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a b s t r a c t 

With the flourishing of ubiquitous healthcare and cloud computing technologies, medical 

primary diagnosis system, which forms a critical capability to link big data analysis tech- 

nologies with medical knowledge, has shown great potential in improving the quality of 

healthcare services. However, it still faces many severe challenges on both users’ medical 

privacy and intellectual property of healthcare service providers, which deters the wide 

adoption of medical primary diagnosis system. In this paper, we propose an effic ient and 

priv a cy-preserving m edical p rimary diagno s is framework (CAMPS). Within CAMPS frame- 

work, the precise diagnosis models are outsourced to the cloud server in an encrypted 

manner, and users can access accurate medical primary diagnosis service timely without 

divulging their medical data. Specifically, based on partially decryption and secure com- 

parison techniques, a special fast secure two-party vector dominance scheme over cipher- 

text is proposed, with which CAMPS achieves privacy preservation of user’s query and 

the diagnosis result, as well as the confidentiality of diagnosis models in the outsourced 

cloud server. Through extensive analysis, we show that CAMPS can ensure that users’ med- 

ical data and healthcare service provider’s diagnosis model are kept confidential, and has 

significantly reduce computation and communication overhead. In addition, performance 

evaluations via implementing CAMPS demonstrate its effectiveness in term of the real en- 

vironment. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Medical primary diagnosis system, which can provide convenient medical decision support through applying mobile com- 

munication and data analysis technology, has been considered as a promising approach to improve the quality of healthcare 

service and lowering the healthcare cost [29,35] . In medical primary diagnosis system, the user can deploy portable sen- 

sors around body to collect various physiological data, such as Electrocardiogram (ECG/EKG), blood pressure (BP), peripheral 

oxygen saturation (SpO2) and blood glucose [32] . These physiological data will be delivered to a central healthcare server 

for primary medical diagnosis via smart terminals, and the diagnosis result will be reported to the user and his doctor for 

decision making, which has great significance for healthcare monitoring and disease prevention at an early stage. 
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Fig. 1. Problem in medical primary diagnosis system. 

Although medical primary diagnosis system provides medical instruction for patients anytime anywhere, while the prob- 

lem “quality of diagnosis” may be the main stumble in blocking this technology in reality [10] . As shown in Fig. 1 , a man 

delivers his physiological data to two medical servers (such as hospital) for primary medical diagnose via smart terminals, 

while the returned two completely different diagnosis result confused him. Since there exists a large body of prior works 

on medical primary diagnosis system [4,9,19] , there are two main factors lead to medical diagnosis errors. First, the huge 

amounts of medical data collected by different healthcare server are too complex and voluminous to storage centralized for 

data analysing [9] . Moreover, the diagnosis models are generated by different healthcare server via different data mining 

technologies (such as Bayesian, neural network, or fuzzy logic theories), which are hardly to merge together [4] . Second, the 

diagnosis models are valuable asset for healthcare provider, neither party is willing to divulge any information to untrusted 

entities [19] . Therefore, these above factors place constraint on the mechanisms that can be used to generate diagnosis 

model in a distributed environment, while protecting the privacy of medical data. 

As a powerful tool for multicriteria data analysis, data mining, and decision making, skyline query returns a set of in- 

teresting points which are the best trade-offs between the different dimensions of a huge data space [23] . By querying the 

points which are as good or better in all dimensions and better in at least one dimension, skyline query has been received 

significant attention on distributed database [13,18] . Specifically, data owners who store a fraction of available data prefer 

to performing cooperate data analysis to provide a more precise services by linking one or more databases, due to the ad- 

ditivity of skyline operator, skyline query can be executed in parallel to get the final skyline sets by merging the skyline 

candidates generated from the individual databases. Moreover, the physiological data has a standard reference region and 

extremely rich in information with high dimension [33] , and the single aggregated distance metric with all dimensions is 

always hard to define, which may be quite appropriate for skyline query to applicated in medical data decision making [20] . 

To achieve low computational cost and convenient data process, healthcare providers often outsource their diagnosis 

model to a cloud server, which will handle users’ medical queries by counting on its great computation power. However, 

the sensitivity of medical data is extremely critical in terms of user’s privacy, accidental data leakage may lead huge psy- 

chological harm to the user and even threaten the human life [36] . Generally, users are reluctant to send their health 

information directly to untrusted cloud server to obtain medical instruction. Meanwhile, the diagnosis model is also private 

and valuable asset, the healthcare providers are also unwillness to reveal any information about it to the cloud server [38] . 

Therefore, how to protect the privacy of users’ medical data and the confidentiality of diagnosis model is crucially. Tradi- 

tional anonymization techniques such as k -anonymity [34] and l -diversity [25] may be not quite suitable for protecting the 

user’s privacy, due to the user’s medical query always contain sensitive data such as age, blood types, or even fingerprints 

and DNA profiles, which may be able to reidentify an individual user easily [1,27] . On the other hand, differential privacy 

has become the de facto standard for privacy-preserving data analytics [11,12] , but these randomization approaches are of- 

ten unsuitable for medical primary diagnosis, as they distort the data making it unusable for critical inferences, which may 

lead to misdiagnosis. Different homomorphic encryption techniques are introduced in the medical diagnosis system [22,31] , 

but the overhead of computation would be a stumbling block in making this technology popularization in medical primary 

diagnosis system. 

In this paper, aiming at these above challenges, a precise diagnosis model is first proposed by using skyline computation 

over multiple distributed medical datasets. Then, due to security and privacy concerns, we propose an effic ient and priv a cy- 

preserving m edical p rimary diagno s is framework (CAMPS). Within CAMPS, the precise diagnosis model is outsourced to the 

cloud server to provide medical primary diagnosis service in an encrypted manner, and users can access accurate medical 

primary diagnosis service timely without divulging their medical data. Specifically, the main contributions of this paper are 

as fourfold. 
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Fig. 2. System model under consideration. 

• First, the proposed skyline diagnosis model is more precise. Different from traditional medical diagnosis model, which 

generates the diagnosis model from the individual medical database, the proposed skyline diagnosis model is generated 

by merging the skyline candidates output from several medical databases. 

• Second, the proposed CAMPS is secure and privacy-preserving both for users’ medical data and healthcare providers’ 

diagnosis model. Within CAMPS, the encrypted user’s query is directly operated at the cloud server without decryption, 

and the diagnosis result can only be decrypted by the user. Meanwhile, the diagnosis model in cloud provider can also 

be kept in an encrypted manner during the process. 

• Third, the proposed CAMPS can provide the medical primary diagnosis service with high accuracy. Although the user’s 

query request and diagnosis model are blurred during the process, the accuracy of diagnosis result is not affected, and 

the final experiment results over real medical dataset show that CAMPS can achieve high accuracy. 

• Fourth, the proposed CAMPS is efficient in terms of computation and communication overhead. We have developed a 

custom simulator and implement CAMPS in a real environment, the performance evaluation demonstrates that our pro- 

posed CAMPS can provide efficient medical primary diagnosis service with low computation and communication over- 

head. 

