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Abstract
There are many applications in which it is desirable to rank or order instances that belong
to several different but related problems or tasks. Although unique, the individual ranking
problem often shares characteristics with other problems in the group. Conventional ranking
methods treat each task independently without considering the latent commonalities. In this
paper, we study the problem of learning to rank instances that belong to multiple related
tasks from the multitask learning perspective. We consider a case in which the information
that is learned for a task can be used to enhance the learning of other tasks and propose a
collaborative multitask ranking method that learns several ranking models for each of the
related tasks together. The proposed algorithms operate in rounds by learning models from
a sequence of data instances one at a time. In each round, our algorithms receive an instance
that belongs to a task and make a prediction using the task’s ranking model. The model is
then updated by leveraging both the task-specific data and the information provided by other
models in a collaborative way. The experimental results demonstrate that our algorithms
can improve the overall performance of ranking multiple correlated tasks collaboratively.
Furthermore, our algorithms can scale well to large amounts of data and are particularly
suitable for real-world applications in which data arrive continuously.

Keywords Learning to rank · Online learning · Multitask learning

1 Introduction

Ranking or ordering objects according to their degrees of relevance, preference or importance
has been extensively studied in data mining and information retrieval for decades. It has been
applied to a wide range of real-world applications such as web search, document retrieval,
online advertising, collaborative filtering and machine translation [20]. Despite being under
the same guise of ranking, a ranking scheme can vary among applications. Consider web
search ranking as an example: Given a query, it has to sort quite an amount of candidates (e.g.,
hundreds of thousands of pages) in a short time (e.g., hundreds of milliseconds), with special
attention paid to making a few top-ranked results appealing to the user. By comparison, for
rating products/services based on consumer feedback, the scale of ranks is typically much
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smaller (e.g., rating movies as poor, average, good, very good and excellent or, equivalently,
with one to five stars) and correct assignment of the rank labels is critical. A technique called
ordinal regression (also known as ordinal classification) is particularly suitable for this task.
In contrast to product ratings that deal with ordinal grades, a recommendation system ranks
a collection of items (e.g., movies or products) based on the implicit feedback from users
(e.g., click logs of a Web site or purchase records of customers) [25]. Collaborative filtering
is dedicated to such problems.

An active line of research is the application of machine learning techniques to ranking
problems. The learning-to-rank methods examine how a ranking model can be automatically
constructed from training data, which consist of a set of input instances and corresponding
ranks, such that the model can sort new instances in a reasonable way [24]. They are typically
formulated as supervised learning processes. A learning algorithm is employed to learn the
ranking model (i.e., the way of combining input features) such that the model can predict the
ground-truth labels or orders in the training set as accurately as possible. The accuracy of pre-
diction is typically measured by a loss function. A learning process is used to find an optimal
solution to an optimization problem that involves the loss function. The trained model can
be used to determine the rank labels or orders of unseen instances. Compared with heuris-
tic approaches, learning-to-rank methods can combine many features and tune parameters
automatically; hence, they are ideal for real-world applications with large amounts of data.

In this paper, we focus on a subproblem of learning-to-rank: We do not derive a relative
order among items; instead, we assign a rank label from a set of predefined ordinal categories
to each item. (An intuitive example is product rating, as discussed above.) When applied
to multiple related ranking tasks, a dilemma is often encountered with classical “product
rating” methods: A single ranking model that is trained on the entire collection of data from
all tasks may fail to capture the peculiarity of each ranking problem. However, training each
model per task using the task-specific data ignores the potential commonalities among related
tasks. As an example, consider the problem of recommending movies to multiple users. The
recommendation should rely on the user’s own data, e.g., the user profile and the history
of movies that were enjoyed previously. Yet it is also reasonable to consider similar users’
preferences. It is thus desirable to combine individual traits and group characteristics to obtain
a result that is greater than the sum of its parts.

The problem of jointly solving several related learning tasks by leveraging the common-
alities among the tasks has been studied in the machine learning community as multitask
learning. Empirical findings have demonstrated the advantages of multitask learning over
single-task learning across a variety of application domains [3,16]. Moreover, it has been
shown that combining information from several tasks can improve the performance when
training data for each task are relatively scarce. Existing works in multitask learning concen-
trate on solving classification problems for which the objective is to assign instances to one
of the several non-ordered categories. The ranking problem that we study resembles classi-
fication as both assign one of the several possible labels to an instance; however, it differs
in that there is an order relation among the labels. To the best of our knowledge, there have
been few attempts to apply multitask learning to the problem of ranking instances.

We herein study the problem of learning to rank instances that belong to multiple related
tasks. Specifically, we adopt the online learning paradigm for its simplicity and effective-
ness [19]. Online learning represents a family of efficient algorithms that can build the
predictor incrementally by processing the training data sequentially, in contrast to batch
learning algorithms, which train the predictor by learning the entire dataset all at once. It
operates on a sequence of data by processing the elements one by one. In each round, the
learner receives an input, makes a prediction using an internal hypothesis, which is retained
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in memory, and subsequently learns the true label. It uses the new example to modify its
hypothesis according to predefined rules. The objective is to minimize the total number of
rounds with incorrect predictions. Online learning algorithms are fast and simple and require
few statistical assumptions, thereby rendering them suitable for a wide range of applications.
They can scale well to large amounts of data and are particularly suitable for real-world
applications in which data arrive continuously.

We propose an efficient online ranking method, namely collaborative online ranking, for
ranking data that are generated by a group of tasks by combining both group and individual
characteristics. The main strategy is to run N online ranking models in parallel for N related
tasks. Each model corresponds to a single task and is updated by using the task data and
leveraging the information that is provided by fellow tasks. We devise two approaches for
modeling the task-shared information: One sets it explicitly as the average value of all models
(Sect. 4.1), while the other uses a latent representation that is derived via learning (Sect. 4.3).
We demonstrate how to apply the large margin principle (Sect. 4.2) and the optimization
approximation technique (Sect. 4.3) to improve the ranking accuracy and efficiency, respec-
tively. The experimental results on a synthetic dataset and two real-world problems show that
the proposed algorithms can improve the overall performance in learning to rank multiple
correlated tasks.

