
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2020

Secure server-aided data sharing clique with attestation Secure server-aided data sharing clique with attestation

Yujue WANG
Guilin University of Electronic Technology

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Yong DING
Guilin University of Electronic Technology

Qianhong WU
Beijing University of Aeronautics and Astronautics (Beihang University)

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
WANG, Yujue; PANG, Hwee Hwa; DENG, Robert H.; DING, Yong; WU, Qianhong; QIN, Bo; and FAN, Kefeng.
Secure server-aided data sharing clique with attestation. (2020). Information Sciences. 522, 80-98.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5122

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yujue WANG, Hwee Hwa PANG, Robert H. DENG, Yong DING, Qianhong WU, Bo QIN, and Kefeng FAN

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/5122

https://ink.library.smu.edu.sg/sis_research/5122

Information Sciences 522 (2020) 80–98

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Secure server-aided data sharing clique with attestation

Yujue Wang
a , b , HweeHwa Pang

c , Robert H. Deng
c , Yong Ding

a , d , ∗,
Qianhong Wu

e , Bo Qin
f , Kefeng Fan

g

a Guangxi Key Laboratory of Cryptography and Information Security, School of Computer Science and Information Security, Guilin
University of Electronic Technology, Guilin 541004, China
b State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 10 0 093, China
c School of Information Systems, Singapore Management University, Singapore, 188065
d Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen 518055, China
e School of Cyber Science and Technology, Beihang University, Beijing 100191, China
f School of Information, Renmin University of China, Beijing 100872, China
g China Electronics Standardization Institute, Beijing 10 0 0 07, China

a r t i c l e i n f o

Article history:
Received 25 September 2018
Revised 22 February 2020
Accepted 24 February 2020
Available online 25 February 2020

Keywords:
Encryption
Re-encryption
Confidentiality
Equality test on ciphertexts
Data sharing
Data outsourcing
Data attestation

a b s t r a c t

In this paper, we consider the security issues in data sharing cliques via remote server. We

present a public key re-encryption scheme with delegated equality test on ciphertexts (PRE-

DET). The scheme allows users to share outsourced data on the server without performing

decryption-then-encryption procedures, allows new users to dynamically join the clique,

allows clique users to attest the message underlying a ciphertext, and enables the server to

partition outsourced user data without any further help of users after being delegated. We

introduce the PRE-DET framework, propose a concrete construction and formally prove its

security against five types of adversaries regarding two security requirements on message

confidentiality and unforgeability of attestation against the server. We also theoretically

analyze and compare the proposed PRE-DET construction with related schemes in terms

of ciphertext sizes and computation costs of encryption, decryption, ciphertext equality

testing and re-encryption, which confirms the practicality of our construction.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Data outsourcing allows users to engage a remote storage server to hold user data, which relieves users from the over-

head of managing their own storage devices. However, for privacy reasons, user data can only be stored on the remote server

in ciphertext format. Recently, public key encryption with (authorized/delegated) equality test on ciphertext was proposed

to not only guarantee data confidentiality at the remote server, but also enhance the functionality of the server by enabling

it to compare outsourced ciphertexts. The property of ciphertext equality test in these encryption schemes has been ex-

tensively utilized in achieving controlled equijoin in outsourced relational database [32] , partition of encrypted emails [18] ,

searchable encryption and partitioning encrypted data [40] , deduplication on outsourced encrypted data [6] , data monitoring

[31] , etc. However, these schemes do not support efficient data sharing.

∗ Corresponding author at: Guangxi Key Laboratory of Cryptography and Information Security, School of Computer Science and Information Security,
Guilin University of Electronic Technology, Guilin 541004, China.

E-mail address: stone_dingy@126.com (Y. Ding).

https://doi.org/10.1016/j.ins.2020.02.064
0020-0255/© 2020 Elsevier Inc. All rights reserved.

Published in Information Sciences, Volume 522, June 2020, Pages 80-98
https://doi.org/10.1016/j.ins.2020.02.064
Creative Commons Attribution Non-Commercial No Derivatives License

https://doi.org/10.1016/j.ins.2020.02.064
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.02.064&domain=pdf
mailto:stone_dingy@126.com
https://doi.org/10.1016/j.ins.2020.02.064

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 81

In this paper, we investigate data sharing cliques with the help of a remote server, where the data outsourced by users in

a clique are shared only by these users. For example, for users in a workshop, the data can be shared among them to jointly

perform a task. Data sharing clique raises the following requirements. First, all user data must be stored in ciphertext format

to protect confidentiality and shared by all users in the clique. Second, to realize data sharing, each user does not need to

directly produce ciphertext for all expected users; rather, the server will transform the ciphertext for the users in the clique

without sacrificing confidentiality. Third, a user is able to add an attestation to a ciphertext with non-repudiation assurance,

for instance to inform other users of the truthfulness of authenticity of the underlying message. Fourth, the delegated server

is able to test whether the outsourced ciphertexts encrypt the same underlying message without decrypting them, to achieve

controlled partitioning on encrypted data.

With the data sharing property, a new user joining the clique will be able to access the data of other peer users in the

clique, while his/her data also become accessible by the other users. To the best of our knowledge, there is no existing

solution to achieve a secure data sharing clique with all the above requirements. Specifically, existing public key encryption

technology with (authorized/delegated) equality test on ciphertexts (PKEET/PKE-AET/PKE-DET) can only realize the first and

fourth requirements, whereas existing public key re-encryption technology (PRE) only solves the third requirement.

1.1. Contributions

To address the confidentiality and security issues in data sharing cliques, we present a public key re-encryption scheme

with delegated equality test on ciphertexts (PRE-DET). Our notion of PRE-DET provides more powerful functionalities than

PKEET/PKE-AET/PKE-DET and PRE. In PRE-DET, to share the ciphertexts of user A with user B , user A does not need to

retrieve them from the server and perform an encryption under the public key of B . Instead, users A and B will jointly

generate a re-encryption key, which enables the server to transform the ciphertexts of A to that of B . All users sharing their

data constitute a user clique. When some user delegates the server to perform equality test on his/her ciphertexts by issuing

a token, the server is implicitly authorized to compare all data owned by all users in the same clique due to the property

of data sharing.

PRE-DET allows users to dynamically join the clique by jointly issuing a re-encryption key, which demonstrates he/she

is willing to share data with the other users in the clique. Users are able to attest the message underlying a ciphertext. The

attestation must be publicly verifiable, so as to ensure authenticity. Moreover, in a PRE-DET scheme, the attestation cannot

obstruct the re-encryption functionality (i.e., the data sharing property). In other words, all attested ciphertexts are also

shared by the users in the clique, as the server is able to re-encrypt attested ciphertexts in the same way as re-encrypting

ciphertexts.

We formulate the security model of PRE-DET with respect to five types of adversaries, representing four security re-

quirements on message confidentiality and a requirement on unforgeability of attestation. The four message confidentiality

requirements capture IND-CCA2 and OW-CCA2 security against the server with/without re-encryption key and token, respec-

tively, whereas the attestation unforgeability requirement is defined against malicious users. We present a concrete PRE-DET

construction on symmetric bilinear groups, and prove that it is secure against the five types of adversaries as formalized in

the security framework in the random oracle model. Comparison with related schemes show that our PRE-DET construction

is practical in applications.

1.2. Related work

Mambo and Okamoto [21] introduced public key proxy encryption, which allows the decryptor to transform his/her

ciphertext to that of another decryptor without decryting the original ciphertext. They presented concrete proxy encryp-

tion constructions using the ElGamal and RSA cryptosystems. Blaze, Bleumer and Strauss [2] further studied atomic proxy

cryptography such that the ciphertext/signature of some public key can be converted into ciphertext/signature of the same

message under another public key. These schemes proposed in [2,21] only offer IND-CPA security on ciphertexts.

Following the seminal work of [2,21] , a large number of public key re-encryption schemes have been proposed. In [4] ,

Canetti and Hohenberger for the first time introduced an IND-CCA secure public key bidirectional proxy re-encryption

scheme in the standard model under the decisional bilinear Diffie-Hellman assumption. Deng et al. [7] and Weng et al.

[36] designed IND-CCA secure bidirectional proxy re-encryption schemes without using bilinear pairings, which are thus

more efficient than the method in [4] . Libert and Vergnaud [17] first presented IND-CCA secure unidirectional proxy re-

encryption schemes in the standard model, which was further enhanced by Seo, Yum and Lee [24] . The CCA-secure unidi-

rectional proxy re-encryption scheme presented by Weng et al. [35] can be proved in the adaptive corruption model.

Green and Ateniese [9] first introduced the notion of identity-based proxy re-encryption (ID-PRE), which eliminates com-

plicated certificate management in the public key setting. Then, Chu and Tzeng [5] considered ID-PRE schemes that are

proved to be secure in the standard model. Multi-use and unidirectional ID-PRE schemes were investigated in [30] and [25] ;

the security of the former is proved in the random oracle and the latter in the standard model. In [42] , Zhou et al. proposed

a mechanism to allow an authorized proxy to convert a ciphertext in an identity-based broadcast encryption scheme into a

ciphertext in an identity-based encryption scheme. Li et al. [13] proposed a novel solution to address the challenge problem

of outsourcing computation with stronger attack model in data sharing and privacy-preserving outsourced machine learning.

Different from the previous works, Li et al. [14] considered multiple devices and data sources in the attack models.

82 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

Recently, the proxy re-encryption technique has been extensively used in applications in clouds. In [41] , proxy re-

encryption was used to achieve secure cloud-based data sharing, and the authors analyzed a ‘pitfall’ in the security proof

of existing proxy re-encryption schemes. Nuñez, Agudo and Lopez [22] reviewed and compared many typical proxy re-

encryption schemes, and applied proxy re-encryption to secure access delegation in clouds. Shao et al. [26] designed a

bidirectional proxy re-encryption to secure cloud storage against collusion attacks. Liang and Susilo [16] proposed the first

searchable attribute-based proxy re-encryption system to secure electronic personal data in clouds. In [15] , Liang et al. ad-

dressed the privacy issue in data sharing and conjunctive keyword searching in clouds, which also supports secure keyword

update. To address the security and integrity of outsourced data in clouds, Yang et al. [39] proposed a lightweight privacy-

preserving delegatable proofs of storage scheme.

The primitive of public key encryption with equality test (PKEET) was first introduced by Yang et al. [40] , which supports

public equality test even on ciphertexts generated under different public keys. PKEET was extended to support authorized

or delegated equality test on ciphertexts (PKE-AET/PKE-DET) [19,20,28] so that only a tester with valid authorization or

delegation is able to compare ciphertexts. In [29] , Tang presented an all-or-nothing PKEET (AoN-PKEET), where a tester can

be independently authorized by two users to test the equality of their ciphertexts. Slamanig, Spreitzer and Unterluggauer

[27] designed a special case of AoN-PKEET [29] , called AoN-PKEET ∗ and constructed using the ElGamal encryption scheme

[8] . The tester in AoN-PKEET ∗ is only allowed to compare ciphertexts of the same user.

Combining the functionalities of PKEET and identity-based encryption, Ma [18] proposed an identity-based encryption

scheme with equality test on ciphertexts (IBEET). Lee et al. [11] analyzed the security of [10] and presented an enhanced

PKE-AET scheme. In [12] , Lee et al. presented semi-generic constructions for PKEET and IBEET. Wang et al. [34] designed a

scheme on asymmetric bilinear groups using the ElGamal scheme, where the confidentiality of ciphertexts and tokens are

proved in the standard model. Pang and Ding [23] first researched controlled equijoin in relational databases and designed

a secure solution in secret key setting, built on equality test on ciphertext fields in outsourced records. Recently, controlled

equijoin in relational databases in public key setting was investigated in [32] . Note that the functionality of equality test on

ciphertexts was extensively used to preform deduplication on encrypted data [6,37,38] and secure messaging services [33] .

1.3. Paper organization

The remainder of this paper is organized as follows. In Section 2 , we formulate the framework of PRE-DET and its se-

curity requirements. We present a PRE-DET construction in Section 3 , and prove its security in Section 4 . We compare the

performance of our PRE-DET construction with those of existing schemes in Section 5 . Finally, Section 6 concludes the paper.

2. PRE-DET Framework and security definitions

2.1. System model and security requirements

In a data sharing clique, there are two types of entities, that is, many users and a server. Users are data owners who

encrypt and deposit data on the server. All the users in the clique share their outsourced data. Suppose there are only

two users in the clique. When one user wants to share her data with the other, they and the server jointly generate a

re-encryption key to enable the server to translate ciphertexts between them. A new user joining the clique only needs to

jointly produce a re-encryption key with an existing user and the server, to start sharing her data as well as accessing the

data of the other users in the clique. Users do not need to retrieve the ciphertexts from the server and encrypt the data

under all public keys of the other users.

Users in the clique are able to attest an outsourced (shared/re-encrypted) data. Specifically, the user first decrypts the

data, determines its truthfulness, and generates an attested ciphertext. In this way, all users in the clique can see the at-

testation of this data on the server without decrypting it. Note that all attested ciphertexts are also shared by all users in

the same clique, which means they also support re-encryption by the server like original ciphertexts. The attestation pro-

cedure should not degrade the ciphertext security. A clique user can authorize the server to test whether a pair of original

or re-encrypted or attested or re-encrypted attested ciphertexts encrypt the same underlying message. With delegation, the

server can partition the outsourced data for clique users by the underlying messages.

In a data sharing clique, the server may be curious about the plaintext messages underlying the outsourced data. At some

point of time, it could receive re-encryption keys and equality test tokens from the clique users. Thus, the server may lie in

one of the following four status:

1. The server does not hold any re-encryption key or equality test token;

2. The server has a re-encryption key, but no equality test token;

3. The server has an equality test token, but no re-encryption key;

4. The server has both re-encryption key and equality test token.

Some user may also try to attach a fake attestation to outsourced data in the name of others, for example, to claim that

some sensible data has a lower sensibility level.

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 83

2.2. PRE-DET framework

A PRE-DET scheme for secure data sharing clique consists of the following efficient procedures.

Setup (1 λ) → par: Given security parameter λ, the system setup procedure produces public parameter par. The public

parameter par is an implicit input to all the following procedures.

KeyGen (par) → (sk i , pk i) : With public parameter par, each user U i executes the key generation procedure to produce a

pair of secret key sk i and public key pk i .

