . . , 0) ∈ Fl is contained in
SpanF(Mi : ρ(i) ∈ S), where Mi is the ith row of M.

2.6. Tree-based revocation approach

The tree-based data structure is widely used to reduce the
computational time of generating and transmitting key updates
from linear to logarithmic. To revoke a user, the subset-cover
algorithm KUNode(st, rl, t) [30] can be used, where st is the state
representing the tree-based data structure, rl is the revocation list
recording identities of revoked users and t is the time represent-
ing the current revocation epoch. When a user joins the system,
who will be assigned a random identifier id ∈ I and an undefined
leaf node in st will be labeled this identifier id. The revocation
method only requires the user id to store the keys in Path(id),
where Path(id) denotes nodes in the path from the root node to
the leaf node id.

2.7. Managing the time structure efficiently

Xu et al. [7] pointed out Waters IBE [9] can be used to shorten
the ciphertext update. In their scheme, the encryption algorithm
takes the set V recording the all 0-bit of the timestamp instead
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of the user identity, and the ciphertext update algorithm is to
update the timestamp t to the timestamp t ′ ⩾ t . Specifically, for
updating the timestamp t to t ′, the ciphertext update algorithm
allows the 0-bit in timestamp t to be 1-bit in timestamp t ′, while
1-bit in t cannot change to be 0-bit in t ′. For example, assume the
bounded system lifetime has 4-bit length, the original ciphertext
is encrypted under the time 8 = 1000 and the CSP will update
this original ciphertext associated with the time 8 = 1000 until
the bounded system lifetime 15 = 1111 without any secret
information.

However, their proposed encoding method sometimes cannot
work since it records the position of the first 1-bit, and the cipher-
text update algorithm cannot work when the most significant bit
is zero. For example, the original method encodes the timestamp
5 = 0101 to 4 = 0100 which cannot support the subsequent
period from 8 = 1000 to 11 = 1011. We modify the ciphertext
encoding algorithm in [7] as follows.

CTEncode(t, T )
check← false

len← log2 T
for i = log2 T to i = 1 do

if t[i] = 1 and i = len and check = false then
t̃[i] = 1, len = len− 1

else
check← true, t̃ = 0

return t̃

Our modified ciphertext encoding algorithm takes the times-
tamp t and the bounded system lifetime T as input. It outputs
the timestamp t̃ in bit representation, which records as many
1-bit as possible from the most significant bit, e.g., it encodes
the timestamp 5 = 0101 to 0 = 0000 and 13 = 1101 to
12 = 1100, which allows the ciphertext update algorithm to
update the timestamp in the original ciphertext by changing 0-bit
to 1-bit.

3. System model

In this section, we describe the system architecture and the
threat model of the IoT cloud storage system.

3.1. System architecture

As shown in Fig. 1, the architecture of the IoT cloud mainly
consists of three types of parties: the data owner, the data user
and the CSP. The characteristic and function of each entity are
described as follows.
Data owner. The data owner manages user credentials and pro-
vides data sharing services. Specifically, the data owner is the
KGC who owns the IoT networks to collect the data in the sur-
rounding area and the related edge devices to pre-process the
data collected by wireless sensors. The KGC has two respon-
sibilities and acts as the credential issuer and the credential
revoker. The credential issuer defines the system parameters for
the entire system. The credential revoker periodically generates
the key-updating materials to manage the user revocation.
Data user. The data users are a group of users who obtain the
data from the CSP. Each data user maintains a set of attributes
and is authorized to decrypt the encrypted data if their attributes
satisfy the encryption policy. In our system, data users will be
categorized into two types: revoked users and non-revoked users.
The revoked users cannot decrypt any ciphertext from the CSP.

The non-revoked users decrypt the ciphertext by updating the
corresponding long-term secret key to the valid decryption key.
CSP. The CSP has a vast amount of storage to accommodate
the data from the data owners and computing power to update
the original ciphertext to the updated ciphertext under current
timestamp.

