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ABSTRACT Electronic Health Record (EHR) is a digital health documentary. It contains not only the health-
related records but also the personal sensitive information. Therefore, how to reliably share EHR through
the cloud is a challenging issue. Ciphertext-policy attribute-based encryption (CP-ABE) is a promising
cryptography prototype, which can achieve fine-grained access control as well as one-to-many encryption.
In CP-ABE, access policy is attached to the ciphertext, and however, the access policy is not protected,
which will also cause some privacy leakage. In this paper, we propose a policy preserving EHR system on
the basis of CP-ABE. Specifically, we designed an algorithm, which can hide the entire access policy as well
as recover the hidden attributes from the access matrix. The subsequent evaluation of element insert, lookup,
and recovery shows that our proposed scheme only introduces light-weighted overhead cost. The security
analysis indicates that the scheme is selectively secure under q-BDHE assumption.

INDEX TERMS Attribute cuckoo filter (ACF), access control, cloud computing, CP-ABE, Electronic Health
Record (EHR), policy preserving.

I. INTRODUCTION
Electronic Medical Record (EMR) is a systematized digital
record which contains the detailed health information of a
patient and population. The initially conception of EMR is
to take place of traditional papery medical record, so as to
improve the management of cases in a health-care institu-
tion. However, due to the increasingly concern of self-health,
general population also want to obtain and manage their
own health information in some way. Thus, a novel person-
alized health information management system called Elec-
tronic Health Record (EHR) became popular. By using EHR,
on the one hand, users are able to manage their own health
records. They can fill the corresponding columns with some
physical symptoms obtained from wearable devices or the
physical examinations from medical institutions at anytime.
On the other hand, users are able to monitor their own health
variation trends up to date. Therefore, the new health man-
agement style attracts more and more attention world-widely.
Health-care enterprises tailored for different individuals with

personalized EHR systems, such as, Praxis, WRS Health,
Medent, etc [1]. Health-care institutes also permit the patient-
centric management pattern. Healthy ecospheres are built
upon the basis of these EHR systems.

If all the benefits mentioned above are from the
users’ aspect, then the following plenty of advantages are
listed on account of diagnosis. According to athenahealth
‘‘2012 Physician Sentiment Index’’ [2]. 81% of physicians
said they believe EHRs improve access to clinical data. More
than two-thirds said an EHR can actually improve patient
care. EHR reduces the paperwork of the clinician, and help
to establish and maintain effective clinical work-flows. More
importantly, EHR provides an opportunity to interact with
affiliated hospitals, clinics, labs, and pharmacies seamlessly.

In the modern health-care environment, cloud computing
plays an important role. EHR providers are willing to out-
source their EHR to the cloud for the purpose of accessing
them at anytime and anywhere. However, the cloud server
is assumed to be semi-trusted, which means it will sniffer
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FIGURE 1. Functions of an EHR.

as much personal information as it could besides following
the orders given by the users. It can be seen in Fig.1 that
EHR consists of various types of items more than health-
related only. For example, the annual income, certificate of
medical insurance, e-prescription, etc. Thus, the outsourcing
of plaintext EHR to the cloud will lead to a high potential
risk of personal privacy leakage. Recently, for instance [3],
the health ministry of Singapore confess that hackers attacked
an EHR database of a health-care corporation. About a mil-
lion and a half users’ private information suffers from illegal
access. This means one out of four individuals of Singapore,
including the prime minister, encounter personal privacy dis-
closure. Therefore, the privacy protection of the outsourcing
EHR became an ongoing research focus [4]. The mainstream
of protecting EHR in the cloud can be summarized into
Cryptography and Non-cryptologymethods in general. Here,
we focus on the avoidance of unauthorized disclosure of
sensitive information, videlicet, secure fine-grained access
control.

Fine-grained access control mechanisms have been widely
studied and adopted in various research fields. Whereas,
classical access control mechanisms (e.g., access control list)
cannot meet the needs of EHR in the cloud environment.
Firstly, the outsourcing of plaintext EHR to the cloud without
any assurances of privacy and security protection, the ben-
efits of the EHR providers will be compromised. Secondly,
traditional cryptography scheme is incapable to achieve one-
to-many encryption which is affirmatively required in the
cloud sharing scenarios. Therefore, a brand-new cryptogra-
phy prototype named Fuzzy identity-based encryption was
introduced, which is also known as Attribute-Based Encryp-
tion (ABE) [5]. ABE can be evolved into Key-Policy ABE
(KP-ABE) [6] or Ciphertext-Poicy ABE (CP-ABE) [7] by
applying policy either to the key side or the ciphertext side.
With the help of CP-ABE, EHR providers are able to formu-
late the appropriate policies according to the content of the
EHRs they want to share through the cloud. EHR consumers
(e.g. clinician, assurance company employee) can decrypt
the EHR files only if their attributes could satisfy the policy
attached in the ciphertext. It seems that CP-ABE is a perfectly
matched method for the secure sharing of EHR in the cloud
environment. However, it suffers from a serious problem:
The access policy would reveal the privacy, for the access
policy is not in a ciphertext form, thus adversary can obtain

some sensitive information about the EHR consumers as well
as the EHR providers through the policy. For example, Bob
have cardiopathy, he encrypts his health record files using the
policy ((‘‘cardiologist’’ and ‘‘female’’) and ‘‘Peking Union
Medical College Hospital’’). An adversary could easily get
that Bob has some cardiologist disease, and he/she may still
guess that Bob is in Peking Union Medical College Hospital
(PUMCH) in all probability, which reveals the privacy of
Bob. Additionally, if he/she finds that Alice could fetch and
get access to the EHR. He/she can speculate that Alice is a
cardiologist doctor working in PUMCH, which also reveals
the privacy of Alice.