The remainder of this paper is organized as follows. We formalize the system model, security requirements, and identify 

our design goal in Section 2 . In Section 3 , we briefly review the skyline computation and additive homomorphic cryp- 

tosystem. Then, we introduce a novel diagnosis model by using skyline computation and propose our CAMPS framework in 

Section 4 , followed by the security analysis and performance evaluation in Sections 5 and 6 , respectively. We also review 

some related works in Section 7 . Finally, we conclude this paper in Section 8 . 

2. System model, security requirement, and design goal 

In this section, we formalize the system model, security requirements, and identify our design goal. 

2.1. System model 

In this work, we mainly focus on how to achieve precise and privacy-preserving diagnosis services over outsourced cloud 

server. Specifically, the system consists of five parts: Trusted Authority (TA), Medical Dataowner (MD), User, Medical Alliance 

(MA), and Cloud Server (CS), as shown in Fig. 2 . 

1) Trusted Authority: TA is an indispensable and trusted entity, who is in charge of distributing and managing all private 

keys in the medical primary diagnosis system. 

2) Medical Dataowner: MD is considered to be a computation and storage limited entity (i.e., hospital, medical institute), 

who can generate a preliminary diagnosis model from individual private medical database. In order to provide high-quality 

medical diagnosis service, each MD delivers their preliminary diagnosis model to the MA for further cooperate analysis on 

their behalf. 
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3) Medical Alliance: MA is always considered as a trusted government organization or a management agent for MDs, and 

has a certain amount of computing and storage capabilities. In our system, MA is tasked to generate a final precise global 

diagnosis model based on the preliminary diagnosis models, which are collected from different MDs. Correspondingly, MA 

will shares certain level of mutual business interest with the participated MDs for incentives. With the advancement of 

cloud computing, MA tends to outsource the final global diagnosis model to the cloud server. Therefore, the MA mainly 

performs two functions: outsourcing diagnosis model to the cloud server and returning the diagnosis result back to users. 

With the process of outsourcing to the cloud server, the MA will perform some encryption operations to guarantee the 

diagnosis model’s confidentiality, and performs partially decryption operations to obtain the final diagnosis result from the 

cloud server. 

4) Cloud Server: CS has huge data storage space, and stores more than millions of encrypted precise diagnosis model 

from the MA and provides accurate medical query services for users. The cloud server also mainly performs two func- 

tions: authentication the users and computation over encrypted data. The authentication component is used to check users’ 

identity, while the computing in encryption component is tasked to search and compute encrypted data items with users’ 

encrypted query request. Furthermore, although the cloud server features high performance in computation and storage, 

since thousands of users may access query services at the same time, the efficiency of computation and communication are 

still challenging. 

5) Users: Users who are registered in the MA can access the accurate medical diagnosis service from the precise medical 

diagnosis model that are outsourced to the cloud server. To guarantee the privacy of user’s query which contains a lot of 

sensitive medical data collected by smart terminals, the user will perform some encryption operations before delivering it 

to the cloud server. Moreover, to lower energy costs, the encryption technique is required to be efficient and lightweight 

enough to adapt the resource constraint terminals. 

2.2. Security requirements 

The privacy of users’ medical query and the confidentiality of MA’s precise diagnosis model are crucial for the success 

of medical primary diagnosis system. In our security model, both the CS and users are considered to be honest-but-curious, 

while MA is trusted. Specifically, the MA generates the medical diagnosis model from distributed databases and keeps the 

diagnosis model secret from the MDs; CS strictly executes the protocol specifications to provide medical diagnosis service 

based on user’s medical query, but it also tries to gain knowledge about the MA’s diagnosis model and users’ medical 

query for business benefit; users may intend to access medical primary diagnosis service without registering. Therefore, to 

guarantee the privacy of users’ medical data and the confidentiality of diagnosis model, the following security requirements 

should be satisfied. 

1) Privacy: On one hand, the MA’s medical diagnosis model are valuable assets should be kept secret from the cloud 

server, i.e., although the CS stores the medical diagnosis models and provides medical queries for users, it cannot gain any 

knowledge about medical data. On the other hand, the users’ medical query should be protected from the CS, i.e., even if 

the CS obtains all queries from the user and corresponding responses from MA, it cannot identify the user’s medical data 

accurately. Under this circumstance, the users’ medical query and MA’s medical primary diagnosis model can guarantee 

the privacy-preserving requirements. In addition, the privacy requirements also include the MA’s responses can only be 

decrypted by legal users. It’s worth note that, we do not consider any two parties from MA, CS, and users collude to disclose 

the third party’s privacy in our current model. Moreover, the final precise medical diagnosis model generated by MA is kept 

secret from the MDs in our system model. Thus, the collusion attack on privacy is beyond the scope of this paper and will 

be discussed in our future research. 

2) Authentication: An encrypted medical query that is really sent by a legal user and has not been altered during the 

transmission should be authenticated, i.e., if an illegal user forges a query request, this malicious operation should be de- 

tected timely. Meanwhile, the responses from MA should also be authenticated so that the user can receive the authentic 

and reliable query result. 

2.3. Design goal 

Based on the aforementioned system model and security requirements, our design goal is to develop an efficient and 

privacy-preserving medical primary diagnosis framework. Specifically, the following three objects should be achieved. 

1) Security: The above-mentioned security requirements should be satisfied. According to the previous statement and 

analysis, without taking the security into consideration, the real application of the medical primary diagnosis is far from in 

practice. Simultaneously, the confidentiality and authentication of the proposed framework should be achieved as well. 

2) Accuracy: The accuracy of the diagnosis result should be guaranteed. In order to provide high-quality medical primary 

diagnosis service, the designed privacy-preserving strategy cannot compromise the accuracy of diagnosis result. Therefore, 

the proposed framework should also achieve high accuracy. 

3) Efficiency: Low communication overhead and computation complexity should be guaranteed. Considering the real time 

requirements of medical primary diagnosis service and the diversity of terminals, which might be constraint in resource 

(include computation, power, and storage, et al.), the proposed framework should achieve high communication and compu- 

tation efficiency. 
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3. Preliminaries 

In this section, we first review the definition of skyline computation, which serves as the basis of our proposed frame- 

work, then we introduce bilinear pairing technique [5] , additive homormophic cryptosystem, and skyline computation [7] . 

3.1. Bilinear pairing 

Let G and G T be two cyclic groups with the same prime order q , and g is a generator of group G . Suppose G and G T are 

equipped with a pairing, i.e., a non-degenerated and efficiently computable bilinear map ˆ e : G × G −→ G T has the following 

properties. 

1) Bilineariry: ∀ g, h ∈ G , and ∀ a, b ∈ Z q , we have ˆ e (g a , h b ) = ˆ e (g, h ) ab . 

2) Nondegeneracy: ∃ at least one g, h , where g, h ∈ G , which satisfies the condition that ˆ e (g, h ) � = 1 G T . 

3) Computable: ∀ g, h ∈ G , there is an efficient algorithm to compute ˆ e (g, h ) . 

