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mg2vec: Learning Relationship-Preserving
Heterogeneous Graph Representations via

Metagraph Embedding
Wentao Zhang, Yuan Fang, Member, IEEE, Zemin Liu,

Min Wu, Member, IEEE, and Xinming Zhang, Senior Member, IEEE

Abstract—Given that heterogeneous information networks (HIN) encompass nodes and edges belonging to different semantic types,
they can model complex data in real-world scenarios. Thus, HIN embedding has received increasing attention, which aims to learn
node representations in a low-dimensional space, in order to preserve the structural and semantic information on the HIN. In this
regard, metagraphs, which model common and recurring patterns on HINs, emerge as a powerful tool to capture semantic-rich and
often latent relationships on HINs. Although metagraphs have been employed to address several specific data mining tasks, they have
not been thoroughly explored for the more general HIN embedding. In this paper, we leverage metagraphs to learn
relationship-preserving HIN embedding in a self-supervised setting, to support various relationship mining tasks. In particular, we
observe that most of the current approaches often under-utilize metagraphs, which are only applied in a pre-processing step and do
not actively guide representation learning afterwards. Thus, we propose the novel framework of mg2vec, which learns the embeddings
for metagraphs and nodes jointly. That is, metagraphs actively participates in the learning process by mapping themselves to the same
embedding space as the nodes do. Moreover, metagraphs guide the learning through both first- and second-order constraints on node
embeddings, to model not only latent relationships between a pair of nodes, but also individual preferences of each node. Finally, we
conduct extensive experiments on three public datasets. Results show that mg2vec significantly outperforms a suite of state-of-the-art
baselines in relationship mining tasks including relationship prediction, search and visualization.

Index Terms—heterogeneous information networks, network embedding, relationship mining.

F

1 INTRODUCTION

R EAL world objects often interact with each other to
form large-scale networks, such as social, biological and

transportation networks. Therefore, network analysis be-
comes an important research area, with many crucial appli-
cations such as personalized recommendations [1], disease
protein predictions [2] and information retrieval [3], which
can often be cast as node classification or link prediction
tasks. These tasks ultimately boil down to deriving effec-
tive node representations. While traditional approaches rely
heavily on manual feature engineering, network embedding
[4] has emerged as a promising family of algorithms to learn
node representations automatically.

Earlier network embedding algorithms [5], [6], [7] are
mostly designed for homogeneous networks, where there is
only a single type of node and edge. However, in real-world
scenarios, objects are often organized into Heterogeneous
Information Networks (HIN) [8], where both nodes and edges
belong to different types. As illustrated in Figure 1, nodes in
the network denote different types of objects such as user,
address and company. These objects further interact with
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Fig. 1: A toy heterogeneous information network (HIN).

(i.e., link to) each other via various explicit relationships:
user u1 lives at address 123 Green St., and u4 inherits
the family name Smith, among other examples. Note that
depending on the contexts, networks with multiple types of
relationship are also variously called multi-view [9], multi-
plex [10], multi-dimensional [11] or multi-layered networks
[12] in the literature.

To capture the rich semantics on HINs, recent meth-
ods [13], [14], [15], [16] distinguish different types of ex-
plicit relationship (i.e., edge) when handling neighboring
nodes in the learning process. For instance, while both
XYZ Corp. and 123 Green St. are neighboring nodes of
u1 on the toy HIN, they convey distinct semantics via
work and live relationships, respectively. Thus, it becomes
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Fig. 2: From metapaths to metagraphs.

imperative to differentiate them. Moreover, composite and
often latent relationships also exist, such as colleagues
working together, or peer researchers in the same field,
which can be modeled to some extent by metapath structures
[17] such as user—company—user and author—paper—
venue—paper—author, respectively. A number of studies
[18], [19], [20] have leveraged such metapaths to learn
representations for HINs.

However, metapaths still fall short of expressing more
intricate relationships between nodes. Consider the meta-
path shown in Figure 2(a). The underlying relationship
between the two users is unclear, which could be either
classmate or fellow almuni. To reduce such ambiguity, meta-
graphs [21], [22] have been proposed, which can express
finer-grained semantics. For instance, the metagraph in Fig-
ure 2(c) is able to capture the classmate relationship with
higher confidence than its metapath cousin in (a). Similarly,
the metapath in Figure 2(b) cannot tell apart the family
and roommate relationship, whereas the metagraph in (d)
can better characterize the family relationship. In particular,
given two metapaths, namely, user—family name—user and
user—address—user, each of them cannot confidently char-
acterize the family relationship independently. In contrast,
their conjunction, which is equivalent to the metagraph in
(d), is able to express the family relationship well, implying
that metagraphs exhibit a higher expressive power than its
constituent metapaths. In fact, metagraphs can be regarded
as nonlinear models of metapaths [21], [23].
Problem. Given their expressiveness, we leverage meta-
graphs to address relationship-preserving HIN embedding
in a self-supervised manner. It aims to map the nodes to a
low-dimensional vector space that preserves the latent com-
posite relationships between nodes, in addition to explicit
heterogeneous relationships. Ultimately, the learned repre-
sentations can support different downstream relationship
mining tasks. For one, we can predict the relationship class
between two nodes [24], which can be cast as an instance
of classification. Note that this task is different from link
prediction—in relationship prediction, we model the latent
relationships rather than the direct links between nodes. In
particular, two nodes could be already linked, but their spe-
cific relationship is still unknown, such as predicting if two
linked users are family or classmates on a social network.
Another task is to search for and rank nodes involved in
a target relationship with a query node [21], [25], which
can be cast as an instance of learning to rank [26]. Lastly,
relationship visualization can also be performed to identify

different latent relationships. All these relationship mining
tasks leverage the relationship-preserving embeddings as
their input features.

Challenges and insights. Although metagraphs have been
utilized in a number of data mining problems including
search [21], classification [2] and recommendation [27] with
considerable performance gains, their research have been
limited in HIN embedding for learning more universal
representations. In particular, two major questions remain
in effectively exploiting metagraphs.

First, how to take the full advantage of metagraphs in
HIN embedding? Most existing approaches utilize meta-
graphs only in a precomputation step to derive or sample
various forms of feature, such as computing node simi-
larities [28], extracting neighborhoods [29], projecting the
HIN into multiple homogeneous networks [30], [31], and
sampling random walks [32]. In these studies, the meta-
graphs become irrelevant after the precomputation, since
only their derived features, but not metagraphs themselves,
contributes to representation learning. This is an “under-
utilization” of metagraphs—given their ability to express
rich semantics, their active and direct participation in learn-
ing may better preserve the latent relationships between
nodes in the embedding space.

In our approach, we treat metagraphs as first class cit-
izens, by mapping them into the same embedding space
as nodes. As such, metagraphs can directly constrain node
representations in a relationship-preserving manner. Thus,
metagraphs actively contribute to representation learning,
instead of just being a passive tool for deriving features
during precomputation.

