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Abstract

Motivation: Synthetic lethality (SL) is a promising form of gene interaction for cancer therapy, as it is
able to identify specific genes to target at cancer cells without disrupting normal cells. As high-throughput
wet-lab settings are often costly and face various challenges, computational approaches have become a
practical complement. In particular, predicting SLs can be formulated as a link prediction task on a graph
of interacting genes. Although matrix factorization techniques have been widely adopted in link prediction,
they focus on mapping genes to latent representations in isolation, without aggregating information from
neighboring genes. Graph convolutional networks (GCN) can capture such neighborhood dependency in
a graph. However, it is still challenging to apply GCN for SL prediction as SL interactions are extremely
sparse, which is more likely to cause overfitting.
Results: In this paper, we propose a novel Dual-Dropout GCN (DDGCN) for learning more robust gene
representations for SL prediction. We employ both coarse-grained node dropout and fine-grained edge
dropout to address the issue that standard dropout in vanilla GCN is often inadequate in reducing overfitting
on sparse graphs. In particular, coarse-grained node dropout can efficiently and systematically enforce
dropout at the node (gene) level, while fine-grained edge dropout can further fine-tune the dropout at
the interaction (edge) level. We further present a theoretical framework to justify our model architecture.
Finally, we conduct extensive experiments on human SL datasets and the results demonstrate the superior
performance of our model in comparison with state-of-the-art methods.
Availability: DDGCN is implemented in python 3.7, open-source and freely available at https://
github.com/CXX1113/Dual-DropoutGCN

Contact: name@bio.com

1 Introduction
Cancer is a group of complex diseases often caused by the defects of
more than one gene. Therefore, understanding the genetic interactions
has become crucial for cancer therapies. Synthetic lethality (SL) is a
promising type of genetic interaction between a pair of genes, where only
the defects of both genes will significantly impair cell viability, but the
defect of a single gene will not affect cell fitness. It therefore becomes
feasible to target a non-essential gene in an SL interaction such that the

other gene is a cancer-specific defective gene, which would enable the
selective killing of cancer cells without harming normal cells (Iglehart
and Silver, 2009). SL has thus emerged as a gold mine for anti-cancer
drug research (O’Neil et al., 2017). For example, Olaparib and Niraparib
as PARP-inhibitors are two drugs based on the well-known SL between
genes PARP and BRCA1/BRCA2 (Chan and Giaccia, 2011). They were
approved by US FDA for ovarian and breast cancers in 2014 and 2017,
respectively. Indeed, SL has been actively studied with high-throughput
wet-lab screening methods. Unfortunately, these approaches often face
various challenges, such as high cost, off-target effects, and inconsistency
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2 Cai et al.

across platforms or cell lines. Thus, predicting SL using computational
models becomes highly complementary to wet-lab approaches.

In fact, SL interactions can be captured by a graph, where each gene
is a node and interacting genes form edges in the graph. Subsequently,
predicting novel SLs can be cast as a link prediction task in the graph.
In particular, matrix factorization techniques have been successfully
applied to address link prediction problems in bioinformatics, such as
PPI prediction (Wang et al., 2013) and drug-target interaction prediction
(Liu et al., 2016). A more recent work (Liu et al., 2018) employs matrix
factorization specifically for SL prediction, based on a comprehensive
human SL database called SynLethDB (Guo et al., 2016). However,
matrix factorization employs direct encoding, where the encoder is just
an embedding lookup (Hamilton et al., 2017). As shown in Fig. 1 (a), gene
3’s embedding is simply row 3 in the matrix of latent factors. In other
words, such an approach does not leverage valuable information from
neighboring genes in the graph.

In contrast, graph neural networks (GNNs) can effectively capture
graph structures and model complex dependencies between neighboring
nodes in the graph (Xu et al., 2019). An archetype of GNNs is the widely
adopted graph convolutional network (GCN) (Kipf and Welling, 2017).
As shown in Fig. 1 (b), GCN generates the embedding for gene 3 by
aggregating the representations of itself and its neighbors, thus leveraging
the neighborhood dependency. The dropout technique (Srivastava et al.,
2014) is often applied in GCN to randomly remove some neurons (e.g.,
dotted units in the embeddings), which aims to prevent overfitting caused
by co-adaptation. While standard dropout in vanilla GCN might be
adequate in many scenarios, SL prediction presents a challenge due to
its extreme sparsity—known SL interactions account for less than 0.1%
of all possible pairs. Under such sparse interactions, overfitting is more
likely to occur, which motivates us to redesign a more effective and robust
dropout mechanism for GCN.