ReKeyGen (sk i , sk j) → rk i ↔ j : With secret keys sk i and sk j , users U i and U j , along with the server, jointly run the re-

encryption key procedure to produce a bidirectional re-encryption key rk i ↔ j .

DataEnc (pk i , m) → C: With public key pk i of user U i , the encryption procedure produces a ciphertext C for input message

m .

ReEnc (rk i ↔ j , C i l) → C j l : With bidirectional re-encryption key rk i ↔ j and ciphertext C i l of user U i , the server runs the re-

encryption procedure to produce a ciphertext C j l of user U j for the same underlying plaintext without decrypting C i l . Due to

the bidirectional property of rk i ↔ j , the server may also perform ReEnc (rk i ↔ j , C j l) → C i l .

DataDec (sk i , C) → m/ ⊥ : With secret key sk i , user U i runs the decryption procedure on ciphertext C to produce a message

m , or ⊥ that signifies an error in decryption.

Attest (sk i , pk i , C) → A : With secret key sk i and public key pk i of user U i , U i runs the attestation procedure on ciphertext

C . In this procedure, user U i attaches an attestation att ∈ A to the underlying plaintext and produces an attested ciphertext

A .

AttReEnc (rk i ↔ j , pk i , pk � , A i l
) → A j l

: With bidirectional re-encryption key rk i ↔ j , two public keys pk i , pk � of users U i and

U � , and attested ciphertext A i l
of user U i where the attestation was added by user U � , the server runs the re-encryption

procedure to produce an attested ciphertext A j l
for user U j , so that user U j can decrypt A j l

. Due to the bidirectional property

of rk i ↔ j , the server may also perform AttReEnc (rk i ↔ j , pk j , pk � , A j l
) → A i l

.

AttVer (pk i , A) → 1 / 0 : With public key pk i , any user may run the attestation verification procedure on attested ciphertext

A . The procedure outputs 1 if the attestation att in A is valid under pk i , i.e., att was originally added by user U i , or 0

otherwise.

AttDec (pk i , pk j , sk j , A) → m/ ⊥ : With public keys pk i , pk j and secret key sk j , user U j runs the decryption procedure on

attested ciphertext A to produce a message m , or ⊥ that signifies an error in decryption, where the attestation in A was

added by user U i .
Delegate (sk i) → tk i : With secret key sk i , user U i runs the delegation procedure to produce a token tk i to enable the

server to perform equality test on ciphertexts of users in the clique.

EqTest (tk i , C i l /A i l
, tk j , C j h /A j h

) → 0 / 1 : With two tokens tk i and tk j respectively issued by users U i and U j , the server runs

the equality test procedure on two (attested) ciphertexts C i l (or A i l
) and C j h (or A j h

). The procedure outputs 1 if C i l (or A i l
)

and C j h (or A j h
) encrypt the same plaintext; otherwise, the procedure outputs 0.

A valid attestation requires that attested ciphertexts preserve the same properties of re-encryption and equality test

as ciphertexts. A PRE-DET scheme must be sound in the sense that: (1) Every ciphertext generated by DataEnc or re-

encrypted by ReEnc is decryptable by DataDec , and every attested ciphertext generated by Attest or re-encrypted by

AttReEnc is decryptable by AttDec ; (2) Any two (attested) ciphertexts generated by DataEnc / Attest or re-encrypted

by ReEnc / AttReEnc for the same message, must pass the equality test procedure EqTest ; (3) The attestation in any

attested ciphertext generated by Attest or re-encrypted by AttReEnc is publicly verifiable. Formally, the soundness of a

bidirectional PRE-DET scheme can be defined as follows.

Definition 1 (Soundness) . A PRE-DET scheme is sound if, for any security parameter λ ∈ N and any public parameter par ←

Setup (1 λ) , the following conditions are satisfied:

1. For any secret/public key pair (sk i , pk i) ← KeyGen (par) and every message m ∈ M , DataDec (sk i , DataEnc (pk i , m)) = m .

2. For any τ > 1, any secret/public key pairs (sk i , pk i) , (sk i +1 , pk i +1) , · · · , (sk i + τ , pk i + τ) ← KeyGen (par) , any π < τ , all

re-encryption keys rk (i + π) ↔ (i + π+1) ← ReKeyGen (sk i + π , sk i + π+1) , and every message m ∈ M , we have

DataDec
(
sk i + τ , ReEnc

(
rk (i + τ−1) ↔ (i + τ) , · · · , ReEnc

(
rk i ↔ (i +1) , DataEnc (pk i , m)

)
· · ·

))
= m.

3. For any m 1 , m 2 ∈ M , any τ 1 , τ 2 > 1, any secret/public key pairs (sk i −τ1 , pk i −τ1) , · · · , (sk i , pk i) , (sk j−τ2 , pk j−τ2) , · · · ,

(sk j , pk j) ← KeyGen (par) , any π1 < τ 1 , π2 < τ 2 , all re-encryption keys rk (i −π1) ↔ (i −π1 +1) ← ReKeyGen (sk i −π1 , sk i −π1 +1) ,

rk (j−π2) ↔ (j−π2 +1) ← ReKeyGen (sk j−π2 , sk j−π2 +1) , if m 1 = m 2 , then EqTest (tk i , C 1 , tk j , C 2) = 1 where

• C 1 ← DataEnc (pk i , m 1) or

C 1 ← ReEnc
(
rk (i −1) ↔ i , · · · , ReEnc

(
rk (i −τ1) ↔ (i −τ1 +1) , DataEnc

(
pk i −τ1 , m 1

))
· · ·

)
;

• C 2 ← DataEnc (pk j , m 2) or

C 2 ← ReEnc
(
rk (j−1) ↔ j , · · · , ReEnc

(
rk (j−τ2) ↔ (j−τ2 +1) , DataEnc

(
pk j−τ2 , m 2

))
· · ·

)
;

• tk i ← Delegate (sk i) and tk j ← Delegate (sk j) .
Otherwise, EqTest (tk i , C 1 , tk j , C 2) = 0 .

84 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

4. For any secret/public key pair (sk i , pk i) ← KeyGen (par) , and A ← Attest (sk i , pk i , C) for any well-formed ciphertext C

with any att ∈ A , we have AttDec (pk i , sk i , A) = m if DataDec (sk i , C) = m .

5. For any τ > 1, any secret/public key pairs (sk i , pk i) , (sk i +1 , pk i +1) , · · · , (sk i + τ , pk i + τ) ← KeyGen (par) , any π < τ , all re-

encryption keys rk (i + π) ↔ (i + π+1) ← ReKeyGen (sk i + π , sk i + π+1) , and A ← Attest (sk i , pk i , C) for any well-formed cipher-

text C with any att ∈ A , we have

AttDec
(
pk i , pk i + τ , sk i + τ , AttReEnc

(
rk (i + τ−1) ↔ (i + τ) , pk i + τ−1 , pk i , AttReEnc (

· · · , AttReEnc
(
rk i ↔ (i +1) , pk i , pk i , A

)
· · ·

)))
= m

if DataDec (sk i , C) = m .

6. For any two well-formed ciphertexts C 1 , C 2 with respective at t 1 , at t 2 ∈ A , any τ 1 , τ 2 > 1, any secret/public

key pairs (sk i −τ1 , pk i −τ1) , · · · , (sk i , pk i) , (sk j−τ2 , pk j−τ2) , · · · , (sk j , pk j) ← KeyGen (par) , any π1 < τ 1 , π2 < τ 2 , all

re-encryption keys rk (i −π1) ↔ (i −π1 +1) ← ReKeyGen (sk i −π1 , sk i −π1 +1) , rk (j−π2) ↔ (j−π2 +1) ← ReKeyGen (sk j−π2 , sk j−π2 +1) , if

DataDec (sk i −τ1 , C 1) = DataDec (sk j−τ2 , C 2) � = ⊥ , then EqTest (tk i , A 1 , tk j , A 2) = 1 where

A 1 ← AttReEnc
(
rk (i −1) ↔ i , pk i −1 , pk i −π1 , AttReEnc

(
· · · , AttReEnc

(
rk (i −π1) ↔ (i −π1 +1) , pk i −π1 , pk i −π1 ,

Attest
(
sk i −π1 , pk i −π1 , ReEnc

(
rk (i −π1 −1) ↔ (i −π1) , · · · , ReEnc

(
rk (i −τ1) ↔ (i −τ1 +1) , C 1

)
· · ·

)))
· · ·

))
,

A 2 ← AttReEnc
(
rk (j−1) ↔ j , pk j−1 , pk j−π2 , AttReEnc

(
· · · , AttReEnc

(
rk (j −π2) ↔ (j −π2 +1) , pk j −π2 , pk j −π2 ,

Attest
(
sk j −π2 , pk j −π2 , ReEnc

(
rk (j −π2 −1) ↔ (j −π2) , · · · , ReEnc

(
rk (j −τ2) ↔ (j −τ2 +1) , C 2

)
· · ·

)))
· · ·

))
,

tk i ← Delegate (sk i) and tk j ← Delegate (sk j) .
Otherwise, EqTest (tk i , A 1 , tk j , A 2) = 0 .

7. For any τ ≥ 1, any secret/public key pairs (sk i , pk i) , · · · , (sk i + τ , pk i + τ) ← KeyGen (par) , any π < τ , all re-encryption

keys rk (i + π) ↔ (i + π+1) ← ReKeyGen (sk i + π , sk i + π+1) , we have AttVer (pk i , A) = 1 where

A ← AttReEnc
(
rk (i + τ−1) ↔ (i + τ) , pk i + τ−1 , pk i , AttReEnc

(
· · · , AttReEnc

(
rk i ↔ (i+1) , pk i , pk i , Attest (sk i , pk i , C i)

)
· · ·

))
2.3. Security definitions

In this section, we define the security model of PRE-DET to capture the confidentiality requirements formalized in

Section 2.1 , for Type-1, 2, 3, 4 adversaries against message confidentiality, and Type-5 adversary against attestation un-

forgeability.

Definition 2 (PD-IND-CCA1 security against Type-1 adversary) . Let � be a PRE-DET scheme. Suppose A 1 is a probabilistic

polynomial-time (PPT) adversary who interacts with a challenger C to perform the following security game.

Set-up : With a security parameter λ, the challenger runs the Setup procedure to produce public parameter par, which

is given to the adversary.

Phase 1 : The adversary is able to adaptively issue the following queries.

• Uncorrupted key generation query O ukgen : With public parameter par, the challenger runs the KeyGen procedure to

produce a pair of secret/public keys (sk i , pk i) , and gives pk i to A 1 .

• Corrupted key generation query O ckgen : With public parameter par, the challenger runs the KeyGen procedure to

produce a pair of secret/public keys (sk i , pk i) , which are given to A 1 .

• Decryption query 1 O dec1 : For a query (C, pk) , if pk was not generated by the KeyGen procedure, then the challenger

returns ⊥ , otherwise the challenger returns DataDec (sk , C) .

• Attestation query O att : For a query (C, pk) where C is a ciphertext under pk , if pk was not generated by the KeyGen
procedure, then the challenger returns ⊥ , otherwise the challenger returns Attest (sk , pk , C) .

• Decryption query 2 O dec2 : For a query ((A, pk i) , pk j) where A is an attested ciphertext under pk j such that the at-

testation was originally added by user U i , if either pk i or pk j was not generated by the KeyGen procedure, then the

challenger returns ⊥ , otherwise the challenger returns AttDec (pk i , pk j , sk j , A) .

Challenge : At the end of Phase 1, the adversary outputs two messages m 0 , m 1 ∈ R M and a challenge public key pk ∗,
where pk ∗ is the public key of an uncorrupted user. The challenger chooses a random value b ∈ R {0, 1}, computes C ∗ ←

DataEnc (pk ∗, m b) , and gives C ∗ to the adversary.

Phase 2 : The adversary is able to issue queries in the same way as in Phase 1, except that C ∗ and its attested ciphertexts

cannot be submitted for decryption.

Guess: At the end of Phase 2, the adversary outputs a guess b ′ , and succeeds in the security game if b ′ = b.

Let

Adv
pd - ind - cca1
�, A 1 =

∣∣∣Pr [b ′ = b] − 1

2

∣∣∣
� is said to offer indistinguishability under adaptive chosen ciphertext attack (PD-IND-CCA1) for ciphertext against Type-1

adversary if, for all PPT adversary A 1 , there exists a negligible function ε (·) such that Adv pd - ind - cca1
�, A 1

≤ ε(·) .

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 85

Definition 3 (PD-IND-CCA2 security against Type-2 adversary) . Let � be a PRE-DET scheme. Suppose A 2 is a PPT adversary

who interacts with a challenger C to perform the following security game.

Set-up : Same as in Definition 2 .

Phase 1 : The adversary is able to adaptively issue the following queries.

• Uncorrupted key generation query O ukgen : Same as in Definition 2 .

• Corrupted key generation query O ckgen : Same as in Definition 2 .

• Re-encryption key generation query O rkgen : For a queried pair (pk i , pk j) , where both pk i and pk j have been generated

by the KeyGen procedure, the challenger returns rk i ↔ j ← ReKeyGen (sk i , sk j) .

Remark 1. As noted in [4] , Section 2.1 for a bidirectional proxy re-encryption scheme, O rkgen requires that either both

U i and U j are corrupted users, or both are uncorrupted.

• Re-encryption query 1 O renc1 : For a query ((C i , pk i) , pk j) , where both pk i and pk j have been generated by

the KeyGen procedure and C i is a ciphertext under pk i , the challenger returns a re-encrypted ciphertext C j =

ReEnc (ReKeyGen (sk i , sk j) , C i) .
• Attestation query O att : Same as in Definition 2 .

• Re-encryption query 2 O renc2 : For a query ((A j , pk i , pk j) , pk k) , where all pk i , pk j , pk k have been generated by the

KeyGen procedure, and A j is an attested ciphertext under pk j such that the attestation was originally added by user

U i , the challenger returns a re-encrypted attested ciphertext A k = AttReEnc (ReKeyGen (sk j , sk k) , pk j , pk i , A j) .

• Decryption query 1 O dec1 : Same as in Definition 2 .

• Decryption query 2 O dec2 : Same as in Definition 2 .

Challenge : At the end of Phase 1, the adversary outputs two messages m 0 , m 1 ∈ R M and a challenge public key pk ∗,
where pk ∗ is the public key of an uncorrupted user U ∗. The challenger chooses a random value b ∈ R {0, 1}, computes

C ∗ ← DataEnc (pk ∗, m b) , and gives C ∗ to the adversary.