3.2. Threat model

We assume the data owner is a fully trusted entity. The data
owner generates the system parameter, distributes the valid se-
cret key for the data users and revokes compromised or expired
users. The devices of the data owner (e.g., sensors and edge
device) honestly collect and encrypt data, and outsource the data
to the CSP.1 In our system, the CSP is deemed as semi-trusted,
which may try to learn sensitive information. The revoked data
users have the intention to leak the corresponding long-term
secret key. The non-revoked data users may accidentally ex-
posure their short-term decryption key. To ensure the security
of our IoT system against the semi-trusted CSP and untrusted
data user, the system should be indistinguishable against chosen
plaintext attack (IND-CPA). The concrete security model can be
found in Section 2.4. In this model, the attackers play the roles of
semi-trusted CSP and untrusted data user, and is also allowed to
obtain the short-term decryption key to capture decryption key
exposure attacks2.

4. Proposed system

4.1. System overview

The workflow of the system architecture as shown in Fig. 1 is
described as follows.

1. When the system is initialized, the data owner acts as
the credential issuer to define the entire system parame-
ters including the bounded system lifetime, the maximum
number of system users and the period of each revocation
epoch (e.g., 1 min/hour/day), and then distributes secret
keys to the data users3(See 1⃝).

2. When the data is aggregated from the corresponding wire-
less sensors to the edge device, the edge device extracts
the confidential and sensitive data and encrypts the data
under a specific access structure and the current revocation
epoch to derive the original ciphertext (See 2⃝). After that,
the original ciphertext is outsourced to the CSP (See 3⃝).

3. When the data user intends to request the ciphertext from
the CSP, the CSP first fetches the corresponding original
ciphertext (See 4⃝), then updates the original ciphertext to
the ciphertext in current revocation epoch (See 5⃝). After
that, the CSP responses the updated ciphertext to the data
user (See 6⃝).

4. When the data user revocation (e.g., the key is expired/
stolen/misused) is required, the data owner acts as the cre-
dential revoker to update the revocation list by appending
the revoked data users to the revocation list (See 7⃝). Based
on the latest revocation list, the credential revoker derives
the corresponding key-updating materials and broadcast
these materials at the beginning of each revocation epoch
(See 8⃝ and 9⃝).

1 We assume the data transformation between the sensors and edge device
is protected by a secure wireless protocol.
2 All attackers are assumed to have polynomial time bounded computation

ability such that they cannot solve the hardness problems in Section 2.3.
3 The data owner has the sensors and the edge device. We assume these

devices have the system parameter.
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5. At the beginning of each revocation epoch, all data users re-
ceive the latest key-updating material from the data owner
(See 9⃝). The data user first discards the old short-term de-
cryption key and retrieves the long-term secret key (from
1⃝) combining the key-updating material (from 9⃝) to de-
rive the short-term decryption key in the latest revocation
epoch. Note that the revoked user cannot derive the valid
short-term decryption based on the key-updating material.

4.2. Concrete construction

In this subsection, we present a concrete RABE construction to
realize the IoT cloud storage system described above.

The proposed RABE scheme follows the definition of RABE
in Section 2.4. The construction is based on Rouselakis–Waters
ABE [8] and Waters IBE [9], and they are provable security under
the q-1 assumption and decisional BDH assumption (refer to Sec-
tion 2.3). The high-level idea of our proposed RABE is to use the
secret key of Rouselakis–Waters ABE to provide the fine-grained
access control and the secret key of Waters IBE as the key-
updating material to manage user revocation. To allow the distri-
bution of key-updating material publicly, the secret key derived
from Rouselakis–Waters ABE scheme embeds some noises that
cannot be eliminated before knowing the key-updating material,
and the key-updating material excludes the secret information
that to be broadcasted publicly. To achieve key exposure resis-
tance, we derive the decryption key that can be re-randomizable
to remove the relationship among the secret key, the public
key-updating material, and the decryption key. To realize the
revocable storage, we modify the Waters IBE with the encoding
method in Section 2.7. Our revocation mechanism is based on the
tree structure given in Section 2.6 in which the cost is logarithmic
to the number of users in the system. To prove our concrete
scheme is secure, we will present the security reduction under
the RABE security model without random oracle. The details are
given in Section 5.