In this paper, we propose a novel Dual-Dropout Graph Convolutional
Network (DDGCN) for predicting synthetic lethality. As Fig. 1 (c)
illustrates, we propose dual forms of dropout, where the left involves a
coarse-grained node dropout, and the right involves a fine-grained edge
dropout. In the node dropout (left), we drop some genes (e.g., gene
2) randomly in each training epoch, forcing GCN to learn more robust
representations without overfitting to a few genes. However, dropping gene
nodes is sometimes too aggressive, since the removal of a node results in
the removal of all its incident edges. As shown in the example, removal of
gene 2 removes all its interactions with genes 1, 3 and 6. Such node dropout
is thus coarse-grained, without the ability to control individual edges. On
the other hand, in edge dropout (right), some edges (e.g., between genes
2 and 3) have been randomly dropped, which is fine-grained since not all
incident edges of the involved nodes are affected indiscriminately (e.g.,
the interaction between genes 2 and 6 is still preserved). While coarse-
grained node dropout is efficient at systematically reducing co-adaptions
at gene levels, fine-grained edge dropout can further fine-tune the dropout
on individual interactions. Thus, we integrate both coarse- and fine-grained
dropouts into GCN to take the advantage of both.

To materialize the dual dropout, we employ an identity matrix and
adjacency matrix simultaneously to feed into a GCN via two paths with
shared parameters. The two paths correspond to the coarse-grained node
dropout and fine-grained edge dropout, respectively. We further present
a theoretical analysis to show that, our proposed architecture of Dual-
Dropout GCN or DDGCN, is provably equivalent to dropping nodes and
edges jointly on the same graph. We summarize our key contributions in
the following.

• To our best knowledge, we are the first to address SL prediction with
graph neural networks.
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Fig. 1. Different methods to generate gene embeddings.

• We propose a novel Dual-Dropout GCN model that integrates both
coarse- and fine-grained dropouts to better deal with sparse SL
interactions, with a further theoretical analysis of our proposed
architecture.

• We conduct extensive experiments on SL prediction, validating the
effectiveness of DDGCN.

2 Related Work
In this section, we briefly introduce the existing methods for SL prediction,
as well as graph embedding techniques and graph neural networks.

Various SL prediction methods can be divided into two categories,
namely, unsupervised methods and supervised methods. Unsupervised
methods leverage the prior knowledge or hypotheses for SL prediction.
For example, DAISY (Jerby-Arnon et al., 2014) and MiSL (Sinha et al.,
2017) predict SL using gene expression and mutation data, based on
the knowledge that SL genes are usually co-expressed and seldom co-
mutated. Connectivity homology refers to similar network connectivity
patterns or features across species, and human gene pairs are predicted
as SL interactions if they have connectivity homology to existing yeast
SL pairs (Jacunski et al., 2015). A knowledge-driven method proposed in
(Zhang et al., 2015) predicts potential SL interactions by simulating the
influence of double-gene knockout to cell death in signaling pathways. In
(Apaolaza et al., 2017), minimum cut set of genes, whose simultaneous
removal directly blocks a particular metabolic task (e.g., biomass reaction),
are exploited for SL prediction. Unlike the above unsupervised methods,
supervised methods are machine learning models trained on known SL
data. For example, DiscoverSL (Das et al., 2018) predicts novel human SL
using multi-omic data as features and random forest as classifier. SLant
(Benstead-Hume et al., 2019) derives features from PPI networks and
Gene Ontology (GO), and then performs in-species and cross-species SL
prediction using random forest. In (Li et al., 2019), functional features for
genes are first derived from GO and KEGG and random forest is then used
for SL prediction. In addition, SL2MF (Liu et al., 2018) and BLM-NII (Mei
et al., 2013) are also supervised methods for SL prediction. In particular,
SL2MF is a logistic matrix factorization (LMF) based method and it
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further incorporates gene-gene similarities to learn more accurate gene
embeddings for SL prediction. BLM-NII is a type of bipartite local model
originally for drug-target interaction prediction and it was customized in
(Liu et al., 2018) to predict SL.

Graph embedding techniques focus on converting the graph data into
a low dimensional space for various downstream machine learning tasks
(Cai et al., 2018). Matrix factorization techniques with direct encoding as
shown in Figure 1 (a), e.g., GraRep (Cao et al., 2015) and HOPE (Ou et al.,
2016), have been widely used for graph embedding. Moreover, random-
walk based graph embedding techniques, including DeepWalk (Perozzi
et al., 2014), node2vec (Grover and Leskovec, 2016) and LINE (Tang
et al., 2015), can also be considered as matrix factorization (Qiu et al.,
2018). To further model the complex dependencies between neighbors
instead of direct encoding, graph neural networks have recently been
proposed for graph embedding. In particular, GCN has recently been
applied for various bioinformatics tasks, e.g., drug discovery (Sun et al.,
2019), miRNA and drug resistence association prediction (Huang et al.,
2019), lcnRNA-disease association prediction (Xuan et al., 2019), disease
gene prediction (Han et al., 2019), etc. However, so far no work has been
done for SL prediction using GCN.

In addition, dropout (Hinton et al., 2012) has been proposed as a form
of regularization for fully connected neural network layers. It has proved to
be a successful technique in controlling overfitting by randomly omitting
some features at each training iteration. Dropout also has many variants.
DropConnect has been proposed in (Wan et al., 2013) as a generalization
of dropout, in which each connection rather than each output unit can
be randomly dropped. Some work indicates that dropout can also be
applied to RNN, e.g., (Gal and Ghahramani, 2016), (Semeniuta et al.,
2016) and (Krueger et al., 2017) propose to apply dropout to the recurrent
connections. In particular, the technique of dropout and its variants are
directly applied to neural networks, without a clear interpretation on their
effects on graph data. On the other hand, we present a theoretical analysis
to explicitly link our proposed dual dropout to the input graph.