In order to prevent privacy leakage through the access
policy. Some policy preserving schemes have been pro-
posed. A straightforward way is to hide the attributes in
the policy [8], [9]. However, decryption became challenging
since neither the authorized users nor the adversaries know
what attributes are contained in the access policy. Therefore,
the subsequent schemes try to divide the attributes into two
parts: ‘‘attribute name’’ and ‘‘attribute value’’ (e.g., occupa-
tion: cardiologist) [10], [11]. The attribute values are hidden
by using the wildcards while the attribute names can still be
seen in the access structure which will reveal some informa-
tion anyway.Moreover, these partially hidden policy schemes
either have a special request on the expression of access
structure (e.g., AND-gates onmulti-valued attributes) or have
a low efficiency in practical terms [12].

The main idea of our work is to hide the entire access
structure of the EHR instead of hiding the attribute values
only. Besides, the expressiveness of the access structure is
also the main aspect of our architecture. We decide to use the
basic idea of linear secret sharing scheme (LSSS) since it is a
widely acknowledged access structure. The LSSS structure is
formulated as (M, ρ), in which (M) represents a policymatrix
and function ρ maps each row Mi of M to an attribute [13].
For the purpose of hiding the access policy, the function ρ
should be replaced. Moreover, since the policy is completely
hidden, an attribute matching algorithm should be designed to
decide and precisely locate the attributes right in the anony-
mous access policy. Therefore, we designed a new element
filter named Attribute Cuckoo Filter (ACF). ACF helps to
locate the attributes in the hidden access policy, and can also
save a lot of computation cost as well as storage overhead.
The main contribution of our work can be summarized as
follows.

1) A novel EHR system with policy hidden CP-ABE is
constructed. The entire policy of EHR is hidden instead of
hiding the attribute values only to enhance the security prop-
erty. In detail, before outsourcing EHR to the cloud server,
we separate the access structure from the ciphertext, then
convert the access matrix into a hidden status. Afterward,
the converted access matrix will be outsourced to the cloud
along with the ciphertext. Since nobody knows the specific
attribute in the access policy, thus the policy security can be
guaranteed. However, the authorized EHR consumer wants to
decrypt the EHR, there has to be another reliable and efficient
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way to match their attributes to the ciphertext in the hidden
policy matrix.

2) We designed a feasible and efficient attribute matching
algorithm to decide whether an attribute is in an anony-
mous access policy which we named Attribute Cuckoo Filter
(ACF). If so, ACF is also capable to locate and recover the
attributes accurately. Specifically, we put forward a multiple
table ACF to avoid the element inserting collision. Compared
with the schemes of same kind. Our proposed scheme have
an obvious improvement in efficiency.

3) We proved the security of our scheme, and the experi-
ment result indicates that our scheme can protect the access
policy by only introducing a small overhead.

II. RELATED WORK
Cloud storage separates the ownership and the control benefit
of the EHR provider. Besides, it is widely believed that the
cloud server cannot be fully trusted (i.e. semi-trusted). That
is to say, it will follow the protocols, but tries to explore as
much privacy of the data as it could [14], [15]. Intuitively,
encrypt the EHR before outsourcing them to the cloud is an
effective solution. However, traditional public key encryption
(PKE) cannot satisfy the needs of one-to-many encryption.
It has to distribute different private key for different users for
decryption. Meanwhile, there should be the same amount of
copies of ciphertext. To tackle this problem, Attribute-Based
Encryption (ABE) was put forward [5]. Yu et al. [16] con-
struct the first fine-grained access control scheme in the cloud
by using KP-ABE. After that, fruitful researches of using
KP-ABE and CP-ABE lay the foundation for preserving the
privacy in the cloud [17], [18]. However, policies in these
works are not protected. Kapadia et al. [8] proposed a secure
Attribute-Based publishing scheme with hidden credential
and hidden policies, it uses the wildcards to hide the attributes
in the policy. But the scheme cannot resist collusion attack.
Nishide et al. [10] put forward two ABE schemes with policy
partially hidden, nevertheless, the two constructions support
the same expressiveness of policy (e.g. AND-gates on multi-
valued attributes with wildcards). Li et al. [11] improved the
attribute hiding method by using a hash value to demonstrate
the corresponding value of an attribute. Lai et al. presented
a fully secure policy hiding CP-ABE. The security model is
better than [10] and [11], but the policy expression is still
restricted to be AND-gates on multi-valued attributes with
wildcards. Moving one step forward, Lai et al. proposed
a fully secure CP-ABE with partially hidden policy using
LSSS structure [12], but the scheme is constructed on the
composite-order group, so the efficiency is extremely lower
than the constructions build on the prime order group.