Phase 2 : The adversary is able to issue queries in the same way as in Phase 1, except that:

• Re-encryption query 1 O renc1 : For a query ((C i , pk i) , pk j) , where both pk i and pk j have been generated by the

KeyGen procedure and C i is a ciphertext under pk i , if pk j is the public key of a corrupted user U j and (C i , pk i) is

a derivative of (C ∗, pk ∗) , then the challenger returns ⊥ ; otherwise, the challenger returns a re-encrypted ciphertext

C j = ReEnc (ReKeyGen (sk i , sk j) , C i) .
The definition of derivative of (C ∗, pk ∗) will be defined below this definition.

• Re-encryption query 2 O renc2 : For a query ((A j , pk i , pk j) , pk k) , where all pk i , pk j , pk k have been generated by

the KeyGen procedure, and A j is an attested ciphertext under pk j such that the attestation was originally

added by user U i , if pk k is the public key of a corrupted user U k and (A j , pk i , pk j) is a derivative of

(C ∗, pk ∗) , then the challenger returns ⊥ ; otherwise, the challenger returns a re-encrypted attested ciphertext A k =

AttReEnc (ReKeyGen (sk j , sk k) , pk j , pk i , A j) .

• Decryption query 1 O dec1 : Every derivative of (C ∗, pk ∗) cannot be submitted for decryption.

• Decryption query 2 O dec2 : Every derivative of (C ∗, pk ∗) cannot be submitted for decryption.

Guess: At the end of Phase 2, the adversary outputs a guess b ′ , and succeeds in the security game if b ′ = b.

Let

Adv
pd - ind - cca2
�, A 2 =

∣∣∣Pr [b ′ = b] − 1

2

∣∣∣
� is said to offer indistinguishability under adaptive chosen ciphertext attack (PD-IND-CCA2) for ciphertext against Type-2

adversary if, for all PPT adversary A 2 , there exists a negligible function ε (·) such that Adv pd - ind - cca2
�, A 2

≤ ε(·) .

Derivative of (C ∗, pk ∗) is defined as follows. For simplicity, let � � 	 denote that � is a derivative of 	 .

• Reflexivity: (C ∗, pk ∗) � (C ∗, pk ∗) .
• Transitivity: If (C ′ , pk ′) � (C ∗, pk ∗) and (C ′′ , pk ′′) � (C ′ , pk ′) , then (C ′′ , pk ′′) � (C ∗, pk ∗) .
• Re-encryption produces a derivative: If C ′ ← O renc ((C, pk) , pk ′) , then (C ′ , pk ′) � (C, pk) .

• Attestation produces a derivative: If (C ′ , pk ′) � (C ∗, pk ∗) , then (A, pk ′) � (C ∗, pk ∗) where A ← Attest (sk ′ , pk ′ , C ′) .
• Data sharing produces a derivative: Given rk i ↔ (i +1) ← O rkgen (pk i , pk i +1) , rk (i +1) ↔ (i +2) ← O rkgen (pk i +1 , pk i +2) , ���,

rk (i + π) ↔ i ∗ ← O rkgen (pk i + π , pk ∗) , where π denotes some non-negative integer, if O dec1 (C, pk i) ∈ { m 0 , m 1 } , then

(C, pk i) � (C ∗, pk ∗) ; or if O dec2 ((A, pk i) , pk j) ∈ { m 0 , m 1 } where j ∈ [i, i + π] , then (A, pk i , pk j) � (C ∗, pk ∗) .

When the server has the equality test token, it is able to compare the ciphertexts owned by the users in the same clique,

which implies the ciphertexts in this phase are distinguishable and the PRE-DET system cannot offer indistinguishability for

encrypted user data under chosen plaintext/ciphertext attacks. In [40] , Yang et al. have noticed that indistinguishability-

based security notions are not applicable to the public key encryption schemes with equality test on ciphertexts.

Definition 4 (PD-OW-CCA3 security against Type-3 adversary) . Let � be a PRE-DET scheme. Suppose A 3 is a PPT adversary

who interacts with a challenger C to perform the following security game.

86 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

Set-up : Same as in Definition 2 .

Phase 1 : The adversary is able to adaptively issue the following queries.

• Uncorrupted key generation query O ukgen : Same as in Definition 2 .

• Corrupted key generation query O ckgen : Same as in Definition 2 .

• Delegation generation query O delgen : For a queried pk i of some uncorrupted user U i , where pk i has been generated by

the KeyGen procedure, the challenger returns Delegate (sk i) .
• Attestation query O att : Same as in Definition 2 .

• Decryption query 1 O dec1 : Same as in Definition 2 .

• Decryption query 2 O dec2 : Same as in Definition 2 .

Challenge : At the end of Phase 1, the adversary outputs a challenge public key pk ∗ of an uncorrupted user U ∗. The chal-

lenger picks a message m ∗ ∈ R M , computes C ∗ ← DataEnc (pk ∗, m ∗) , and gives C ∗ to adversary A 3 .

Phase 2 : The adversary is able to issue queries in the same way as in Phase 1, except that C ∗ and its attested ciphertext

cannot be submitted for decryption.

Guess: At the end of Phase 2, the adversary outputs a guess m ′ , and succeeds in the security game if m ′ = m ∗.

Let

Adv
pd - owcca3
�, A 3 = Pr

[
m ′ = m ∗

]
� is said to offer one-wayness under adaptive chosen ciphertext attack (PD-OW-CCA3) for ciphertext against Type-3 adver-

sary if, for all PPT adversary A 3 , there exists a negligible function ε(·) such that Adv pd - owcca3
�, A 3

≤ ε(·) .

Definition 5 (PD-OW-CCA4 security against Type-4 adversary) . Let � be a PRE-DET scheme. Suppose A 4 is a PPT adversary

who interacts with a challenger C to perform the following security game.

Set-up : Same as in Definition 3 .

Phase 1 : The adversary is able to adaptively issue the following queries.

• Uncorrupted key generation query O ukgen : Same as in Definition 3 .

• Corrupted key generation query O ckgen : Same as in Definition 3 .

• Re-encryption key generation query O rkgen : Same as in Definition 3 .

• Re-encryption query 1 O renc1 : Same as in Definition 3 .

• Attestation query O att : Same as in Definition 3 .

• Re-encryption query 2 O renc2 : Same as in Definition 3 .

• Delegation generation query O delgen : For a queried pk i of some uncorrupted user U i , where pk i has been generated by

the KeyGen procedure, the challenger returns Delegate (sk i) .
• Decryption query 1 O dec1 : Same as in Definition 3 .

• Decryption query 2 O dec2 : Same as in Definition 3 .

Challenge : At the end of Phase 1, the adversary outputs a challenge public key pk ∗ of an uncorrupted user U ∗. The chal-

lenger picks a message m ∗ ∈ R M , computes C ∗ ← DataEnc (pk ∗, m ∗) , and gives C ∗ to adversary A 4 .

Phase 2 : The adversary is able to issue queries in the same way as in Phase 1, except that:

• Re-encryption query 1 O renc1 : Same as in Definition 3 .

• Re-encryption query 2 O renc2 : Same as in Definition 3 .

• Decryption query 1 O dec1 : Same as in Definition 3 .

• Decryption query 2 O dec2 : Same as in Definition 3 .

Guess: At the end of Phase 2, the adversary outputs a guess m ′ , and succeeds in the security game if m ′ = m ∗.

Let

Adv
pd - owcca4
�, A 4 = Pr

[
m ′ = m ∗

]
� is said to offer one-wayness under adaptive chosen ciphertext attack (PD-OW-CCA4) for ciphertext against Type-4 adver-

sary if, for all PPT adversary A 4 , there exists a negligible function ε (·) such that Adv pd - owcca4
�, A 4

≤ ε(·) .

Definition 6 (PD-EUCMA security against Type-5 adversary) . Let � be a bidirectional PRE-DET scheme. Suppose A 5 is a PPT

adversary who interacts with a challenger C to perform the following security game.

Set-up : With a security parameter λ, the challenger runs the Setup procedure to produce public parameter par, which

is given to the adversary. The challenger generates a pair of challenge key pair (pk ∗, sk ∗) .
Queries : The adversary is able to adaptively issue the queries as defined in Phase 1 of Definition 5 .

Output : Eventually, the adversary outputs a tuple (C ∗, A ∗, pk ∗i) . Adversary A 5 wins the game if both the following condi-

tions are satisfied:

1. (C ∗, pk ∗) has not been submitted in attestation queries;

2. (A ∗, pk ∗, pk ∗i) � (C ∗, pk ∗) , which implies AttDec (pk ∗, pk ∗i , sk
∗
i , A ∗) = DataDec (sk ∗, C ∗) � = ⊥ and AttVer (pk ∗, A ∗) = 1 .

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 87

Fig. 1. Procedure of ReKeyGen .

Let

Adv
pd - eucma
�, A 5 = Pr [A 5 wins]

� is said to offer existential unforgeability under adaptively chosen message attack (PD-EUCMA) for attested ciphertext

against Type-5 adversary if, for all PPT adversary A 5 , there exists a negligible function ε(·) such that Adv pd - eucma
�, A 5

≤ ε(·) .

3. A PRE-DET construction

Suppose G = 〈 g〉 and G T are cyclic groups with prime order p and efficient group operations. The mapping ˆ e : G × G →

G T is bilinear if the following properties are satisfied:

• Bilinearity: ∀ μ, ν ∈ G , and ∀ x, y ∈ Z ∗p , ˆ e (μx , νy) = ˆ e (μ, ν) xy ;

• Non-degeneracy: ˆ e (g, g) � = 1 ;

• Efficiency: ˆ e is efficiently computable.

The security of our construction relies on the following complexity assumptions [1,36] .

Computational Diffie-Hellman Assumption (CDH). Let G = 〈 g〉 be a cyclic group with prime order p . The CDH assumption

states that given a tuple (g, g x , g y) ∈ G 3 , where x, y ∈ R Z ∗p , any PPT algorithm has negligible advantage ε cdh in computing g xy .

Divisible Computational Diffie-Hellman Assumption (DCDH). Let G = 〈 g〉 be a cyclic group with prime order p . The DDH

assumption states that given a tuple (g, g 1 /x , g y) ∈ G 3 , where x, y ∈ R Z ∗p , any PPT algorithm has negligible advantage ε dcdh in

computing g xy .

Bao, Deng and Zhu [1] proved that the DCDH and CDH assumptions are equivalent.

We now present a PRE-DET construction in bilinear groups.

Setup (1 λ) : Choose a bilinear map ˆ e : G × G → G T , where G = 〈 g〉 and G T are cyclic groups with prime order p . Let τG de-

note the element size in G and τp = log p. Let OS = (KGen , Sign , Vrfy) be a strong one-time signature scheme with verifica-

tion key space {0, 1} q (λ) , where q (λ) is a polynomial in λ. Pick two random elements h, ̄h ∈ R G and seven cryptographic hash

functions: H 1 : { 0 , 1 } τp +2 λ+ q (λ) → Z p , H 2 : G → { 0 , 1 } τp +2 λ, H 3 : { 0 , 1 } τp + λ+ q (λ) → Z p , H 4 : G → G , H 5 : { 0 , 1 } τp +2 λ+2 τG → Z p ,

H 6 : { 0 , 1 } τp + λ+2 τG → Z p , H 7 : { 0 , 1 } 2 τp +2 λ+3 τG → G . The message space is M = Z p . Let the attestation space be A = Z p . The

system public parameter is par = (G , G T , ̂ e , p, g, h, ̄h , H 1 , H 2 , H 3 , H 4 , H 5 , H 6 , H 7 , OS) .

KeyGen (par): Randomly choose x i , y i , z i ∈ R Z ∗p , set sk i, 1 = x i , sk i, 2 = y i , sk i, 3 = z i , and compute pk i, 1 = g x i , pk i, 2 = g y i ,

pk i, 3 = g z i . The secret key and public key are sk i = (sk i, 1 , sk i, 2 , sk i, 3) and pk i = (pk i, 1 , pk i, 2 , pk i, 3) , respectively.

ReKeyGen (sk i , sk j) : On input the secret keys sk i and sk j , output the bidirectional re-encryption key rk i ↔ j =

(sk j, 1 / sk i, 1 mod p, sk j, 2 / sk i, 2 mod p) .

Similar to [2,4] , the ReKeyGen procedure can be run as follows (see Fig. 1): user U i randomly picks r 1 , r 2 from Z ∗p , sends

r 1 / x i ,1 , r 2 / x i ,2 to user U j and r 1 , r 2 to the server. User U j computes r 1 x j ,1 / x i ,1 , r 2 x j ,2 / x i ,2 and gives them to the server to recover

the re-encryption key (x j ,1 / x i ,1 , x j ,2 / x i ,2).

DataEnc (pk i , m) : For a given message m ∈ M , randomly select α, β ∈ R {0, 1} λ, and generate a ciphertext C =

(c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8) where

(osk , ovk) ← OS . KGen (1 λ) ,

θ = H 1 (m ‖ α‖ β‖ ovk) , c 1 = H 2 (g θ) � (m ‖ α‖ β) ,

c 2 = pk θ
i, 1 , c 3 = h θ ,

ϑ = H 3 (m ‖ α‖ ovk) , c 4 = pk ϑ i, 2 ,

c 5 = h̄ ϑ , c 6 = g m · H 4 (g ϑ) ,
c 7 = OS . Sign (osk , c 1 ‖ c 3 ‖ c 5 ‖ c 6) , c 8 = ovk .

ReEnc (rk i ↔ j , C i l) : For a given re-encryption key rk i ↔ j and a ciphertext C i l = (c i l , 1 , c i l , 2 , · · · , c i l , 8) of user U i , check

OS . Vrfy
(
c i l , 8 , c i l , 7 , c i l , 1 ‖ c i l , 3 ‖ c i l , 5 ‖ c i l , 6

) ? = 1 , (1)

ˆ e
(
c i l , 2 , h

) ? = ˆ e
(
pk i, 1 , c i l , 3

)
, (2)

88 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

ˆ e
(
c i l , 4 , ̄h

) ? = ˆ e
(
pk i, 2 , c i l , 5

)
. (3)

If some condition is not met, then output ⊥ and halt; otherwise compute a ciphertext C j l = (c j l , 1 , c j l , 2 , · · · , c j l , 8) of user U j ,
where c j l , 2 = (c i l , 2)

rk i ↔ j, 1 , c j l , 4 = (c i l , 4)
rk i ↔ j, 2 and c j l ,t = c i l ,t for the other components.