3 Methods
In this section, we first introduce the notations and problem statement,
then present the details of our proposed DDGCN method, as well as a
theoretical analysis of the proposed architecture.

3.1 Preliminary

An SL graph is denoted by G = (U , E), with the set of nodes U to
represent genes, and the set of edges E to represent SL interactions. Let
A ∈ Rn×n be the adjacency matrix of G, where n = |U| is the number
of genes. Since the SL graph is undirected, the set of all gene pairs is
O = {(i, j) ∈ U × U|i < j}. Subsequently, we denote the set of
observed SL pairs by O+ = {(i, j) ∈ O|Aij = 1}. The remaining
gene pairs O− = O \ O+ are “unknown” pairs, because there is a lack
of evidence demonstrating whether these gene pairs form SL interactions.

In this paper, we investigate the problem of SL prediction. Formally,
given a set of observed gene pairs O+ that are known to be SL pairs, the
task is to predict, for each unknown gene pair fromO−, if it is in fact an SL
pair. In practise, we first estimate the probability that two genes form SL
interactions, i.e., learn a decision function f : O → [0, 1]. Subsequently,
we rank every unknown gene pair o ∈ O− by f(o) in descending order,
such that the top-ranked gene pairs are likely to be novel SL pairs.

3.2 Overview of DDGCN

The overall framework is illustrated in Fig. 2. The main idea is to
jointly drop nodes (genes) and edges (SL interactions) during the graph
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Fig. 2. Architecture of Dual-Dropout GCN (DDGCN).

convolution operation. Specifically, our GCN-based architecture consists
of two paths with shared parameters to model the dual forms of dropout:
coarse-grained node dropout by employing the identity matrix in (a), and
fine-grained edge dropout by employing the adjacency matrix in (b). It
can be formally shown that our proposed dropout model is equivalent to
dropping nodes and edges simultaneously from the same original graph.

3.3 Coarse-Grained Node Dropout

Consider an n× n identity matrix. Each row or column of I corresponds
to a node in the graph. As shown in Fig. 2 (a), the identity matrix implies
to a set of five gene nodes, i.e., |U| = n = 5.

We apply dropout to the identity matrix, and subsequently encode the
first-layer representation of each gene using graph convolution:

H
(1)
I = ReLU(Â(M

(1)
I � I)W(1)). (1)

Here� is the element-wise multiplication. M(1)
I ∈ Rn×n is the dropout

mask in the first layer such that each element follows the Bernoulli
distribution Bernoulli(p) and p is the dropout rate. W(1) ∈ Rn×d1 is a
trainable weight matrix for the first layer (d1 � n). Â = D−

1
2 ÃD−

1
2

is the normalized graph adjacency matrix following (Kipf and Welling,
2017) where Ã = A+ I and D ∈ Rn×n is a diagonal matrix, in which
the diagonal elements are defined as dii =

∑n
j=1 Ãij .

The first-layer embedding matrix H
(1)
I ∈ Rn×d1 can be further fed

into more layers of GCN. Without loss of generality, we present two layers
only. In particular, the second-layer (output) embedding matrix H

(2)
I ∈

Rn×d2 can be encoded as follows (d2 � n):

H
(2)
I = Â(M

(2)
I �H

(1)
I )W(2). (2)

Here M
(2)
I ∈ Rn×n is the dropout mask in the second layer. W(2) ∈

Rn×d2 is a trainable weight matrix for the second layer (d2 � n).
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4 Cai et al.

Intuitively, if the non-zero element in the ith row of I becomes zero
after applying dropout, all elements in the ith row of the product (M(l) �
Ĩ)W(l) become zero, which is effectively eliminating gene i’s features
(embedding) from consideration. In other words, we have dropped node i
from the input graph.

3.4 Fine-Grained Edge Dropout

While dropping gene nodes completely can be efficient at preventing
co-adaptions at gene levels, it is coarse-grained and can be aggressive
sometimes, since removing a node is equivalent to removing all of its
incident edges. Thus, we further propose the fine-grained edge dropout to
complement node dropout.

Consider the adjacency matrix A, where each element represents an
edge in the graph. As shown in Fig. 2 (b), the ith row or column of A
corresponds to the SL interactions between gene i and other genes. As
shown in Fig 2 (b), we apply dropout to A similar to Fig. 2 (a) in the
following, for two layers of GCN.

H
(1)
A = ReLU(Â(M

(1)
A �A)W(1)), (3)

H
(2)
A = Â(M

(2)
A �H

(1)
A )W(2). (4)

Here M
(l)
A is the dropout mask in the lth layer.