We should note that the following construction is an
asymmetric-key cryptosystem. To improve the efficiency, we can
use hybrid encryption method in which an extra symmetric
cryptosystem (e.g., AES) is needed. When the data owner encrypts
a message, a random symmetric key as the session key will
be used to encrypt this message. The ciphertext includes two
components: one is the message encrypted under the symmetric
key, and the other one is the symmetric key encrypted by the
RABE encryption algorithm.

4.2.1. System setup
The data owner as the credential issuer takes the security

parameter λ, the number of system users N and the bounded
system lifetime T as input, and outputs the public parameter pp,
the public key pk, the master secret key msk, the revocation list
rl and the state st by running the initialization algorithm and the
setup algorithm. The data owner keeps secret the master secret
keymsk and the state st . The details of system setup are described
as follows.

Init(λ) → pp: The initialization algorithm takes a security
parameter λ ∈ N as input. It generates a bilinear group of
order p according to the bilinear group parameter generator
(g, p,G,GT ) ← G(λ), and outputs the public parameter pp =
(g, p,G,GT ).

Setup(pp,N , T )→ (pk,msk, rl, st): The setup algorithm takes
the public parameter pp, the number of system users N and the
bounded system lifetime T as input. It chooses a binary tree BT
with at least N leaves, picks a random term α ∈ Zp and generates
the system parameter as follows.

• For the attribute-related system parameter, it picks random
terms u, h, w, v ∈ G4.
• For the time-related system parameter, let ℓ denote the size

of T , it chooses u0, . . . , uℓ ∈ Gℓ+1.

It returns the public key pk, the master secret key msk, the
revocation list rl = ∅ and the state st = BT.

pk = (e(g, g)α, u, h, w, v, u0, . . . , uℓ), msk = α.

4.2.2. Key generation
The data owner as the credential issuer takes the state st , an

attribute set S and the identifier of the data user id as input, and
outputs the secret key skid and the updated state st by running
the key generation algorithm. The data owner then sends the
secret key skid to the data user and keeps secret the updated
state st . Note that the identifier id is not the user’s identity, it
is an identifier initialized when the data user joins the system.
The details of key generation are presented below.

KeyGen(st, S, id)→ (skid, st): The key generation algorithm takes
the state st , an attribute set S = (A1, A2, . . . , Ak) ⊆ Ω and an
identifier id ∈ I as input. It randomly pick an unassigned leaf
node from BT and stores id in this node. For each node θ ∈

Path(id), it runs as follows:

• It retrieves αθ from the node θ . If αθ is not available, it
randomly picks and stores αθ ∈ Zp in the node θ .
• It then picks k+1 random exponents r, r1, r2, . . . , rk ∈ Zk+1

p ,
and outputs the secret key skid,θ :

skid,θ = (gαθ wr , g r , {g ri , (uAih)riv−r}i∈[k]).

It returns the secret key skid = {skid,θ }θ∈Path(id) and the updated
state st .

4.2.3. Key update
The data owner as the credential revoker takes the revocation

list rl, a serial of identifiers and the related revocation epochs
(idi, ti), the master secret key msk, the state st and the current
revocation epoch t as input, and outputs the updated revocation
list rl and the key-updating material kut in current revocation
epoch t by running the revocation algorithm and the key update
algorithm as follows.

For each identifier and revocation epoch pair in the list (idi, ti),
the data owner runs the following revocation algorithm.

Rev(rl, idi, ti) → rl: The revocation algorithm takes the revo-
cation list rl, an identifier idi ∈ I and the time ti ∈ T as input. It
returns the revocation list rl as:

rl← rl ∪ (id, t).

After the data owner obtains the latest revocation list rl, the
data owner runs the key update algorithm.