DataDec (sk i , C) : Given a ciphertext C = (c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8) , check whether it satisfies equalities in (1), (2) and (3) .

If some condition is not met, then output ⊥ and halt; otherwise compute

m ‖ α‖ β = c 1 � H 2

(
(c 2)

x −1
i, 1
)
,

θ = H 1 (m ‖ α‖ β‖ c 8) ,

ϑ = H 3 (m ‖ α‖ c 8) . (4)

Then verify

c 2
? = g sk i, 1 ·θ , (5)

c 4
? = g sk i, 2 ·ϑ , (6)

and

c 6
? = g m · H 4

(
g ϑ

)
. (7)

If all conditions are met, then output m , otherwise output ⊥ .

Attest (sk i , pk i , C) : Let m ← DataDec (sk i , C) . Let att be the attestation of m and m ‖ α‖ β be the output of Formula (4) in

decryption. Randomly select α′ , β ′ ∈ R {0, 1} λ and compute an attested ciphertext A = (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8) as fol-

lows:

θ ′ = H 5

(
m ‖ α′ ‖ β ′ ‖ pk i, 1 ‖ pk i, 2

)
, a 1 = H 2

(
g θ

′)
�

(
m ‖ α′ ‖ β ′),

a 2 = pk θ
′

i, 1 , a 3 = h θ
′
,

ϑ ′ = H 6

(
m ‖ α′ ‖ pk i, 1 ‖ pk i, 2

)
, a 4 = pk ϑ

′
i, 2 ,

a 5 = h̄ ϑ
′
, a 6 = g m · H 4

(
g ϑ

′)
,

a 7 = H 7 (a 1 ‖ a 3 ‖ a 5 ‖ a 6 ‖ at t)
sk i, 3 , a 8 = at t .

AttReEnc (rk i ↔ j , pk i , pk � , A i l
) : Given re-encryption key rk i ↔ j and an attested ciphertext A i l

= (a i l , 1 , a i l , 2 , · · · , a i l , 8) of user

U i , where the attestation was added by user U � , check

ˆ e (a i l , 7 , g)
? = ˆ e

(
H 7 (a i l , 1 ‖ a i l , 3 ‖ a i l , 5 ‖ a i l , 6 ‖ a i l , 8) , pk �, 3

)
, (8)

ˆ e (a i l , 2 , h)
? = ˆ e

(
pk i, 1 , a i l , 3

)
, (9)

ˆ e
(
a i l , 4 , ̄h

) ? = ˆ e
(
pk i, 2 , a i l , 5

)
. (10)

If some condition is not met, then output ⊥ and halt; otherwise compute an attested ciphertext A j l
= (a j l , 1 , a j l , 2 , · · · , a j l , 8)

of user U j , where a j l , 2 = (a i l , 2)
rk i ↔ j, 1 , a j l , 4 = (a i l , 4)

rk i ↔ j, 2 and a j l ,t = a i l ,t for the other components.

AttVer (pk i , A) : Note that a 8 ∈ A is the attestation. Run the verification procedure in the same way as in Formula (8) :

ˆ e (a 7 , g)
? = ˆ e

(
H 7 (a 1 ‖ a 3 ‖ a 5 ‖ a 6 ‖ a 8) , pk i, 3

)
(11)

AttDec (pk i , pk j , sk j , A) : Given an attested ciphertext A = (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8) , check whether it satisfies the equal-

ities in (11), (9) and (10) under public key pk j . If some condition is not met, then output ⊥ and halt; otherwise compute

m ‖ α′ ‖ β ′ = a 1 � H 2

(
(a 2)

x −1
j, 1
)
,

θ ′ = H 5

(
m ‖ α′ ‖ β ′ ‖ pk i, 1 ‖ pk i, 2

)
,

ϑ ′ = H 6

(
m ‖ α′ ‖ pk i, 1 ‖ pk i, 2

)
. (12)

Then verify

a 2
? = g sk j, 1 ·θ

′
, (13)

a 4
? = g sk j, 2 ·ϑ

′
, (14)

and

a 6
? = g m · H 4

(
g ϑ

′)
. (15)

Delegate (sk i) : Output the token tk i = sk i, 2 .

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 89

Fig. 2. Usage of the re-encryption and attestation procedures.

Remark 2. Combining Delegate with ReKeyGen achieves a more powerful delegation clique. Suppose there is a chain of

re-encryption keys rk (i −τ1) ↔ (i −τ1 +1) , · · · , rk (i −1) ↔ i , rk i ↔ (i +1) , · · · , rk (i + τ2 −1) ↔ (i + τ2) for some positive τ 1 and τ 2 . Once given tk i ,

the server also gets tk i −τ1 , · · · , tk i −1 , tk i +1 , · · · , tk i + τ2 . In this way, the server is allowed to compare ciphertexts of a clique of

users U i −τ1 , · · · , U i −1 , U i , U i +1 , · · · , U i + τ2 .

EqTest (tk i , C i l /A i l
, tk j , C j h /A j h

) : For two (re-encrypted) ciphertexts C i l and C j h under the public keys pk i and pk j , respec-

tively, check whether they encrypt the same message (i.e., m i l
= m j h

) as follows:

c i l , 6

H 4

((
c i l , 4

)tk −1
i
) ? =

c j h , 6

H 4

((
c j h , 4

)tk −1
j
) (16)

The equality test for (re-encrypted) attested ciphertext pair (A i l
, A j h

) can be performed similarly.

Remark 3. The EqTest procedure in our construction also supports equality test on (re-encrypted) ciphertexts and (re-

encrypted) attested ciphertexts.

Fig. 2 depicts how the procedures ReEnc , Attest and AttReEnc are invoked in achieving a secure data sharing clique

for a message m .

Soundness. For validating the soundness of the proposed scheme, the straightforward steps can be omitted. For decryption

of a ciphertext, we need only to show the following equality holds:

c 1 � H 2

(
(c 2)

x −1
i, 1
)

=
(
H 2

(
g θ

)
� (m ‖ α‖ β)

)
� H 2

((
pk θi, 1

)x −1
i, 1
)

= m ‖ α‖ β

For equality test, we have

c i l , 6

H 4

((
c i l , 4

)tk −1
i
) =

g m i l · H 4

(
g ϑ i l

)
H 4

((
pk

ϑ i l
i, 2

)x −1
i, 2
) =

g m i l · H 4

(
g ϑ i l

)
H 4

(
g ϑ i l

) = g m i l

and similarly

c j h , 6

H 4

((
c j h , 4

)tk −1
j
) =

g m j h · H 4

(
g ϑ j h

)
H 4

((
pk

ϑ j h
j, 2

)x −1
j, 2
) =

g m j h · H 4

(
g ϑ j h

)
H 4

(
g ϑ j h

) = g m j h

Thus, m i l
= m j h

if and only if Equality (16) holds.

4. Security analysis

Theorem 1. Suppose the DCDH assumption holds in group G . The proposed PRE-DET scheme offers PD-IND-CCA1 security for

ciphertext against Type-1 adversary in the random oracle model.

The proof can be captured as a special case of Theorem 2 without two types of re-encryption queries, which is thus

omitted here. Specifically, if there is a Type-1 PPT adversary A 1 that has non-negligible advantage ε in attacking the PD-

IND-CCA1 security for ciphertext in the PRE-DET scheme, then one can construct an algorithm I to solve the DCDH problem

with non-negligible probability ε dcdh such that

ε dcdh ≥ 1

q H 2

(
2 ε − q H 1 + q H 5

4 λ
− q H 3 + q H 6

2 λ
− q H 4 + 3 q D

p
− q D

p · 4 λ
− (q H 1 + q H 3) · ρ − Pr [A 1 breaks OS]

)

where A 1 is able to issue at most q D decryption queries to O dec1 , and at most q H 1 , q H 2 , q H 3 , q H 4 , q H 5 and q H 6 hash queries

to H 1 , H 2 , H 3 , H 4 , H 5 and H 6 , respectively. OS = (KGen , Sign , Vrfy) is a strong one-time signature scheme, where KGen has

super-logarithmic minimum entropy and maximum probability ρ of outputting a given verification key.

Theorem 2. Suppose the DCDH assumption holds in group G . The proposed PRE-DET scheme offers PD-IND-CCA2 security for

ciphertext against Type-2 adversary in the random oracle model.

90 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

The following proof follows the standard framework established in [4,36] .

Proof. Let A 2 be a Type-2 PPT adversary that has non-negligible advantage ε in attacking the PD-IND-CCA2 security for

ciphertext in the PRE-DET scheme. Suppose A 2 issues at most q D decryption queries to O dec1 , at most q H 1 , q H 2 , q H 3 , q H 4 ,

q H 5 and q H 6 hash queries to H 1 , H 2 , H 3 , H 4 , H 5 and H 6 , respectively, at most q R 1 re-encryption queries to O renc1 , and at

most q R 2 re-encryption queries to O renc2 . Let OS = (KGen , Sign , Vrfy) be a strong one-time signature scheme, where KGen

has super-logarithmic minimum entropy and maximum probability ρ of outputting a given verification key. We show that

if such an adversary A 2 exists, then one can construct an algorithm I to solve the DCDH problem with non-negligible

probability ε dcdh .

Let G = 〈 g〉 and G T be cycle groups with prime order p and bilinear map ˆ e : G × G → G T . At first, algorithm I is given

a DCDH instance (g, g 1 /u , g v) ∈ G 3 . The goal of I is to compute g uv . Algorithm I simulates the challenger and interacts with

adversary A 2 as follows.

Set-up : Algorithm I randomly picks ˜ a , ̃ b ∈ R Z ∗p , computes h = g ̃ a /u and h̄ = g
˜ b , and sets the system public parameter as

par = (G , G T , ̂ e , p, g, h, ̄h , H 1 , H 2 , · · · , H 7 , OS) .

Algorithm I runs (osk ∗, ovk ∗) ← OS . KGen (1 λ) and records the key pair.

Phase 1 : The adversary adaptively makes the following queries.

• H 1 hash query O H 1 : For answering O H 1 queries, algorithm I maintains a list L 1 which is initially empty. For an input

tuple (m, α, β, ovk) , if there exists an entry (m, α, β, ovk , θ) ∈ L 1 , then O H 1 responds with θ ; otherwise, a random

value θ ∈ R Z ∗p is picked and returned, and L 1 is updated as L 1 ∪ (m, α, β, ovk , θ) .

• H 2 hash query O H 2 : For answering O H 2 queries, algorithm I maintains a list L 2 which is initially empty. For an input

element T , if there exists an entry (T , �) ∈ L 2 , then O H 2 responds with �; otherwise, a random value � ∈ R { 0 , 1 } τp +2 λ

is picked and returned, and L 2 is updated as L 2 ∪ (T , �) .

• H 3 hash query O H 3 : For answering O H 3 queries, algorithm I maintains a list L 3 which is initially empty. For an input

tuple (m, α, ovk) , if there exists an entry (m, α, ovk , ϑ) ∈ L 3 , then O H 3 responds with ϑ; otherwise, a random value

ϑ ∈ R Z ∗p is picked and returned, and L 3 is updated as L 3 ∪ (m, α, ovk , ϑ) .

• H 4 hash query O H 4 : For answering O H 4 queries, algorithm I maintains a list L 4 which is initially empty. For an input

element T ∈ G , if there exists an entry (T , �) ∈ L 4 , then O H 4 responds with �; otherwise, a random value � ∈ R G is

picked and returned, and L 4 is updated as L 4 ∪ (T , �) .

• H 5 hash query O H 5 : For answering O H 5 queries, algorithm I maintains a list L 5 which is initially empty. For an input

tuple (m, α, β, pk 1 , pk 2) , if there exists an entry (m, α, β, pk 1 , pk 2 , θ
′) ∈ L 5 , then O H 5 responds with θ ′ ; otherwise, a

random value θ ′ ∈ R Z ∗p is picked and returned, and L 5 is updated as L 5 ∪ (m, α, β, pk 1 , pk 2 , θ
′) .

• H 6 hash query O H 6 : For answering O H 6 queries, algorithm I maintains a list L 6 which is initially empty. For an

input tuple (m, α, pk 1 , pk 2) , if there exists an entry (m, α, pk 1 , pk 2 , ϑ ′) ∈ L 6 , then O H 6 responds with ϑ′ ; otherwise, a

random value ϑ ′ ∈ R Z ∗p is picked and returned, and L 6 is updated as L 6 ∪ (m, α, pk 1 , pk 2 , ϑ ′) .
• H 7 hash query O H 7 : For answering O H 7 queries, algorithm I maintains a list L 7 which is initially empty. For an input

tuple (a 1 , a 3 , a 5 , a 6 , att), if there exists an entry (a 1 , a 3 , a 5 , a 6 , at t , �) ∈ L 7 , then O H 7 responds with �; otherwise, a

random value � ∈ R G is picked and returned, and L 7 is updated as L 7 ∪ (a 1 , a 3 , a 5 , a 6 , at t , �) .

• Uncorrupted key generation query O ukgen : Algorithm I randomly picks x i, 1 , x i, 2 , x i, 3 ∈ R Z ∗p , sets sk i, 2 = x i, 2 , sk i, 3 = x i, 3 ,

and computes pk i, 1 = (g 1 /u) x i, 1 = g x i, 1 /u , pk i, 2 = g x i, 2 and pk i, 3 = g x i, 3 . Next, algorithm I gives pk i = (pk i, 1 , pk i, 2 , pk i, 3) to

A 2 and adds (i, x i, 1 , pk i, 1 , x i, 2 , pk i, 2 , x i, 3 , pk i, 3 , 0) to the list L key , where ‘0’ denotes that pk i is an uncorrupted public

key.

• Corrupted key generation query O ckgen : Algorithm I randomly picks x j, 1 , x j, 2 , x j, 3 ∈ R Z ∗p , sets sk j, 1 = x j, 1 , sk j, 2 = x j, 2
and sk j, 3 = x j, 3 , and computes pk j, 1 = g x j, 1 , pk j, 2 = g x j, 2 and pk j, 3 = g x j, 3 . Next, algorithm I gives (sk j , pk j) to A 2 and

adds (j, sk j, 1 , pk j, 1 , sk j, 2 , pk j, 2 , sk j, 3 , pk j, 3 , 1) to the list L key , where ‘1’ denotes that pk j is a corrupted public key.