Intuitively, we can regard ÂA as a 1-and-2-hop neighborhood matrix
for the input graph. Note that the 1-hop neighborhood is also covered
due to the self-loops in Â. That is, we are using a slight variant of
GCN by aggregating both 1- and 2-hop neighbors in the first layer. If
the (i, j) element of ÂA becomes zero due to dropout, node j’s features
(embedding) will not be aggregated into node i’s. This mechanism operates
with a finer granularity than the node dropout, as node j’s features will
still be aggregated into other neighbors. In other words, the 1- or 2-hop
interaction between genes i and j have been dropped, which we term as
edge dropout.

It is also important to note that the GCN parametersW(l) in each layer
are shared by the dual dropouts, which is an important design to ensure
that both node and edge dropouts are applied jointly on the same graph. To
simply put, when the parameters are not shared by the dual paths in Fig. 2
(a) and Fig. 2 (b), we are actually training models on two different graphs.
However, our goal is to jointly apply the dual forms of dropout on the
same input graph. A formal proof for the necessity of sharing parameters
are given in the last part of this section.

3.5 Overall Loss and Optimization

The dual dropout architecture gives us two embedding matrices H(2)
I and

H
(2)
A , one from each path in Fig. 2. In each path, for every pair of genes

(i, j) ∈ O, we estimate its interaction confidence as follows:

ŷI(i, j) = Dec(H
(2)
I ), (5)

ŷA(i, j) = Dec(H
(2)
A ), (6)

where Dec(·) is the inner-product decoder (Hamilton et al., 2017) defined
as

Dec(U) = σ(UU>) =
1

1 + exp(−UU>)
. (7)

Subsequently, we optimize the cross entropy (CE) loss between the
above estimations and the observed SL interactions. Let yij = 1 if the
gene pair (i, j) ∈ O+ is a known SL interaction; otherwise yij = 0.

Algorithm 1: Training of DDGCN

Input: adjacency matrix A ∈ Rn×n of the SL graph G,
dual-dropout coefficient α, the set of known gene pairs
O+ and unknown pairsO−, maximum training epochs T ,
learning rate η.

Output: Optimal parameters W∗(l) for each layer.
W

(1)
0 ,W

(2)
0 ← random initialization;

t← 1;
repeat

Compute H
(2)
I with Eq. (2) and H

(2)
A with Eq. (4);

Compute L(H(2)
I ,H

(2)
A , α,O+,O−) with Eq. (8);

W
(1)
t ←W

(1)
t−1 − η

∂L
W(1) ;

W
(2)
t ←W

(2)
t−1 − η

∂L
W(2) ;

t← t+ 1;
until t > T or L is converged;

return W
(1)
t ,W

(2)
t

Thus, our overall loss function is as follows:

L =

n∑
i=1

n∑
j=i+1

CE(yij , ŷI(i, j)) + αCE(yij , ŷA(i, j)), (8)

where α > 0 is a hyper-parameter controlling the trade-off between the
two paths and we call it dual-dropout coefficient. In order to better deal with
the data skewness, we follow (Liu et al., 2018) to assign higher weights in
the cross entropy to gene pairs with known interactions.

The loss function is differentiable and thus can be optimized using
gradient-based approaches such as the Adam optimizer. We outline the
training process of the proposed DDGCN in Algorithm 1. For the final
prediction, we follow (Zhai and Zhang, 2015) to aggregate the two
prediction scores ŷI(i, j) and ŷA(i, j) by using the geometric mean:

ŷ(i, j) = 1+α
√
ŷI(i, j)× ŷA(i, j)α. (9)

The final score ŷ(·, ·) is used to rank unknown gene pairs, so that the top
gene pairs are more likely SL candidates.

3.6 Theoretical Analysis

Lastly, we further provide a theoretical justification for the design of the
proposed DDGCN architecture.

First, in the following Theorem 1, we establish that the proposed two
forms of dropout are equivalent to removing nodes and edges on the graph.

Theorem 1. Eq. (1) and Eq. (3) are equivalent to removing nodes and
edges randomly from the given graph G = (U , E), respectively.

Proof. First, we show that Eq. (1) is the random removal of nodes from
G. We begin with the jth row of the identity matrix I, i.e., (f1, f2, . . . , fn),
where fi=j = 1, fi6=j = 0. We rewrite I′ as the matrix MI � I

after dropout. Suppose f ′i=j = 0 in I′j , which means I′j as well as the

product I′jW
(1) are both zero vectors. Meanwhile, I′jW

(1) is the feature
(embedding) vector of node j in the d1-dimensional latent space, which
will be aggregated to its neighbor by GCN. Given that I′jW

(1) = 0, node
j will not affect any of its neighbors during the aggregation, i.e., all its
incident edges are removed from G.

Second, we show the correspondence between Eq. (3) and the removal
of edges. Let A′ be ÂA, which is the 1-and-2-hop neighborhood matrix
of the original graph, given self-loops on every node in Â. Thus, in the
first layer, we are aggregating from both 1- and 2-hop neighbors, a variant
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of GCN. Again, the jth row of W(1) is the feature vector of node j. If the
(i, j) element of A′ becomes zero due to applying dropout to A, node j’s
feature vector will not be aggregated to node i’s representation, which is
equivalent to removing the 1- or 2-hop interaction (edge) between node i
and node j.