Second, how to effectively employ metagraphs to con-
strain node representations in the common embedding
space? While nodes interact with each other on a network,
each node also exists as an individual object. Most previous
network or HIN embedding methods have been primarily
concerned with exploiting the interactions between two
nodes through various constructs, such as the center-context
node pairs in skip-grams [5], [18], proximity between two
nodes [6], as well as metapaths or other structures con-
necting two nodes [16], [19], [33]. In general, they capture
the interaction between two nodes, but largely neglect the
role of individual nodes. In the context of relationship-
preserving embedding, node individuality is also crucial,
which can be deemed as a preference or prior for the node
to interact with other nodes in a certain way.

In our approach, we leverage metagraphs to guide node
representation learning through both first- and second-order
metagraph embedding. Specifically, in the first-order meta-
graph embedding, we utilize the set of metagraphs associ-
ated with each node to learn the preferences of individual
nodes, as different nodes exhibit varying tendency to inter-
act with other nodes via different latent relationships. In the
second order, we directly model the interactions between
two nodes through the set of metagraphs connecting them.
Both orders of metagraph embedding lend to more robust
and effective node representations.

Contribution. In this paper, we study the methodology
of relationship-preserving HIN embedding. Specifically, we
propose a novel framework called mg2vec by exploiting
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metagraph embeddings in a self-supervised manner, to
support various relationship mining tasks. In summary, we
make the following contributions.
• We propose to fully utilize metagraphs for learning

relationship-preserving representations on HINs.
• We devise a novel self-supervised framework mg2vec,

which actively guide representation learning via first- and
second-order metagraph embedding.

• We evaluate mg2vec extensively on three datasets, and
achieve promising empirical performance across relation-
ship prediction, search and visualization.

2 RELATED WORK

Network embedding [4], [34] has been extensively studied
in recent years, due to its impressive ability in deriving
effective network representations without manual feature
engineering. A significant number of approaches deal with
homogeneous graphs, mainly to preserve network struc-
tures in the embedding space such as DeepWalk [5] and
node2vec [7], and to preserve higher-order proximities such
as LINE [6], SDNE [35] and HOPE [36]. Generative adver-
sarial networks [37], [38] have also been employed for better
sampling, such as GraphGAN [37] and ANE [38]. Mean-
while, graph neural networks such as GCN [39] and GAT
[40] have emerged as competitive approaches, but they often
address a specific task in a supervised or semi-supervised
manner, which depart from our self-supervised setting to
support different relationship mining tasks. Nonetheless,
GraphSAGE [41] also presents a self-supervised variant.

Beyond homogeneous graphs, HIN embedding [8] has
also attracted considerable attention due to their prevalence
in real-world applications. On the one hand, explicit rela-
tionships on HINs are differentiated in various models, such
as PTE [42], HEP [13], PME [14], HEER [15] and HeGAN
[16]. On the other hand, to model latent relationships be-
tween nodes, an important tool is metapath [17], which is a
path pattern joining multiple explicit relationships. Due to
their composite nature, metapaths are able to capture long-
range latent relationships, and have been employed in sev-
eral HIN embedding approaches including metapath2vec
[18], hin2vec [19] and HERec [20]. However, metapaths are
still inadequate to capture more intricate relationships.

Thus, the more powerful metagraphs [21], [22], which
are nonlinear functions of metapaths [21], [23], have been
proposed for several data mining tasks [2], [27], although
their adoption in the more general HIN embedding has
been limited. Fang et al. [23] directly utilize metagraphs
as the representations for HINs, where each metagraph
constitutes one dimension and its number of instances con-
taining a node form the feature value for that node. While
such metagraph-based representations are reasonable, they
could still be high dimensional and sparse on a type-rich
HIN with a large number of metagraphs. Other metagraph-
based methods often adopt an embedding approach to learn
low-dimensional representations. However, most of these
studies [28], [29], [30], [31], [32] only utilize metagraphs in
a precomputation step, without fully exploiting metagraphs
to actively capture and preserve latent relationships during
representation learning. A more recent approach M-HIN

TABLE 1: Summary of main notations.

Notation Description
G a heterogeneous information network (HIN)
V,E the set of nodes and edges on G, resp.
M the set of metagraphs on G
Mi ∈M a metagraph on G
Si the set of subgraphs instantiated by metagraph Mi

S(v) the set of subgraphs containing node v
S(u,v) the set of subgraphs containing both nodes u and v
mi ∈ RD the vector representation of metagraph Mi

v ∈ RD the vector representation of node v
α ∈ [0, 1] trade-off between the first and second order

[33] jointly learns metagraph and node embeddings based
on complex tensor factorization [43], which is tantamount to
modeling the second-order interactions between two nodes
but not the first-order preferences of individual nodes.

On another line, relationship mining has been exten-
sively researched in text mining and natural language pro-
cessing, ranging from the early work using handcrafted
patterns [44] or automatically mined patterns [45], to recent
deep neural network models [46], [47]. However, these stud-
ies focus on mining relationships from texts, whereas we
deal with HINs. There is also a series of work on knowledge
graph embedding including TransE [48] and TransR [49], but
their primary goal is to preserve the subject-predicate-object
triples (i.e., explicit heterogeneous relationships), instead
of latent composite relationships. Thus, they are not ade-
quately designed for HIN embedding, and achieve inferior
empirical performance compared to our model. Lastly, prox-
imity embedding approaches [25], [50] also exist on HINs,
although they focus on learning only one target relationship
class in a supervised manner. In contrast, we aim to learn
relationship-preserving embeddings that are able to capture
different latent relationships in a self-supervised setting.

3 PRELIMINARIES

In this section, we introduce the definitions of HINs and
metagraphs, and formalize the problem of relationship-
preserving HIN embedding. Main notations are summa-
rized in Table 1.

3.1 Definitions

An example of HIN is illustrated in Figure 1 on a toy social
network. Observe that it consists of multiple node types
(e.g., user, company or address) and edge types (e.g., work
or live).

Definition 1 (Heterogeneous information network [8]). A
heterogeneous information network or HIN is a graph G =
(V,E, T,R, φ, ϕ), where V and E denote the sets of nodes
and edges, respectively. It is also associated with a node type
mapping function φ : V → T and an edge type mapping
function ϕ : E → R, where T and R denote the sets of node
and edge types such that |T | > 1 or |R| > 1. �

Metagraphs have emerged as a valuable tool to capture
rich semantics on HINs. As Figure 1 shows, nodes often
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Fig. 3: Overall framework of mg2vec. (a) Enumeration of metagraphs and their subgraph instances from the input HIN.
(b) First-order metagraph embedding to constrain the representations of individual nodes. (c) Second-order metagraph
embedding to constrain the representations of node pairs.

interact with each other in common patterns that can be
summarized by metagraph structures shown in Figure 2.