KeyUpdate(msk, st, t, rl) → kut : The key update algorithm
takes the master secret key msk, the state st , the time t ∈ T
and the revocation list rl as input. It encodes the time t to the bit
representation t̃ . Let V ∈ [ℓ] be the set of all indices i for t̃[i] = 0.
For each node θ ∈ KUNodes(st, rl, t), the key-updating material
kut is constructed as:

• Retries αθ .
• Randomly pick s ∈ Zp, and outputs the key update kut,θ as:

kut,θ =

(
gα−αθ

(
u0
∏

i∈V ui
)s

, g s
)

.

It returns kut = {kut,θ }θ∈KUNodes(st,rl,t).
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4.2.4. Decryption key generation
The data user takes the public key pk, the related secret key

skid and the key-updating material kut as input, and outputs the
decryption key dkid,t if this data user is a non-revoked user in the
revocation epoch t or the failure symbol ⊥ if this data user is a
revoked user before or in the revocation epoch t .

DKGen(pk, skid, kut ) → dkid,t/⊥: The decryption key gener-
ation algorithm takes the public key pk, the secret key skid and
key update kut as input. Let I and J denote sets Path(id) and
KUNodes(st, rl, t), respectively. It returns a failure symbol ⊥ if
I ∩ J = ∅, otherwise, we have node θ ∈ I ∩ J. Parse the secret
key skid,θ and the key update kut,θ are:

skid,θ = (sk1, sk2, {sk3,i, sk4,i}i∈[k]), kut,θ = (ku1, ku2).

It randomly picks r ′, s′ ∈ Z2
p , and for i ∈ [k], computes the

decryption key dkid,t :

d1 = sk1 · ku1 · w
r ′
(
u0
∏

i∈V ui
)s′
= gαwr+r ′

(
u0
∏

i∈V ui
)s+s′

,

d2 = sk2 · g r ′
= g r+r ′ , d3,i = sk3,i = g ri ,

d4,i = sk4,i · v−r = (uAih)riv−(r+r
′), d5 = ku2 · g s′

= g s+s′ .

It returns dkid,t = (d1, d2, {d3,i, d4,i}i∈[k], d5). Note that the de-
cryption key dkid,t has been re-randomized and the relationships
among the long-term secret key, public key-updating material,
and short-term decryption key has been removed. Hence, the
long-term secret key is secure even if the short-term decryption
key is leaked.

4.2.5. Data encryption
The data owner (i.e., edge devices of the IoT network) takes

the public key pk, a specific access structure A, the current time t
and a message m (collected by the sensors) as input, and outputs
the ciphertext c by running the encryption algorithm as follows.

Enc(pk,A, t,m) → c: The encryption algorithm takes the
public key pk, an access structure A ∈ P , the time t ∈ T and a
message m ∈M as input, where the access structure A encodes
an LSSS policy with the matrix M ∈ Zn×l

p and a mapping function
ρ : [n] → Ω . It then generates the ciphertext for attributes and
time component, respectively.

• For the attribute-related ciphertext, it picks a vector y⃗ =
(ξ, y2, . . . , yn)⊤ ∈ Zn

p and computes the vector v⃗ = (v1, v2,

. . . , vn)⊤ = My⃗. It then chooses n random exponent φ1, φ2,

. . . , φn ∈ Zn
p and for i ∈ [n], computes the attribute-related

ciphertext:

c0 = m · e(g, g)αξ , c1 = gξ , c2,i = wvivφi ,

c3,i = (uρ(i)h)−φi , c4,i = gφi .

• For the time-related ciphertext, it encodes the timestamp
t to the bit representation t̃ and derives the time t̃ ←
CTEncode(t̃, T ). Then, it randomly picks s2 ∈ Zp and let
V ∈ [ℓ] be the set of all j for which t̃[j] = 0, for j ∈ V ,
computes the time-related ciphertext:

c5 = uξ

0, c6,j = uξ

j .

It returns c = (c0, c1, {c2,i, c3,i, c4,i}i∈[n], c5, {c6,j}j∈V ).