Yang et al. [19] attempt to solve the policy preserving issue
through another aspect. Their key to solving the problem is
how to match the attributes correctly to the hidden policy.
They proposed a novel attribute matching algorithm called
Attribute Bloom Filter (ABF) to find and correspond the
attributes to the relevant row in the access matrix. How-
ever, bloom filter (BF) has a non-negligible false positive

FIGURE 2. A demonstration of cuckoo filter, two hash per item and four
entries per bucket.

probability. That is to say, BF could estimate an attribute
which is actually not in the policy to be in the access struc-
ture by mistake, which will cause some unauthorized access.
Besides, the proposed ABF cannot completely solve the hash
value conflicting issue.

The remaining of this paper contains the following con-
tents. First, we give a brief introduction of the related works
in Section II. In Section III, the preliminaries are presented.
After that, we provide the systemmodel, then the definition of
the scheme as well as the security model in Section IV. Our
CP-ABE scheme is detailed in Section V. Security analysis
and the performance evaluation are discussed in Section VI.
Finally, conclusion of the paper is given in Section VII.

III. PRELIMINARIES
A. CUCKOO FILTER
Cuckoo Filter (CF) is a novel way to approximately estimate
whether a given item is in a set [22]. Cuckoo filter consists of
an array of buckets as shown in Fig.2. The buckets contains
multiple basic units called entry. Each entry stores one finger-
print.1 In order to optimize the space efficiency, CF utilizes
a technique named partially-key cuckoo hashing to generate
the fingerprint of the inserting item. The fingerprint will be
stored at either two of the candidate locations in the bucket.

Initially, the buckets are all empty. To add an element x
to the bucket, CF first use partially-key cuckoo hashing to
generate the fingerprint of x. Then the alternate location can
be determined based on the fingerprint by using the following
equations:

h1(x) = hash(x),

h2(x) = h1(x)⊕ hash(x ′s fingerprint). (1)

The important property of xor operation in (1) makes the
calculation of h1(x) from h2(x) and the fingerprint using the
same formula and vice versa.

To check whether a given element y is in the bucket.
The algorithm first calculates the fingerprint of y, then the
two candidate buckets according to (1). CF returns true if
any existing fingerprint in either bucket matches. Otherwise,

1The fingerprint is a constant-sized hash value of the item to be insert
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CF returns false, which means the element y is not in the
bucket.

B. BILINEAR PAIRING
A bilinear pairing has the properties of bilinear and non-
degenerate as well as computable detailed as follows: Let G
and GT be two groups of multiplicative. Let g be a generator
of G. Then, the bilinear mapping function e : G×G→ GT
has the following properties:

1) Computable: For all u, v ∈ G, e(u, v) could be
computed efficiently.

2) Bilinear: For all x, y ∈ Zp, e(gx , gy) = e(g, g)xy.
3) Non-degenerate: e(u, v) 6= 1 where u, v ∈ G.

C. LINEAR SECRET SHARING SCHEMES
Definition 1 ((LSSS) [13]): A secret-sharing scheme 5

over a set of parties P is referred to as linear over Zp if:
1) The shares for each party form a vector over Zp.
2) A matrix A with l rows and n columns exists, which is

called the share-generating matrix for 5. For any i′th row of
A, where i = 1, . . . , l, let ρ(i) be defined as the party labeling
row i. Then the secret s ∈ Zp to be shared can be constructed
by a column vector v = (s, r2, . . . , rn), where r2, . . . , rn are
randomly chosen from Zp. Then the vector Av is the vector of
l shares of the secret s according to5. The share (Av)i belongs
to party ρ(i).

Beimel et al. [21] indicates that any linear secret sharing-
scheme according to the definition above also have the
property of linearreconstruction. The definition is as fol-
lows: Suppose 5 is an LSSS for access structure A. Let
S ∈ A be any authorized sets, and let I ⊂ 1, 2, . . . , l
be defined as I = i : ρ(i) ∈ S. Then there exist constants
{ω ∈ Zp}i∈I so that 6i∈Iωiλi = s if λi are valid shares
of any secret s according to 5. Moreover, constants {ωi}
can be found in poly-time in the size of the share-generating
matrix A.

D. COMPLEXITY ASSUMPTION (DECISIONAL Q-BDHE
ASSUMPTION)
Choose a group G of prime order p and with g as a generator
according to the security parameter λ. Randomly choose
a, s ∈ Z∗p. Denote gi as ga

i
. The adversary must distinguish

e(g, g)a
q+1s
∈ GT from a random elementR inGT when given

Ey = (g, g1, . . . , gq, gq+2, . . . , g2q, gs). An algorithm B has
advantage ε in solving decisional q-BDHE problem in G if

|Pr[B(Ey,T = e(g, g)a
q+1s) = 0]−Pr[B(Ey,T = R) = 0]|≥ε.

Definition 2: We say that the Decisional q-BDHE assump-
tion holds if no poly-time algorithm has a non-negligible
advantage in solving the q-BDHE problem.

IV. DEFINITIONS
In this section, we give a brief introduction of the policy
hidden EHR system model and the designing goal of it. Then
we define the proposed scheme as well as the security model.

FIGURE 3. Policy Preserving EHR System Overview.

A. SYSTEM MODEL
We consider the systemmodel demonstrated in Fig.3 consists
of five parts, namely Cloud Service Provider (CSP), Attribute
Authority (AA), EHR Providers (EP), EHR Consumer (EC)
and Malicious Users (MU).