The remainder of this paper is organized as follows: Section 2 reviews related work. Sec-
tion 3 formally defines the multitask online ranking problem that we study. Section 4 presents
the proposed collaborative online ranking algorithms. Section 5 gives the experimental results
and discussion. Section 6 concludes this paper.

2 Related work

Learning-to-rank involvesmany subproblems, ofwhich the nuts and bolts demand a dedicated
review that is beyond the scope of this paper. For a comprehensive survey of approaches
to learning-to-rank, one can refer to [24]. As discussed previously, what we study here is a
subcategory of learning-to-rank, or informally speaking, the “product rating” problem. Given
items to rank, we do not consider the relative orders among them. Instead, we are interested in
selecting an element from a set of ordered categories and assigning it to each item. This differs
from the “document ranking” problem, in which we are required to rank a set of documents
based on a query. Since the objective of document ranking is to produce an ordered list
of documents, the relative order between two items must be considered, whereas the exact
relevance degree of an item is less important. In addition, document ranking (especially when
applied in web search) always involves a large number of ranking candidates and emphasizes
the quality of the top positions of the ranked list. Product rating, in contrast, involves a
moderate number of ranks and stresses the accurate assignment of a rank label to each item.

From another perspective, the problem that we study can be categorized as the pointwise
approach of learning-to-rank. A characteristic of the pointwise approach that differentiates it
from two counterparts (the pairwise approach and the listwise approach, see [24] for details) is
that it examines each item independently while ignoring the inter-dependency between items.
In various pointwise ranking algorithms, ranking has beenmodeled as regression, multi-class
classification and ordinal regression. When applying existing regression or classification
methods to ranking, the key step is the conversion between regression/classification results
and ranking scores. The representative conversion approach involves treating regression’s
continuous output as the relevance degree [9] and converting the classifier’s discrete output
into probabilities via a logistic function [21].
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Speaking of ordinal regression, its objective is to predict the label y of an input vector x,
where x ∈ R

d and y ∈ Y = {C1, C2, . . . , Ck}. In contrast to regression, the response variables
in ordinal regression are discrete and finite. In contrast to classification, the labels of ordinal
regression imply an ordering, namely C1 ≺ C2 ≺ · · · ≺ Ck . According to a taxonomy of
ordinal regression methods [17], there are ordinal binary decomposition approaches that
decompose ordinal labels into several binary labels, solve each binary classification problem
independently and combine the outputs into a rank label [8,23]. The decomposed ordinal
labels can also be handled using a single model (e.g., neural networks [6]) with ordinal target
encoding schemes to incorporate ordering information. Correspondingly, the threshold-based
approaches estimate a real-valued predictor f (x) and a set of thresholds b simultaneously
via learning. The thresholds are used to partition a real number axis into intervals, each of
which are aligned to an ordinal label. The prediction is the index of the interval to which f (x)
belongs. Methods that belong to this category include the perceptron ranking (PRank) [10]
and its extensions [11,18], SVMs [8,28] and Gaussian processes [7].

PRank [10] is a perceptron-like online learning algorithm with a threshold-based ranking
mechanism. The perceptron can date back to the seminal work on artificial neural networks
in the 1950s [26]. As an online classification method, the perceptron learns a model w
from a sequence of data (xt , yt ) one element at a time. At each learning round, it compares
the predicted label ŷt = sign(wt · xt ) with the true label yt ∈ {−1, 1}. If ŷt �= yt , the
perceptron updates the model as wt+1 = wt + ytxt . The following works resemble the
perceptron as both update the model sequentially, but differ in the employment of more
sophisticated update strategies such as themaximummargin principle [12,30] and the second-
order constraint [5,13,14]. For a detailed review of online learning, refer to [19].

As discussed above, multitask learning solves a group of related machine learning tasks
together [3]. It has been extensively studied in the batch learning paradigm, which assumes
that all training samples are available prior to the learning process [15,16]. For online multi-
task learning, however, the tasksmust be processed in parallelwith data arriving continuously.
A class of online multitask learning methods trains one model per task and makes them
interact with one another based on a matrix that represents the inter-task relationships. The
relationship matrix can be specified in advance [4] or determined by solving an optimization
problem in the learning process [27]. Aside from imposing the task relationship explicitly,
another common approach is to add regularization terms to the original objective function.
For example, it can be assumed that the objective function is a combination of a global model
and a task-specific model [22] or that the model vector is composed of two parts, namely a
shared part across all tasks and an individual part that corresponds to each task [29].

We have briefly reviewed representative related work. In the following, we shall formally
define the multitask online ranking problem that we study and describe the proposed algo-
rithms in detail.

3 Problem setting

In the multitask online ranking scenario, we are given N related ranking problems, which
are also known as tasks. It is assumed that the objects under investigation of all tasks are
represented by feature vectors that are drawn from a single feature space. At the beginning
of learning round t , the algorithm observes a set of N instances, one for each of the ranking
problems. The algorithm predicts the rank for each of the instances it has observed using a
rankingmodel. Then, it receives a feedback that indicates the correct rank andmaymodify the

123



Collaborative online ranking algorithms for multitask… 2331

model, presumably to improve the likelihood of making an accurate prediction in subsequent
rounds.