Definition 2 (Metagraph [21]). A metagraph can be denoted
as a graph M = (VM , EM ), where VM is the set of nodes
in the metagraph M , and EM is the set of edges in M .
Moreover, each node v ∈ VM denotes a type from the node
types T and each edge (u, v) ∈ EM denotes a type from the
edge types R. �

Note that a node on the HIN typically represents a
physical object with both an intrinsic identity (e.g., XYZ
Corp.) and a type (e.g., company), whereas a node on the
metagraph is only a type descriptor without correspondence
to any concrete object. In particular, each metagraph instan-
tiates a set of subgraphs on the HIN, and these subgraphs
contain various physical objects. For example, the subgraph
u1—XYZ Corp.—u2 is an instance of the metagraph user—
company—user in Figure 1. The instances of a metagraph
are formalized below.

Definition 3 (Metagraph instance [21]). Consider a sub-
graph S with nodes VS ⊂ V and edges ES ⊂ E, and a
metagraph M = (VM , EM ). S is an instance of M if there
exists a bijection between their nodes, ψ : VS → VM , such
that the following hold:
• ∀v ∈ VS , φ(v) = ψ(v); and
• ∀u, v ∈ VS , 〈u, v〉 ∈ ES iff 〈ψ(u), ψ(v)〉 ∈ EM , and
ϕ(〈u, v〉) = 〈ψ(u), ψ(v)〉. �

Note that a subgraph can only be instantiated by one
metagraph, although a metagraph can instantiate many
different subgraphs on a HIN.

3.2 Relationship-Preserving HIN Embedding
Using metagraphs and their instances, we aim to capture the
latent relationships between a set of core nodesC ⊆ V , whose
relationships with each other are the target of investigation.
For instance, in Figure 1, if we are interested in the latent
relationships between users, the set of all user nodes form
the core nodes. In the most general case, all nodes on the
HIN can be core nodes.

The problem of relationship-preserving HIN embedding
is thus to learn a mapping that projects each core node
v ∈ C to a low-dimensional space RD, where D is the num-
ber of dimensions. Node representations in the new space

should ideally preserve the semantic relationships between
the core nodes. In our proposal, we further aim to map
metagraphs into the same space, to actively constrain node
representations. In particular, we assume a self-supervised
setting, so that the learned node embeddings can be utilized
for various relationship mining tasks including relationship
prediction, search and visualization.

4 PROPOSED APPROACH: MG2VEC

In this section, we introduce our framework mg2vec, which
hinges on metagraphs to learn relationship-preserving HIN
embedding. An overview of the framework is presented in
Figure 3. First, we enumerate the set of metagraphs and
their subgraph instances. Next, based on these metagraphs,
we resort to both first- and second-order metagraph em-
bedding, which treat metagraphs as first class citizens by
mapping them into a common embedding space as the
nodes reside. Finally, we present the overall model.

4.1 Enumeration of Metagraphs and Instances
In the initial step shown in Figure 3(a), we enumerate the
set of metagraphs M on the HIN, and for each metagraph
Mi ∈ M we enumerate its set of subgraph instances Si.
While the subgraph instances depict the interactions be-
tween the objects, metagraphs summarize them into com-
mon patterns. For instance, the four subgraphs involving
the nodes u, v, p, q can be abstracted by two metagraphs
M1 and M3, where the subgraphs in S1 are instantiated by
metagraph M1, and the subgraphs in S3 are instantiated by
M3. Each subgraph can only be instantiated by one and only
one metagraph.

There is extensive literature [51], [52], [53], [54] on the
efficient enumeration of metagraphs and their instances
up to a given size. The problem can be reduced to the
well known NP-hard subgraph isomorphism. A brute-force
approach incurs a time complexity of O(|V |d|VM |−1), where
|V | is the number of nodes in the HIN G, d is the average
degree of G, and |VM | is the number of nodes in the meta-
graph. Nevertheless, the complexity can be significantly
reduced through various pruning techniques and special
data structures. For example, Bi et al. [53] proposed an
auxiliary data structure called compact path-index (CPI)
with a polynomial construction time of O(|E||EM |) where
E is the number of edges in G and EM is the number of
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edges in the metagraph. CPI is able to drastically decrease
the enumeration time to the point that CPI construction
often dominates the total processing time.

4.2 First-order Metagraph Embedding

We guide the embedding of each core node to express their
individual preference, as shown in Figure 3(b). Specifically,
a core node can be found in many subgraphs, and their
instantiating metagraphs further characterize the latent re-
lationships the node tends to participate in. For ease of
discussion, we only consider symmetric metagraphs [21]
containing only two core nodes here, such as those shown in
Figure 2. We will discuss how to handle other metagraphs
in Section 4.5.

Let mi ∈ RD and v ∈ RD denote the embedding of
metagraph Mi and node v, respectively, which are embed-
ded into the same space. Let S(v) denote the set of sub-
graphs containing node v. For example, in Figure 3(a) with
four subgraphs labeled ÀÁÂÃ, S(u) = {ÀÂ}, S(v) = {ÀÃ},
etc. Note that each of the four nodes u, v, p and q appears
in at least one instance of the metagraph M1 and one
instance of M3. Therefore, both M1 and M3 characterize
the preference of each node. It further implies that their
embeddings m1 and m3 will constrain node embeddings
u,v,p and q individually, as illustrated in Figure 3(b).

Specifically, for a core node v, we adopt the self-
supervised goal of predicting its containing subgraphs S(v).
More formally, we maximize P (S(v)|v; Θ), where Θ are
model parameters consisting of all node and metagraph
embeddings, i.e., Θ = {v : v ∈ V,mi : Mi ∈ M}. Since the
set of subgraphs containing v can be instantiated by many
different metagraphs, S(v) can be broken down into several
disjoint subsets,

S(v) =
⋃

Mi∈M
{S(v) ∩ Si}, (1)

where each subset {S(v) ∩ Si} contains the subgraphs in-
stantiated by a common metagraph Mi. These subsets are
disjoint since each subgraph can only be instantiated by
exactly one metagraph.

Treating all subgraphs of v instantiated by a common
metagraph as sharing the same underlying distribution, we
obtain the following.

P (S(v)|v; Θ) =
∏

Mi∈M
P (S(v) ∩ Si|v; Θ)

=
∏

Mi∈M
P (Mi|v; Θ)|S

(v)∩Si|, (2)

where P (Mi|v; Θ) can be materialized using a softmax
function:

P (Mi|v; Θ) =
exp(mi · v)∑

Mj∈M exp(mj · v)
. (3)

Accounting for all core nodes, we minimize the fol-
lowing negative log-likelihood to achieve the first-order
metagraph embedding.

L1 = −
∑
v∈C

∑
Mi∈M

|S(v) ∩ Si| logP (Mi|v; Θ). (4)

4.3 Second-order Metagraph Embedding

Next, we guide the embedding of each pair of core nodes
to express their latent relationships, as shown in Figure 3(c).
More specifically, a pair of core nodes can co-appear in many
subgraphs, and these subgraphs can be characterized by
different metagraphs to capture latent relationships between
the two nodes.