Definition 1. A bilinear parameter generator Gen is a probabilistic algorithm that takes a security parameter k as input, and 

outputs a five-tuple (q, g, G , G T , ̂  e ) , where q is a k -bit prime number, G and G T are two groups with order q, g ∈ G is a 

generator, and ˆ e : G × G −→ G T is a nondegenerated and efficiently computable bilinear map. 

3.2. Additive homomorphic cryptosystem 

Suppose that [[ m 1 ]] and [[ m 2 ]] are two additive homomorphic ciphertexts under the same public key pk in an addi- 

tive homomorphic cryptosystem (e.g. Paillier cryptosystem [28] ). The additive homomorphic cryptosystem has the additive 

homomorphism property: 

[[ m 1 + m 2 ]] = [[ m 1 ]] + [[ m 2 ]] (1) 

3.3. Skyline computation 

Considering that a large medical dataset P = { P 1 , . . . , P n } in m -dimensional space, P a and P b are two different points in P . 

Definition 2 (Positive Skyline Computation) . We define P a positive dominated P b , denoted by Pdom ( P a , P b ), if it satisfies the 

following conditions: (1) ∀ 1 ≤ j ≤ m, P a [ j ] ≤ P b [ j ]; (2) At least there exists one j, P a [ j ] < P b [ j ], where P i [ j ] is the j th dimension 

of P i and 1 ≤ i ≤ n . The positive skyline set PSKY ( P ) contains lots of points which are not positive dominated by any other 

points in P , and the value of Pdom ( P a , P b ) can be defined as 

P dom (P a , P b ) = 

{
1 , if P a positive dominated P b 
0 , otherwise. 

(2) 

Definition 3 (Negative Skyline Computation) . We define P a negative dominated P b , denoted by Ndom ( P a , P b ), if it satisfies the 

following conditions: (1) ∀ 1 ≤ j ≤ m, P a [ j ] ≥ P b [ j ]; (2) At least there exists one j, P a [ j ] > P b [ j ], where P i [ j ] is the jth dimension 

of P i and 1 ≤ i ≤ n . The negative skyline set NSKY ( P ) contains lots of points which are not negative dominated by any other 

points in P , and the value of Ndom ( P a , P b ) can be defined as 

Ndom (P a , P b ) = 

{
−1 , if P a negative dominated P b 
0 , otherwise. 

(3) 

Definition 4 (Additivity of Skyline Computation) . According to reference [21] , consider a medical dataset P and n datasets 

P i such that P = P 1 ∪ · · · ∪ P n , the following equation holds: 

SKY (P 1 ∪ · · · ∪ P n ) = SK Y (SK Y (P 1 ) ∪ · · · ∪ SKY (P n )) . (4) 

4. Proposed CAMPS framework 

In this section, we first introduce a precise global skyline diagnosis model by merging several local skyline diagnosis 

models from distributed medical databases, then we propose our efficient and privacy-preserving medical primary diagnosis 

framework CAMPS, which consists of five phase: 1) system initialization; 2) data preparation; 3) query generation; 4) privacy- 

preserving medical primary diagnosis service; 5)query result reading . Specifically, MA first provides registration for the user in 

the system initialization phase and executes some preprocess method on the global diagnosis model in the data preparation 

phase, and deliver the processed diagnosis model to the CS. Then, the user preprocesses the medical query by performing 

encryption operations in the query generation phase. After that, CS and MA perform the medical diagnosis service coopera- 

tively with Paillier homomorphic technique in the privacy-preserving online medical primary diagnosis service phase. Finally, 

the user obtains the final diagnosis result from MA in the query result reading phase. The overall procedure of CAMPS was 

shown in Fig. 3 . Meanwhile, we give the description of variables used in the following subsections in Table 1 for easier 

expression. 
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Fig. 3. The architecture of CAMPS. 

Table 1 
Definition of notations in CAMPS. 

Notation Definition 

g 1 , q 1 , q 2 , n 1 , h, G , G T , ̂  e The parameters of bilinear paring. 
λ1 , λ2 The partial of private key generated by TA. 
[[ · ]] Encryption with public parameter ( N, g ). 
GSM ( P ) Global skyline diagnosis model generated from dataset P. 
w, x, l Vector with m-dimension. 
ˆ w , ̂  x The expanded vector with m-dimension. 

L, U, V Matrix with m-column and n-row. 
ρ+ , ρ− Parameter of the diagnosis model. 
H ( · ) Cryptographic hash function. 
p, q, g, λ, N The parameter of paillier cryptosystem. 
r 1 , r 2 , r 3 Random number chosen by MA, CS, and U i . 
s, t The number of vectors in PSKY ( P ) and NSKY ( P ). 
| k | The length of k . 

4.1. Global skyline diagnosis model 

Assuming there are several distributed medical dataset P 1 , . . . , P n in m -dimensional space, and a large medical dataset 

P = P 1 ∪ · · · ∪ P n . In order to generate the global skyline diagnosis model GSM ( P ) from the medical dataset P , according to 

the definition 2, definition 3 and Eq. (4) , we calculates the skyline candidates in GSM ( P ) with the additivity of skyline 

computation: 

GSM(P ) = P SKY (P ) ∪ NSKY (P ) 

= P SKY (P 1 ∪· · ·∪P n ) ∪ NSKY (P 1 ∪· · ·∪P n ) 

= P SKY (P SKY (P 1 ) ∪ · · · ∪ P SKY (P n )) ∪ 

N SKY (N SKY (P 1 ) ∪ · · · ∪ NSKY (P n )) . 

From the above proof, we can conclude that due to the additivity of skyline computation, its easy to generate the global 

skyline diagnosis model in a distributed environment. Specifically, each sub-dataset can first operate skyline computation 
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on its dataset to extract the local skyline diagnosis model, then these local skyline diagnosis models will be delivered to the 

MA for merging the global skyline diagnosis model. Its worth noting that the local skyline diagnosis model is always not 

equal to the subset of the global skyline diagnosis model. 

Suppose that P SKY (P ) = { a 1 , . . . , a s } and NSKY (P ) = { b 1 , . . . , b t } , 1 ≤ s, t ≤ n , then the point a i and b j can present as vector 

� a i = (a i 1 , . . . , a im ) ∈ Z m 
q and � b j = (b j1 , . . . , b jm ) ∈ Z m 

q , where 1 ≤ i ≤ s and 1 ≤ j ≤ t , and the query request can present as vector 

� w = (w 1 , . . . , w m ) ∈ Z m 
p . 

According to Eqs. (2) and (3) , the skyline diagnosis standard is defined as follows: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

ρ+ = 1 
s 

s ∑ 

i =1 

P dom ( � a i , � w ) 

ρ− = 1 
t 

t ∑ 

j=1 

Ndom ( � b j , � w ) . 

(5) 

Only if 0 < ρ+ � 1 and −1 � ρ− < 0 , we confirms that the diagnosis result is positive. 

4.2. System initialization 

TA will bootstrap the whole medical primary diagnosis system and manage all private keys for all participants. 