1) CSP provides with efficient computing, mass storage
and other Internet services to the EP and EC. CSP will
follow the instructions issued by all the consumers (include
the malicious users). In our scheme, CSP is assumed not to
collude with the malicious users. However, CSP itself will
try to sniffer as much privacy as it could. So it cannot be fully
trusted.

2) All the attributes in the system is managed by AA.
It generates the public parameter and the master secret key.
AA also responses for issuing private keys to the EHR con-
sumers according to their attributes. AA is assumed to be fully
trusted in our scheme.

3) EP are entities who own the EHRs and intend to out-
source them to the CSP. They answer for their own EHRs’
creation, management and completion. They also have the
right to formulate the access policy to decide what kind of
EHR consumer is authorized to the data. EP are assumed to
be honest.

4) ECs in our proposed policy preserving EHR can
be of variant kinds of entities, including patients, clin-
icians, assurance company employees, health-care insti-
tutes, etc. EC requests the authorization of encrypted data
from CSP. The decryption can only be processed if their
attributes satisfy the access policy attached to the encrypted
EHRs. However, sometimes, a single EC may not have
enough attributes to satisfy the policy, so they may collude
with each other to gain more profits. ECs cannot be fully
trusted.

5) Malicious Users represent the hackers as well as
the unauthorized users. They try to break through our
proposed scheme to mining both ECs’ and EPs’ privacy
through access policies attached with EHR ciphertexts.
Specifically, MU in our system have the polynomial time
capacity.

Our proposed policy preserving EHR system consists of
four algorithms listed as follows: Setup, KeyGen, Encrypt
and Decrypt.
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TABLE 1. Feature comparison.

• Setup(1λ)→ (PK,MSK): The Setup algorithm takes the
security parameter λ as a input. It outputs the public key and
the master secret key.
•KeyGen (PK,MSK,U)→ (SK): AA initials the key gener-

ation algorithm. It takes as inputs the public key PK, the mas-
ter secret key MSK as well as a set of attribute U. It outputs
the corresponding secret key SK.
• Encrypt (PK,(M, ρ), M) → (CT, ACF): The encrypt

algorithm is composed of two sub-algorithm, namely, Enc
and ACF-Create.
− Enc (PK, M, (M, ρ))→ CT: This sub-algorithm takes

as inputs the PK, the access structure (M, ρ) as well as the
plaintext M . It takes the ciphertext CT as an output.
− ACF-Create(M, ρ) → ACF: This sub-algorithm takes

as inputs the access structure (M, ρ) and outputs the ACF
table.
• Decrypt (PK, ACF,M, SK, CT)→M: The decrypt algo-

rithm also contains two sub-algorithm, namely, ACF-Check
and Dec.
− ACF-Check (PK, ACF, U) → ρ′: This sub-algorithm

takes as inputs the public key PK, the attribute set S and the
ACF table. It outputs the attribute in the access policy as well
as the location in the LSSS matrix.
− Dec(SK, CT, ((M), ρ′))→ M or ⊥: This sub-algorithm

takes the secret key SK, the ciphertext CT and the LSSS
matrixM as well as the outputs of sub-algorithmACF-Check.
It outputs plaintext M if the attributes satisfy the policy, or
⊥ if not.

B. DESIGN GOAL
Based on the aforementioned system model as well as the
security threats, we develop an efficient and reliable fine-
grained EHR access control scheme with policy preserv-
ing became our design goal. The features of our proposed
scheme compared with the other state-of-art schemes are
listed in Table 1.
• Reliable: Without the basic requirements of security,

personal information, clinical diagnosis, and other individual
privacy will be disclosed to the malicious users, no EP will be
rest assured towards the whole system. So we should consider
about the security of EHR first.
• Fine-grained access control: In the cloud-based EHR

system, providers hope to formulate the appropriate access
policy towards different consumers. That is to say, the fine-
grained access control mechanism should be involved in our

system. It helps the EP to strictly limit the access to their own
EHR files to decrease the privacy leakage risk.
• Policy preserving: As mentioned before, policies

attached with the ciphertext in traditional attribute-based
EHR systems are not protected, which will reveal the pri-
vacy of both the EP and the EC. So this is the main design
goal of our system. Moreover, we should design a policy
matching algorithm in order to match the attributes within
the hidden policy, then recover the corresponding ones. The
ABF scheme proposed by Yang et al. [19] launches a Garbled
Bloom Filter to deal with the policy hiding issue. It opens up
a new idea of solving the policy preserving problem. Moving
one step forward, we plan to design a better algorithm in
order to solve the element conflict problem besides policy
preserving.
• Efficiency: Most of the existing CP-ABE scheme with

policy hidden or partially hidden is build on the composite
order group, which is inefficient comparedwith the ones build
on the prime order group.

C. SECURITY MODEL
We take the indistinguishability against selective chosen
plaintext attacks (CPA) into consideration. It is designed
on the bases of a game between an adversary A and a
simulator B.
• Init: The adversary A chooses a challenge access struc-

ture (M∗, ACF∗), whereM∗ is an l∗ × n∗ matrix.
• Setup: The challenger runs the Setup algorithm and gives

the public parameter PK to the adversary mathcalA.
• Phase 1: In this phase, the adversary A issues secret key

queries correlated with attribute list AttQ.
− If AttQ ∈ (M∗, ACF∗), then aborts.
− Otherwise,the simulator generates a secret key related

to AttQ for the adversary A.
• Challenge: The adversary A submits two equal length

messagesM0 andM1 to the simulatorB.B chooses τ ∈ {0, 1}
at random and encryptsMtau under the challenge access struc-
ture (M∗, ACF∗). Finally it sends the generated challenge
ciphertext CT∗ to A.
• Phase 2: Phase 2 is the same as Phase 1.
• Guess: the adversary outputs a guess τ ′ of τ . The advan-

tage of A in this game is defined as:

Adv(A) = |Pr[τ ′ = τ ]− 1/2|.