4.2.6. Ciphertext update
Upon receiving data request from a data user, the CSP takes

the public key pk, the original ciphertext c and the current revo-
cation epoch t ′ ∈ T as input, and outputs the updated ciphertext
c ′ or a failure symbol ⊥ (indicating the invalid ciphertext).

CTUpdate(pk, c, t ′)→ c ′/⊥: The ciphertext update algorithm
takes the public key pk, the ciphertext c and the time t ′ ∈ T as
input. It returns a failure symbol ⊥ if the timestamp in ciphertext

c is greater than the time t ′. Otherwise, it encodes t ′ to the bit
representation t̃ ′, let V ∈ [ℓ] be the set of all indices i for t̃ ′[i] = 0,
it computes the time-related ciphertext as:

ct = c5
∏

i∈V c6,i =
(
u0
∏

i∈V ui
)ξ

.

After that, it randomly chooses a vector y⃗′ = (ξ ′, y′2, . . . , y
′
n)
⊤
∈

Zn
p and computes the vector v⃗′ = (v′1, v

′

2, . . . , v
′
n) = My⃗′. It then

chooses n random exponent φ′1, φ
′

2, . . . , φ
′
n ∈ Zn

p and for i ∈ [n],
computes the ciphertext:

c ′0 = c0 · e(g, g)αξ ′
= m · e(g, g)α(ξ+ξ ′), c ′1 = c1 · gξ ′

= gξ+ξ ′ ,

c ′2,i = c2,i · wv′ivφ′i = wvi+v′ivφi+φ′i ,

c ′3,i = c3,i · (uρ(i)h)−φ′i = (uρ(i)h)−(φi+φ′i ),

c ′4,i = c4,i · gφ′i = gφi+φ′i ,

c ′t = ct ·

(
u0

∏
i∈V

ui

)ξ ′

=

(
u0

∏
i∈V

ui

)ξ+ξ ′

.

It returns c ′ = (c ′0, c
′

1, {c
′

2,i, c
′

3,i, c
′

4,i}i∈[n], c
′
t ).

4.2.7. Ciphertext decryption
Upon receiving the updated ciphertext from the CSP, the data

user takes the public key pk, the decryption key dkid,t and the
received ciphertext c as input, and output the message m or a
failure symbol ⊥ by running the decryption algorithm as follows.

Dec(pk, dkid,t , c) → m/⊥: The decryption algorithm takes
the public key pk, the decryption key dkid,t and a ciphertext c
as input. It returns a failure symbol ⊥ if the attribute set S in
the decryption key dkid,t does not match the access policy P in
the ciphertext, e.g., A(S) = 0 or the time t in the ciphertext c
does not match the time t in the decryption dkid,t , otherwise, it
computes the rows in M that provides a share to attributes in
S , i.e. S = {i : ρ(i) ∈ S} and the constant {wi ∈ Zp}i∈S s.t.∑

i∈S wiMi = (1, 0, . . . , 0). Thus, we have
∑

i∈S wiui = ξ and
computes the attribute-related component Pa as:

Pa =
∏
i∈S

(
e(c2,i, d2) · e(c3,i, d3,i) · e(c4,i, d4,i)

)wi

=

∏
i∈S

(e(wvivφi , g r+r ′ )

·e((uρ(i)h)−φi , g ri ) · e(gφi , (uAih)riv−(r+r
′)))wi

=
∏

i∈S e(w, g)wivi(r+r ′)

= e(w, g)ξ (r+r
′).

Then, the message hiding component Pm can be recovered as:

Pm =
e(c1, d1)

Pa · e(ct , d5)

=
e(gξ , gαwr+r ′ (u0

∏
i∈V ui)s+s

′

)
e(w, g)ξ (r+r ′)e((u0

∏
i∈V ui)ξ , g s+s′ )

= e(g, g)αξ .

Finally, it returns the message m as:

c0/Pm = m · e(g, g)αξ/e(g, g)αξ
= m.