The main strategy of our approach to multitask online ranking is to maintain several
ranking models for each of the related tasks simultaneously and to update them by leveraging
both the task-specific training data and the shared knowledge across all tasks. We adopt the
perceptron ranking (PRank) [10] as the basic update strategy for learning these models.
PRank operates on a collection of instance–rank pairs, namely {(xt , yt )}, for t = 1, . . . , T ,
where xt ∈ R

d is a d-dimensional feature vector that represents the instance at round t and
its corresponding rank yt is an element from a finite set Y = {1, . . . , k} with a total order
relation. The objective is to learn a mapping from instances to rank labels: Rd → Y .

To learn the mapping, PRank maintains a weight vector w ∈ R
d and a vector b of

increasing thresholds b[1] ≤ · · · ≤ b[k − 1] ≤ b[k] = ∞, which divides a real number
line into k segments, one for each possible rank.1 Given a new instance x, PRank computes
a score as the inner product between x and w. Then, it locates the score on the real line
and returns the predicted rank as indicated by the thresholds. Formally, the predicted rank
is defined as the index of the first (smallest) threshold b[r ] for which w · x < b[r ], i.e.,
ŷ = minr∈{1,...,k} {r : w · x < b[r ]}. After making a prediction, the true rank y ∈ Y is
revealed. An error is considered to occur if the true rank and the prediction do not match,
namely y �= ŷ.

To make a correct prediction, it is required that w · x > b[r ] for r = 1, . . . , y − 1 and
w · x < b[r ] for r = y, . . . , k − 1.2 For simplicity, one can introduce an auxiliary vector
l[1], . . . , l[k−1] = (1, . . . , 1,−1, . . . ,−1)where themaximal index r for which l[r ] = 1 is
y−1. In this way, a predicted rank is correct if l[r ](w ·x−b[r ]) > 0 for all r = 1, . . . , k−1.
If PRank makes a mistake, there is at least one threshold, indexed by r , for which the value
of w · x is on the wrong side of b[r ], namely l[r ](w · x − b[r ]) ≤ 0. To correct this mistake,
PRank moves the values of w · x and b[r ] toward each other. To do so, it modifies the values
of b[r ] for which l[r ](w · x − b[r ]) ≤ 0 and replaces them with b[r ] − l[r ]. The value of
w is also replaced by w + (

∑
l[r ])x, where the sum is calculated over all the indices r for

which there is a prediction error, namely l[r ](w · x − b[r ]) ≤ 0.

4 Collaborative online ranking

4.1 Basic collaborative online ranking

Our first multitask online ranking algorithm averages the parameters of several ranking
models into a single combined model to represent the shared knowledge across all tasks.
It shares the same settings as PRank, except that it processes several related ranking tasks
in parallel. It is assumed that there are N related tasks whose data arrive in sequence and
each sequence contains up to T trials. Denote by (xit , y

i
t ) an instance–rank pair that belongs

to the i th task at round t . We adopt a weight vector wi
t ∈ R

d and a set of k thresholds
bi [1] ≤ · · · ≤ bi [k − 1] ≤ bi [k] = ∞ to represent the ranking model of the i th task. Our
objective is to learn N ranking rules for each of the N tasks by using each task’s training
data, while leveraging the information that is provided by peer tasks.

As the tasks are related, we can assume that there exists common knowledge that is
shared among tasks. We use a global model with weight vector w̄ to represent such common

1 We use b[i] to denote the i th element of the vector b.
2 We exclude the kth threshold because b[k] is fixed to infinity. It is clear that w · x < b[k].
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knowledge. It is set to an equally weighted sum of all individual models’ weight vectors:

w̄ = 1

N

∑

i∈N
wi (1)

We need to define the update rule to modify the weight vector at the end of each learning
round whenever a prediction error occurs. Our objective is to realize a balance between two
factors. On the one hand, the new weight vector wt+1 should be as similar as possible to
the previous weight vector wt , which encompasses the knowledge of past training samples.
On the other hand, we require the updated weight vector to be similar to the global model’s
weight vector to incorporate common knowledge that is shared among tasks. Specifically,
assuming that the i th task makes an error on the round t , to update its weight vector, we first
minimize the sum of the deviations of the new weight from the prior weight and the global
weight as follows:

min
wi

η1

2
‖wi − wi

t‖2 + η2

2
‖wi − w̄t‖2 (2)

where α is a parameter that controls the trade-off between the task-specific modelwi
t and the

global model w̄t .
We then follow the PRank update rule by adding (

∑
r l[r ])xi , where the summation is

applied to all indices r that cause a prediction error, namely l[r ](wi · xi − b[r ]) ≤ 0, to the
solution of the optimization problem in Eq. (2). This leads to the following update rule for
the simple collaborative online ranking algorithm:

wi
t+1 = η1

η1 + η2
wi
t + η2

η1 + η2
w̄t +

∑

r

l[r ]xit (3)

The above formulation aims at realizing a balance between the individual model and
the global model: Despite its uniqueness, each individual has commonalities with other
tasks. It coherently combines the individual model with the global one. If we set η2 = 0,
the optimization problem reduces to the approach of learning an individual PRank model
without engaging the global model; if we set η1 = 0, it reduces to the average of all models.
Accordingly, we can tune the contribution of each part by setting appropriate parameters.

Algorithm 1 summarizes the proposed basic collaborative online ranking method. We use
t ∈ [T ] to denote t = 1, . . . , T in the pseudo-code.