While Theorem 1 shows that our proposed operation over the identity
matrix and the adjacency matrix are equivalent to the node dropout and
edge dropout, it is also important to show that both forms of dropout are
jointly applied to the same graph. To achieve this design, it is necessary
for the dual paths in Fig. 2 to share parameters, as we establish below.

Theorem 2. If the parameters W(l) are not shared by both Eq. 1 and
Eq. 3 in the first layer, or by both Eq. 2 and Eq. 4 in the second (or
more) layer, then two forms of dropout are applied on two different graphs,
respectively.

Proof. Let us first consider the simpler case of using only one GCN
layer. Suppose Eq. 1 and Eq. 3 employ different parameters W′(1) and
W′′(1) such that W′(1) 6= W′′(1). The feature (embedding) vector for
each node is in fact a function of the parameters W′(1) or W′′(1), and we
thus can consider the jth row of W′(1) or W′′(1) represents the feature
vector of node j. If W′(1) and W′′(1) are different, the nodes on the two
paths actually reside in different spaces, resulting in two different graphs
even though the structure of these graphs are still the same. Therefore, to
jointly apply both forms of dropout on the same graph, two paths with
different forms of dropout should share the same parameters at this GCN
layer.

Let us further consider the case of using a second or more layers of
GCN. Without loss of generality, we present two layers here. In the second
layer, assuming no activation function, we have

H(2) = Â(ÂH(0)W(1))W(2),

where H0 = I or A, corresponding to Eq. 2 or Eq. 4, respectively. It can
be rewritten as

H(2) = (ÂÂH(0))(W(1)W(2)),

where ÂÂH(0) captures graph topology and W(1)W(2) can be treated
as the feature matrix of nodes. Again, if Eq. 2 and Eq. 4 adopt different
parameters W′(2) 6= W′′(2) in the second layer, they would operate on
two different graphs where nodes reside in different feature spaces.

As a summary, the two theorems above provide a theoretical
justification for our proposed architecture with two different forms of
dropouts and the shared parameters.

4 Results
In this section, we investigate the empirical performance of the proposed
DDGCN model, with both quantitative evaluations and qualitative case
studies.

4.1 Experimental Setup

4.1.1 Datasets
SynLethDB (Guo et al., 2016) is a comprehensive database for human
SL interactions. Note that about 32% of SLs (6,346 pairs) in SynLethDB
are predicted from computational methods, among which 5,218 SLs come
from DAISY (Jerby-Arnon et al., 2014) and 1,128 from text mining. To
isolate the impact of these predicted SLs, we further constructed a reduced
dataset, denoted as SynLethDB-NonPred, by removing those predicted
SLs from SynLethDB. We test various algorithms on both the original

dataset SynLethDB and the reduced dataset SynLethDB-NonPred. The
statistics of the two datasets are summarized in Table 1. In particular,
density is the ratio of non-zero elements in the adjacency matrix. We
observe that both SynLethDB and SynLethDB-NonPred with low density
are indeed very sparse as shown in Table 1.

Table 1. Statistics of the datasets used in our experiments.

SynLethDB SynLethDB-NonPred
# human genes 6,375 3,877
# SL pairs 19,677 13,331
Average degree 6.17 6.88
Density 0.0968% 0.177%

4.1.2 Baselines and model variants
We consider three categories of methods, namely matrix factorization
methods (SL2MF, SL2MF*), graph-based methods (DeepWalk, LINE,
VGAE, BLM-NII) and the variants of our proposed method (GCN(I),
GCN(A), GCN(A+I)). These methods are summarized as follows.

• SL2MF, SL2MF* (Liu et al., 2018) both predict the SL pairs based
on logistic matrix factorization (LMF). SL2MF* further integrates
gene similarities based on GO annotations for learning the gene
embeddings.

• DeepWalk (Perozzi et al., 2014) is a graph embedding method that
combines truncated random walk with skip-gram model.

• LINE (Tang et al., 2015) preserves both the 1st order and 2nd order
proximities to embed the graph.

• VGAE (Kipf and Welling, 2016) is a graph embedding framework
based on variational auto-encode (VAE) and leverages GCN to
generate the distribution of the latent variables for the nodes.

• BLM-NII (Mei et al., 2013) presents a procedure called neighbor-
based interaction-profile inferring (NII) within a bipartite local model
(BLM) for link prediction in graphs.

• GCN(I), GCN(A), GCN(A+I) are variants of our DDGCN without
Dual-Dropout. These three variants use identity matrix I, adjacency
matrix A and the sum of A and I as input to vanilla GCN (i.e., only
one path with a single form of dropout), respectively.

Note that we focus on comparing the methods, which can automatically
learn the gene embeddings from the known SL data. Meanwhile,
supervised methods, e.g., DiscoverSL (Das et al., 2018), Slant (Benstead-
Hume et al., 2019) and the method in (Li et al., 2019), manually extract
gene features from additional data sources, e.g., gene mutation, gene
expression, copy number alternation (CNA), protein-protein interactions
(PPI), GO, etc. For fair comparison, we thus do not include them in our
experiments.