5. Security analysis

Theorem 1. If the Rouselakis–Waters ABE [8] and Waters IBE [9]
are secure, the proposed RABE scheme is secure.

Rouselakis–Waters ABE [8] and Waters IBE [9] are provable
security based on the q-1 assumption and decisional BDH as-
sumption (refer to Section 2.3).
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Our security proof is similar to the proof in Xu et al. [7] except the
decryption key generation oracle generates the decryption key by
combining the secret key from the key generation oracle and the
key update from the key update oracle with some randomnesses
picked by the RABE game simulator B. The sketch of the proof is
that we can construct an algorithm B which breaks Rouselakis–
Waters ABE simulated by CABE or Waters IBE simulated by CIBE by
interacting with A which can break our proposed RABE scheme.
B first tosses a random coin rev ∈ {0, 1} at the beginning of the
adversarial game to guessA represents a non-revoked user or not.
If A acts as a non-revoked user (i.e., rev = 0), B simulates the
ABE component embedding the information (α−αθ ) by querying
to CABE and simulates the time-based component embedding the
information αθ by itself, where αθ is the secret information in
the state st in the form of full binary tree BT. Next, B forwards
the challenge message from A to CABE and computes the missing
time-based component based on the returning message from
CABE. After that, B returns the message from CABE and the time-
based component to A. A then submits a bit b′ as the guessing of
challenge message. Finally, B forwards the bit b′ to CABE to break
Rouselakis–Waters ABE.
If A is a revoked user (i.e., rev = 1), B constructs the binary
tree BT for user revocation and picks a leaf node for the chal-
lenge user id∗ with the attribute set S s.t . A∗(S) = 1. For
the nodes θ ∈ (Path(id∗) ∩ KUNodes(st, rl, t)), B returns the
secret key embedding α by itself and the key update embedding
α − αθ by interacting with CIBE. For the nodes θ ∈ (Path(id∗) \
KUNodes(st, rl, t)), B returns the secret key embedding α − αθ

and the key update embedding αθ by itself. Next, B forwards
the challenge message from A to CIBE and computes the missing
attribute-based component based on the returning message from
CIBE. After that, B returns the message from CIBE and the attribute-
based component to A. A then submits a bit b′ as the guessing of
challenge message. Finally, B forwards the bit b′ to CIBE to break
Waters IBE.

6. Performance analysis

As shown in Table 1, we give performance comparison be-
tween some RABE schemes [1,4,5,24] and ours. Let S be the
attribute set, T be the system bounded lifetime, and N be the
number of system users. It is straightforward to see from Ta-
ble 1 that our proposed RABE is competitive in both computation
and functionality. Although the scheme [1] is fully secure, it
requires the composite order group and two instantiations of ABE
schemes, which is inefficient and hence impractical.

In [24], the initial work of RABE was introduced with direct
revocation, the expression of attribute is changed to the attribute
att appending the current date t , e.g., att ∥ t , and hence the
KGC has to keep a secure channel to each non-revoke user for
transmitting the newly update secret key. The schemes [1,4,5]
utilize indirect revocable method to improve the performance
in space and time complexity but they suffer the decryption
key exposure attack. Our RABE scheme has the advantage over
previous solutions in that it is secure against key exposure attack
and has revocable storage simultaneously. Also, our RABE has
high performance in computational cost and storage requirement.

Next, we present the experimental analysis comparing the
RABE schemes [1] with ciphertext-policy setting by applying
CP-ABE [8] and our proposed RABE scheme. We have imple-
mented the above schemes in Java using the jPBC library with
the Type A elliptic curve and the symmetric pairing setting from
‘‘a.properties’’ in the jPBC library (an elliptic curve bilinear group
with the 160-bit group order, 512-bit base field and embedded
degree 2). Hence, p is a 160-bit prime number, and elements in
G and GT are 512-bit and 1024-bit, respectively. The software

Fig. 2. Computational cost.