ALGORITHM 1: Basic Collaborative Online Ranking (COR-BS)

1: Input: a sequence of instances (xit , y
i
t ), i ∈ [N ], t ∈ [T ], and parameters η1 and η2

2: Output: wi
T and biT , i ∈ [N ]

3: Initialize: wi
0 = 0, bi0[ j] = 0, j ∈ [k − 1], bi0[k] = ∞

4: for t = 1, . . . , T do
5: Receive an instance (xit , y

i
t ) for task i ∈ [N ]

6: Compute the global model w̄t as in Eq. (1)
7: Make a prediction as ŷit = minr∈[k]{r : wi

t · xit − bit [r ] < 0}
8: Build the auxiliary vector as for r ∈ [k − 1], l[r ] = −1 if yit ≤ r ; l[r ] = 1, otherwise
9: Update wi

t+1 as in Eq. (3) for i ∈ [N ]
10: end for
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4.2 Collaborative online ranking with a largemargin

In this section, we present an improved version of the simple collaborative online ranking
algorithm that is presented above. This is motivated by the work of Crammer et al. [11] in
which a large margin version of PRank is proposed. Recall that PRank makes a prediction
by positioning the value of w · x in an interval that is defined by thresholding a continuous
real number line. According to [11], the difference between the value of w · x and the closest
threshold plays a similar role to the notion of a margin in classification problems. Even if
PRankyields a correct prediction, the value ofw·xmight lie very close to oneof the thresholds,
thereby leading to a trivial margin. To ensure a sufficiently large margin after updating, it is
necessary for the updated rule (wt+1,bt+1) to satisfyminr {(wt+1 ·xt+1−b[r ]t+1)l[r ]t } ≥ β,
where β is a positive constant that corresponds to the margin width.

Following this strategy, we can modify the basic collaborative online ranking algorithm
by setting the i th task’s new weight vector wi

t+1 and threshold vector b
i
t+1 to be the solution

to the following optimization problem, with the objective of realizing a margin of at least 1.
This can be expressed as a constrained optimization problem as follows:

min
wi ,bi

η1

2
‖(wi ,bi ) − (wi

t ,b
i
t )‖2 + η2

2
‖(wi ,bi ) − (w̄t , b̄t )‖2

s.t. (wi · xit − bi [r ])l[r ] ≥ 1 for r = 1, . . . , k − 1
(4)

However, it may be too strict to require every update to realize a margin of at least 1. To
relax this constraint, we adopt the technique that is used by the soft margin classifier. Our
objective is to realize a margin of at least 1 as often as possible. If the algorithm realizes a
margin of less than 1, it will suffer a loss that is defined by the following loss function:

�(wi , bi [r ], xit , l[r ]) =
{
0 (wi · xit − bi [r ])l[r ] ≥ 1

1 − (wi · xit − bi [r ])l[r ] otherwise

To relax the fixed-margin constraint, we introduce a nonnegative slack variable ξ into the
optimization problem in Eq. (4), thereby making the objective function scale quadratically
with the slack variable ξ . This leads to the following optimization problem:

min
wi ,bi

η1

2
‖(wi ,bi ) − (wi

t ,b
i
t )‖2 + η2

2
‖(wi ,bi ) − (w̄t , b̄t )‖2 + C

k−1∑

r=1

ξ2r

s.t. �(wi , bi [r ], xit , l[r ]) ≤ ξr for r = 1, . . . , k − 1

The above optimization problem can be solved via the Lagrange multiplier technique. To
do so, we first express its Lagrangian function as:

L = η1

2
‖(wi ,bi ) − (wi

t ,b
i
t )‖2 + η2

2
‖(wi ,bi ) − (w̄t , b̄t )‖2 + C

k−1∑

r=1

ξ2r

+
k−1∑

r=1

τr (1 − (wi · xit − bi [r ])l[r ] − ξr )

(5)

where τr , r = 1, . . . , k − 1 are nonnegative Lagrange multipliers.
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ALGORITHM 2: Collaborative Online Ranking with a Large Margin (COR-LM)

1: Input: a sequence of instances (xit , y
i
t ), i ∈ [N ], t ∈ [T ], and parameters η1, η2 and C

2: Output: wi
T and biT , i ∈ [N ]

3: Initialize: wi
0 = 0, bi0[ j] = 0, j ∈ [k − 1], bi0[k] = ∞

4: for t = 1, . . . , T do
5: Receive an instance (xit , y

i
t ) for task i ∈ [N ]

6: Compute the global model w̄t as in Eq. (1)
7: Make a prediction as ŷit = minr∈[k]{r : wi

t · xit − bit [r ] < 0}
8: Build the auxiliary vector as for r ∈ [k − 1], l[r ] = −1 if yit ≤ r ; l[r ] = 1, otherwise
9: Compute τ by solving Eq. (7) with a quadratic solver
10: Update wi

t+1 and bit+1 as in Eq. (6) for i ∈ [N ]
11: end for

Differentiating Eq. (5) with respect towi , bi [r ] and ξr , respectively, and setting the results
to zero yields:

wi = η1wi
t + η2w̄t + (

∑
r τr l[r ])xit

η1 + η2
(6a)

bi [r ] = η1bit [r ] + η2b̄t [r ] − τr l[r ]
η1 + η2

(6b)

ξr = τr

2C
(6c)

By substituting the values of wi , bi and ξr into the Lagrangian function in Eq. (5), we
obtain the following dual problem:

min
τ

1

2
‖xit‖2(

∑

r

τr lt [r ])2 + 1

2

∑

r

τ 2r + η1 + η2

4C

∑

r

τ 2r

+
∑

r

τr (lt [r ](η1(wi
t · xit − bit [r ]) + η2(w̄t · xit − b̄t [r ])) − η1 − η2)

s.t. τr ≥ 0 for r = 1, . . . , k − 1

(7)

The above dual problem can be solved by using any optimization toolbox. Finally, Algo-
rithm 2 lists the pseudo-code of this method for collaborative online ranking with a large
margin.