V. CONSTRUCTIONS OF OUR SCHEME
We construct our scheme by utilizing the Waters
CP-ABE [13] as a building block. Apparently, our scheme
can easily extend to other CP-ABE schemeswith the structure
expressed in LSSS form. For making the proposed scheme
more comprehensive, we give the notation of the parameters
in Table 2. The simplified schematic diagram is demonstrated
in Fig.4.

We briefly describe the entire workflow of our system.
1) After initializing, Attribute Authority generates the pub-

lic parameter and the master secret key MSK, the public
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TABLE 2. Notations.

FIGURE 4. Simplified schematic diagram.

parameter will be distributed to the whole system. AA can
switch to offline mode until the EHR consumer request for
the decryption key.

2) EHR provider formulate the appropriate policy by using
an LSSS access structure (M, ρ). EHR will be encrypted
under this access policy. Then the EHR provider will start the
ACF-Create to hide the access matrix (M, ρ). Afterwards,
the encrypted EHR with hidden policy will be outsourced to
the cloud.

3) When the EHR consumer wants to get access to an
EHR, he/she first downloads the EHR according to personal
interests. Then he/she will query to AA for the secret key SK.

4) AA will be activated from the offline mode and gen-
erates the SK according to the attributes owned by the
EHR consumer. Then the secret key will be transfered to
the EHR consumer through a preset secure channel. Then
AA will switch back to offline mode again.

5) After receiving the SK, EHR consumer will initial the
ACF-Check to match his/her attribute with those in the hid-
den policy. The decryption of EHR ciphertext succeed only
if the match up procedure correctly match and recover the
attributes from the hidden access policy. Otherwise, the sys-
tem will not decrypt the EHR ciphertext, neither can the
EHR consumer know any information from the hidden policy.

A. SYSTEM SETUP
In this algorithm, AA initials the Setup algorithm. Denote G
andGT to be two multiplicative cyclic groups of prime order
p. e : G×G→ GT is a bilinear map. AA chooses a generator

g ∈ G and N random group elements h1, . . . , hN ∈ G
associated with the N attributes in the system. Randomly
choose µ, u ∈ Z∗p. Let Latt and Lrnum represent the maximum
bit length of the attributes as well as the maximum bit length
of row numbers of the LSSSmatrix respectively. LetHf be the
collision-resistent hash functions of generating fingerprint of
an element. Let He be the collision-resistent hash function
which maps an element to an entry in the ACF buckets.

The public parameter is
PK = 〈g, e(g, g)µ, gu, h1, . . . , hN ,Latt ,Lrnum,Hf ,He〉.
The master secret key is set to be MSK = gµ.

B. KEY GENERATION
To get access to the encrypted data in the cloud, data con-
sumers have to apply for the secret key from AA. AA will
check whether the data consumer is legal. If so, AA allocates
the attributes U according to the data consumer’s charac-
teristic. AA also generates the corresponding secret key for
the data consumer based on the assigned attributes by using
the key generation algorithm. It takes the input as PK, MSK
and U, randomly chooses t ∈ Z∗p, then computes

E = gµgut , I = gt , {Ex = htx}x ∈ U .

Then the secret key is set to be:

SK = 〈E, I , {Ex}x∈U ,U〉.

C. DATA ENCRYPTION AND ACF-CREATION
In this algorithm, the data owner first runs the Enc sub-
algorithm. It takes as input the PK, the plaintext M and the
access metrix (M, ρ).M is an l×nmatrix by using function ρ
to map attributes to rows ofM. The sub-algorithm starts with
randomly selects a vector v = (s, y2, . . . , yn) ∈ Z∗p, in which
y2, . . . , yn are used to share the encryption secret s. For i = 1
to l, it calculates λi = Mi · v, where Mi is the vector related
to the ith row of M. Then it outputs the ciphertext:

CT = 〈C = Me(g, g)µs,C ′ = gs, {Ci = guλih−sρ(i)}i=1,...,l〉.

In the original ABE schemes, after encryption, the cipher-
text CTwill be outsourced to the cloud server associated with
the access policy (M, ρ). Although the message is encrypted,
the policy is in a plaintext form whereas. Which will cause
the privacy leakage of both the data owner and the data
consumer. The leakage is caused by the mapping function ρ
by the observation by Yang et al. [19]. In order to replace
the mapping function ρ, they create a novel element location
and recovery algorithm called Attribute Bloom Filter (ABF)
by using the reformative Bloom Filter named garbled bloom
filter present in [23]. However, due to the property of bloom
filter, the algorithm has some problems in dealing with the
position occupation conflict.