Specifically, TA first chooses a security parameter k 1 and operates function Gen ( k 1 ) to generate the bilinear parameters 

(p 1 , q 1 , g 1 , G , G T , ̂  e , h, n 1 ) , where n = p 1 · q 1 . Then, TA chooses a random number in Z ∗q as its private key SK TA , and computes 

its public key P K TA = g 1 
SK TA . In addition, TA chooses a secure asymmetric encryption algorithm E (), i.e., ECC, and a secure 

cryptographic hash function H (), where H : { 0 , 1 } ∗ −→ G . Finally, TA keeps the tuple 〈 q 1 , SK TA 〉 as master key secretly, and 

publishes the system parameters < n 1 , g 1 , h, G , G T , ̂  e , P K TA , E() , H() > . 

MA chooses a random number in Z ∗q 1 as its private key SK MA , and computing the corresponding public key P K MA = g 1 
SK MA . 

Similarly, the cloud server CS and user U i also choose random numbers in Z ∗q 1 as their private key SK CS and SK U i , then 

computing their public key P K CS = g 1 
SK CS and P K U i = g 1 

SK U i . TA generates two large prime numbers p, q ( N = p · q, | p| = | q | ) 
and a generator g of order (p − 1)(q − 1) / 2 as the public parameter, then spit the private key λ into two parts λ1 and λ2 , 

where λ = lcm (p − 1 , q − 1) . When the cloud server, MA, and U i registering in the TA, TA sends ( N, λ1 ) back to the cloud 

server, ( N, λ2 ) to the MA, and N to the U i through a secure channel. 

4.3. Data preparation 

The global diagnosis model GSM ( P ) has plenty of medical data points, which contains lots of medical attributes (such as 

age, blood pressure, heart rate, et al.). In general, these medical data points are stored in MA with plaintext format, which 

can be presented as lots of vectors. Due to GSM(P ) = P SKY (P ) ∪ NSKY (P ) , the global diagnosis model GSM ( P ) can be shown 

as follow: 

GSM(P ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

� a 1 
· · ·
� a s 
� b 1 
· · ·
� b t 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

∣∣∣∣∣∣∣∣∣∣

a 11 , · · ·, a 1 m 
· · · , · · ·, · · ·
a s 1 , · · ·, a sm 

b 11 , · · ·, b 1 m 
· · · , · · ·, · · ·
b t1 , · · ·, b tm 

∣∣∣∣∣∣∣∣∣∣
. 

Before being uploaded to the cloud server, all vectors in global skyline diagnosis model should be blurred for security 

reasons, the procedure as follows. 

• For each data item x ij ∈ GSM ( P ), where 1 ≤ i ≤ n and 1 ≤ j ≤ m , MA first chooses a random number r 1 ∈ Z ∗
N 2 

, then performs 

the encryption operation as 

[[ x i j ]] = (1 + x i j N) · g r 1 mod N 2 . (6) 

• The MA computes the blurred global skyline diagnosis model [[ GSM ( P )]] with a secure asymmetric encryption algorithm 

E ( ·) and the public key PK MA , then outsourced the encrypted [[ GSM ( P )]] to the cloud server. 

After receiving the encrypted global skyline diagnosis model GSM ( P ) from MA, the cloud server mainly performs decryp- 

tion and homomorphic operations. 

• The cloud server first obtains the blurred global skyline diagnosis model [[ GSM ( P )]] with the secret key SK CS . 

• For each data item [[ x ij ]] ∈ [[ GSM ( P )]], the cloud server chooses a random number r 2 ∈ Z ∗
N 2 

and performs the following 

computations with Eqs. (1) and (6) . 

[[ ̂  x i j ]] = [[ x i j ]] 
2 · [[1]] = [[ x i j ]] · [[ x i j ]] · [[1]] 
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= (1 + 2 x i j · N) · g 2 r 1 · (1 + N) · g r 2 mod N 2 

= (1 + (2 x i j + 1) · N) · g (2 r 1 + r 2 ) mod N 2 

= [[2 x i j + 1]] . (7) 

All the data items in [[ GSM ( P )]] can be presented as follows: 

[[ GSM( ̂  P )]] = 

∣∣∣∣∣∣∣∣∣∣

[[2 a 11 + 1]] , · · ·, [[2 a 1 m + 1]] 
· · · , · · ·, · · ·

[[2 a s 1 + 1]] , · · ·, [[2 a sm + 1]] 
[[2 b 11 + 1]] , · · ·, [[2 b 1 m + 1]] 

· · · , · · ·, · · ·
[[2 b t1 + 1]] , · · ·, [[2 b tm + 1]] 

∣∣∣∣∣∣∣∣∣∣
. (8) 

4.4. Query generation 

After registering in the MA, user U K wants to access medical primary diagnosis service from the cloud server, before 

sending the query request, there are some blurred operations should be performed for privacy concerns. 

• Assume the query request can be presented as a vector � w = (w 1 , . . . , w m ) ∈ Z N , for each data item w j ∈ w , where 1 ≤ j ≤ m, 

U K chooses a random number r 3 ∈ Z ∗
N 2 

and performs the encryption operation as Eq. (6) . 

[[ w j ]] = (1 + w j N) · g r 3 mod N 2 . (9) 

• Let Q U K = < U K || [[ w ]] || T S 1 >, where [[ w ]] = ([[ w 1 ]] , · · ·, [[ w m ]]) and TS 1 is the current timestamp, which is used to resist the 

potential replay attack. U K generates a signature Sig K = (H(Q U K )) 
SK U K with his/her private key SK U K , and computes the 

medical query request E Q U K 
= E PK CS (Q U K || Sig K ) with the cloud server’s public key PK CS , then send it to the cloud server. 

4.5. Privacy-preserving diagnosis and response 

After receiving E Q U K 
, the cloud server verifies its validity firstly, then performs some computation and partially decryption 

operations on the medical query. 

• The cloud server decrypts E Q U K 
with its secret key SK CS to obtain Q U K and Sig K , then verifies its validity by checking 

whether ˆ e (g 1 , Sig K ) = ˆ e (P K U K , H(Q U K )) . If it does hold, the received medical query request E Q U K 
is valid. Then the cloud 

server extracts the blurred medical query vector [[ w ]]. 

• For each data item in [[ w j ]] ∈ [[ w ]], the cloud server performs the following operations with Eq. (9) . 