Let S(u,v) denote the set of subgraphs containing both
nodes u and v simultaneously. It follows that, in Figure 3(a),
S(u,v) = {À}, S(p,q) = {Á}, etc. Therefore, as illustrated
in Figure 3(c), m1 will constrain f(u,v) and f(p,q), and
m3 will constrain f(u,p) and f(v,q), given some vector-
valued function f to aggregate the representations of two
nodes. Our goal is to design f : R2D → RD to map the
aggregation of two nodes to the same space as metagraphs,
such that the containing metagraphs of the two nodes could
constrain their representations. Specifically, we adopt the
following formulation of f :

f(u,v) = ReLU([u‖v]W + b), (5)

where ‖ is the concatenation operator, W ∈ R2D×D is a
weight matrix, b ∈ RD is a bias vector, and ReLU is the
activation function.

Similar to the first order, for a pair of core nodes u and
v, we adopt the self-supervised goal of predicting their con-
taining subgraphs S(u,v), by maximizing P (S(u,v)|u, v; Θ).
We also treat the containing subgraphs instantiated by the
same metagraph as sharing the same underlying distribu-
tion. Specifically,

P (S(u,v)|u, v; Θ) =
∏

Mi∈M
P (S(u,v) ∩ Si|u, v; Θ)

=
∏

Mi∈M
P (Mi|u, v; Θ)|S

(u,v)∩Si|, (6)

where P (Mi|u, v; Θ) is also defined with a softmax:

P (Mi|u, v; Θ) =
exp(mi · f(u,v))∑

Mj∈M exp(mj · f(u,v))
. (7)

Accounting for all pairs of core nodes, we minimize
the following negative log-likelihood to achieve the second-
order metagraph embedding.

L2 =−
∑
u∈C

∑
v∈C\{u}

∑
Mi∈M

|S(u,v) ∩ Si| logP (Mi|u, v; Θ). (8)

Note that with the second-order embedding, the model
parameters Θ are expanded to include the weight matrix W
and bias vector b employed in the function f .

4.4 Overall Model

To integrate both orders of metagraph embedding, we op-
timize the overall probability of predicting the containing
subgraphs given each core node, as well as given each
pair of core nodes. Equivalently, we minimize the following
overall loss:

L = (1− α)L1 + αL2, (9)

where α ∈ [0, 1] is a hyperparameter to control the balance
between the two orders.
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We adopt two common forms of sampling to efficiently
solve the above optimization. First, we apply negative sam-
pling [7] for the softmax functions in Eq. (3) and (7) to speed
up their computation. Specifically, among all metagraphs
M, we randomly sampleK of them as the negative samples,
where K is typically a small constant. Second, for the
second-order loss in Eq. (8), we apply random walks [5]
to sample the node pairs under consideration. Specifically,
starting from each core node, we perform η random walks
on the HIN, such that each random walk traverses λ core
nodes. We further extract node pairs with skip-grams using
a window of size ω. On the one hand, node pairs not
sampled by the skip-gram model are presumably far away
from each other on the HIN, which are unlikely to be related
in significant ways. Thus, discarding them would have an
negligible impact on the performance. On the other hand,
this sampling step drastically reduces the number of pairs
from O(|V |2) to O(ηλω|V |), since η, λ and ω are constants
much smaller than |V |. Note that since the number of core
nodes |C| can be as large as all nodes |V |, we use the upper
bound |V | for a more general analysis.

We further conduct a complexity analysis. Updating the
first-order loss incurs O(|V ||M|KD) time, where K is the
negative sampling size and D is the number of embedding
dimensions. Moreover, updating the second-order loss in-
curs O(ηλω|V ||M|KD) time, since there are O(ηλω|V |)
node pairs as analyzed earlier. Thus, the second-order loss
dominates the overall complexity, which is linear in the
graph size |V | and the number of metagraphs |M|.

4.5 Extension to general metagraphs

So far we have assumed a symmetric metagraph with ex-
actly two core nodes. However, a metagraph could contain
more than two core nodes. For instance, given users as the
core nodes on a social network, involving additional users
could capture friends-of-friends interactions, as illustrated
in Figure 4(a). The pair of users labeled head and tail on
the left clearly entails different latent relationships from the
pair labeled on the right, even though all three users appear
in the same metagraph. To address this issue, we leverage
the notion of anchored metagraphs [23], which augment the
definition of metagraphs to include head and tail anchors.
As such, the two anchored metagraphs in Figure 4(a) are
considered different as they capture different semantics
between the two anchors. Similarly, their subgraph instances
would also be associated with similar anchors to be treated
as distinct subgraphs. Subsequently, when calculating the
first- and second-order losses in Eq. (4) and (8), the core
nodes must correspond to the anchors in the subgraphs and
metagraphs, instead of merely appearing in them.

Sometimes two core nodes may also play asymmetric
roles, such as being an advisor or an advisee in academic
graphs. As shown in Figure 4(b), the left author node could
be the advisor and the right author node could be the
advisee. To distinguish the direction of their relationship,
we can also resort to head and tail anchors—the left an-
chored metagraph captures the advisor-advisee relation-
ship, whereas the right one captures the advisee-advisor
relationship.

class

school

user useruser

head tail
class

school

user useruser

head tail

(a) Metagraphs with more than two core nodes

paper

paper

author

author

course

grant

head

tail paper

paper

author

author

course

grant

tail

head

(b) Metagraphs with asymmetric core nodes

Fig. 4: Special metagraphs with head and tail anchors.

5 EXPERIMENTS

In this section, we empirically demonstrate the superior
performance of mg2vec, and conduct an in-depth model
analysis to understand its underlying mechanism.

5.1 Experimental Setup

5.1.1 Datasets

We conduct extensive experiments on three public datasets,
namely, LinkedIn [55], AS [56] and DBLP [24]. We elaborate
them below and summarize them in Table 2.

LinkedIn [55]: The dataset can be organized into a HIN
with four types of nodes: user, employer, location and
college. User nodes can link to the other types of node,
and there also exist user—user edges. Through a user study,
users labeled their primary relationship with their friends
on LinkedIn, including School, Work and Other relationships.
These relationships are latent as they cannot be directly
observed on the HIN. For example, sharing the same em-
ployer does not automatically and necessarily make two
users primarily related via Work. A common scenario is that
they may view themselves as personal friends, who happen
to be in different departments of the same large company
without much work-related interaction. On this dataset, the
core nodes consist of user nodes as we are interested in the
relationships between users.

AS [56]: A HIN dataset for interconnecting Autonomous
Systems (AS) on the Internet. On this graph, each node
represents an AS and each edge represents the interaction
between two ASes. There are three types of nodes: top AS
nodes who are not customers of any other AS, bottom AS
nodes who are not providers of any other AS, and middle
AS nodes who are both customers and providers of some
other ASes. Each interaction (i.e., observable link) between
two ASes belongs to one of the four relationships, namely,
Customer, Supplier, Peer (ASes not involved in hierarchical
relationships) and Sibling (ASes owned by the same or-
ganization). While Customer and Supplier are asymmetric
relationships, Peer and Sibling are symmetric. These relation-
ships are latent as they cannot be directly observed on the
HIN during representation learning. We treat middle ISP
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TABLE 2: Summary of datasets. |V |: number of nodes, |E|:
number of edges, |T |: number of node types, |R|: number of
edge types, |M|: number of metagraphs.

|V | |E| |T | |R| |M| # Labeled pairs
LinkedIn 65,925 220,812 4 4 318 5,959

AS 26,475 53,381 3 6 688 19,936
DBLP 172,136 968,822 5 4 88 5,388

nodes as the core nodes, as they can participate in all four
relationships with each other.