• Re-encryption key generation query O rkgen : For a queried pair (pk i , pk j) , if one of U i and U j is corrupted while the

other is uncorrupted, then returns ⊥ . Otherwise, algorithm I outputs rk i ↔ j = (x j, 1 /x i, 1 mod p, x j, 2 /x i, 2 mod p) .

• Re-encryption query O renc1 : For a query ((C i , pk i) , pk j) , algorithm I checks whether C i = (c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8)

satisfies the equalities in (1), (2) and (3) . If some condition is not met, which means the ciphertext is not well-formed,

then algorithm I returns ⊥ and halts. Otherwise, algorithm I works as follows:

− If both users U i and U j are either corrupted or uncorrupted, then algorithm I computes rk i ↔ j =

(x j, 1 /x i, 1 mod p, x j, 2 /x i, 2 mod p) and returns ReEnc (rk i ↔ j , C i) .

− If one of U i and U j is corrupted and the other is uncorrupted, then algorithm I searches L 1 for a tuple

(m, α, β, ovk , θ) such that pk θi, 1 = c 2 and h θ = c 3 . If no such tuple can be found, algorithm I returns ⊥ ; oth-

erwise, it retrieves (m, α, ovk , ϑ) from L 3 . If pk ϑ i, 2 = c 4 and h̄ ϑ = c 5 , then it computes c ′
2 = pk θj, 1 and c ′

4 = pk ϑ j, 2 ,

and returns (c 1 , c
′
2 , c 3 , c

′
4 , c 5 , c 6 , c 7 , c 8) ; otherwise it returns ⊥ .

• Attestation query O att : For a query (C i , pk i) , algorithm I performs the oracle O dec1 with input (C i , pk i) . If O dec1 out-

puts ⊥ , then algorithm I returns ⊥ and halts. Otherwise, letting (m, α, β, c 8 , θ) ∈ L 1 be the retrieved tuple in O dec1 ,

algorithm I runs the oracle O H 5 with input (m, α, β, pk i, 1 , pk i, 2) to get θ ′ , runs O H 2 with input g θ
′

to get �′ , runs

O H 6 with input (m, α, pk i, 1 , pk i, 2) to get ϑ′ , and runs O H 4 with input g ϑ
′

to get �′ . Then algorithm I computes

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 91

a 1 = �′
� (m ‖ α‖ β) , a 2 = pk θ

′
i, 1 , a 3 = h θ

′
, a 4 = pk ϑ

′
i, 2 , a 5 = h̄ ϑ

′
and a 6 = g m · �′ , chooses a 8 = att ∈ Z p , runs O H 7 with

input (a 1 , a 3 , a 5 , a 6 , a 8) to get �, computes a 7 = �sk i, 3 , and returns A i = (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8) .

• Re-encryption query O renc2 : For a query ((A j , pk i , pk j) , pk k) , algorithm I checks whether (A j , pk i , pk j) satisfies the

equalities in (8), (9) and (10) . If some condition is not met, which means the attested ciphertext is not well-formed,

then algorithm I returns ⊥ and halts. Otherwise, algorithm I works as follows:

− If both users U j and U k are either corrupted or uncorrupted, then algorithm I computes rk j↔ j =

(x k, 1 /x j, 1 mod p, x k, 2 /x j, 2 mod p) and returns AttReEnc (rk j↔ k , A j) .

− If one of U j and U k is corrupted and the other is uncorrupted, then algorithm I searches L 5 for a tuple

(m, α, β, pk i, 1 , pk i, 2 , θ
′) such that pk θ

′
j, 1 = a 2 and h θ

′ = a 3 . If no such tuple can be found, then algorithm I re-

turns ⊥ ; otherwise, it retrieves (m, α, pk i, 1 , pk i, 2 , ϑ ′) from L 6 . If pk ϑ
′

j, 2 = a 4 and h̄ ϑ
′ = a 5 , then algorithm I com-

putes a ′ 2 = pk θ
′

k, 1 and a ′ 4 = pk ϑ
′

k, 2 , and returns (a 1 , a
′
2 , a 3 , a

′
4 , a 5 , a 6 , a 7 , a 8) ; otherwise it returns ⊥ .

• Decryption query O dec1 : For input ciphertext (C i , pk i) , algorithm I retrieves (i, x i, 1 , pk i, 1 , x i, 2 , pk i, 2 , x i, 3 , pk i, 3 , ς) from

L key . If ς = 1 , then algorithm I returns DataDec (sk i , C) . Otherwise, it checks if the queried ciphertext satisfies the

equalities in (1), (2) and (3) . If at least one condition is not met, then algorithm I returns ⊥ . Otherwise, it searches

lists L 1 and L 2 for tuples (m, α, β, c 8 , θ) ∈ L 1 and (T , �) ∈ L 2 such that � � (m ‖ α‖ β) = c 1 , pk θi, 1 = c 2 , T = g θ and

c 3 = h θ . If such tuples exist, algorithm I retrieves (m, α, c 8 , ϑ) ∈ L 3 and (g ϑ , �) ∈ L 4 , and checks if both pk ϑ i, 2 = c 4
and c 6 = g m · � hold. If so, algorithm I gives m to the adversary A 2 ; otherwise, it returns ⊥ .

• Decryption query O dec2 : For a query (A j , pk i , pk j) , algorithm I retrieves (j, x j, 1 , pk j, 1 , x j, 2 , pk j, 2 , x j, 3 , pk j, 3 , ς) from L key .

If ς = 1 , then algorithm I returns AttDec (pk i , pk j , sk j , A j) . Otherwise, it checks if the queried attested ciphertext sat-

isfies the equalities in (8), (9) and (10) . If at least one condition is not met, then algorithm I returns ⊥ . Otherwise, it

searches lists L 5 and L 2 for tuples (m, α, β, pk i, 1 , pk i, 2 , θ
′) ∈ L 5 and (T , �) ∈ L 2 such that � � (m ‖ α‖ β) = a 1 , pk θ

′
j, 1 =

a 2 , T = g θ
′

and a 3 = h θ
′
. If such tuples exist, then algorithm I retrieves (m, α, pk i, 1 , pk i, 2 , ϑ ′) ∈ L 6 and (g ϑ

′
, �′) ∈ L 4 ,

and checks whether both pk ϑ
′

j, 2 = a 4 and a 6 = g m · �′ hold. If so, algorithm I gives m to the adversary A 2 ; otherwise,

it returns ⊥ .

Challenge : Adversary A 2 outputs two random messages m 0 and m 1 of the same length and a challenge public key pk ∗.

Then, algorithm I generates the challenge ciphertext C ∗ = (c ∗
1 , c

∗
2 , · · · , c ∗

8) as follows:

• Retrieve (i ∗, x ∗
1 , pk ∗1 , x

∗
2 , pk ∗2 , x

∗
3 , pk ∗3 , ς ∗) from L key . Note that ς ∗ = 0 , which implies pk ∗1 = g x

∗
1 /u , pk ∗2 = g x

∗
2 and pk ∗3 = g x

∗
3 .

• Randomly pick α∗, β∗ ∈ R {0, 1} λ, ϑ ∗ ∈ R Z ∗p , b ∈ R {0, 1}, S ∈ R { 0 , 1 } τp +2 λ and U ∈ R G , compute c ∗1 = S, c ∗2 = (g v) x
∗
1 ,

c ∗3 = (g v) ̃ a , c ∗4 = (pk ∗2)
ϑ ∗ , c ∗5 = h̄ ϑ

∗
, c ∗6 = g m b · U, c ∗7 = OS . Sign (osk ∗, c ∗1 ‖ c ∗3 ‖ c ∗5 ‖ c ∗6) and c ∗8 = ovk ∗. This process implicitly

defines θ ∗ = H 1 (m b ‖ α∗‖ β∗‖ ovk ∗) = u v , H 2 (g θ
∗
) = (m b ‖ α∗‖ β∗) � S, H 3 (m b ‖ α∗‖ ovk ∗) = ϑ ∗ and H 4 (g ϑ

∗
) = U .

Then, algorithm I returns the challenge ciphertext C ∗.

Phase 2 : The adversary can continue to make queries except that the derivatives of C ∗ cannot be submitted for decryption

and re-encryption queries.

Guess : Eventually, adversary A 2 returns a guess b ′ . Algorithm I randomly picks a pair (T , �) from the list H 2 and outputs

T as the solution to the given DCDH problem instance.

Analysis . The setup and key generation responses are perfectly simulated, where the parameters and keys are distributed

in the same way as in the proposed PRE-DET scheme. As long as adversary A 2 does not submit (m b , α
∗, β∗, ovk ∗) to O H 1 ,

g uv to O H 2 , (m b , α
∗, ovk ∗) to O H 3 , g ϑ

∗
to O H 4 , (m b , α

∗, β∗, pk ∗1 , pk ∗2) to O H 5 , nor (m b , α
∗, pk ∗1 , pk ∗2) to O H 6 , the simulation

of the random oracles are perfect. Let EvtH ∗
1 , EvtH

∗
2 , EvtH

∗
3 , EvtH

∗
4 , EvtH

∗
5 and EvtH ∗

6 respectively denote the events that

(m b , α
∗, β∗, ovk ∗) was submitted to O H 1 , g

uv was submitted to O H 2 , (m b , α
∗, ovk ∗) was submitted to O H 3 , g

ϑ ∗ was submitted

to O H 4 , (m b , α
∗, β∗, ∗, ∗) was submitted to O H 5 , and (m b , α

∗, ∗, ∗) was submitted to O H 6 .

The challenge ciphertext of message m b is identically distributed as in the PRE-DET scheme. Since H 1 , H 2 and H 3 are

random oracles, it can be seen that c ∗
1 = H 2 (g u v) � (m b ‖ α∗‖ β∗) = H 2 (g θ

∗
) � (m b ‖ α∗‖ β∗) , c ∗

2 = (g v) x
∗
1 = (g x

∗
1 /u) u v = (pk ∗1)

θ∗
,

c ∗
3 = (g v) ̃ a = (g ̃ a /u) u v = h θ

∗
, and all other components directly follow the proposed scheme. Thus, adversary A 2 would guess

b ′ = b with the same advantage as in a real execution of the PRE-DET scheme.

The decryption responses by O dec1 are also perfect, except that algorithm I cannot always answer decryption queries

with c 8 = ovk ∗ and may reject some valid ciphertexts. First, in Phase 1, adversary A 2 has a (q H 1 + q H 3) · ρ chance of querying

oracle O dec1 with a component c 8 = ovk ∗. Second, in Phase 2, if the adversary queries O dec1 on a well-formed ciphertext C

such that c 8 = ovk ∗ and C is not a derivative of C ∗, then A 2 breaks the one-time signature scheme OS , which means the

adversary’s chance of submitting such queries equals to Pr [A 2 breaks OS] . Third, consider a well-formed ciphertext C is

submitted for decryption but it is generated without querying (m ‖ α‖ β‖ ovk) to H 1 , g θ to H 2 , (m ‖ α‖ ovk) to H 3 and g ϑ to

H 4 , where θ = H 1 (m ‖ α‖ β‖ ovk) and ϑ = H 3 (m ‖ α‖ ovk) . Let Wform denote the event that C is a well-formed ciphertext, and

let EvtH 1 , EvtH 2 , EvtH 3 , EvtH 4 respectively denote the events that (m ‖ α‖ β‖ ovk) was queried to H 1 , g
θ was queried to H 2 ,

(m ‖ α‖ ovk) was queried to H 3 , and g ϑ was queried to H 4 . Thus,

Pr [Wform | ¬ EvtH 1 ∨ ¬ EvtH 2 ∨ ¬ EvtH 3 ∨ ¬ EvtH 4]

≤ Pr [Wform | ¬ EvtH 1] + Pr [Wform | ¬ EvtH 2] + Pr [Wform | ¬ EvtH 3] + Pr [Wform | ¬ EvtH 4]

92 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

≤ 1

p
+

1

2 τp +2 λ
+

1

p
+

1

p
=

3

p
+

1

p · 4 λ
(17)

Let DecErr denote the event that the above defined cases happen in decryption queries to O dec1 . Thus,

Pr [DecErr] ≤ (q H 1 + q H 3) · ρ + Pr [A 2 breaks OS] +
3 q D

p
+

q D

p · 4 λ

The responses to re-encryption queries O renc1 are perfect, as long as no well-formed ciphertexts are submitted which are

produced without querying to H 1 , H 2 , H 3 and H 4 . Let ReErr1 denote the event that such ciphertexts are queried to O renc1 .

Since both H 1 and H 3 are random oracles,

Pr [ReErr1] ≤ q R 1
p

+
q R 1
p

=
2 q R 1

p
.

Similarly, the responses to re-encryption queries O renc2 are perfect, as long as no well-formed attested ciphertexts are sub-

mitted which are produced without querying to H 2 , H 4 , H 5 , H 6 and H 7 . Let ReErr2 denote the event that such ciphertexts

are queried to O renc2 . Since both H 5 and H 6 are random oracles, we know

Pr [ReErr2] ≤ q R 2
p

+
q R 2
p

=
2 q R 2

p
.