Here we construct a combined algorithm called Attribute
Cuckoo Filter (ACF), which consists of two sub-algorithms
ACF-Create andACF-Check. We introduce the cuckoo filter
(CF) as a building block of our ACF algorithm. CF defines the
basic unit of storage as an entry. Fingerprint of each element
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FIGURE 5. λ-bit length element of ACF with Lrnum-bit row number string
and Latt-bit attribute string.

will be stored in each entry. The CF hash table consists of
an array of buckets. A bucket can have multiple entries as
demonstrated in Fig.5. For each element x to be inserted to
the hash table, CF first calculates the fingerprint of x, then use
(1) to determine two candidate buckets. If either bucket has
an empty entry, the fingerprint will be inserted successfully.
Otherwise, the algorithm will randomly chooses a bucket,
then an random entry, and replaces the existing fingerprint
by the new one. The kicked out fingerprint will then enter a
kicking out circulation, until the empty entry is found. This
will result in the unrecoverable previous inserted fingerprint.
So, we made some modification based on the original CF and
formulate some regulations in order to prevent the displace of
the existing fingerprint. The detailed analysis can be found
in VI-B.

To precisely locate attributes to the relevant row number
in the LSSS matrix. We use an array of λ-bit as shown
in Figure 4. the element is concatenated of two fixed length
parts: The Lrnum represents the row number, and Latt denotes
the attribute, where λ = Lrnum + Latt .
When the encryption finishes, the procedure moves to the

sub-algorithm ACF-Create.
The sub-algorithm takes as input the access policy (M, ρ).

It binds the attributes with the relevant row number in the
access matrix M and generate a set of elements Ux =
{i‖attx}i∈[1,l], in which the i-th row of the access matrix maps
to the attribute attx = ρ(i). Then the row number i and the
attx will be expanded to the maximum bit length by zero bit
filling on the left side of the string. Afterwards, ACF-Create
algorithm is able to create theACF by taking theUx as a input.
When we have to insert a new element x in the set Ux to the
ACF, the algorithmfirst shares the element x with (k, k) secret
sharing scheme by randomly generating k − 1 λ-bit length
strings c1,x , . . . , ck−1,x and set:

ck,x = c1,x ⊕ . . .⊕ ck−1,x ⊕ x.

Then, it hashes the attribute attx associated with the element
x by using Eq.(1) and gets Hf (attx) as the fingerprint of x
as well as the He(attx) denotes one of the candidate buckets.
It then stores the i-th element share ci to the ACF as
ci,x → Hf (attx) position in ACF.
When we continue to add new elements y to the ACF,

some entries may already stored the fingerprint Hf (x ′) of
element x ′. If neither of the two candidate bucket have any

empty entries, the collision occurs. To overcome this prob-
lem, we replicate a new ACF hash table exactly the same as
the first ACF, and place y into the new ACF firstly. Secondly,
we restrict the space efficiency to be no more than 50%.
Algorithm 1 demonstrate the ACF-Create procedure. Finally,
the data owner outsources the ciphertext along with the M
and ACF to the cloud in the form of (CT ,ACF,M).

Algorithm 1 ACF-Create
Input: An LSSS access matrix (M, ρ), λ
Input: ACF parameters: bucket size b, capacity l,
Input: He, Hf denotes the hash functions
Output: ACFj
1: Create an element set Ux from the access matrix (M, ρ);

2: c = 0.5 ∗ b ∗ l G space occupation boundary is 50%
3: f = Hf (x);
4: i1 = He(x);
5: i2 = i1 ⊕ He(f );
6: for j = 0; j < 4; j++ do
7: if countb∗l < c then

G count is the number of existed elements
8: if ACFj.bucket[i1] or ACFj.bucket[i2] has an empty

entry then
9: add 〈f , f ⊕ x〉 to that bucket;
10: count++;
11: else
12: continue;
13: end if
14: end if
15: end for
16: return Failure;

D. ACF-CHECK AND DECRYPTION
When data consumer wants to get access to the encrypted data
in the cloud, the access control mechanism initials to check
whether the attributes of the data consumer could satisfy the
access policy or not. In traditional ABE schemes, it is easy to
figure out the result for the access policy M, ρ can be seen.
In our proposed scheme, however, the mapping function ρ is
hidden, so ACF-Check will be initialed to checkout which
attributes of the data consumer is in the access matrix.
− ACF-Check takes as input the PK, the attribute set U of

the data consumer and ACF as well. For each attribue att in
the set U, The algorithm computes first computes He(att) to
locate the first bucket, then it calculates the fingerprint of att
by using Hf and gets Hf (att), by which the position indices
of the candidate bucket could be found. If either bucket have
the fingerprint, then the string in the entry will be fetched in
the ACF as follows:
Hf (att) position in ACF→ ci,x .
Then the element constructs as follows:

x = c1,x ⊕ . . .⊕ ck−1,x ⊕ ci,x ,

= c1,x ⊕ . . .⊕ ck−1,x ⊕ c1,x ⊕ . . .⊕ ck−1,x ⊕ x
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Here the element x is formed as x = {i‖attx}. Then the
algorithm will automatically remove the zero bits to the left
of the string Latt to get the attribute attx , then the same
operation to obtain the row number i from Lrnum. Otherwise,
the attribute att does not exit in the access policy if att
is not the same as attx , Finally, the new attribute mapping
function ρ′ will be reconstructed as:

ρ′ = {rnum, att}att∈U .

Then the row number in thematrixMwill be determined. The
ACF check algorithm is presented in Algorithm 2.