[[ ̂  w j ]] = [[ w j ]] 
2 = [[ w j ]] · [[ w j ]] 

= (1 + 2 w j · N) · g 2 r 3 mod N 2 

= [[2 w j ]] . (10) 

• For each data item [[ ̂ x i j ]] , where 1 ≤ i ≤ n and 1 ≤ j ≤ m , according Eqs. (7) and (10) , the cloud server choose a random 

number k ∈ Z N to compute 

[[ l i j ]] = ([[ ̂  x i j ]] · [[ ̂  w j ]] 
N−1 ) k 

= ([[ ̂  x i j ]] · ((1 + (N − 1) · 2 w j · N) · g 2 r 3 ·(N−1) mod N 2 )) k 

= ([[ ̂  x i j ]] · ((1 − 2 w j · N) · g 2 r 3 ·(N−1) mod N 2 )) k 

= ([[2 x i j + 1]] · [[ −2 w j ]]) 
k 

= ((1 + (2 x i j − 2 w j + 1) · N) · g 2 r 1 + r 2 +2(N−1) r 3 ) k 

= (1 + k (2 x i j − 2 w j + 1) · N) · g k (2 r 1 + r 2 +2(N−1) r 3 ) 

= [[2 k (x i j − w j ) + k ]] . (11) 

According to the Eqs. (8) and (11) , the matrix [[ L ]] can be presented in the form as follows: 

[[ L ]] = 

∣∣∣∣∣∣∣∣∣∣

[[2 k (a 11 − w 1 ) + k ]] , ···, [[2 k (a 1 m − w m ) + k ]] 
··· , ···, ···

[[2 k (a s 1 − w 1 ) + k ]] , ···, [[2 k (a sm − w m ) + k ]] 
[[2 k (b 11 − w 1 ) + k ]] , ···, [[2 k (b 1 m − w m ) + k ]] 

··· , ···, ···
[[2 k (b t1 − w 1 ) + k ]] , ···, [[2 k (b tm − w m ) + k ]] 

∣∣∣∣∣∣∣∣∣∣
. 
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• The cloud server performs partial decryption on matrix [[ L ]] to compute U by using the part of private key SK (1) = λ1 , for 

each u ij ∈ U , where 1 ≤ i ≤ n and 1 ≤ j ≤ m , we denote random number r = k (2 Nr 3 + 2 r 1 + r 2 − 2 r 3 ) and the computation 

process shown as follows: 

u i j = [[ l i j ]] 
λ1 

= (1 + l i j N) λ1 · g λ1 r mod N 2 

= (1 + l i j λ1 · N) · g λ1 r mod N 2 . (12) 

• Let Q CS = < U|| [[ L ]] || T S 2 >, where TS 2 is the current timestamp, which is used to resist the potential replay at- 

tack. The cloud server generates a signature Sig CS = (H(Q CS )) 
SK CS with his/her private key SK CS , and computes E Q CS = 

E PK MA (Q CS || Sig CS ) with MA’s public key PK MA , then send it to the MA. 

Upon receiving E Q CS , the MA verifies its validity firstly, then performs partially decryption operations on the intermediate 

calculate result. 

• The MA decrypts E Q CS with its secret key SK MA to obtain Q CS and Sig CS , then verifies its validity by checking whether 

ˆ e (g, Sig CS ) = ˆ e (P K CS , H(Q CS )) . If it dose hold, the received intermediate calculate result E Q CS is valid. Then the MA extracts 

the matrix U and [[ L ]]. 

• The MA performs partial decryption on matrix [[ L ]] to compute V by using the part of private key SK (2) = λ2 and Eq. (12) , 

for each v ij ∈ V , where 1 ≤ i ≤ n and 1 ≤ j ≤ m , the computation shown as follows: 

v i j = [[ l i j ]] 
λ2 · u i j 

= (1 + l i j λ2 · N) ·(1 + l i j λ1 · N) ·g r(λ1 + λ2 ) mod N 2 

= (1 + l i j (λ1 + λ2 ) · N) · g r(λ1 + λ2 ) mod N 2 

= (1 + l i j λ · N) · g rλ mod N 2 

= (1 + l i j λ · N) . (13) 

Then, due to gcd(λ, N) = 1 and Eq. (13) , MA recovers l ij with the computation: 

l i j = 

(
(1 + l i j · Nλ) − 1 

N 
mod N 2 

)
· λ−1 mod N 

= 2 k (x i j − w j ) + k. (14) 

• Due to x i j , w j ∈ Z q , we confirms the relationship between x ij ∈ L and w j ∈ w from the value of l ij . If 0 < l ij < N /2, then 

x ij ≥ w j ; otherwise, x ij < w j . According to Eqs. (2) and (3) , MA obtains the dominance relationship of each dimension in 

GSM ( P ) and the medical query vector w , and makes determination by performing the computations as follows. ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

ρ+ = 1 
s 

s ∑ 

i =1 

P dom (a i , w ) 

ρ− = 1 
t 

t ∑ 

j=1 

Ndom (b j , w ) . 

Only if 0 < ρ+ � 1 and −1 � ρ− < 0 , we denote the diagnosis result R = 1 , which means the diagnosis result is positive. 

• Let R MA = < R || T S 3 >, where TS 3 is the current timestamp, which is used to resist the potential replay attack. The MA 

generates a signature Sig MA = (H(R MA )) 
SK MA with his/her private key SK MA , and computes E R MA = E PK U K 

(R MA || Sig MA ) with 

user’s public key P K U K , then send it to the U K . 

4.6. Query result reading 

Upon receiving E R MA , U K verifies its validity firstly, then performs decryption operations to get the diagnosis result. 

• U K decrypts E R MA with its secret key SK U K to obtain R MA and Sig MA , then verifies its validity by checking whether 

ˆ e (g, Sig MA ) = ˆ e (P K MA , H(R MA )) . If it dose hold, the received response E R MA is valid. 

• Then U K extracts the final diagnosis result R . If R = 1 , it means that the diagnosis result is positive and he/she has got 

the certain disease. Otherwise, he/she is healthy. 

Correctness. In Eq. (13) , in order to ensure the correctness of the decryption, considering the aforementioned constraints, 

ie,. N = pq, where p and q are two large prime numbers and | p| = | q | , we set the generator g = −a 2 N , where a is a random 

number satisfy a ∈ Z ∗
N 2 

. In Eq. (14) , the length of k and N should satisfy the constraints: | k | < | N |/4, ie,. when | N| = 512 , we 

just set | k | = 100 . 
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5. Security analysis 

In this section, we analyze the security properties of the proposed CAMPS framework. Specifically, following the security 

requirements discussed in Section 2 , our security analysis will mainly focus on three parts: how the CAMPS framework pro- 

tects the privacy of the user’s medical query, ensures the confidentiality of global skyline diagnosis model, and authenticates 

the query request and response. 

1) The Privacy of User’s Medical Query . The user’s medical query is privacy preserving during the full procedure in the 

proposed CAMPS framework. 

• In Query Generation phase, the medical query w is encrypted by performing operations [[ w j ]] = (1 + w j N) · g r 3 mod N 2 for 

each w j ∈ w before being sent to the cloud server. After receiving the encrypted medical query [[ w ]] in Privacy-Preserving 

Diagnosis and Response phase, the cloud server performs some computation operations on [[ w ]] to generate an interme- 

diate result [[2 k (x i j − w j ) + k ]] for each x ij ∈ GSM ( P ), while the medical query [[ w ]] is always in an encrypted format, and 

the generator g and N are only known by the MA and the registered users, therefore, the cloud server cannot obtain the 

user’s real medical query w from [[ w ]]. 

• In Privacy-Preserving Diagnosis and Response phase, the cloud server delivers the intermediate result [[2 k (x i j − w j ) + k ]] to 

the MA for computing the final diagnosis result R . Although MA can obtain the real value of 2 k (x i j − w j ) + k by using 

the partially private key λ2 , the generator g , and N , since k is kept secret by the cloud server, MA can only obtain the 

dominance relationship between vectors x i and w , while can not get the accurate information about the medical query 

w . 