Let Good denote the event EvtH ∗
1 ∨ EvtH ∗

2 ∨ EvtH ∗
3 ∨ EvtH ∗

4 ∨ EvtH ∗
5 ∨ EvtH ∗

6 ∨ DecErr ∨ ReErr1 ∨ ReErr2 . If Good does not

happen, then adversary A 2 can get no advantage in guessing b ′ = b, that is, Pr [b ′ = b|¬ Good] = 1 / 2 . Thus, according to

Theorem 1 , ∣∣∣Pr [b ′ = b] − 1

2

∣∣∣ ≤ 1

2
Pr [Good]

We have

ε =

∣∣∣Pr [b ′ = b] − 1

2

∣∣∣
≤ 1

2
Pr [Good]

=
1

2
Pr [EvtH ∗1 ∨ EvtH ∗2 ∨ EvtH ∗3 ∨ EvtH ∗4 ∨ EvtH ∗5 ∨ EvtH ∗6 ∨ DecErr ∨ ReErr1 ∨ ReErr2]

≤ 1

2
(Pr [EvtH ∗1] + Pr [EvtH ∗2] + Pr [EvtH ∗3] + Pr [EvtH ∗4] + Pr [EvtH ∗5] + Pr [EvtH ∗6] + Pr [DecErr]

+ Pr [ReErr1] + Pr [ReErr2])

As α∗ and β∗ are randomly chosen from {0, 1} λ, we have Pr [EvtH ∗
1] ≤

q H 1
4 λ

, Pr [EvtH ∗
3] ≤

q H 3
2 λ

, Pr [EvtH ∗
4] ≤

q H 4
p , Pr [EvtH ∗

5] ≤
q H 5
4 λ

and Pr [EvtH ∗6] ≤
q H 6
2 λ

. Thus,

EvtH
∗
2 ≥ 2 ε − (Pr [EvtH

∗
1] + Pr [EvtH

∗
3] + Pr [EvtH

∗
4] + Pr [EvtH

∗
5] + Pr [EvtH

∗
6] + Pr [DecErr]

+ Pr [ReErr 1] + Pr [ReErr 2])

≥ 2 ε − q H 1 + q H 5
4 λ

− q H 3 + q H 6
2 λ

− q H 4 + 3 q D + 2 q R 1 + 2 q R 2
p

− q D

p · 4 λ
−

(
q H 1 + q H 3

)
· ρ − Pr [A 2 brea ks OS]

Therefore, if event EvtH ∗
2 happens, then algorithm I can solve the given DCDH instance with advantage

ε dcdh ≥ 1

q H 2

(
2 ε − q H 1 + q H 5

4 λ
− q H 3 + q H 6

2 λ
− q H 4 + 3 q D + 2 q R 1 + 2 q R 2

p
− q D

p · 4 λ
− (q H 1 + q H 3) · ρ − Pr [A 2 breaks OS]

)

This concludes Theorem 2 . �

Theorem 3. Suppose the DCDH assumption holds in group G . The proposed PRE-DET scheme offers PD-OW-CCA3 security for

ciphertext against Type-3 adversary in the random oracle model.

The proof can be captured as a special case of Theorem 4 without two types of re-encryption queries, which is thus

omitted here. Specifically, if there is a Type-3 PPT adversary A 3 that has non-negligible advantage ε in attacking the PD-

OW-CCA3 security for ciphertext in the PRE-DET scheme, then one can construct an algorithm I to solve the DCDH problem

with non-negligible probability ε dcdh such that

ε dcdh ≥ 1

q H 2

(
ε − q H 1 + q H 5

4 λ
− q H 3 + q H 6

2 λ
− q H 4 + 3 q D

p
− q D

p · 4 λ
− (q H 1 + q H 3) · ρ − Pr [A 3 breaks OS]

)

where A 3 is able to issue at most q D decryption queries to O dec1 , and at most q H 1 , q H 2 , q H 3 , q H 4 , q H 5 and q H 6 hash queries

to H 1 , H 2 , H 3 , H 4 , H 5 and H 6 , respectively. OS = (KGen , Sign , Vrfy) is a strong one-time signature scheme, where KGen has

super-logarithmic minimum entropy and maximum probability ρ of outputting a given verification key.

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 93

Theorem 4. Suppose the DCDH assumption holds in group G . The proposed PRE-DET scheme offers PD-OW-CCA4 security for

ciphertext against Type-4 adversary in the random oracle model.

The following proof follows the standard framework established in [4,29,36] .

Proof. Let A 4 be a Type-4 PPT adversary that has non-negligible advantage ε in attacking the PD-OW-CCA4 security for

ciphertext in the PRE-DET scheme. Suppose A 4 issues at most q D decryption queries to O dec1 , at most q H 1 , q H 2 , q H 3 , q H 4 ,

q H 5 and q H 6 hash queries to H 1 , H 2 , H 3 , H 4 , H 5 and H 6 , respectively, at most q R 1 re-encryption queries to O renc1 , and at

most q R 2 re-encryption queries to O renc2 . Let OS = (KGen , Sign , Vrfy) be a strong one-time signature scheme, where KGen

has super-logarithmic minimum entropy and maximum probability ρ of outputting a given verification key. We show that

if such an adversary A 4 exists, then one can construct an algorithm I to solve the DCDH problem with non-negligible

probability ε dcdh .

Let G = 〈 g〉 and G T be cycle groups with prime order p and bilinear map ˆ e : G × G → G T . At first, algorithm I is given

a DCDH instance (g, g 1 /u , g v) ∈ G 3 . The goal of I is to compute g uv . Algorithm I simulates the challenger and interacts with

adversary A 4 as follows.

Set-up : Algorithm I randomly picks ˜ a , ̃ b ∈ R Z ∗p , computes h = g ̃ a /u and h̄ = g
˜ b , and sets the system public parameter as

par = (G , G T , ̂ e , p, g, h, ̄h , H 1 , H 2 , · · · , H 7 , OS) .

Algorithm I runs (osk ∗, ovk ∗) ← OS . KGen (1 λ) and records the key pair.

Phase 1 : The adversary adaptively makes the following queries.

• H 1 hash query O H 1 : Same as in the proof of Theorem 2 .

• H 2 hash query O H 2 : Same as in the proof of Theorem 2 .

• H 3 hash query O H 3 : Same as in the proof of Theorem 2 .

• H 4 hash query O H 4 : Same as in the proof of Theorem 2 .

• H 5 hash query O H 5 : Same as in the proof of Theorem 2 .

• H 6 hash query O H 6 : Same as in the proof of Theorem 2 .

• H 7 hash query O H 7 : Same as in the proof of Theorem 2 .

• Uncorrupted key generation query O ukgen : Same as in the proof of Theorem 2 .

• Corrupted key generation query O ckgen : Same as in the proof of Theorem 2 .

• Re-encryption key generation query O rkgen : Same as in the proof of Theorem 2 .

• Re-encryption query O renc1 : Same as in the proof of Theorem 2 .

• Attestation query O att : Same as in the proof of Theorem 2 .

• Re-encryption query O renc2 : Same as in the proof of Theorem 2 .

• Delegation generation query O delgen : For a query pk i , algorithm I outputs x i ,2 .

• Decryption query O dec1 : Same as in the proof of Theorem 2 .

• Decryption query O dec2 : Same as in the proof of Theorem 2 .

Challenge : Adversary A 4 outputs a challenge public key pk ∗. Then, algorithm I picks a message m ∗ ∈ R Z p and generates

the challenge ciphertext C ∗ = (c ∗1 , c
∗
2 , · · · , c ∗8) as follows:

• Retrieve (i ∗, x ∗
1 , pk ∗1 , x

∗
2 , pk ∗2 , x

∗
3 , pk ∗3 , ς ∗) from L key . Note that ς ∗ = 0 , which implies pk ∗1 = g x

∗
1 /u , pk ∗2 = g x

∗
2 and pk ∗3 = g x

∗
3 .

• Randomly pick α∗, β∗ ∈ R {0, 1} λ, ϑ ∗ ∈ R Z ∗p , S ∈ R { 0 , 1 } τp +2 λ and U ∈ R G , compute c ∗
1 = S, c ∗

2 = (g v) x
∗
1 , c ∗

3 = (g v) ̃ a ,

c ∗
4 = (pk ∗2)

ϑ ∗ , c ∗
5 = h̄ ϑ

∗
, c ∗

6 = g m ∗ · U, c ∗
7 = OS . Sign (osk ∗, c ∗

1 ‖ c ∗3 ‖ c ∗5 ‖ c ∗6) and c ∗
8 = ovk ∗. This process implicitly defines

θ ∗ = H 1 (m ∗‖ α∗‖ β∗‖ ovk ∗) = u v , H 2 (g θ
∗
) = (m ∗‖ α∗‖ β∗) � S, H 3 (m ∗‖ α∗‖ ovk ∗) = ϑ ∗ and H 4 (g ϑ

∗
) = U .

Then, algorithm I returns the challenge ciphertext C ∗.

Phase 2 : The adversary can continue to make queries except that the derivatives of C ∗ cannot be submitted for decryption

and re-encryption queries.

Guess : Eventually, adversary A 4 outputs a guess m ′ . Algorithm I randomly picks a pair (T , �) from the list H 2 and

outputs T as the solution to the given DCDH problem instance.

Analysis . The setup and key generation responses are perfectly simulated, where the parameters and keys are distributed

in the same way as in the proposed PRE-DET scheme. As long as adversary A 4 does not submit (m ∗, α∗, β∗, ovk ∗) to O H 1 ,

g uv to O H 2 , (m ∗, α∗, ovk ∗) to O H 3 , g ϑ
∗

to O H 4 , (m ∗, α∗, β∗, pk ∗1 , pk ∗2) to O H 5 , nor (m ∗, α∗, pk ∗1 , pk ∗2) to O H 6 , the simulation

of the random oracles are perfect. Let EvtH ∗1 , EvtH
∗
2 , EvtH

∗
3 , EvtH

∗
4 , EvtH

∗
5 and EvtH ∗6 respectively denote the events that

(m ∗, α∗, β∗, ovk ∗) was submitted to O H 1 , g
uv was submitted to O H 2 , (m ∗, α∗, ovk ∗) was submitted to O H 3 , g

ϑ ∗ was submitted

to O H 4 , (m ∗, α∗, β∗, pk ∗1 , pk ∗2) was submitted to O H 5 , and (m ∗, α∗, pk ∗1 , pk ∗2) was submitted to O H 6 .

The challenge ciphertext of message m ∗ is identically distributed as in the PRE-DET scheme. Since H 1 , H 2 , H 3 and H 4 are

random oracles, it can be seen that c ∗1 = H 2 (g u v) � (m ∗‖ α∗‖ β∗) = H 2 (g θ
∗
) � (m ∗‖ α∗‖ β∗) , c ∗2 = (g v) x

∗
1 = (g x

∗
1 /u) u v = (pk ∗1)

θ∗
,

c ∗
3 = (g v) ̃ a = (g ̃ a /u) u v = h θ

∗
, and all other components directly follow the proposed scheme. Thus, adversary A 4 would guess

m ′ = m ∗ with the same advantage as in a real execution of the PRE-DET scheme.

The decryption responses by O dec1 are also perfect, except that algorithm I cannot always answer decryption queries

with c 8 = ovk ∗ and may reject some valid ciphertexts. First, in Phase 1, adversary A 4 has a (q H 1 + q H 3) · ρ chance in querying

94 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

oracle O dec1 with a component c 8 = ovk ∗. Second, in Phase 2, if the adversary queries O dec1 on a well-formed ciphertext C

such that c 8 = ovk ∗, and C is not a derivative of C ∗, then A 4 breaks the one-time signature scheme OS , which means the

adversary’s chance of submitting such queries equals to Pr [A 4 breaks OS] . Third, consider a well-formed ciphertext C is

submitted for decryption but it is generated without querying (m ‖ α‖ β‖ ovk) to H 1 , g θ to H 2 , (m ‖ α‖ ovk) to H 3 and g ϑ to

H 4 , where θ = H 1 (m ‖ α‖ β‖ ovk) and ϑ = H 3 (m ‖ α‖ ovk) . Let Wform denote the event that C is a well-formed ciphertext, and

let EvtH 1 , EvtH 2 , EvtH 3 , EvtH 4 respectively denote the events that (m ‖ α‖ β‖ ovk) was queried to H 1 , g
θ was queried to H 2 ,

(m ‖ α‖ ovk) was queried to H 3 , and g ϑ was queried to H 4 . Let DecErr denote the event that the above defined cases happen

in decryption queries to O dec1 . Thus,

Pr [DecErr] ≤ (q H 1 + q H 3) · ρ + Pr [A 4 breaks OS] +
3 q D

p
+

q D

p · 4 λ

The responses to re-encryption queries O renc1 are perfect, as long as no well-formed ciphertexts are submitted which are

produced without querying to H 1 , H 2 , H 3 and H 4 . Let ReErr1 denote the event that such ciphertexts are queried to O renc1 .

Since both H 1 and H 3 are random oracles,

Pr [ReErr1] ≤ q R 1
p

+
q R 1
p

=
2 q R 1

p
.

Similarly, the responses to re-encryption queries O renc2 are perfect, as long as no well-formed attested ciphertexts are sub-

mitted which are produced without querying to H 2 , H 4 , H 5 , H 6 and H 7 . Let ReErr2 denote the event that such ciphertexts

are queried to O renc2 . Since both H 5 and H 6 are random oracles,

Pr [ReErr2] ≤ q R 2
p

+
q R 2
p

=
2 q R 2

p
.

Let Good denote the event EvtH ∗1 ∨ EvtH ∗2 ∨ EvtH ∗3 ∨ EvtH ∗4 ∨ EvtH ∗5 ∨ EvtH ∗6 ∨ DecErr ∨ ReErr1 ∨ ReErr2 . If Good does not

happen, then adversary A 4 can get no advantage in guessing m ′ = m ∗. Thus,

ε = Pr [m ′ = m ∗]

≤ Pr [Good]

= Pr [EvtH ∗1 ∨ EvtH ∗2 ∨ EvtH ∗3 ∨ EvtH ∗4 ∨ EvtH ∗5 ∨ EvtH ∗6 ∨ DecErr ∨ ReErr1 ∨ ReErr2]

≤ Pr [EvtH ∗1] + Pr [EvtH ∗2] + Pr [EvtH ∗3] + Pr [EvtH ∗4] + Pr [EvtH ∗5] + Pr [EvtH ∗6]

+ Pr [DecErr] + Pr [ReErr1] + Pr [ReErr2]

As α∗ and β∗ are randomly chosen from {0, 1} λ, we have Pr [EvtH ∗
1] ≤

q H 1
4 λ

, Pr [EvtH ∗
3] ≤

q H 3
2 λ

, Pr [EvtH ∗
4] ≤

q H 4
p , Pr [EvtH ∗

5] ≤
q H 5
4 λ

and Pr [EvtH ∗6] ≤
q H 6
2 λ

. Thus,

EvtH
∗
2 ≥ ε − (Pr [EvtH

∗
1] + Pr [EvtH

∗
3] + Pr [EvtH

∗
4] + Pr [EvtH

∗
5] + Pr [EvtH

∗
6] + Pr [DecErr]

+ Pr [ReErr 1] + Pr [ReErr 2])

≥ ε − q H 1 + q H 5
4 λ

− q H 3 + q H 6
2 λ

− q H 4 + 3 q D + 2 q R 1 + 2 q R 2
p

− q D

p · 4 λ
−

(
q H 1 + q H 3

)
· ρ − Pr [A 4 brea ks OS]

Therefore, if event EvtH ∗
2 happens, then algorithm I can solve the given DCDH instance with advantage

ε dcdh ≥ 1

q H 2

(
ε − q H 1 + q H 5

4 λ
− q H 3 + q H 6

2 λ
− q H 4 + 3 q D + 2 q R 1 + 2 q R 2

p
− q D

p · 4 λ
− (q H 1 + q H 3) · ρ − Pr [A 4 breaks OS]

)

This concludes Theorem 4 . �

Theorem 5. Suppose the CDH assumption holds in group G . The proposed PRE-DET scheme offers PD-EUCMA security for attested

ciphertext against Type-5 adversary in the random oracle model.