DBLP [17]: This is an academic graph with five types of
nodes: paper, author, year, venue and keyword. Paper nodes
can link to nodes of the other types. Author nodes are the
core nodes, as they form several latent relationships, includ-
ing the symmetric Colleague, and the asymmetric Advisor
and Advisee, which cannot be observed on the HIN during
representation learning. Specifically, the relationships were
labeled based on faculty homepages and the Mathematics
Genealogy and AI Genealogy projects [24].

5.1.2 Enumeration of metagraphs and instances

Many algorithms exist to efficiently enumerate the meta-
graphs and their instances up to a given size from an
input HIN. We first applied GRAMI [51] to find the set of
metagraphs M, and adopted SymISO [21] to compute the
set of instances of each metagraph Mi ∈M.

Following previous work [21], [23], we applied several
filters to prune less useful metagraphs. First, we only used
metagraphs containing at least two core nodes in order to
capture their interactions. Second, a metagraph must have at
least two different node or edge types in order to capture the
heterogeneity. Third, we removed metagraphs with “dan-
gling” nodes, which are non-core nodes with degree one,
as such nodes often do not explain the interactions between
core nodes. Lastly, we restricted metagraphs to have at most
5 nodes on LinkedIn and AS and 6 nodes on DBLP, which
are adequate in achieving good empirical performance on
downstream tasks in line with previous studies [22], [23].
Note that DBLP has a relatively simple network schema,
resulting in only 17 metagraphs of up to size 5. Thus, we
chose size 6 on DBLP, which generates a reasonable variety
of 88 metagraphs. A more detailed analysis on metagraph
size will be conducted in Section 5.3.1. These rules are
generally domain independent and do not require prior
knowledge of the dataset. The number of metagraphs after
pruning is reported in Table 2.

5.1.3 Baselines and parameters

We compare the proposed mg2vec model with the follow-
ing state-of-the-art baselines, which belong to four broad
categories: (i) homogeneous network methods DeepWalk
and LINE; (ii) graph neural network or knowledge graph
models GraphSAGE and TransR; (iii) non-metagraph-based
HIN methods metapath2vec, hin2vec and HeGAN; and (iv)
metagraph-based HIN methods metagraph2vec, MG+ and
M-HIN.
• DeepWalk [5]: a pioneering skip-gram model based on

random walk sampling for homogeneous graphs.

• LINE [6]: a homogeneous network embedding approach
to preserve both first- and second-order proximity.

• GraphSAGE [41]: a graph neural network, using the one-
hot encoding of node types as the features of the nodes.
Thus, it accounts for the heterogeneity to some extent. We
adopted its self-supervised variant to match our setting.

• TransR [49]: a knowledge graph embedding method,
which is primarily designed to preserve explicit subject-
predicate-object triples rather than latent composite rela-
tionships.

• metapath2vec [18]: a HIN embedding method, which
employs pre-selected metapaths to sample random walks.
For each dataset, we tuned the configuration of metapaths
in order to achieve the optimal performance, for fair
comparison with our method. Details of the configuration
are reported in Appendix A.

• hin2vec [19]: a HIH embedding method, which samples
random walks based on metapaths up to a given size, and
feed them into a neural network.

• HeGAN [16]: a HIN embedding method, which employs
the adversarial principle to generate better negative sam-
ples, and model the explicit heterogeneous relationships
on HINs.

• metagraph2vec [32]: a HIN embedding method and a
variant of metapath2vec, which employs metagraphs to
sample random walks.

• MG+ [23]: a feature engineering method that derives
node and edge representations based on the number of
metagraph instances on a HIN, where each dimension
corresponds to a metagraph.

• M-HIN [33]: a HIN embedding method that employs com-
plex tensor factorization [43] to jointly embed metagraphs
and nodes, which is tantamount to modeling the second-
order interactions only.

For mg2vec, to sample the node pairs, we conducted 10
random walks per node with a walk length 100 and window
size 5. We further set its negative sampling size to 10 and
embedding size to 128. To achieve a balance between the
first and second order, we set α to 0.5 and we will also
study its impact on the model in Section 5.4.1. For the
baselines, to ensure that they are well tuned, we performed
grid search on the main hyper-parameters of each baseline.
In most cases the optimal parameters found are consistent
with existing literature. The details of the grid search process
are reported in Appendix B.

5.1.4 Tasks and evaluation

To extensively evaluate the performance of learned rep-
resentations, we conduct three relationship mining tasks,
including relationship prediction, search and visualization.
We elaborate each task in the following.

Prediction. Each dataset contains labeled relationship
classes between core node pairs, as introduced in Sec-
tion 5.1.1. These relationship labels are unknown to the
representation learning process, and are only used in the
downstream classification. Specifically, labeled pairs were
divided into 50% training and 50% testing, and such split-
ting was repeated 10 times. For all methods, we used the
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TABLE 3: Relationship prediction. Each reported figure is the average performance on ten splits, followed by their standard
deviation. The best result (in bold) is further marked with * if it is significantly different from the runner-up (underlined)
under the two-tail paired t-test at the 0.01 level.

LinkedIn AS DBLP
Micro-F Macro-F Accuracy Micro-F Macro-F Accuracy Micro-F Macro-F Accuracy

DeepWalk 46.10 ± 1.22 54.89 ± 0.84 60.21 ± 0.53 79.18 ± 0.39 65.37 ± 0.51 77.99 ± 0.44 74.15 ± 1.24 70.74 ± 1.06 77.22 ± 0.87
LINE 21.15 ± 0.53 34.41 ± 0.86 48.27 ± 0.34 65.33 ± 0.59 55.97 ± 1.27 64.35 ± 0.41 55.76 ± 1.44 47.48 ± 0.94 59.65 ± 0.73

GraphSAGE 12.32 ± 0.25 29.25 ± 0.33 46.95 ± 0.21 80.57 ± 0.75 66.43 ± 0.23 81.74 ± 1.15 78.77 ± 0.92 73.62 ± 1.31 81.99 ± 0.45
TransR 42.95 ± 1.41 51.73 ± 1.15 57.36 ± 0.82 84.82 ± 0.86 64.11 ± 0.45 85.73 ± 0.34 84.93 ± 1.09 82.31 ± 1.21 86.94 ± 1.34

metapath2vec 39.36 ± 0.70 50.23 ± 0.63 57.82 ± 0.26 82.96 ± 0.35 66.24 ± 0.41 83.41 ± 0.46 78.62 ± 0.23 74.75 ± 0.74 81.39 ± 0.72
hin2vec 42.15 ± 0.15 50.37 ± 0.23 56.49 ± 0.17 79.04 ± 0.57 63.89 ± 0.24 79.42 ± 0.33 86.13 ± 0.47 85.22 ± 0.35 88.78 ± 0.66
HeGAN 44.76 ± 0.54 53.97 ± 0.43 58.91 ± 0.56 85.23 ± 0.33 66.72 ± 0.12 86.13 ± 0.22 83.90 ± 0.66 81.43 ± 0.19 86.52 ± 0.33

metagraph2vec 44.21 ± 0.53 52.62 ± 1.14 56.49 ± 0.59 84.56 ± 0.25 65.87 ± 0.26 82.57 ± 0.12 83.13 ± 0.41 82.07 ± 0.47 84.11 ± 0.34
MG+ 40.19 ± 0.67 48.69 ± 0.91 54.73 ± 1.06 84.67 ± 0.47 64.52 ± 0.67 85.46 ± 0.53 86.06 ± 1.26 85.73 ± 0.97 87.39 ± 1.23