4.3 Collaborative online ranking with latent global information

To represent the shared knowledge among tasks, the collaborative online ranking algorithms
presented in previous sections take a uniform average of weight vectors as the global model.
A more reasonable alternative approach is not to restrict the global model to any form that is
specified beforehand, but to determine the form during the learning process. The algorithm
presented in this section divides each task’smodelwi into a globalmodelu and a personalized
model vi :

wi = u + vi for i = 1, . . . , N

The global model u generalizes a common structure from all tasks, and the personalized
model vi represents the unique characteristics of individual tasks. Both models are learned
incrementally via the online learning process.
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In addition to providing a more reasonable global model representation, the algorithm
presented in this section attempts to maintain a large margin of at least 1. To realize this
objective, we introduce an auxiliary function:

φr (w,b, x, l[r ]) = max(0, 1 − (w · x − b[r ])l[r ])
We set the i th task’s new weight vector wi

t+1 and threshold vector b
i
t+1 to the solution of

the following optimization problem:

min
wi ,bi

∑

i

1

2η
‖(vi , ci ) − (vit , c

i
t )‖2 + 1

2τ
‖(u, a) − (ut , at )‖2 +

∑

i

�it (w
i ,bi )

s.t. wi = u + vi , bi = a + ci for i = 1, . . . , N

(8)

where �it (w
i ,bi ) is a loss function that is defined as:

�it (w
i ,bi ) =

∑

r

φr (wi ,bi , xit , l[r ])

As discussed previously, the individual task’s weight vector wi is composed of the global
weight u and the corresponding personalized weight vi . The threshold vector bi is composed
similarly. The first term in Eq. (8) aims at ensuring that the new models are near the old
ones, while the second term aims at minimizing the loss of the new models on the current
examples. In addition, η and τ are positive parameters for balancing these two terms.

The optimization problem in Eq. (8) can be reformulated as its dual form, which is a stan-
dard quadratic programming problem. Although many off-the-shelf toolboxes are available
for solving quadratic programming problems, they typically incur a high computational cost,
especially when dealing with a large amount of data. To address this problem, we replace the
loss function in Eq. (8) with its linear approximation at the current solution:

�i
(wi

t ,b
i
t )
(wi ,bi ) = �it (w

i
t ,b

i
t ) + gw

i

t · (wi − wi
t ) + gb

i

t · (bi − bit ) (9)

Terms gw
i

t and gb
i

t are the derivatives of �it :

gw
i

t = ∇wi �
i
t (w

i
t ,b

i
t ) =

∑

r

sign[φr (wi
t ,b

i
t , x

i
t , y

i
t )](−l[r ]xit ) (10a)

gb
i

t = ∇bi �
i
t (w

i
t ,b

i
t ) =

∑

r

sign[φr (wi
t ,b

i
t , x

i
t , y

i
t )]l[r ]er (10b)

where er ∈ R
k−1 is equal to 1 at the r th position and 0 elsewhere.

Substituting Eq. (9) into Eq. (8), we can reformulate the original optimization problem
as:

min
wi ,bi

∑

i

[
1

2η
‖(vi , ci ) − (vit , c

i
t )‖2 + gw

i

t · (wi − wi
t ) + gb

i

t · (bi − bit )
]

+ 1

2τ
‖(u, a) − (ut , at )‖2

We omit �it (w
i
t ,b

i
t ) as it does not affect the solution of the problem.

Setting the derivative of the above objective function to zero yields:

vit+1 = vit − ηgw
i

t

cit+1 = cit − ηgb
i

t
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ALGORITHM 3: Collaborative Online Ranking with Latent Global Information (COR-LT)

1: Input: a sequence of instances (xit , y
i
t ), i ∈ [N ], t ∈ [T ], and parameters η and τ

2: Output: wi
T and biT , i ∈ [N ]

3: Initialize: wi
0 = 0, bi0[ j] = 0, j ∈ [k − 1], bi0[k] = ∞

4: for t = 1, . . . , T do
5: Receive an instance (xit , y

i
t ) for task i ∈ [N ]

6: Make a prediction as ŷit = minr∈[k]{r : wi
t · xit − bit [r ] < 0}

7: Build the auxiliary vector as for r ∈ [k − 1], l[r ] = −1 if yit ≤ r ; l[r ] = 1, otherwise

8: Compute gwi
t and gbit as in Eq. (10) for i ∈ [N ]

9: Update wi
t+1 and bit+1 as in Eq. (11) for i ∈ [N ]

10: end for

ut+1 = ut − τ
∑

j

gw
j

t

at+1 = at − τ
∑

j

gb
j

t

We can obtain the optimal closed-form solution to Eq. (8) as follows:

wi
t+1 = ut+1 + vit+1 = wi

t − ηgw
i

t − τ
∑

j

gw
j

t (11a)

bit+1 = at+1 + cit+1 = bit − ηgb
i

t − τ
∑

j

gb
j

t (11b)

Updating according to such a closed-form solution is much more efficient than invoking
a quadratic programming routine. Finally, Algorithm 3 summarizes our method.

To theoretically evaluate the performance of the proposed algorithm for collaborative
online ranking with latent global information, we introduce the definition of regret for an
online learning algorithm A as follows:

Regret(A) =
T∑

t=1

N∑

i=1

�it (w
i
t ,b

i
t ) − min

w,b

T∑

t=1

N∑

i=1

�it (w,b)

It measures how much regret the algorithm feels if it knows all the losses prior to learning.
Regarding the regret bound of the algorithm that is presented in this section, we have the

following theorem. Its proof is provided in “Appendix A”.