Due to the collusion attack between the cloud server and the MA is not considered, moreover, the communication be- 

tween U K , the cloud server, and MA is transmitted under secure channel, and only the valid entity can obtain the encrypted 

query request. Thus, the user’s medical query is privacy-preserving during the full procedure in the proposed CAMPS frame- 

work. 

2) The Confidentiality of Diagnosis Model . The proposed CAMPS framework can achieve confidential on MA’s global skyline 

diagnosis model during the full procedure. 

• In Data Preparation phase, since the global skyline diagnosis model consist by a lot of skyline data points, each data item 

is encrypted by performing operations [[ x i j ]] = (1 + x i j N) · g r 1 mod N 2 before being sent to the cloud server as well. After 

receiving the encrypted global skyline diagnosis model [[ GSM ( P )]], the cloud server compute [[ ̂  x i j ]] = [[2 x i j + 1]] at first. 

When the user U K access the medical primary diagnosis service by sending the encrypted medical query [[ w ]], the cloud 

server performs some computation operations on the each data item [[ x ij ]] ∈ [[ GSM ( P )]] to generate the intermediate 

result [[2 k (x i j − w j ) + k ]] , while the data item [[ x ij ]] is always in an encrypted format, and the generator g and N are only 

known by the MA and the registered users, therefore, the cloud server cannot obtain the MA’s data item x ij from [[ x ij ]]. 

• In Privacy-Preserving Diagnosis and Response phase, After receiving the intermediate result [[2 k (x i j − w j ) + k ]] , MA obtains 

the dominance relationship between each dimension x ij ∈ GSM ( P ) and w j from the value of 2 k (x i j − w j ) + k by performing 

the final partially decryption with λ2 at first, then generates the final diagnosis result R by performing the standard of 

skyline diagnosis model. When user U K obtain the diagnosis result R in Query Result Reading phase, since the value of R is 

either 1 or 0, which means positive and negative in certain disease, therefore, U K can not gain any accurate information 

about the data item x ij ∈ GSM ( P ). 

Due to the collusion attack between the cloud server and the user is not considered, moreover, the response from MA 

to U K is transmitted under secure channel, and only the valid user can obtain the encrypted response. Thus, the proposed 

CAMPS framework can achieve confidential on MA’s global skyline diagnosis model during the full procedure. 

3) The Authentication of Query Request and Response . In the proposed CAMPS framework, each registered user’s request is 

signed by Boneh–Lynn–Shacham (BLS) short signature [6] . Since the BLS short signature is provably secure under the oracle 

model, the source authentication was guaranteed. Moreover, any unregistered user cannot submit valid query request to the 

cloud server without the valid secret key, she/he also cannot submit valid query request to the cloud server. As a result, the 

query request from the unregistered user and response from the mendacious cloud server can be detected in the proposed 

CAMPS framework. 

From the above analysis, we can conclude that the proposed CAMPS framework is secure and privacy-preserving both for 

user, the cloud server and MA, and all the security requirements are achieved as well. 

6. Performance evaluations 

In this section, we first evaluate the accuracy and computational complexity of the proposed CAMPS framework. Then, 

we implement CAMPS framework and deploy it in the real environment to evaluate its integrated performance. 
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Fig. 4. Implementation of CAMPS. 

Table 2 
Comparison of accuracy. 

Accuracy CAMPS SRPD 

Yes(538) 518(96%) 518(96%) 
No(379) 365(96%) 365(96%) 
Overall(917) 885(96%) 885(96%) 

6.1. Evaluation environment 

In order to measure the comprehensive performance of CAMPS in the real environment, we implement CAMPS on com- 

puters and smart phone with a real medical database. Specifically, a smart phone with 2.4 GHz eight-core processor, 4-GB 

RAM, and an HUAWEI EMUI 5.0 operating system is chosen to evaluate the medical user; Three computers with 2.3 GHz 

six-core processor, 16GB RAM, Windows 7, are chosen to evaluate the cloud server, MA and TA, respectively, which are con- 

nected through 802.11g WLAN. Based on CAMPS framework, we construct three simulators in the computer to simulate the 

cloud server, MA, and TA, another simulator in the smart phone to simulate the user. As shown in Fig. 4 , a user choose 

the type of disease and input the value of each physiological data item through the client, then get the primary medical 

diagnosis result from the cloud server. In order to obtain the correct primary diagnosis result, we can just set the length of 

parameter | r 1 | = | r 2 | = | r 3 | = 512 . In addition, we consider one real dataset which is from the UCI machine learning reposi- 

tory called Heart Disease Data (HDD) Set [2] to evaluate the accuracy of our proposed framework. 

6.2. Accuracy evaluation 

Based on the HDD, we choose four different datasets such as cleveland.data (298 instances), hungarin.data (293 in- 

stances), long-beach-va.data (202 instances), and switzerland.data (124 instances) to evaluate the accuracy of CAMPS. Each 

item in the dataset contains 75 attributes, we extract the main 12 attributes that may closely related to the heart disease, 

such as age in years, chest pain type, resting blood pressure in mm/Hg, serum cholesterol in mg/dl, fasting blood sugar, 

resting electrocardiographic results, maximum heart rate, exercise-induced angina, old peak, the slope of the peak exercise 

ST segment, the number of major vessels colored by fluoroscopy, the year of cardiac cath. Before generating the skyline 

diagnosis model, all the instances from the HDD should be normalized. Then, each dataset generates its local skyline diag- 

nosis model and computes the final global skyline diagnosis model cooperative with skyline computation. After that, we test 

the success rate in the plain domain (abbreviated as SRPD) by using the global skyline diagnosis model GSM ( P ) and HDD. 

Meanwhile, we take advantage of GSM ( P ) to evaluate the accuracy of our proposed CAMPS framework with same evaluation 

environment. Thus, we obtained the comparison of accuracy. As shown in Table 2 , we can see that the total number of cor- 

rectly diagnosed heart disease instances is 518 out of 538 and that of non-heart disease instances is 365 out of 379. In total, 

885 samples are correctly classified out of 917(96%), our privacy-preserving framework does not compromise the accuracy, 

and the test result also confirms it by achieving the same accuracy as that of SRPD. 

6.3. Computation complexity 

For the proposed CAMPS framework, there are three parties (include users, the cloud server, and MA) involved in the 

computation to provide medical primary diagnosis service. Suppose the global skyline diagnosis model GSM ( P ) contains n 

elements, each element has m attributes. We assume that one regular exponentiation operation with an exponent of length 

| M | requires 1.5| M | multiplications [15] (e.g., if the length or r is | M |, then the computation of g r is 1.5| M | multiplications). 
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Table 3 
Comparison of computation complexity . 

User Cloud server C 1 MA/Cloud server C 2 

CAMPS 1.5 m | M | (3 mn + 1 . 5 m ) | M| 1.5 mn | M | 
FSSP [20] 1.5 m | M | (3 nl + (3 n + 1 . 5) log 2 n + 1 . 5 nm + 1 . 5 l) | M| (3 nl + (1 . 5 n + 1 . 5) log 2 n + 1 . 5 nm + 1 . 5 l) | M| 

As exponentiation operation is significantly more computation costly than the addition and multiplication operations, we 

ignore the fixed numbers of addition and multiplication operation in our analysis. 