Fig. 3. Storage cost.

implementation was performed on a PC running 64-bit Windows
10 with Dual 2.8 GHz Intel(R) Core(TM) i7-7700HQ CPU and 16GB
memory. We denote Sahai et al.’s RABE by SSW, and also limit
the size of the attribute universe |Ω| = 30 in the following
experiments.

The average performance of the key generation algorithm is in
Figs. 2 and 3. To evaluate the scalability of the scheme, we present
the experimental performance of different user groups with up to
212
= 4096 users. The key generation algorithm of ours and [1]

are based on the CP-ABE [8] scheme. Hence, the performance of
the key generation algorithm in both the computational cost and
the storage cost is very similar.

For the performance of the key update algorithm, we present
the experimental results in a lightweight system and a large
system with 212

= 4096 users including 27
= 128 revoked

users. In Figs. 4 and 5, we simulate the key update algorithm in
lightweight system. In Figs. 6 and 7, we give the performance of
the key update algorithm in large system. The x-axis is based on
the exponent of 2 since the constructions of ours and SSW are
based on the tree structure and bit representation. The details of
the experimental performances are described as follows.

Our key update algorithm is based on the IBE scheme with
constant computational and storage costs rather than the CP-ABE
scheme with linear computational and storage costs. Hence, our
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Table 1
Comparison between our proposed RABE scheme and some existing RABE schemes.

PTMW [24] BGK [4] AI [5] SSW [1] XYMD [7] Our RABE

Revocation mode Direct Indirect Direct & Indirect Indirect Indirect Indirect
ABE policy KP-ABE KP-ABE KP-ABE KP-ABE & CP-ABE KP-ABE CP-ABE
Revocation storage × × ×

√ √ √

Resist key exposure
√

× × × ×
√

Order of group Prime Prime Prime Composite Prime Prime
Security Selective Selective Selective Adaptive Selective Selective
Size of key update O(N · S) O(logN ) O(logN ) O(logN logT ) O(logN ) O(logN )
Size of ciphertext O(S) O(S) O(S) O(logT (S + logT )) O(S + logT ) O(S + logT )
Computation cost in key update O(N · S) O(logN ) O(logN ) O(logN logT ) O(logN ) O(logN )
Computation cost in encryption O(S) O(S) O(S) O(S + logT ) O(S) O(S)
Computation cost in decryption O(S) O(S) O(S) O(S + logT ) O(S) O(S)

Fig. 4. Computational time.

Fig. 5. Storage cost.

key update algorithm has better performance than Sahai et al.’s
RABE [1].

The trends in Figs. 6 and 7 are similar to Figs. 4 and 5. In
the large-scale 555 system, the costs are much higher than the
lightweight system since the size of the key-updating material
depends on the number of users. As we mentioned in Table 1, the
size of the key-updating material is logarithmic to the number of
users in the system. Hence, the trends of computational time and
storage cost in the lightweight system and the large-scale system
are similar, but the large-scale takes more time.

Fig. 6. Computational time.

Fig. 7. Storage cost.

We also give the average performance of the encryption algo-
rithm in Figs. 8 and 9. The performance of our scheme is better
than Sahai et al.’s RABE [1] since our time component is based on
the IBE scheme rather than the CP-ABE scheme. For the storage
cost, the performance is very similar at 565 the beginning but
along with the increasing of the bounded system lifetime, our
scheme has better performance since Sahai et al.’s RABE needs to
record the time component in the form of ABE ciphertext rather
than IBE ciphertext in ours.
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Fig. 8. Computational time.

Fig. 9. Storage cost.

The above figures show that the experimental outcomes are
similar to what we expected in Table 1. Therefore, the proposed
construction has better performance than the RABE scheme [1],
and also resists decryption key exposure attacks.

7. Conclusion

In this paper, we proposed a solution for securing the IoT
cloud storage system by introducing a revocable attribute-based
encryption with revocable storage and decryption key exposure
resistance. We also presented a formal security model and the
security proof of our proposed scheme. Both theoretical and ex-
perimental performance analysis demonstrated the high perfor-
mance of the proposed scheme in comparison with the previous
solutions.
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