The proof for Theorem 5 follows the standard framework established in [3] .

Proof. Let A 5 be a Type-5 PPT adversary that has non-negligible advantage ε in attacking the PD-EUCMA security for at-

tested ciphertext in the PRE-DET scheme. Suppose A 5 issues at most q A attestation queries, and at most q H 1 , q H 2 , q H 3 , q H 4 ,

q H 5 , q H 6 and q H 7 hash queries. Let OS = (KGen , Sign , Vrfy) be a strong one-time signature scheme. We show that if such an

adversary A 5 exists, then one can construct an algorithm I to solve the CDH problem with non-negligible probability ε cdh .

Let G = 〈 g〉 and G T be cycle groups with prime order p and bilinear map ˆ e : G × G → G T . At first, algorithm I is given

a CDH instance (g, g u , g v) ∈ G 3 . The goal of I is to compute g uv . Algorithm I simulates the challenger and interacts with

adversary A 5 as follows.

Set-up : Algorithm I randomly picks ˜ a , ̃ b ∈ R Z ∗p , computes h = g ̃ a and h̄ = g
˜ b , and sets the system public parameter

as par = (G , G T , ̂ e , p, g, h, ̄h , H 1 , H 2 , · · · , H 7 , OS) . Algorithm I randomly picks x ∗1 , x
∗
2 ∈ R Z ∗p , sets sk ∗1 = x ∗1 , sk

∗
2 = x ∗2 , pk ∗3 = g u

which implies sk ∗3 = u, and computes pk ∗1 = g x
∗
1 , pk 2 = g x

∗
2 . Next, algorithm I publishes pk ∗ = (pk ∗1 , pk ∗2 , pk ∗3) to A 5 and adds

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 95

(0 , x ∗1 , pk ∗1 , x
∗
2 , pk ∗2 , � , pk ∗3 , 0) to the list L key , where � denotes an unknown value and the last entry ‘0’ denotes that pk ∗ is

an uncorrupted public key.

Queries : Adversary A can adaptively submit the following queries.

• H 1 hash query O H 1 : Same as in the proof of Theorem 4 .

• H 2 hash query O H 2 : Same as in the proof of Theorem 4 .

• H 3 hash query O H 3 : Same as in the proof of Theorem 4 .

• H 4 hash query O H 4 : Same as in the proof of Theorem 4 .

• H 5 hash query O H 5 : Same as in the proof of Theorem 4 .

• H 6 hash query O H 6 : Same as in the proof of Theorem 4 .

• H 7 hash query O H 7 : For answering O H 7 queries, algorithm I maintains a list L 7 which is initially empty. For an

input tuple (a 1 , a 3 , a 5 , a 6 , att), if there exists an entry (a 1 , a 3 , a 5 , a 6 , at t , μ, ν, �) ∈ L 7 , then O H 7 responds with �;

otherwise, I picks a random coin μ ∈ R {0, 1} such that Pr [μ = 0] = 1
q A +1 , picks a random value ν ∈ R Z ∗p , computes

� = (g v) 1 −μg ν ∈ G , returns � and appends (a 1 , a 3 , a 5 , a 6 , att, μ, ν , �) to L 7 .

• Uncorrupted key generation query O ukgen : Algorithm I randomly picks x i, 1 , x i, 2 , x i, 3 ∈ R Z ∗p , sets sk i, 1 = x i, 1 , sk i, 2 = x i, 2 ,

sk i, 3 = x i, 3 , and computes pk i, 1 = g x i, 1 , pk i, 2 = g x i, 2 and pk i, 3 = g x i, 3 . Next, algorithm I gives pk i = (pk i, 1 , pk i, 2 , pk i, 3) to

A 5 and adds (i, x i, 1 , pk i, 1 , x i, 2 , pk i, 2 , x i, 3 , pk i, 3 , 0) to the list L key , where ‘0’ denotes that pk i is an uncorrupted public

key.

• Corrupted key generation query O ckgen : Same as in the proof of Theorem 4 .

• Re-encryption key generation query O rkgen : For a queried pair (pk i , pk j) , algorithm I outputs rk i ↔ j =

(x j, 1 /x i, 1 mod p, x j, 2 /x i, 2 mod p) .

• Attestation query O att : For a query (C i , pk i) , algorithm I performs the oracle O dec1 with input (C i , pk i) . If O dec1 outputs

⊥ , then algorithm I returns ⊥ and halts. Otherwise, letting (m i , αi , βi , c i, 8 , θi) ∈ L 1 be the retrieved tuple in O dec1 ,

algorithm I runs the oracle O H 5 with input (m i , αi , βi , pk i, 1 , pk i, 2) to get θ ′
i , runs O H 2 with input g θ

′
i to get �′

i , runs

O H 6 with input (m i , αi , pk i, 1 , pk i, 2) to get ϑ ′
i , and runs O H 4 with input g ϑ

′
i to get �′

i . Then algorithm I computes

a i, 1 = �′
i � (m i ‖ αi ‖ βi) , a i, 2 = pk

θ ′
i

i, 1 , a i, 3 = h θ
′
i , a i, 4 = pk

ϑ ′
i

i, 2 , a i, 5 = h̄ ϑ
′
i and a i, 6 = g m i · �′

i , chooses a i, 8 = att i ∈ Z p , and

runs O H 7 with input (a i ,1 , a i ,3 , a i ,5 , a i ,6 , a i ,8). Let (a i ,1 , a i ,3 , a i ,5 , a i ,6 , att i , μi , ν i , �i) be the corresponding entry in list L 7 .

To compute a i ,7 , there are two cases to consider:

Case 1 : pk i � = pk ∗. Algorithm I computes a i, 7 = �
sk i, 3
i .

Case 2 : pk i = pk ∗. If μi = 0 , then algorithm I reports failure and aborts the game. Otherwise, algorithm I computes

a i, 7 = (g u) νi , where H 7 (a i, 1 ‖ a i, 3 ‖ a i, 5 ‖ a i, 6 ‖ a i, 8) = g νi ∈ G . Note that the attested ciphertexts are perfectly simulated in

adversary A ’s view when the abortion case does not occur.

At last, algorithm I returns A i = (a i, 1 , a i, 2 , a i, 3 , a i, 4 , a i, 5 , a i, 6 , a i, 7 , a i, 8) .

• Delegation generation query O delgen : Same as in the proof of Theorem 4 .

• Decryption query O dec1 : For input ciphertext (C i , pk i) , algorithm I returns DataDec (sk i , C) .

• Decryption query O dec2 : For a query (A j , pk i , pk j) , algorithm I returns AttDec (pk i , pk j , sk j , A j) .

Output : Eventually, adversary A outputs a tuple (C ∗, A ∗, pk ∗i) such that C ∗ is a well-formed ciphertext under pk ∗ and

every derivative of (C ∗, pk ∗) has not been queried to O att . Assume (A ∗, pk ∗, pk ∗i) is a valid derivative of (C ∗, pk ∗) ; otherwise,

I reports failure and aborts the game. In the random oracle model, (a ∗1 , a
∗
3 , a

∗
5 , a

∗
6 , a

∗
8) should have been queried to O H 7 .

Algorithm I retrieves the tuple (a ∗
1 , a

∗
3 , a

∗
5 , a

∗
6 , a

∗
8 , μ

∗, ν∗, �∗) from the list L 7 . If μ
∗ = 1 , then I reports failure and aborts

the game. Otherwise, i.e., μ∗ = 0 , we know H 7 (a ∗
1 ‖ a ∗3 ‖ a ∗5 ‖ a ∗6 ‖ a ∗8) = �∗ = g v · g ν

∗ ∈ G . Therefore, a ∗
7 = g u v · g uν∗

. Next, algo-

rithm I computes g u v = a ∗7 / (g u) ν
∗
.

To analyze the probability of solving the given CDH instance, we define three events:

• Let Evt 1 be the event that algorithm I does not abort in responding to attestation queries.

• Let Evt 2 be the event that (A ∗, pk ∗, pk ∗i) is a valid forged derivative of (C ∗, pk ∗) .
• Let Evt 3 be the event that μ∗ = 1 .

As discussed in [3] , we know

Pr [Evt 1] =

(
1 − 1

q A + 1

)q A
≥ 1

e
, Pr [Evt 2 | Evt 1] ≥ ε, Pr [Evt 3 | Evt 2 ∩ Evt 1] =

1

q A + 1

where e denotes the base of the natural logarithm. Therefore, algorithm I can correctly solve the given CDH problem with

the following probability:

Pr [I success] = Pr [Evt 1 ∩ Evt 2 ∩ Evt 3] = Pr [Evt 1] · Pr [Evt 2 | Evt 1] · Pr [Evt 3 | Evt 2 ∩ Evt 1] ≥ ε

e (q A + 1)

This completes the proof of Theorem 5 . �

96 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

Table 1
Comparison with related encryption schemes.

Scheme Ciphertext size Computation cost

Encryption Decryption Equality test

Yang et al. [40] 3 τG + τp 3 δG 3 δG 2 δ ˆ e
Tang [28] τG + 2 τG 1 + τp + τM + λ 2 δG + 2 δG 1 2 δG 4 δa ̂ e
Tang [29] 3 τG + τp + τM + λ 5 δG 2 δG 4 δG
Lee et al. [11] 3 τG + τp 4 δG 3 δG 2 δG + 2 δ ˆ e
Ma et al. [19] 5 τG + τp 6 δG 5 δG 2 δG + 2 δ ˆ e
Ma [18] 5 τG + τp 6 δG + 2 δ ˆ e 2 δG + 2 δ ˆ e 4 δ ˆ e
Ma et al. [20] τG 1 + 3 τG 2 + τp δG 1 + 3 δG 2 δG 1 + 2 δG 2 4 δ ˆ ae

+ δG T + δ ˆ ae + δG T + δ ˆ ae
Wang and Pang [32] 5 τG + τp 8 δG + δ ˆ e 3 δG + 4 δ ˆ e 2 δG + 4 δ ˆ e
Slamanig, Spreitzer 4 τG 1 + 3 τp 6 δG 1 5 δG 1 2 δ ˆ ae
and Unterluggauer [27]
Wang et al. [34] 4 τG 1 4 δG 1 3 δG 1 2 δ ˆ ae
Pang and Ding [23] 7 τG + τG T 7 δG + δ ˆ e — 2 δG + 5 δ ˆ e
This paper (a) 5 τG + τp + 2 λ + τos + q (λ) 7 δG + δos 5 δG + 4 δ ˆ e + δov 2 δG

(b) 6 τG + 2 τp + 2 λ 13 δG + 4 δ ˆ e + δov 5 δG + 6 δ ˆ e 2 δG

5. Analysis and comparison

In this section, we analyze and compare our PRE-DET construction with existing encryption techniques. Table 1 summa-

rizes the comparison in terms of ciphertext size and computation costs of encryption, decryption and equality test. In the

comparison, we focus mainly on resource-intensive computations including exponentiation and bilinear mapping, whereas

all lightweight computations such as addition and hash evaluation are omitted.

In Table 1 , we let τG denote the element size in group G , and δG and δ ˆ e respectively represent the evaluation costs of

an exponentiation in G and a bilinear map ˆ e (·, ·) for a symmetric bilinear map ˆ e : G × G → G T . Similarly, for an asymmetric

bilinear map ˆ e : G 1 × G 2 → G T , we let τG 1 and τG 2 respectively denote the element sizes in G 1 and G 2 , whereas δG 1 , δG 2
and δa ̂ e respectively represent the evaluation costs of an exponentiation in G 1 and G 2 and a bilinear map ˆ e (·, ·) . Also, we

use τ p and τG T to respectively denote the element sizes in Z p and G T for both types of bilinear maps, and δG T to denote the

cost of an exponentiation in G T . For Tang’s schemes [28,29] , we let τG and τM respectively represent the size of an ordinary

multiplicative cyclic group G and message space M , whereas δG denotes the computation cost of an exponentiation in G .

For the one-time signature scheme OS employed in our PRE-DET scheme, we let τ os denote its signature size, and δos and

δov respectively represent the computation costs of OS . Sign and OS . Vrfy .

The efficiency of ciphertexts and attested ciphertexts of our PRE-DET scheme are given in lines (a) and (b), respectively.

From the table, we see that only our PRE-DET scheme supports ciphertext re-encryption. Also, our PRE-DET construction

allows the user to add attestation to ciphertext, without affecting the functionality of equality test.

Our PRE-DET construction can be implemented using the Pairing Based Cryptography Library (PBC, http://crypto.stanford.

edu/pbc/) . When executed on a system with Intel(R) Core(TM) i5-5200U CPU at 2.20GHz, 8.00GB RAM and running Windows

7, and chosen the elliptic curve of Type A (y 2 = x 3 + x) such that p is a 160-bit prime and τG = 256 , we obtained the

benchmark where δ ˆ e = 2 . 4 ms, δG = 2 . 7 ms and δG T = 0 . 6 ms. With this benchmark, it is easy to estimate the rough running

time of every procedure of our PRE-DET construction.