4.1.3 Implementation details
For DDGCN, we used two layers, and adopted the inverted dropout
technique with uniform dropout probability p = 0.5 in different GCN
layers. The dual-dropout coefficient α in Eq. 8 was set to 1. We further
set d1 and d2, the dimensionality of the latent spaces in the first and
second GCN layers, to 512 and 256, respectively. While these are our
default settings, we further analyze their impacts on the performance
in our sensitivity analysis. In addition, Kaiming initialization was used
for weight initialization (He et al., 2015). The learning rate η in the
optimization algorithm was set to 0.01, without learning rate decay. We
used the Adam optimizer with default parameters. The maximum number
of training epochs t was set to 2000 and we would stop optimization if the
rate of change in train loss was smaller than the threshold 10−5. In the
next section, we will discuss the impacts of the parameters above.
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Table 2. Performance comparison of various SL prediction algorithms under five-fold cross-validation.

SynLethDB SynLethDB-NonPred

Method AUROC AUPR F1 AUROC AUPR F1

SL2MF 0.8052±0.0040 0.2652±0.0103 0.4203±0.0055 0.8361±0.0092 0.3600±0.0081 0.4934± 0.0030
SL2MF* 0.8529±0.0048 0.2824±0.0143 0.4363±0.0048 0.8664±0.0076 0.4003±0.0068 0.5625±0.0023

BLM-NII 0.7124±0.0474 0.0011±0.0007 0.0018±0.0012 0.7686±0.0503 0.0004±0.0001 0.0008±0.0002
DeepWalk 0.5260±0.0244 0.0010±0.0011 0.0005±0.0001 0.5011±0.0150 0.0004±0.0003 0.0020±0.0004
LINE 0.7409±0.0049 0.0214±0.0026 0.0842±0.0091 0.7374±0.0041 0.0141±0.0017 0.0004±0.0001
VGAE 0.8601±0.0067 0.2667±0.0331 0.4663±0.0454 0.8879±0.0099 0.2228±0.0260 0.4081±0.0530
VGAE(3L) 0.8591±0.0050 0.2421±0.0205 0.4692±0.0179 0.8677±0.0164 0.2113±0.0433 0.4309±0.0817

GCN(I) 0.8399±0.0059 0.3183±0.0180 0.5055±0.0912 0.6943±0.0339 0.2840±0.0051 0.4614±0.0124
GCN(A) 0.8811±0.0047 0.2263±0.0292 0.4736±0.0458 0.8633±0.0662 0.3533±0.0930 0.4214±0.0849
GCN(A+I) 0.8799±0.0074 0.2854±0.0376 0.4942±0.0243 0.8705±0.0665 0.2484±0.1503 0.2888±0.1511
DDGCN 0.8782±0.0057 0.3442±0.0089 0.5520±0.0128 0.8415±0.0092 0.4565±0.0274 0.6565±0.0130

For the baselines, we tuned their settings empirically. Specifically, we
set the importance weight c, λ, α and the embedding dimensionality d in
SL2MF and SL2MF* as 50, 0.01, 1.0 and 50, respectively. Moreover, the
number of nearest neighbors in GO graph k was set as 100 for SL2MF*.
In DeepWalk, the window size ω, the embedding dimensionality d, the
number of walks per vertex γ and the walk length t were set as 5, 64, 10
and 40, respectively. For LINE, we fixed the total number of mini-batches
T as 1000, the number of negative samples K as 5 and the embedding
dimensionality d as 128. For the learning rate in LINE, we set the starting
value η0 = 0.025 and ηt = η0(1− t/T ). We adopted the inner product
decoder on node embeddings generated by DeepWalk or LINE, to perform
SL prediction. In BLM-NII, we set the combination weightα = 0.75, and
used the max function to integrate the prediction scores. For VGAE, we
used same settings as our model. These settings largely align with the
literature.

We employed five-fold cross-validation to evaluate the performance
of various methods in two datasets. In particular, the observed SL pairs
were randomly partitioned into five non-overlapping subsets with equal
size. In each round, a subset of SL interactions were chosen for testing
while the remaining four subsets were used as positive examples in model
training. As evaluation metrics, we used the area under the ROC curve
(AUROC) and the Precision-Recall curve (AUPR), as well as the best F1

score achievable among all the points on the Precision-Recall curve (Fang
et al., 2012).

4.2 Performance Evaluation

We evaluate the empirical performance of DGGCN against both the state-
of-the-art baselines and our model variants in Table 2.

4.2.1 Comparison with baselines
On SynLethDB, DDGCN significantly and consistently outperforms all
the baselines as shown in Table 2. In particular, SL2MF* represents the
state of the art in SL prediction prior to this work, and DDGCN is able
to achieve further improvements by 3.0%, 21.9% and 26.5% on the three
metrics, respectively. On SynLethDB-NonPred, our DDGCN significantly
outperforms all the baselines in terms of AUPR and F1 score, while
it achieves a somewhat lower but still competitive AUROC. It is worth
noting that on highly skewed problems including SL prediction, it has
been established previously (Davis and Goadrich, 2006) that AUPR is a
more informative metric than AUROC in assessing the predictive power.