M-HIN 27.98 ± 0.52 39.20 ± 0.43 50.59 ± 0.68 84.45 ± 0.71 64.31 ± 0.86 84.32 ± 0.59 77.12 ± 0.92 73.41 ± 0.37 80.12 ± 1.26
mg2vec 50.01*± 0.52 57.56*± 0.16 61.24*± 0.26 87.82*± 0.35 67.51*± 0.18 88.92*± 1.07 88.22*± 0.94 87.38*± 0.54 89.90*± 0.29

TABLE 4: Relationship search. Each reported figure is the average performance on ten splits, followed by their standard
deviation. The best result (in bold) is further marked with * if it is significantly different from the runner-up (underlined)
under the two-tail paired t-test at the 0.01 level.

LinkedIn AS DBLP
NDCG MAP MRR NDCG MAP MRR NDCG MAP MRR

DeepWalk 59.97 ± 1.42 44.79 ± 1.07 56.27 ± 1.06 89.67 ± 0.51 81.63 ± 0.99 87.05 ± 0.73 98.11 ± 0.52 91.99 ± 0.46 92.06 ± 0.59
LINE 55.57 ± 0.74 40.95 ± 1.95 55.61 ± 1.30 85.30 ± 0.27 79.26 ± 0.11 85.12 ± 0.57 95.31 ± 0.44 76.49 ± 1.29 76.53 ± 1.21

GraphSAGE 58.96 ± 0.23 42.56 ± 0.45 58.07 ± 0.30 86.18 ± 0.71 73.19 ± 0.24 78.23 ± 0.13 99.49 ± 0.08 95.11 ± 0.06 95.12 ± 0.13
TransR 58.14 ± 0.71 42.31 ± 0.47 54.27 ± 0.53 92.18 ± 0.23 85.70 ± 0.06 89.71 ± 0.09 98.82 ± 0.24 97.21 ± 0.25 97.22 ± 0.45

metapath2vec 60.41 ± 0.11 44.47 ± 0.16 57.52 ± 0.18 91.91 ± 0.19 84.33 ± 0.12 89.20 ± 0.24 98.51 ± 0.11 93.87 ± 0.13 93.69 ± 0.17
hin2vec 60.85 ± 0.33 44.64 ± 0.20 55.86 ± 0.67 88.88 ± 0.58 79.89 ± 0.81 86.63 ± 0.13 99.29 ± 0.11 95.02 ± 0.13 95.02 ± 0.10
HeGAN 59.84 ± 0.62 44.66 ± 0.33 56.34 ± 0.49 90.94 ± 1.21 82.20 ± 0.86 87.29 ± 0.67 99.79 ± 0.06 97.10 ± 0.36 97.13 ± 0.42

metagraph2vec 58.22 ± 0.44 43.71 ± 0.25 56.69 ± 0.21 90.35 ± 0.33 81.97 ± 0.19 86.53 ± 0.53 98.23 ± 0.41 97.03 ± 0.24 96.91 ± 0.35
MG+ 67.88 ± 0.56 53.31 ± 0.69 65.92 ± 0.68 90.27 ± 0.39 80.72 ± 0.34 86.92 ± 0.31 98.42 ± 0.27 93.41 ± 0.73 93.46 ± 0.48

M-HIN 58.46 ± 1.51 42.72 ± 0.84 58.09 ± 0.80 89.77 ± 0.86 79.94 ± 1.28 85.07 ± 0.67 98.42 ± 0.33 91.86 ± 0.24 91.81 ± 0.49
mg2vec 71.16*± 0.23 57.39*± 0.29 70.49*± 0.51 93.12*± 0.43 86.22*± 0.26 90.07*± 0.22 99.87 ± 0.11 97.90 ± 0.23 97.92 ± 0.17

concatenation of the two nodes’ embeddings as the final fea-
ture vector for each node pair, and trained an SVM classifier.
The hyper-parameters of SVM were selected using a five-
fold cross validation on the training data, with a grid search
over C ∈ {0.01, 1, 100} and γ ∈ {0.0001, 0.001, 0.01}.
Note that the Hadamard product is a popular alternative to
combine two nodes’ embeddings, but it cannot distinguish
asymmetric classes such as Advisor and Advisee. We aver-
aged the performance on the 10 test sets in terms of Micro-F,
Macro-F and accuracy.

Search. We conduct a ranking-based relationship search,
where a query node is associated with both positive and
negative candidates of the target relationship. We consid-
ered the target relationships Work, Peer and Advisor on
LinkedIn, AS and DBLP, respectively. Positive candidates
are related to the query via the target relationship, and the
negative candidates consist of nodes related to the query via
other relationships. We split all queries into 50% training
and 50% testing, and repeated such splitting 10 times. For
all methods, we adopted a learning to rank model [21], and
averaged the performance on the 10 test sets in terms of
NDCG, MAP and MRR at top 10 results.

Visualization. To intuitively showcase the embedding
quality, we used the t-SNE algorithm for visualization.
Specifically, we present the visualization in two ways: (i)
visualization of the embeddings of node pairs that belong
to different relationships, by concatenating the two nodes’
embeddings as the input to the t-SNE algorithm; (ii) visual-
ization of the metagraph embeddings to show their ability
to preserve latent relationships.

5.2 Performance Evaluation

We empirically evaluate the proposed mg2vec and the base-
lines on the three relationship mining tasks.

5.2.1 Prediction

In Table 3, we report the results on relationship predic-
tion. In summary, mg2vec consistently outperforms all the
baselines with statistical significance. We discuss further
observations in the following.

First, mg2vec is better than homogeneous network em-
bedding algorithms such as DeepWalk and LINE. These
baselines treat all nodes and edges as one uniform type, and
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thus fall short of capturing and differentiating rich seman-
tics on HINs. Note that on LinkedIn, DeepWalk performs
surprisingly well in comparison to other HIN embedding
methods such as metapath2vec. This observation can be
attributed to a special characteristic of LinkedIn—being a
professional network, each user is more exclusively con-
nected to friends from the same college or employer. That
means, if a user is currently in school (or working), it forms
the School (or Work) relationship with majority of its direct
neighbors. Specifically, in our ground truth, 67.7% or more
than two thirds of the users have a very skewed distribution
of neighbors, such that more than 80% of their neighbors
belong to a one single relationship. This particularly ben-
efits DeepWalk as it samples random walks starting from
each user, which is guaranteed to form node pairs with its
direct neighbors. The majority of these node pairs formed
out of direct neighbors would already belong to the same
relationship, even without considering the heterogeneity.
Thus, similar embeddings would be learned for these node
pairs, which makes the downstream task easier. On the other
hand, while metapath2vec also applies random walk, it is
forced to follow metapaths which skip over direct neighbor
pairs. Nevertheless, our method mg2vec still performs the
best on LinkedIn, showing its robustness and universality.