6. Conclusion

Motivated by the need to support partitioning and attestation on encrypted data in a secure data sharing clique, we

introduced the notion of public key re-encryption with delegated equality test on ciphertexts (PRE-DET). We formalized the

PRE-DET framework and its security model with respect to five types of adversaries, four for message confidentiality and one

for attestation unforgeability. We then proposed a concrete PRE-DET construction in symmetric bilinear groups and formally

proved its security in the formal security model. An analysis and comparison with related schemes showed the practicality

of our PRE-DET construction.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Yujue Wang: Conceptualization, Writing - original draft. HweeHwa Pang: Conceptualization, Methodology, Writing -

original draft, Project administration. Robert H. Deng: Writing - original draft, Supervision, Project administration. Yong

Ding: Writing - review & editing, Validation, Project administration. Qianhong Wu: Writing - review & editing, Supervision,

Project administration. Bo Qin: Writing - review & editing, Project administration. Kefeng Fan: Writing - review & editing.

http://crypto.stanford.edu/pbc/)

Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 97

Acknowledgments

This research is supported by the Singapore National Research Foundation under NCR Award Number NRF2014NCR-

NCR001-012. This article is also supported in part by the National Key R&D Program of China through project

2017YFB0802500, the National Natural Science Foundation of China under projects 61862012 , 61772150 , 61972019,

61932011 , 61772538 , 61672083 , 61532021 , 91646203 , 61962012 , and 61902123 , the Guangxi Key R&D Program under

project AB17195025, the Guangxi Natural Science Foundation under grants 2018GXNSFDA281054, 2018GXNSFAA281232,

2019GXNSFFA245015 and AD19245048, the National Cryptography Development Fund of China under projects MMJJ20170217

and MMJJ20170106, the foundation of Science and Technology on Information Assurance Laboratory through project

61421120305162112006, and the Peng Cheng Laboratory Project of Guangdong Province PCL2018KP004.

References

[1] F. Bao, R.H. Deng, H. Zhu, Variations of Diffie-Hellman Problem, in: S. Qing, D. Gollmann, J. Zhou (Eds.), Information and Communications Security:
5th International Conference, ICICS 2003, Huhehaote, China, October 10–13, 2003. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003,
pp. 301–312, doi: 10.1007/978- 3- 540- 39927- 8 _ 28 .

[2] M. Blaze , G. Bleumer , M. Strauss , Divertible protocols and atomic proxy cryptography, in: K. Nyberg (Ed.), Advances in Cryptology — EUROCRYPT’98,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 127–144 .

[3] D. Boneh , B. Lynn , H. Shacham , Short signatures from the weil pairing, J. Cryptol. 17 (4) (2004) 297–319 .
[4] R. Canetti, S. Hohenberger, Chosen-ciphertext secure proxy re-encryption, in: Proceedings of the 14th ACM Conference on Computer and Communica-

tions Security, in: CCS ’07, ACM, New York, NY, USA, 2007, pp. 185–194, doi: 10.1145/1315245.1315269 .
[5] C.-K. Chu , W.-G. Tzeng , Identity-based proxy re-encryption without random oracles, in: Proceedings of the 10th International Conference on Informa-

tion Security, in: ISC’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 189–202 .
[6] H. Cui, R.H. Deng, Y. Li, G. Wu, Attribute-based storage supporting secure deduplication of encrypted data in cloud, IEEE Trans. Big Data 5 (3) (2019)

330–342, doi: 10.1109/TBDATA.2017.2656120 .
[7] R.H. Deng , J. Weng , S. Liu , K. Chen , Chosen-ciphertext secure proxy re-encryption without pairings, in: M.K. Franklin, L.C.K. Hui, D.S. Wong (Eds.),

Cryptology and Network Security, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 1–17 .
[8] T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inf. Theory 31 (4) (1985) 469–472, doi: 10.

1109/TIT.1985.1057074 .
[9] M. Green, G. Ateniese, Identity-based proxy re-encryption, in: Proceedings of the 5th International Conference on Applied Cryptography and Network

Security, in: ACNS’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 288–306, doi: 10.1007/978- 3- 540- 72738- 5 _ 19 .
[10] K. Huang , R. Tso , Y.-C. Chen , S.M.M. Rahman , A. Almogren , A. Alamri , PKE-AET: public key encryption with authorized equality test, Comput. J. 58 (10)

(2015) 2686–2697 .
[11] H.T. Lee, S. Ling, J.H. Seo, H. Wang, CCA2 attack and modification of huang et al.’s public key encryption with authorized equality test, Comput. J.

(2016), doi: 10.1093/comjnl/bxw033 .
[12] H.T. Lee, S. Ling, J.H. Seo, H. Wang, Semi-generic construction of public key encryption and identity-based encryption with equality test, Inf. Sci. 373

(2016) 419–440, doi: 10.1016/j.ins.2016.09.013 .
[13] J. Li, Y. Zhang, X. Chen, Y. Xiang, Secure attribute-based data sharing for resource-limited users in cloud computing, Comput. Secur. 72 (2018) 1–12,

doi: 10.1016/j.cose.2017.08.007 .
[14] T. Li, J. Li, Z. Liu, P. Li, C. Jia, Differentially private naive bayes learning over multiple data sources, Inf. Sci. 4 4 4 (2018) 89–104, doi: 10.1016/j.ins.2018.

02.056 .
[15] K. Liang, C. Su, J. Chen, J.K. Liu, Efficient multi-function data sharing and searching mechanism for cloud-based encrypted data, in: Proceedings of the

11th ACM on Asia Conference on Computer and Communications Security, in: ASIA CCS ’16, ACM, New York, NY, USA, 2016, pp. 83–94, doi: 10.1145/
2897845.2897865 .

[16] K. Liang, W. Susilo, Searchable attribute-based mechanism with efficient data sharing for secure cloud storage, IEEE Trans. Inf. Forensics Secur. 10 (9)
(2015) 1981–1992, doi: 10.1109/TIFS.2015.2442215 .

[17] B. Libert, D. Vergnaud, Unidirectional chosen-ciphertext secure proxy re-encryption, IEEE Trans. Inf. Theor. 57 (3) (2011) 1786–1802, doi: 10.1109/TIT.
2011.2104470 .

[18] S. Ma, Identity-based encryption with outsourced equality test in cloud computing, Inf. Sci. 328 (2016) 389–402, doi: 10.1016/j.ins.2015.08.053 .
[19] S. Ma , Q. Huang , M. Zhang , B. Yang , Efficient public key encryption with equality test supporting flexible authorization, IEEE Trans. Inf. Forensics Secur.

10 (3) (2015) 458–470 .
[20] S. Ma , M. Zhang , Q. Huang , B. Yang , Public key encryption with delegated equality test in a multi-user setting, Comput. J. 58 (4) (2015) 986–1002 .
[21] M. Mambo , E. Okamoto , Proxy cryptosystems: delegation of the power to decrypt ciphertexts, IEICE Trans. Fundam. Electron.Commun. Comput. Sci.

E80–A (1) (1997) 54–63 .
[22] D. Nuñez, I. Agudo, J. Lopez, Proxy re-encryption: analysis of constructions and its application to secure access delegation, J. Netw. Comput. Appl. 87

(2017) 193–209, doi: 10.1016/j.jnca.2017.03.005 .
[23] H. Pang, X. Ding, Privacy-preserving ad-hoc equi-join on outsourced data, ACM Trans. Database Syst. 39 (3) (2014) 23:1–23:40, doi: 10.1145/2629501 .
[24] J.W. Seo, D.H. Yum, P.J. Lee, Comments on “unidirectional chosen-ciphertext secure proxy re-encryption”, IEEE Trans. Inf. Theor. 59 (5) (2013), doi: 10.

1109/TIT.2012.2236606 . 3256–3256.
[25] J. Shao, Z. Cao, Multi-use unidirectional identity-based proxy re-encryption from hierarchical identity-based encryption, Inf. Sci. 206 (2012) 83–95,

doi: 10.1016/j.ins.2012.04.013 .
[26] J. Shao, R. Lu, X. Lin, K. Liang, Secure bidirectional proxy re-encryption for cryptographic cloud storage, Pervasive Mob. Comput. 28 (2016) 113–121,

doi: 10.1016/j.pmcj.2015.06.016 .
[27] D. Slamanig, R. Spreitzer, T. Unterluggauer, Adding controllable linkability to pairing-based group signatures for free, in: S.S.M. Chow, J. Camenisch,

L.C.K. Hui, S.M. Yiu (Eds.), Information Security: 17th International Conference, ISC 2014, Hong Kong, China, October 12–14, 2014. Proceedings, Springer
International Publishing, Cham, 2014, pp. 388–400, doi: 10.1007/978- 3- 319- 13257- 0 _ 23 .

[28] Q. Tang , Towards public key encryption scheme supporting equality test with fine-grained authorization, in: U. Parampalli, P. Hawkes (Eds.), Proceed-
ings of Information Security and Privacy: 16th Australasian Conference, ACISP 2011, LNCS, vol. 6812, Springer, Heidelberg, 2011, pp. 389–406 .

[29] Q. Tang , Public key encryption supporting plaintext equality test and user-specified authorization, Sec. Commun. Netw. 5 (12) (2012) 1351–1362 .
[30] H. Wang, Z. Cao, L. Wang, Multi-use and unidirectional identity-based proxy re-encryption schemes, Inf. Sci. 180 (20) (2010) 4042–4059, doi: 10.1016/

j.ins.2010.06.029 .
[31] Y. Wang , Y. Ding , Q. Wu , Y. Wei , B. Qin , H. Wang , Privacy-preserving cloud-based road condition monitoring with source authentication in vanets, IEEE

Trans. Inf. Forensics Secur. 14 (7) (2019) 1779–1790 .
[32] Y. Wang, H. Pang, Probabilistic public key encryption for controlled equijoin in relational databases, Comput. J. 60 (4) (2017) 600–612, doi: 10.1093/

comjnl/bxw083 .

https://doi.org/10.13039/501100001809
https://doi.org/10.1007/978-3-540-39927-8_28
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0003
https://doi.org/10.1145/1315245.1315269
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0005
https://doi.org/10.1109/TBDATA.2017.2656120
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0007
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-540-72738-5_19
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0010
https://doi.org/10.1093/comjnl/bxw033
https://doi.org/10.1016/j.ins.2016.09.013
https://doi.org/10.1016/j.cose.2017.08.007
https://doi.org/10.1016/j.ins.2018.02.056
https://doi.org/10.1145/2897845.2897865
https://doi.org/10.1109/TIFS.2015.2442215
https://doi.org/10.1109/TIT.2011.2104470
https://doi.org/10.1016/j.ins.2015.08.053
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0021
https://doi.org/10.1016/j.jnca.2017.03.005
https://doi.org/10.1145/2629501
https://doi.org/10.1109/TIT.2012.2236606
https://doi.org/10.1016/j.ins.2012.04.013
https://doi.org/10.1016/j.pmcj.2015.06.016
https://doi.org/10.1007/978-3-319-13257-0_23
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0029
https://doi.org/10.1016/j.ins.2010.06.029
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30148-1/sbref0031
https://doi.org/10.1093/comjnl/bxw083

98 Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98

[33] Y. Wang, H. Pang, R.H. Deng, Y. Ding, Q. Wu, B. Qin, Securing messaging services through efficient signcryption with designated equality test, Inf. Sci.
490 (2019) 146–165, doi: 10.1016/j.ins.2019.03.039 .

[34] Y. Wang, H. Pang, N.H. Tran, R.H. Deng, CCA Secure encryption supporting authorized equality test on ciphertexts in standard model and its applica-
tions, Inf. Sci. 414 (2017) 289–305, doi: 10.1016/j.ins.2017.06.008 .

[35] J. Weng, M. Chen, Y. Yang, R. Deng, K. Chen, F. Bao, Cca-secure unidirectional proxy re-encryption in the adaptive corruption model without random
oracles, Sci. China Inf. Sci. 53 (3) (2010) 593–606, doi: 10.1007/s11432- 010- 0047- 3 .

[36] J. Weng, R.H. Deng, S. Liu, K. Chen, Chosen-ciphertext secure bidirectional proxy re-encryption schemes without pairings, Inf. Sci. 180 (24) (2010)
5077–5089, doi: 10.1016/j.ins.2010.08.017 .

[37] Z. Yan, W. Ding, X. Yu, H. Zhu, R.H. Deng, Deduplication on encrypted big data in cloud, IEEE Trans. Big Data 2 (2) (2016) 138–150, doi: 10.1109/TBDATA.
2016.2587659 .

[38] Z. Yan, M. Wang, Y. Li, A.V. Vasilakos, Encrypted data management with deduplication in cloud computing, IEEE Cloud Comput. 3 (2) (2016) 28–35,
doi: 10.1109/MCC.2016.29 .

[39] A. Yang, J. Xu, J. Weng, J. Zhou, D.S. Wong, Lightweight and privacy-preserving delegatable proofs of storage with data dynamics in cloud storage, IEEE
Trans. Cloud Comput. (2018), doi: 10.1109/TCC.2018.2851256 .

[40] G. Yang, C.H. Tan, Q. Huang, D.S. Wong, Probabilistic public key encryption with equality test, in: J. Pieprzyk (Ed.), Topics in Cryptology - CT-RSA 2010,
LNCS, vol. 5985, Springer, Heidelberg, 2010, pp. 119–131, doi: 10.1007/978- 3- 642- 11925- 5 _ 9 .

[41] J. Zhang, Z. Zhang, Secure and efficient data-sharing in clouds, Concurrency Comput. 27 (8) (2015) 2125–2143, doi: 10.1002/cpe.3395 .
[42] Y. Zhou, H. Deng, Q. Wu, B. Qin, J. Liu, Y. Ding, Identity-based proxy re-encryption version 2, Future Gener. Comput. Syst. 62 (C) (2016) 128–139,

doi: 10.1016/j.future.2015.09.027 .

https://doi.org/10.1016/j.ins.2019.03.039
https://doi.org/10.1016/j.ins.2017.06.008
https://doi.org/10.1007/s11432-010-0047-3
https://doi.org/10.1016/j.ins.2010.08.017
https://doi.org/10.1109/TBDATA.2016.2587659
https://doi.org/10.1109/MCC.2016.29
https://doi.org/10.1109/TCC.2018.2851256
https://doi.org/10.1007/978-3-642-11925-5_9
https://doi.org/10.1002/cpe.3395
https://doi.org/10.1016/j.future.2015.09.027

	Secure server-aided data sharing clique with attestation
	Citation
	Author

	Secure server-aided data sharing clique with attestation
	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.3 Paper organization

	2 PRE-DET Framework and security definitions
	2.1 System model and security requirements
	2.2 PRE-DET framework
	2.3 Security definitions

	3 A PRE-DET construction
	4 Security analysis
	5 Analysis and comparison
	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