In the phase of Query Generation , the user performs operations [[ w j ]] = (1 + w j N) · g r 3 mod N 2 for each w j ∈ w before be- 

ing send to the cloud server, where 1 ≤ j ≤ m , which requires 1.5 m | M | multiplications. After receiving the encrypted med- 

ical query [[ w ]] in Privacy-Preserving Diagnosis and Response phase, the cloud server first performs computation opera- 

tions on [[ w j ]] to generate [[ ̂  w j ]] , which requires 1.5 m | M | multiplications; After that, for each element [[ x ij ]] ∈ [[ GSM ( P )]], 

where 1 ≤ i ≤ n , the cloud server computes ([[ ̂  x i j ]] · [[ ̂  w j ]] 
N−1 ) k to generate [[ l i j ]] = [[2 k (x i j − w j ) + k ]] , which requires 1.5 mn | M | 

multiplications; Last, the cloud server performs partial decryption on [[ l i j ]] 
λ1 to generate u ij with the part of private key 

SK(1) = λ1 , which requires 1.5 mn | M | multiplications. Thus, the cloud server cost approximate (3 mn + 1 . 5 m ) | M| multiplica- 

tions totally during the medical diagnosis service. When MA receives the U , it performs final partial decryption on [[ l ij ]] to 

compute v i j = [[ l i j ]] 
λ2 · u i j by using the partially private key SK(2) = λ2 , then recovers l i j = 2 k (x i j − w j ) + k with the λ−1 , 

which requires 1.5 mn | M | multiplications. 

Different from other time-consuming encryption techniques, the proposed CAMPS framework achieves high accuracy 

medical primary diagnosis service and largely reduce the encryption time for the smartphone and the cloud server by 

using the paillier cryptosystem with threshold decryption technique. In order to compare with CAMPS, we select a privacy- 

preserving scheme which performs secure skyline queries over encrypted cloud server, we denoted it as FSSP [20] . Within 

FSSP, cloud server C 1 was tasked to storage the encrypted medical records and performs the main computation, an other 

non-colluding cloud server C 2 hold the private key shared by the data owner and assist with the computation, while the 

user dose not need to participate in any computation except encrypt the medical query and combine the partial result 

from the cloud server C 1 and C 2 . We assume the dimension of query vector is m and the number of vectors in the cloud 

server C 1 is n , the corresponding computational costs of the user, the cloud server C 1 and C 2 are 1.5 m | M | multiplications, 

3 nl + (3 n + 1 . 5) log 2 n + 1 . 5 nm + 1 . 5 l multiplications and 3 nl + (1 . 5 n + 1 . 5) log 2 n + 1 . 5 nm + 1 . 5 l multiplications, where l is 

the length of the attributes in the vectors. 

As shown in Table 3 , it is obvious that our proposed CAMPS framework can achieve efficient medical primary diagnosis 

with low computation complexity both in the cloud server and MA, while the computation complexity of users is equal, 

because the client have not participated in the computation during the diagnosis. To further demonstrate the advantage of 

CAMPS, we denote the cloud server and MA as the healthcare service provider (SP) and evaluate the total average running 

time under the evaluation environment described in Section 6.1 . Fig. 5 depict the computation overhead varying with the 

dimension of the query vector and the number of vectors in SP. Through comparing Fig. 5 , we can find that with the increase 

of the numbers of vectors, the computation overhead of FSSP significantly increases and it is much higher than that of our 

proposed CAMPS framework. Although the computation overhead of our proposed CAMPS framework also increases when 

the number of vectors is large, it is still much lower than that of FSSP. In conclusion, our proposed CAMPS framework can 

achieve better efficiency on computation overhead in SP. 

6.4. Efficiency evaluation 

In order to test the factors that may affect the efficiency of our proposed CAMPS, different GSM ( P ) are randomly gener- 

ated. We evaluate the computation cost and communication overhead both in the cloud server, MA and user. Based on the 

definition of skyline computation, we can note that the dimensions of vectors and the total number of vectors in GSM ( P ) 

may be the main factors that impact the computation complexity on the cloud server in CAMPS. Therefore, we choose dif- 

ferent dimensions and number of vectors to illustrate the computation cost. The dimension is selected from 2 to 11, and 

the number is from 210 to 300. In order to ensure the accuracy, we perform the experiment 10 0 0 times with different 

dimensions and numbers. 

1) Computation Cost. We first evaluate the main factors that impact the computation cost of the cloud servers, the MA 

and user. 

The Cloud Server : As shown in Fig. 6 (a), we can learn that the computation overhead of the cloud server is increased with 

the dimension and number. When providing the medical primary diagnosis service, the cloud server have to compute the 

intermediate result [[2 k (x i j − w j ) + k ]] and perform partially decryption operations on each x ij ∈ GSM ( P ), where 1 ≤ i ≤ n and 

1 ≤ j ≤ m , which cost much more time with the increase of vectors’ dimension and number. However, due to the fact that 

basic operations are based on paillier cryptosystem with threshold decryption techniques, the maximum time required for 

the cloud server is less than 16s under the evaluation environment. 

The MA : As shown in Fig. 6 (b), we can also learn that the computation overhead of the MA is increased with the dimen- 

sion and number. The reason is that, after receiving the intermediate result u ij and [ l ij ] from the cloud server, MA have to 
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Fig. 5. Average running time in CAMPS vs FSSP ( K = 512 ). 

Fig. 6. Performance evaluation of CAMPS. 
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perform the final partially decryption and multiplication operations on each u ij and [ l ij ], the computation time also increased 

with vectors’ dimension and number. However, due to the fact that basic operations are based on paillier cryptosystem with 

threshold decryption techniques, the maximum time required for the MA is less than 8s under the evaluation environment. 

The User : As shown in Fig. 6 (c), we can also learn that the computation overhead of the user is increased with the 

dimension and number. The reason is that, when user wants to access medical primary diagnosis service, each dimension of 

query vector w j ∈ w should be encrypted before being sent to the cloud server for privacy concerns. Thus, the computation 

time of the user also increased with vectors’ dimension and number. However, due to the fact that basic operations are 

based on paillier cryptosystem with threshold decryption techniques, the maximum time required for the user is less than 

500 ms under the evaluation environment. 

2) Communication Overhead. In CAMPS framework, the user first deliver the query request packet E Q U K 
= E PK CS (Q U K || Sig K ) 

to the cloud server, then the cloud server will compute the intermediate result and perform partially decryption on 

the query, then send the packet E Q CS = E PK MA (Q CS || Sig CS ) to the MA for further process. After receiving the packet E Q CS = 

E PK MA (Q CS || Sig CS ) , MA will compute the final medical diagnosis result and responds the packet E R MA = E PK U K 
(R MA || Sig MA ) to 

the user. In the real environment, we record the size of the packets, as shown in Fig. 6 (d), with the increase of the di- 

mensions and numbers of vectors in the cloud server, the communication overhead of CAMPS increases as well, when the 

dimension of the vectors is 11 and the number of vectors is up to 300, the total communication cost is less than 10MB 

under the predefined evaluation environment. 