Theorem 1 Suppose there are N related ranking tasks. Denote by {(xit , yit )}, where i ∈ [N ]
and t ∈ [T ], a sequence of multitask ranking samples and let L be the Lipschitz constant
of �it (w

i ,bi ) for all i and t. Then, for any vector u, (v1, . . . , vN ), a and (c1, . . . , cN ), if we
denote wi = u + vi and bi = a + ci for all i , the regret of the algorithm that is proposed in
Sect. 4.3 compared with using wi and bi can be bounded by:

T∑

t=1

N∑

i=1

[�it (wi
t ,b

i
t ) − �it (w,b)]

≤
N∑

i=1

1

2η
‖(vi , ci )‖2 + 1

2τ
‖(u, a)‖2 +

N∑

i=1

η

2
L2T + τ

2
N 2L2T
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Furthermore, if we set η = ‖(vi , ci )‖/(L√
T ) and τ = ‖(u, a)‖/(NL

√
T ), the regret of

the proposed algorithm can be bounded by:

T∑

t=1

N∑

i=1

[�it (wi
t ,b

i
t ) − �it (w,b)] ≤

(
N∑

i=1

‖(vi , ci )‖ + N‖(u, a)‖
)

L
√
T

Remark According to this theorem, the regret of the algorithm that is proposed in Sect. 4.3
is on the order of O(

√
T ). This order is optimal because the loss function is not strongly

convex [1].

5 Experimental results

5.1 Experimental testbed

We evaluate the performance of the proposed algorithms on a synthetic dataset and two real-
world datasets. The number of tasks, rank count, sample size and dimensionality of each
dataset are summarized in Table 1.

Synthetic dataset The synthetic dataset is generated similarly to that used in [10]. Denote
by x = (x1, x2) a point that is drawn uniformly at random from the unit square [0, 1] ×
[0, 1] ∈ R

2. The sample x is assigned a rank y from the set {1, 2, 3, 4, 5} according to
the following ranking rule: y = maxr∈{1,...,5}{r : 10((x1 − 0.5)(x2 − 0.5)) + ξ > b[r ]},
where b = (− inf,−1,−0.1, 0.25, 1) and ξ is a normally distributed noise with mean μ and
standard deviation σ . By varying μ and σ over modest ranges, we can obtain related ranking
tasks.

In the experiment, a total of 20 related tasks are generated by setting 20 linearly spaced
values from two specified ranges as μ and σ , namely μ = {−0.5 : 0.05 : 0.5} and
σ = {0.1 : 0.02 : 0.5}. Each task contains 10,000 samples. As the problem is not linearly
separable, a previous work [10] employed a polynomial kernel K (x1, x2) = ((x1 · x2)+ 1)2.
We use a similar approach by expanding the kernel function via a mapping (x1, x2) →
(x21 ,

√
2x1x2, x22 ,

√
2x1,

√
2x2, 1).

EachMovie dataset The EachMovie dataset has been used extensively in collaborative fil-
tering research. It contains ratings entered by 72,916 users on 1628 movies. Each user rated
movies using one of the six possible ratings: 0, 0.2, 0.4, 0.6, 0.8 and 1. We subtract 0.5 from
each rating to polarize the range to − 0.5, − 0.3, − 0.1, − 0.1, 0.3 and 0.5 as in [10]. To
generate multiple related ranking problems, we select 1813 users who have viewed a least
200 movies. Then, these 1813 viewers are divided into two sets: The first set contains 30
users who have viewed exactly 200 movies, while the second set is composed of 1783 users

Table 1 Statistics of datasets used in the experiment

Synthetic EachMovie Multi-domain sentiment

#Tasks 20 30 13

#Ranks 5 6 4

#Samples per task 10,000 200 4191

#Data dimension 6 1783 27,239
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who have viewedmore than 200movies.We select one user from the first set and treat his/her
ratings as the target ranks. We use the ratings of all users in the second set who have viewed
the same movie as the features. A value of zero is assigned to a movie if it is not rated by a
user. Finally, we obtain 30 related tasks, each of which contains 200 samples (movie–rank
pairs).

Multi-domain sentiment dataset The dataset constructed by Blitzer et al. [2] has been used
in the transfer learning study. It contains reviews of 25 types of products from Amazon.com:
apparel, books, camera and photograph, DVD, electronics, etc. Each review is accompanied
by an integer rating of 0 to 4 stars. By excluding products whose review counts are less than
4191, we obtain 13 products (tasks). Review text is converted to a word vector using the
TF-IDF representation. We shrink all tasks to equal size (4191 instances) to guarantee that
an instance is available for all tasks in each learning round.

5.2 Benchmark setup

We term the basic collaborative online ranking algorithm presented in Sect. 4.1 as COR-
BS, its large margin version—collaborative online ranking with a large margin in Sect. 4.2
as COR-LM, and collaborative online ranking with latent global information in Sect. 4.3
as COR-LT. We compare them with PRank [10] and NoPRank (an abbreviation for Norm-
Optimized PRank, a large margin based version of PRank) [11]. We select the values of
parameters η1, η2, η and τ from a small range {0.001, 0.01, 0.1, 1, 10, 100} for COR-BS,
COR-LM and COR-LT. We set β, which is the width of the margin, to 1 for NoPRank.

To evaluate the performance of ranking multiple related tasks together, we devise two
variants of PRank/NoPRank as follows:

– PRank/NoPRank-Unique It employs the PRank/NoPRank algorithm to train a ranking
model for each task using only its own data. That is to say, every task is associated with
a unique ranking model.

– PRank/NoPRank-Global It learns a single ranking model from the data for all task by
applying the PRank/NoPRank algorithm. At each learning round, the algorithm receives
a training instance from each task and uses that instance to update a single weight vector.

We adopt the cumulative error rate, namely the ratio of the number of mistakes made
by an online learner to the number of samples received to date, as a metric for comparing
algorithms. Despite its extensive use in online learning studies, the cumulative error rate does
not consider the ordinal preference of the rank labels. For example, if the true rank is 1, then a
predicted rank 2 is preferred over 3, even though they are equally erroneous when measured
by the error rate. To qualify such an ordinal preference, we compute for each algorithm
the cumulative rank-loss rate as the ratio of the absolute difference between the true and
predicted ranks to the total number of examples that have been received to date. Formally,
the cumulative rank-loss rate at round T is (1/T )

∑T
t=1(|yt − ŷt |). For both metrics, a lower

value corresponds to higher performance of the algorithm.