Second, mg2vec also outperforms the graph neural net-
work model GraphSAGE and knowledge graph model
TransR. GraphSAGE only utilizes the heterogeneity in a
limited manner by encoding node types as input features,
whereas TransR was originally proposed for knowledge
graphs consisting of explicit subject-predicate-object triples,
which might not be adaptive to capturing latent composite
relationships on HINs. Thus, their performances are gener-
ally suboptimal.

Third, compared to baselines specifically designed for
HIN embedding, mg2vec still remains advantageous. Some
of these baselines (metapath2vec, hin2vec and HeGAN) do
not utilize metagraph, which turn out to be inadequate for
more complex relationships. More importantly, mg2vec is
also superior to other metagraph-based methods including
metagraph2vec, MG+ and M-HIN. While metagraph2vec
achieves generally better performance than its cousin meta-
path2vec, it is still behind mg2vec by a large margin, since
it only employs metagraphs to sample random walks in
a precomputation step. Furthermore, MG+ is not an em-
bedding method, which directly treats every metagraph
as one dimension of the representations. Thus, its derived
representations can still be high dimensional and sparse
when there are a large number of metagraphs. On the other
hand, M-HIN considers the joint embedding of metagraphs
and nodes based on the framework of complex-valued em-
beddings, but it does not reconcile the first-order preferences
of individual nodes in the same framework.

5.2.2 Search

We report the relationship search results in Table 4. The
overall observation is similar to relationship prediction,
with mg2vec being consistently better than all the baselines.
More specifically, mg2vec outperforms the baselines in all
four categories, for the same reasons discussed in relation-
ship prediction.

5.2.3 Visualization
First, we visualize the embeddings of all the labeled node
pairs on the AS dataset in Figure 5, to illustrate the
relationship-preserving embedding of mg2vec. Particularly,
for each approach, we concatenate the two embeddings of
a node pair into a single vector, and project it into a 2D
space using the t-SNE algorithm. The blue points represent
node pairs of the Customer relationship, while the yellow
points represent node pairs of the Peer relationship. The
results show that DeepWalk and GraphSAGE do not reveal
clear clusters and separate the two relationships; hin2vec
produces many clusters, but most clusters are mixtures of
both relationships. Moreover, M-HIN and MG+ generally
separate the two relationships, but the boundaries are not
well defined with quite extensive mixtures at the center.
Compared to these methods, mg2vec separates the two
relationships into much better defined clusters in its embed-
ding space. Note that both Peer and Customer pairs further
develop into many smaller clusters, which may naturally
correspond to different groups of closely related pairs in
the autonomous systems (e.g., groups of ASes from different
geographic locations).

Second, we visualize the metagraph embeddings, simi-
larly projected to 2D planes as shown in Figure 6. We labeled
metagraphs as preserving the School (green) or Work (blue)
relationships on the LinkedIn dataseet, and ignored am-
biguous metagraphs without a clear label (see Appendix C
for the labeling methodology). Among the baselines, only
M-HIN also learns metagraph embeddings. However, its
metagraph embeddings do not preserve the latent relation-
ships well. In contrast, mg2vec’s metagraph embeddings are
better separated by the two relationships.

The visualizations for the representations of both node
pairs and metagraphs demonstrate that mg2vec is able
to fully utilize metagraphs towards relationship-preserving
embeddings on HINs.

5.3 Metagraph Analysis
Next, we analyze the utility of metagraphs, the core instru-
ment in our model mg2vec.

5.3.1 Metagraph size
Generally, larger metagraphs are able to express more intri-
cate relationships at the cost of time for the enumeration of
metagraphs and their instances, as well as model training.
The basic principle is to achieve a reasonable trade-off
between effectiveness and efficiency.

To investigate the impact of metagraph size, we filter
metagraphs up to a given size, and report the results in
Figure 7 for relationship prediction and search. In general,
the performance gradually increases with size, since larger
metagraphs are more expressive. However, the gains taper
off quickly and the performance tends to stabilize at size
five or six. Thus, it is sufficient to constrain metagraphs
to such sizes as similarly concluded by previous work
[22], [23], since further increasing the size would generate
limited returns but incur exponentially higher processing
and training time. Moreover, it has been argued [22] that
metagraphs of very large size may potentially introduce
more noises, since the core nodes can reside too far apart
in a very large metagraph.
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(a) DeepWalk (b) GraphSAGE (c) hin2vec (d) M-HIN (e) MG+ (f) mg2vec

Fig. 5: Visualization of all labeled node pairs on the AS dataset. Blue points denote Customer and yellow points denote Peer.

(a) M-HIN (b) mg2vec

Fig. 6: Visualization of metagraph embeddings for the
LinkedIn dataset. Green points denote School-inclined meta-
graphs and blue points denote Work-inclined metagraphs.
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Fig. 7: Impact of metagraph size on mg2vec.

5.3.2 Complexity of metagraphs
We further investigate the impact of structural complexity
of metagraphs. Note that metapath is a special subclass of
metagraph with a simple path structure. In Figure 8, we
compare the performance of using only metapaths as the in-
put to mg2vec, and that of using all metagraphs as the input
to mg2vec. We observe that, the structurally more complex
metagraphs consistently achieve better performance than
metapaths, demonstrating that metagraphs are more expres-
sive and capture more informative semantics.

5.3.3 Case study
In this part, we showcase several example metagraphs on
LinkedIn, which illustrate a variety of semantics relating
two users nodes. For instance, the metagraph in Figure 9(a)
is helpful to identify the the relationship between the two
users as colleagues, whereas (b) implies the two users are
potentially closer colleagues due to their common location,
which is an important factor in large companies with multi-
ple locations. Other relationships such as two users being
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Fig. 8: Impact of structural complexity on mg2vec.

fellow alumni can be captured by the metagraph in (c).
Lastly, there also exist many metagraphs that entail a fusion
of semantics like the example in (d), which may infer a more
intricate latent relationship such as being close personal
friends whose friendship has been groomed over many
years of shared hometown, education and employment.

5.4 Model analysis

We further analyze our model by studying the impact of the
hyper-parameter α and the embedding dimensions, as well
as the rate of convergence during model training.