From the aforementioned analysis, we can conclude that our proposed CAMPS framework is indeed efficient in terms of 

computation and communication cost, which is suitable for providing online medical primary diagnosis service on mobile 

terminals. 

7. Related work 

In this section, we will introduce some related works on skyline computation and privacy-preserving technique. 

Skyline Computation . The skyline query has become a popular paradigm for extracting interesting objects from multi- 

dimensional databases. The skyline operator was first introduced to the database community by Borzsony et al. [7] with 

algorithm named Block Nested Loop (BNL) and Divide and Conquer (D&C). Thereafter, it was widely studied for building 

user’s personalized queries over centralized and distributed databases. Several sequential skyline algorithms [14,26] have 

been designed on efficiency for centralized storage, and the Z-search algorithm proposed by Mingjie et al. [26] was the 

state-of-the-art skyline computation algorithm. Recently, abundant research achievements have been gained to address dis- 

tributed skyline computation for big data after the first research introduced by Balke et al. [3] , which supports the web 

information vertically partitioned into lists for extending the expressiveness of web information system. Thereafter, Park 

et al. [30] proposed a parallel algorithm called SKY-MR, to compute the skylines by using MapReduce. In their scheme, a 

Quadtree was constructed for sampling data and judging the dominance relationships among different partitions, while the 

cost of data IO is heavy. In order to improve the efficiency during the process of skyline queries with the MapReduce frame- 

work, Koh et al. [16] proposed two algorithms to prevent the bottleneck of centrally finding the global skyline from the local 

skylines by reducing the number of dominance test and performing the necessary dominance test in parallel. Zhou et al. 

[37] proposed an adaptive algorithm named ADSUD, which redefine the approximate global skyline probability and choose 

local representative tuples due to minimum probabilistic bounding rectangle adaptively. However, both centralized skyline 

and distributed skyline computation were well studied on improving the efficiency, while little of the works considered 

on the application of similarity search. Kossmann et al. [17] proposed Nearest Neighbor algorithm which used the existing 

R-tree nearest neighbor search to split the data space recursively, while the privacy issue was overlooked. By embedding 

and exploring a novel neighboring relationship among POIs, Chen et al. [8] proposed three schemes that enable efficient 

verification of any location-based skyline query’s result returned via an untrusted service provider. Liu et al. [21] proposed a 

skyline computation framework across multiple domains, within the framework, a skyline result from local service providers 

and collaborative service providers will be securely computed to provide better services for the client with a high efficiency. 

In order to select the similar (or best) medical record over encrypted database, Liu et al. [20] proposed a fully secure skyline 

query protocol on data encrypted using semantically-secure encryption, and the new secure dominance protocol can also 

be used as a building block for other queries, while the overhead of computation is heavy. Moreover, Lu et al. [24] pointed 

out that the conventional query over an encrypted database was not suitable for big data processing. Therefore, the more 

efficient secure skyline computation framework should be redesigned to fit for big data environment. 

Privacy-preserving Technique . Traditional anonymization techniques such as k -anonymity [34] and l -diversity [25] , which 

through removes the personal identifiers (such as name and SSN) and obfuscating the quasi-identifiers (such as age, zip 

code, and gender) within a subpopulation to protect the identity of a patient. However, in order to enjoy a high-quality 

medical primary diagnosis service, the user’s query data always contain personal physiological data such as age, weights, 

and blood types, or even some ultimate personal identifiable information such as fingerprints and DNA profiles. Once the 

non-trusted server in diagnosis system obtains the medical data, it may be able to identify an individual user easily. Al- 

Fedaghi et al. [1] established a semi-automated methodology for measuring personal identifiable information’s sensitivity 

starting from initial values that can be refined manually and by self-learning from previous evaluations, the experimen- 

tal result shown that even seemingly benign medical information such as blood pressure can be used to identify individual 
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users, not to mention that ultimate information such as DNA. Organick et al. [27] propose a risk-scale system and a method- 

ology to identify the presence of some participants in a study from DNA data, and even fully recover their DNA sequences 

in some cases. Hence, the anonymization techniques are not quite suitable for protecting the user’s privacy in online med- 

ical primary diagnosis system. Differential privacy has become the de facto standard for privacy-preserving data analytics 

[11] , the central idea is to adequately obfuscate a query response by adding noise typically drawn from a Laplace distri- 

bution, such that the presence or absence of any user in the database is protected. Saleheen et al. [33] defined a new 

behavioral privacy metric based on differential privacy, then proposed a novel data substitution mechanism named mSieve 

with Dynamic Bayesian Network (DBN) to protect behavioral privacy. However, these randomization approaches are often 

unsuitable for medical primary diagnosis, as they distort the data making it unusable for critical inferences, especially for 

physiological data, which is extremely strict about accuracy to avoid misdiagnosis. Different homomorphic encryption tech- 

niques are introduced in the medical diagnosis system [22,31] , which enabled the healthcare service providers to process the 

encrypted query without gaining any knowledge on user’s medical data, and the corresponding medical instruction with- 

out revealing any knowledge about the diagnosis system. Rahulamathavan et al. [31] proposed a privacy-preserving system 

with SVM, which can help to diagnose the user without compromising the privacy of the users and third party. Similarly, 

a privacy-preserving clinical diagnosis system using naive Bayesian classier was proposed by Liu et al. [22] , which can also 

help clinician complementary to diagnose the risk of patients disease in a privacy-preserving way. Since all the encrypted 

operations are based on homomorphic encryption technique, the overhead of computation would be a stumbling block in 

making homomorphic encryption technology popularization in medical primary diagnosis system. 

Different from all of the aforementioned works, our proposed CAMPS framework based on a skyline diagnosis model, 

which has a high accuracy. Moreover, aims at the efficiency and privacy issues, the CAMPS can protect users’ medical data 

privacy and ensure the confidentiality of diagnosis model in the untrusted cloud server. Furthermore, based on paillier 

cryptosystem with threshold decryption techniques, our proposed CAMPS can be easily implemented in smart terminals 

due to its high efficiency. 

8. Conclusions 

In this paper, we propose an efficient and privacy-preserving medical primary diagnosis framework (CAMPS). Within 

CAMPS framework, the precise diagnosis models are outsourced to the cloud server in an encrypted manner, and users 

can access accurate medical primary diagnosis service timely without divulging their medical data. Specifically, based on 

partially decryption and secure comparison techniques, a special fast secure two-party vector dominance scheme over ci- 

phertext is proposed, with which CAMPS achieves privacy preservation of user’s query and the diagnosis result, as well as 

the confidentiality of diagnosis models in the outsourced cloud server. Through extensive analysis, we show that CAMPS 

can ensure that users’ medical data and healthcare service provider’s diagnosis model are kept confidential, and has sig- 

nificantly reduce computation and communication overhead. In addition, performance evaluations via implementing CAMPS 

demonstrate its effectiveness in term of the real environment. 
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