5.3 Performance evaluation

The experiment is conducted on a PC with a 2.4 GHz CPU and 8 GB RAM. We shuffle
the sample order for each dataset randomly and average all tasks’ performance measures at
the last learning round into a single value for ease of comparison. Table 2 reports the mean
error rates and the mean rank-loss rates, together with their standard deviations, for various
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algorithms on the three datasets. Figure 1 depicts the variations of the averaged error rate and
the rank-loss rate over the entire online learning process. The runtime for each algorithm,
namely the total time that is consumed by updating the models and making predictions, is
also listed in Table 2. Our observations from these results are as follows.

The proposed online multitask learning methods (COR-BS, COR-LM and COR-LT) out-
perform the other three single-task learners in terms of the error rate and the rank-loss rate
in most cases. This supports our assumption that learning related tasks collaboratively can
outperformmodels that are trained individually.Among the three datasets, the proposedmeth-
ods demonstrate the largest performance advantages on the synthetic dataset. This might be
because the task correlations are imposed intentionally on the synthetic dataset and, thus, are
more explicit and well formed compared to the two real-world datasets, in which tasks are
believed to be related to some extent.

Next, by comparing the three proposed algorithms that employ the collaborative learning
strategy (COR-BS, COR-LM and COR-LT), we observe that the latter two, which use the
large margin principle and the latent global information representation, tend to produce
more accurate results compared to the former simple approach. This indicates that imposing
the large margin constraint on the collaborative model has positive effects on solving the

Table 2 Experimental results of the means and standard deviations (in brackets) of all tasks’ “eventual” error
rates and rank-loss rates at the last learning round

Error rate Rank-loss rate Runtime (s)

(a) Synthetic dataset

PRank-Unique 0.44 (0.03) 0.52 (0.05) 0.73

PRank-Global 0.48 (0.11) 0.61 (0.27) 1.21

NoPRank-Unique 0.44 (0.03) 0.51 (0.04) 300.31

NoPRank-Global 0.49 (0.10) 0.61 (0.27) 328.78

COR-BS 0.40 (0.04) 0.48 (0.05) 1.98

COR-LM 0.39 (0.04) 0.43 (0.04) 226.96

COR-LT 0.32 (0.03) 0.35 (0.03) 1.49

(b) EachMovie dataset

PRank-Unique 0.72 (0.11) 1.52 (0.22) 0.68

PRank-Global 0.73 (0.05) 1.36 (0.19) 1.18

NoPRank-Unique 0.61 (0.08) 0.83 (0.17) 13.99

NoPRank-Global 0.75 (0.04) 1.30 (0.16) 16.74

COR-BS 0.64 (0.08) 1.02 (0.19) 1.48

COR-LM 0.59 (0.09) 0.82 (0.18) 12.26

COR-LT 0.59 (0.08) 0.90 (0.15) 1.28

(c) Multi-domain sentiment dataset

PRank-Unique 0.50 (0.03) 0.77 (0.07) 25.47

PRank-Global 0.48 (0.03) 0.70 (0.05) 27.35

NoPRank-Unique 0.53 (0.03) 0.75 (0.07) 138.74

NoPRank-Global 0.50 (0.03) 0.70 (0.05) 146.31

COR-BS 0.47 (0.03) 0.69 (0.06) 48.92

COR-LM 0.53 (0.03) 0.68 (0.06) 136.28

COR-LT 0.43 (0.03) 0.57 (0.05) 39.17
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(a) (b)

(c)

(e) (f)

(d)

Fig. 1 Averaged variations of the cumulative error rate and rank-loss rate over all tasks along the entire online
learning process on three datasets

ranking problem. By imposing the large margin constraint, NoPRank always outperforms
its counterpart PRank. In addition, by applying both the large margin principle and the
multitask learning approach, our COR-LM and COR-LT consistently outperform the large
margin single-task learner—NoPRank.

123



Collaborative online ranking algorithms for multitask… 2341

Finally, regarding the computing speed, according to Table 2 COR-LT is considerably
faster than NoPRank, although both must solve a quadratic programming problem. NoPRank
must invoke an optimization solver in each online learning round. COR-LT accelerates this
procedure by approximating the quadratic programming with a closed-form solution. Since
both COR-BS and COR-LT have closed-form solutions to optimization problems, they enjoy
linear time complexity with respect to the numbers of instances and dimensions. This is not
different from typical online learners. Considering the minimal additional time cost that is
incurred by COR-BS, COR-LM and COR-LT compared to their counterparts PRank and
NoPRank, we conclude that our algorithms are effective and efficient for solving related
ranking problems.

6 Conclusions

We study solving multiple related ranking problems together with the objective of using
task interactions to improve the rank accuracy. We begin by discussing common ranking
problems and highlight that the problem that we study is the assignment of samples into
a set of ordered categories, which can be analogous to rating movies based on an ordinal
scale. Such a problem can be solved via the learning-to-rank approach, which automatically
constructs a ranking model from training data. Through a brief taxonomy of learning-to-
rank, we show that our problem is most closely related to ordinal regression, where the
objective is to classify patterns using a categorical scale that contains a natural order of the
labels. Although it shares similar characteristics with ordinal regression, our problem deals
with multiple ranking tasks whose data are available in a sequential order. To the best of
our knowledge, few attempts have been made at exploring ranking problems in the online
multitask learning setting.