5.4.1 Impact of α
The ratio between first- and second-order metagraph em-
bedding is a key factor in mg2vec, since it controls the
trade-off between the latent preferences of individual nodes
and interactions between a pair of nodes. As Figure 10
and 11 show, the best performance is generally achieved
in the range of [0.4, 0.6] for both relationship prediction and
search, indicating that a balance between both the first- and
second order is the most desirable configuration. In two
extreme cases, when α = 0, only the first order is accounted
for; when α = 1, only the second order is accounted for.
In either case, the performance is generally worse than
a balanced strategy, implying that it is not sufficient to
consider the first or second order alone. Furthermore, α = 1
is typically much better than α = 0, which is intuitive as the
second-order metagraph embedding directly deals with the
latent interactions between nodes.

5.4.2 Impact of embedding dimensions
We further evaluate the impact of the embedding dimen-
sions on relationship prediction and search, as shown in
Figure 12 and 13, respectively. In both tasks, we vary the
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Fig. 9: Example metagraphs on LinkedIn.
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Fig. 12: Impact of dimensions on relationship prediction.

dimension between 32 and 256. Large dimensions often lead
to over-parameterization, whereas small dimensions may
result in insufficient modeling capacity. In our experiments,
we observe that the performance of our model mg2vec is
generally robust when the dimensions are set to around 128,
which is also a typical choice established by previous work
on network embedding.

5.4.3 Convergence
Finally, we investigate the rate of convergence in model
training. We first examine the loss during training in Fig-
ure 14. On each dataset, the loss decreases rapidly in the
initial epoch, and converges after about two or three epochs.
The apparent reduction in loss and fast convergence imply
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that metagraphs are the right tool for modeling HINs. We
further present the convergence of testing performance on
each dataset in Figure 15 and 16 for relationship prediction
and search, respectively. Consistent with the changes in
training loss, the testing performance increases significantly
in the first epoch, and gradually attain the best results
after two or three epochs. There are some performance
fluctuations after three epochs due to overfitting.

6 CONCLUSION AND FUTURE WORK

In this paper, we studied relationship-preserving embed-
ding on heterogeneous information networks. While meta-
graphs are a valuable tool to model rich semantics on HINs,
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current approaches often under-utilize metagraphs, apply-
ing them only in a precomputation step. Thus, we proposed
a novel self-supervised framework called mg2vec, employ-
ing metagraphs as first-class citizens to jointly embed both
metagraphs and nodes into a common low-dimensional
space. Specifically, in the joint embedding model, meta-
graphs actively guide the learning of node representations
via both first- and second-order embeddings, to capture
not only the latent preferences of individual nodes, but
also the latent relationships between nodes. Finally, we
conducted extensive experiments on three real-world public
datasets. The results on various relationship mining tasks
demonstrated the effectiveness of our model mg2vec, which
consistently and significantly outperforms a wide range of
state-of-the-art approaches.

There remain a few open questions for future work. First,
to better capture the semantics between nodes that cannot
be directly connected by smaller metagraphs, we may resort
to focusing on a chain of key metagraphs, instead of only in-
creasing the metagraph size. Simply increasing the size may
not be suitable due to the diminishing return and higher
processing time. Second, our proposed approach mg2vec
is self-supervised by predicting the metagraphs associated
with the nodes. It is also possible to bring in supervision
from the downstream task so that we can automatically
learn and differentiate the importance of metagraphs, such
as through the neural attention mechanism.
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APPENDIX A
METAPATHS FOR METAPATH2VEC

For a fair comparison of metapath2vec against mg2vec,
we examined all constituent metapaths of the metagraphs
used in mg2vec. For each dataset, we identified the list of
metapaths such that any metagraph used in mg2vec can be
assembled from these metapaths, as reported in Table 5. We

TABLE 5: Constituent metapaths of all metagraphs used
by mg2vec on each dataset. LinkedIn: user (u), college (c),
employer (e), location (l); AS: middle ISP (m), bottom ISP
(b), top ISP (t); DBLP: author (a), paper (p), venue (v),
keyword (k), year (y).

LinkedIn AS DBLP
u-u m-m m-b-m m-t-m a-p-a

u-c-u m-b-b-m m-b-t-m m-t-t-m a-p-v-p-a
u-e-u m-b-b-b-m m-b-b-t-m m-b-t-b-m a-p-k-p-a
u-l-u m-b-t-t-m m-t-b-t-m m-t-t-t-m a-p-y-p-a

evaluated the performance of metapath2vec using each of
the listed metapaths, and additionally, using all of the meta-
paths simultaneously. Results show that using all metapaths
would indeed give a better performance on both relation-
ship prediction and search, although it still falls short of
the performance of mg2vec. Note that we also tried some
combinations of the more promising metapaths (as judged
by their performance on the tasks), and obtained similar
results to using all metapaths. Thus, in our empirical results
in Section 5.2, we reported only the optimal performance on
each dataset, when all metapaths in Table 5 were used.

APPENDIX B
GRID SEARCH FOR BASELINES

We performed a grid search to select the hyper-parameters
of each baseline method. Specifically, we reserved 20% of
the training data used in the task of relationship prediction
as the validation set. After choosing the optimal parameters
and learning the embeddings, we still used all training data
to build a model for the downstream tasks.

For each baseline, we list the main parameters and
their values tuned in the grid search. Other parameters not
mentioned adopt their recommended values reported in the
literature. For DeepWalk [5], hin2vec [19] and metapath2vec
[18], we tuned the number of walks over {5, 10, 20} and
walk length over {50, 100, 150}. We further tuned the
metapaths used in metapath2vec as detailed in Appendix A.
For LINE [6], we tuned the order of proximity over {1st,
2nd, 1st+2nd} and the learning rate over {0.01, 0.025, 0.05}.
For GraphSAGE [41], we tuned the inner dim over {32, 64,
128} and chosen the aggregator from {mean, meanpool,
maxpool}. For TransR [49], we chose the training method
from {unif, bern} and tuned the learning rate over {0.001,
0.01, 0.05}. For HeGAN [16], we tuned the Guassian vari-
ance over {0.1, 1, 10} and the number of inner epochs over
{1g/5d, 5g/15d, 10g/30d} (g for generator and d for dis-
criminator). For metagraph2vec [32], we tuned the window
size over {3, 5} and the learning rate over {0.01, 0.025, 0.05}.
For M-HIN [33] we tuned the learning rate over {0.01, 0.025,
0.05}. For MG+, there is no hyper-parameter to tune since
it uses the frequency of the metagraph instances as graph
representations directly without any training required.

APPENDIX C
LABELING METAGRAPHS

In Section 5.2.3, we visualized the metagraph embeddings
to show that different metagraphs can preserve different
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relationships on the LinkedIn dataset. We manually de-
signed the rules to label the metagraphs as preserving Work
or School relationships. The general guideline is to look
for college and employer nodes. Typically, if a metagraph
contains mostly employer nodes rather than college nodes,
such as the examples in Figure 9(a) and (b), we labeled the
metagraph as Work-inclined; if it contains mostly college
nodes like Figure 9(c), we labeled it as School-inclined. Some-
times a metagraph, as shown in Figure 9(d), can be a fusion
of semantics, e.g., close personal friends whose friendship
has been groomed over years of shared hometown, edu-
cation and employment. We regarded such metagraphs as
ambiguous and omitted them from the visualization.
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