Algorithm 2 ACF-Check
Input: Attribute Cuckoo Filters ACFj, a set of attributes U
Input: Maximum row number string length Lrnum
Input: Maximum attribute string length Latt
Input: He, Hf denotes the hash functions
Output: ρ′ = {rnum, att}att∈U
1: for each att ∈ U do
2: ReCov = {0}λ G initial the recovery string
3: f ′ = Hf (att);
4: i1 = He(att);
5: i2 = i1 ⊕ He(f ′);
6: for j = 0; j < 4; j++ do
7: if ACFj.bucket[i1] or ACFj.bucket[i2] has f ′ then
8: ReCov = f ′ ⊕ f ⊕ x;
9: attStr = GetLatt (ReCov)
10: att ′ = RMZ (attStr ) G remove the filling zeros
11: if att ′ == att then
12: rnumStr = GetLrnum (ReCov)
13: rnum = RMZ (rnumStr )

G remove the filling zeros
14: Add (rnum, att) into ρ′

15: end if
16: else
17: continue;
18: end if
19: end for
20: end for

When the access policy (M, ρ′) is obtained. The final
decryption algorithm can proceed just the same as in the
original CP-ABE scheme.
− Dec sub-algorithm takes as input the SK, CT and the

reconstructed mapping function ρ′ as well as the access
matrix M. If the attributes could satisfy the access policy,
coefficients {τi | i ∈ I } can be found so that

∑
i∈I τiλi = s,

where I = {τi : ρ′(i) ∈ U} ⊂ {1, 2, . . . , l}. Then the data
consumer computes:

e(C ′,E)/
∏
i∈I

(e(Ci, I ))e(C ′,Eρ′(i))
τi = e(g, g)µs.

So, the plaintext data can be divide from C by M =

C/e(g, g)µs. Otherwise, a ⊥ outputs to indicate the decryp-
tion fails.

VI. SECURITY AND PERFORMANCE ANALYSIS
A. SECURITY ANALYSIS
Theorem 1: There is no poly-time adversary can selec-

tively break the proposed scheme under the decisional
q-BDHE assumption with an l∗ × w∗(w∗ ≤ q) challenge
matrix.
• Proof: Our proposed scheme is built on the bases of the

CP-ABE scheme proposed in [13], which has been proved to
be selectively secure under the decisional q-BDHE assump-
tion. If there exists a adversary A who can break our scheme
with a non-negligible advantage ε = AdvA, a simulater
B can be built to solve the q-BDHE problem with the same
non-negligible advantages.

To prove the security of our scheme, we imitate the game
between the adversary and the simulator. If there exists a
adversary A who has a non-negligible advantage ε = AdvA
in winning the selective security game, we can create a simu-
lator B′ which can break the decisional q-BDHE assumptions
with the same non-negligible advantages. The creation of
B is quite alike the creation of B in [13]. The operation in
Init phase is the same, In the Setup phase, we choose the
CF hash to be the random oracle besides the existing steps.
The secret key query phase is the same, but the challenge
phase have some differences. Our encryption algorithm is
composed of two sub-algorithms. The simulator B′ make
queries about secret keys from the ACF-Create oracle. Then
in the sub-algorithm of B′.Enc = B.Encrypt. For that the
challenge matrix has been selected by the adversary before
the Init phase, so the construction of ACF will not increase
the advantages in winning the game. So we can conclude
that B′ has a negligible advantage in breaking the q-BDHE
assumption. �
Theorem 2: Our proposed scheme is policy preserving

against the poly-time adversary in the security parameter λ.
• Proof: In our proposed scheme, only the data consumers

who have the attributes could recover the attribute string from
the attribute space N . A polynomial time adversary can only
guess the attribute strings in a brute forceway. Therefore, they
cannot sniffer any sensitive information from the modified
access policy formed as (M,ACF). Data consumers can
only check the attributes of their own to see whether they
are in the hidden access policy. They cannot check all the
attributes in the attribute universe, unless by colludewith each
other.

Since the ACF is constructed with the cuckoo filter with
λ-bit secure parameter, the false-positive rate can be less
than 2b/2λ. �

B. ANALYSIS & SOLUTION OF THE ACF INSERT COLLISION
In most cases of our proposed schemes, if there is an empty
entry in the candidate buckets, ACFwill not kick out the exist-
ing fingerprints. However, if collision happens, we have to
find another entry for the subsequent fingerprints. In original
Cuckoo Filter, there is only one hash table, so the kicking
out circulation stops either at finds an empty entry or at
the maximum times kicking (e.g. 100 times) which would
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implicit the hash table is almost full or have an high space
occupation. So we made some improvements.

First, we set the threshold value of the space occupation
to be no more than 50% (Although original CF can support
an efficient space occupation at about 95%). When the space
occupation reaches the threshold value, if we want to insert
a new element, the ACF-Create sub-algorithm creates a new
hash table same as the first one, in which all the entries are
empty. Then the fingerprint of the new element will be stored
in the new ACF table. Considering the situation when there is
a collision occurredwhen the space occupation have not reach
50%, the newer element will also be inserted into the new
ACF table. Hereafter, if collision happens in second cuckoo
hash table, then the third hash table will be created and so on.

We give the probability of collision of inserting item x to
the ACF as follows:

P =



0 x ≤ 2b
1

s(s− 1)
2b < x ≤ 3b

C2
3

s(s− 1)
3b < x ≤ 4b

...