As our SL graph is very sparse, DeepWalk and LINE cannot handle the
severe imbalance issue of the SL data and thus achieve low performance
for SL prediction as shown in Table 2. In addition, the two-layer VGAE

achieves better performance than its three-layer version VGAE(3L) in
terms of AUROC and AUPR. This might be due to overfitting with three
layers and the over-smoothing effect (Li et al., 2018) in deep convolutional
structures.

4.2.2 Comparison with model variants
On both SynLethDB and SynLethDB-NonPred, DDGCN performs better
than its variants in terms of AUPR and F1 scores as shown in Table 2,
and remains competitive in AUROC. Again, on highly skewed problems,
AUPR is a more informative metric than AUROC (Davis and Goadrich,
2006). We can further draw the following two conclusions. First, both the
fine- and coarse-grained dropouts are useful, as DGGCN outperforms both
GCN(I) and GCN(A). Secondly, our architecture with two paths is able to
effectively leverage the dual dropouts, given DGGCN’s better performance
than GCN(A+I)’s. In GCN(A+I), both forms of dropout are also adopted,
but only one path is used without decoupling them, since dropping a node
is equivalent to dropping all edges of the node. In contrast, DGGCN
decouples the dual dropouts via two paths to further reduce overfitting,
and thus obtains superior results.

4.3 Model Analysis

4.3.1 Architecture analysis
As Fig. 2 illustrates, DDGCN consists of two paths for the dual dropouts.
While our theoretical analysis already shows the necessity of parameter
sharing in the two paths for joint dropouts on the same graph, we further
present the empirical evidence supporting this architecture.

Specifically, if lth layer does not share the GCN parameters, we have
W′(l) 6= W′′(l) (l = 1, 2). Therefore, we can have 4 different models
according to 4 different scenarios as follows,

• “Not shared": W′(1) 6= W′′(1), W′(2) 6= W′′(2);
• “Share 1st layer only": W′(1) = W′′(1), W′(2) 6= W′′(2);
• “Share 2nd layer only": W′(1) 6= W′′(1), W′(2) = W′′(2);
• “Share all": W′(1) = W′′(1), W′(2) = W′′(2).

As shown in Fig. 3, the proposed “Share all" design in DDGCN
attains the highest scores on all metrics. Moreover, sharing the first-layer
parameters is crucial, which is intuitive since the first graph convolution
operation already captures the most important structural information.
Sharing the second layer under the condition of sharing the first layer
can further improve the performance.
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Fig. 3. Impact of parameter sharing in DDGCN on SynLethDB.

(a) Dropout probability p (b) Dual-dropout coefficient α

(c) Dimensionality d1 (d) Dimensionality d2

Fig. 4. Parameter sensitivity analysis for DDGCN.

4.3.2 Parameter sensitivity
We present the sensitivity analysis for the parameters in our DDGCN,
including the dropout probability p, the dual dropout coefficient α in the
loss function, and the dimensionality of the latent spaces d1, d2.

In Fig. 4 (a), the performance of DDGCN gradually increases with
larger dropout probability p until before 0.6. Generally, a wide range of
values p ∈ [0.3, 0.5] give stable and optimal results. In Fig. 4 (b), the dual-
dropout coefficientα controls the contributions from two paths. Typically,
a balanced choice such as α = 1 is desirable. Fig. 4 (c) and (d) show the
impact of dimensions d1 and d2, respectively. We vary one of them and
fix the other at its default value. As can be seen, very small dimensions
do not perform well, whereas moderately large values are more favorable
and stable.

4.3.3 Convergence analysis
As shown in Fig. 5 (a), we find that the training loss falls rapidly within the
first 500 epochs, and begins to converge gradually in about 1000 epochs.
Fig. 5 (b) shows a similar overall picture, where the three metrics on the
test data also begin to converge around 1000 epochs. The similar trends
on training loss and test performance shows that the proposed method is
able to minimize the overfitting problem for SL prediction.

4.4 Qualitative Case Studies

We further train our DDGCN using all the SL pairs in SynLethDB and
predict novel SLs from the unknown pairs. We rank these unknown pairs

(a) Learning curve. (b) Performance on test data.

Fig. 5. Convergence analysis for DDGCN.

Table 3. Top predicted SL pairs with literature support.

# Rank Gene 1 Gene 2 PubMed ID
1 61 RAD51 TP53 23728082
2 491 CDK4 TP53 23728082
3 508 RRM1 BCL2 30682083
4 539 USP1 TP53 23284306
5 555 KRAS BRCA1 24104479
6 578 PIK3CA BRCA1 26427375
7 592 CHEK1 MTOR 28319113
8 620 MTOR BRCA2 27438146
9 655 TYMS PARP1 30682083

10 691 MTOR MAPK1 17429401

based on their scores predicted by DDGCN, and subsequently search for
the top pairs in biomedical literature. In particular, among the top 1000
pairs (out of more than 23 million unknown pairs), we find 28 pairs verified
by existing publications. Table 3 shows the first 10 out of these 28 pairs and
the last column provides the PubMed ID of the publications that support
our prediction.