We propose three collaborative online ranking methods that can utilize individual and
global models to improve the overall ranking performance for jointly solvingmultiple related
tasks.We present two approaches for modeling the task-shared knowledge: a native approach
that takes a uniform average of weight vectors as the global model (Sect. 4.1) and a latent
representation approach that learns the global model via training (Sect. 4.3). We show that
applying the largemargin principle can improve the accuracy of rankingmultiple related tasks
(Sect. 4.2). We further devise a closed-form approximation of the optimization problem
so that we no longer need to invoke a quadratic programming routine repeatedly, thereby
rendering the learning process more computational efficient (Sect. 4.3). The experimental
results demonstrate that the integration of the global and unique models in the proposed
collaborative learning approach leads to performances that are superior to those of either
approach alone.

In the future, we wish to extend our experiments to a larger dataset and to additional
applications. Our methods assume uniform relations across tasks. However, it is more rea-
sonable to consider the degree of relatedness among tasks. The incorporation of hierarchies
and clusters of tasks is also worthy of further study.
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A Appendix

We prove Theorem 1 in Sect. 4.3. First, referring to the optimization problem in Eq. (8), we
define:

Δt =
N∑

i=1

1

2η

[
‖(vi , ci ) − (vit , c

i
t )‖2 − ‖(vi , ci ) − (vit+1, c

i
t+1)‖2

]

+ 1

2τ
‖(u, a) − (ut , at )‖2 − 1

2τ
‖(u, a) − (ut+1, at+1)‖2 (12)

Note that

T∑

t=1

Δt =
T∑

t=1

N∑

i=1

1

2η

[
‖(vi , ci ) − (vit , c

i
t )‖2 − ‖(vi , ci ) − (vit+1, c

i
t+1)‖2

]

+
T∑

t=1

[
1

2τ
‖(u, a) − (ut , at )‖2 − 1

2τ
‖(u, a) − (ut+1, at+1)‖2

]

=
N∑

i=1

1

2η

[
‖(vi , ci ) − (vi1, c

i
1)‖2 − ‖(vi , ci ) − (viT+1, c

i
T+1)‖2

]

+ 1

2τ
‖(u, a) − (u1, a1)‖2 − 1

2τ
‖(u, a) − (uT+1, aT+1)‖2 (13)

Combining Eq. (13) with u1 = vi1 = 0, a1 = ci1 = 0 and since ‖ · ‖2 is a nonnegative
function, we obtain:

T∑

t=1

Δt ≤
N∑

i=1

1

2η
‖(vi , ci )‖2 + 1

2τ
‖(u, a)‖2 (14)

Now, we bound Δt from below. Referring to Eq. (12), we obtain:

Δt =
N∑

i=1

1

2η

[
‖(vi , ci ) − (vit , c

i
t )‖2 − ‖(vi , ci ) − (vit − ηgw

i

t , cit − ηgb
i

t )‖2
]

+ 1

2τ
‖(u, a) − (ut , at )‖2 − 1

2τ
‖(u, a) − (ut − τ

∑

j

gw
j

t , at − τ
∑

j

gb
j

t )‖2

=
N∑

i=1

1

2η

[
‖(vi , ci ) − (vit , c

i
t )‖2 − ‖(vi , ci ) − (vit , c

i
t )‖2

− 2ηgw
i

t · (vi − vit ) − 2ηgb
i

t · (ci − cit ) − ‖(ηgwi

t , ηgb
i

t )‖2
]

+ 1

2τ
[‖(u, a) − (ut , at )‖2 − ‖(u, a) − (ut , at )‖2

− 2τ
∑

j

gw
j

t · (u − ut ) − 2τ
∑

j

gb
j

t · (a − at ) − ‖(τ
∑

j

gw
j

t , τ
∑

j

gb
j

t )‖2]
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=
N∑

i=1

[
gw

i

t · (vit − vi ) + gb
i

t · (cit − ci ) − η

2
‖(gwi

t , gb
i

t )‖2
]

+
∑

j

gw
j

t · (ut − u) +
∑

j

gb
j

t · (at − a) − τ

2
‖(

∑

j

gw
j

t ,
∑

j

gb
j

t )‖2

Since wi = u + vi , bi = a + ci , we obtain:

Δt =
N∑

i=1

[gwi

t · (wi
t − wi ) + gb

i

t · (bit − bi )] −
N∑

i=1

η

2
‖(gwi

t , gb
i

t )‖2

− τ

2
‖(

∑

j

gw
j

t ,
∑

j

gb
j

t )‖2

≥
N∑

i=1

[�it (wi
t ,b

i
t ) − �it (w,b)] −

N∑

i=1

η

2
‖(gwi

t , gb
i

t )‖2 − τ

2
‖(

∑

j

gw
j

t ,
∑

j

gb
j

t )‖2 (15)

Note that for the inequality in Eq. (15), we use the following:

gw
i

t · (wi
t − wi ) + gb

i

t · (bit − bi ) ≥ �it (w
i
t ,b

i
t ) − �it (w,b)

This is because �it (·, ·) is convex.
Therefore, using the upper bound of

∑T
t=1 Δt in Eq. (14) and the lower bound of Δt in

Eq. (15), we obtain:

T∑

t=1

N∑

i=1

[�it (wi
t ,b

i
t ) − �it (w,b)]

≤
N∑

i=1

1

2η
‖(vi , ci )‖2 + 1

2τ
‖(u, a)‖2 +

N∑

i=1

T∑

t=1

η

2
‖(gwi

t , gb
i

t )‖2

+ τ

2

T∑

t=1

‖(
∑

j

gw
j

t ,
∑

j

gb
j

t )‖2

≤
N∑

i=1

1

2η
‖(vi , ci )‖2 + 1

2τ
‖(u, a)‖2 +

N∑

i=1

η

2
L2T + τ

2
N 2L2T

where the last inequality is due to the Lipschitzness of the loss �it (·, ·).
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