C2
2l−2

s(s− 1)
2l−2b < x ≤ 2l−1b

Here, b is the number of entries per bucket(usually, b is
set to be 2, 4 or 8). m is the number of the elements to be
inserted. σ denotes the space occupation(50% in our ACF).
l = dlog(m

σ
/b)e, and we have the buckets size of s = 2l .

Here is an instance. Suppose there are 16 elements to
be inserted. Let b = 4, then we can calculate l ==
dlog(m

σ
/b)e = 3. Then we begin to insert the element.

The first 8 elements will cause any collisions. The insertion
of 9 - 12 elements will cause a collision at the probability
of 1.786%, 13 - 16 elements will raise up to 5.357%. After
that, if we still want to insert new items, ACF will create a
new hash table to do so, for the space occupation of the first
ACF hash table has reached the threshold percentage of 50.

C. THEORETICAL PERFORMANCE ANALYSIS
Our proposed policy preserving EHR system is constructed
on the basis ofWaters CP-ABE [13].Wemodified the original
encryption and decryption phase in order to achieve policy
hiding. In this section, we will analyze the cost of introducing
the two sub-algorithms theoretically.

Let 0 denotes the number of attributes involved in encryp-
tion phase, which also represents how many rows have taken
part in the LSSSMatrix (M, ρ).1 refers to the number of rows
in the LSSS that will be used for decryption. � is the hash
function used in ACF. i, j represent the bilinear pairing and
exponential operation respectively. Although in ACF, there
have two hash functions, one for normal hash of an element,
the other calculates the fingerprint of the same element.
We can reckon they have the same efficiency in a rough.
Let φ denotes the XOR calculation. In our encryption phase,

TABLE 3. Computation complexity comparison.

EP have to run an extra sub-algorithm called ACF-Create
besides data encryption. This sub-algorithm only have to
calculate the hash value and the relevant fingerprint of an
attribute, then XOR the original value with the fingerprint.
Both the hash and the XOR calculation are extraordinary
efficient compared with the bilinear pairing operation. So it
will not increase much overhead.

It is worth noting that we solve the inserting conflict by
setting the space occupation of no more than 50%. Besides,
if collision happens ahead of the space occupation threshold
value, then a new ACF table will be created. All the conflict
elements will be placed to the next table and so on.We denote
the number of ACF table as n. However, due to the low space
occupation, the conflict rarely happens in the real evaluation.

In the decryption phase, EC will first download the
encrypted EHR according to their needs. Then, before the
EHR decryption, EC have to initial the ACF-Check, the algo-
rithm will use the fingerprint to locate the candidate buck-
ets. Then for each bucket, the element query overhead will
be O(n), where n is the bucket size. After locating the entry
of exact attribute, an XOR operation will be used to recover
the value. Similar to the encryption phase, the overhead
is tiny in contract with the decryption of EHR. The ACF
computation complexity comparison with ABF proposed by
Yang et al. [19] can be found in Table 3.

D. PERFORMANCE ANALYSIS
We proposed two sub-algorithms on the basis of Cuckoo
Filter. The ACF-Create algorithm is added in the phase of
encryption, while theACF-Check algorithm runs in the phase
of decryption. In order to figure out how much computation
cost have been introduced by ACF algorithm, we deploy the
experiment environment on the Ubuntu Linux Desktop 64-bit
system with an Intel Core i7 CPU at 3.4GHz and 8.00 GB
RAM. The code utilizes the charm library version 0.50,2

and an asymmetric elliptic curve α-curve, where the base
field size is 512-bit and the embedding degree is 2, so that
the security parameter is 1024-bit. To implement our ACF,
we employ the MurmurHash3.3 All the experimental result
are the mean of 100 trails.

Specifically, we perform the comparison experiment with
the original CP-ABE [13] without policy preserving as well
as the CP-ABE with ABF to hide the policy matrix by
Yang et al. [19]. Fig.6 and Fig.7 demonstrates the cost of

2Available: https://github.com/JHUISI/charm
3Available: https://github.com/hajimes/mmh3
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TABLE 4. The comparison of encryption/decryption time with ACF & ABF.

FIGURE 6. Attribute inserting time between ACF & ABF.

FIGURE 7. Attribute recovery time between ACF & ABF.

inserting items into the ABF and ACF as well as recovering
the attributes from the Filter respectively. Obviously, our ACF
is more efficient than ABF scheme under the same condition.

We also evaluate the encryption and decryption overhead.
The encryption phase in our proposed scheme is composed
of ACF-creation and data encryption. The decryption phase
in our proposed scheme is composed of ACF-check and
data decryption. The extra overhead comparison is listed
in Table 4. Apparently, our scheme can preserve the access
policy privacy without introducing much computation over-
head in both encryption and decryption procedure. Compared
with the ABF algorithm, we also have an obvious efficiency
improvement.

VII. CONCLUSION
We proposed an efficient policy preserving CP-ABE scheme
in the cloud sharing EHR environment. Different from

the policy partially-hidden schemes which hides only the
attribute value, our scheme could hide the entire access policy.
To deal with the problem of attribute matching and recover-
ing from the hidden policy, we designed an ACF matrix to
precisely locate the row number and the relevant attribute.
We proved the security of our scheme, and the evaluation
result shows that our scheme can achieve policy preserving
as well as the attribute recovery without introducing much
overhead.
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