As shown in Table 3, some pairs have been validated by wet-labs,
e.g., row 4 (USP1 and TP53) is validated by RNAi screening (Xie et al.,
2012), and row 5 (KRAS and BRCA1) is validated by shRNA screening
(Vizeacoumar et al., 2013). Meanwhile, rows 1 and 2 are predicted by
network centrality-based method (Kranthi et al., 2013), row 3 is based
on text mining (Heinzel et al., 2019), and row 6 is predicted by mutual
exclusivity information (Srihari et al., 2015). However, these methods
(centrality, mutual exclusivity or text mining) predict SLs from the angles
which are orthogonal from GCN. Therefore, we still consider that they
provide reasonable supports for our prediction. Taking the first SL pair as
an example, RAD51 and TP53 is reported in (Kranthi et al., 2013) (i.e.,
PubMed ID: 23728082). In fact, TP53 is a well-known tumor suppressor
and its mutations are universal across cancers. It also induces cell arrest,
apoptosis and DNA repair. Meanwhile, RAD51 is known to be involved
in the homologous recombination and DNA repair. It is thus reasonable
to predict a SL between them for cancer therapy as they have back-up
functions related to DNA repair.

4.5 Discussions

SynLethDB-NonPred dataset achieves a higher data quality by removing
all the predicted SLs (6,346 SLs) from SynLethDB, as predicted SLs
usually have low quality. We would think data quality is the main reason
that our DDGCN can achieve better performance on SynLethDB-NonPred
than SynLethDB as shown in Table 2. To further support this claim, we
generate another dataset, denoted as SynLethDB-80%, by removing 20%

of SLs with the lowest scores in SynLethDB. In SynLethDB-80%, there
are 5,294 human genes in the database, with 15,742 known SL pairs. The
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average degree and density of SynLethDB-80% are 5.95 and 0.1124%,
respectively.

3637

298

2709

6346 Predicted SLs
3935 SLs with the 

Lowest Scores

Fig. 6. Predicted SLs vs. 20% SLs with lowest confidence scores.

As mentioned above, we removed 3,935 SLs with lowest scores
from SynLethDB to obtain the SynLethDB-80% dataset. Therefore,
SynLethDB-80% has a higher quality than SynLethDB. Meanwhile,
SynLethDB-NonPred has a higher quality than SynLethDB-80%, as
SynLethDB-80% still contains 2,709 predicted SLs as shown in Fig. 6.
We then ran both DDGCN and SL2MF* on these 3 datasets and their
performance under 5-fold cross validation is shown in Tables 4 and 5.
We can observe that the performance of both DDGCN and SL2MF* (i.e.,
AUPR and F1) increases when we use the SL dataset with better quality.
And, these results would support that the computationally predicted SLs
in the SynLethDB somehow hurt the predictive power of DDGCN, as well
as SL2MF*. Please refer to our supplementary materials for more analysis
on model performance against input data quality.

Table 4. Performance of DDGCN on three datasets.

Datasets AUROC AUPR F1

SynLethDB 0.878±0.006 0.344±0.009 0.552±0.013
SynLethDB-80% 0.846±0.010 0.424±0.044 0.641±0.042
SynLethDB-NonPred 0.842±0.009 0.457±0.027 0.657±0.013

Table 5. Performance of SL2MF* on three datasets.

Datasets AUROC AUPR F1

SynLethDB 0.853±0.005 0.282±0.014 0.436±0.005
SynLethDB-80% 0.850±0.005 0.341±0.015 0.509±0.006
SynLethDB-NonPred 0.866±0.008 0.400±0.007 0.563±0.002

Note that our DDGCN predicts novel SL pairs based solely on the
known SL pairs without using other data sources for genes. In fact, it is
very important to integrate other data sources for the SL prediction task
(Das et al., 2018; Liany et al., 2019). It can help to improve the model
performance and we have shown that GO data further helps to improve the
performance of DDGCN in our supplementary materials. In addition, data
integration can enable the prediction of SL pairs for the genes outside the
SL graph and provide mechanistic insights for predicted SL relationships.
In this work, our focus is to develop a new GCN-based framework with
dual dropouts. In the future, we will integrate multi-omics data (e.g., PPI,
gene expression, GO, etc.) in a GCN framework to better address the SL
prediction task.

5 Conclusion
In this paper, we propose a novel Dual-Dropout Graph Convolutional
Network (DDGCN) for predicting synthetic lethality (SL) in human
cancers. Specifically, we propose and integrate the dual forms of coarse-
and fine-grained dropouts in our approach—the former can efficiently

and systematically enforce dropout at gene level, whereas the latter
further fine-tune the dropout at interaction level. We further present a
theoretical analysis to justify the proposed architecture. The proposed
approach DDGCN achieves promising results on a comprehensive human
SL database, which not only provides an effective solution to deal with
sparse SL interactions, but also fills the gap between graph neural networks
and SL prediction.
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