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a b s t r a c t 

In this paper, we consider the security issues in data sharing cliques via remote server. We 

present a public key re-encryption scheme with delegated equality test on ciphertexts (PRE- 

DET). The scheme allows users to share outsourced data on the server without performing 

decryption-then-encryption procedures, allows new users to dynamically join the clique, 

allows clique users to attest the message underlying a ciphertext, and enables the server to 

partition outsourced user data without any further help of users after being delegated. We 

introduce the PRE-DET framework, propose a concrete construction and formally prove its 

security against five types of adversaries regarding two security requirements on message 

confidentiality and unforgeability of attestation against the server. We also theoretically 

analyze and compare the proposed PRE-DET construction with related schemes in terms 

of ciphertext sizes and computation costs of encryption, decryption, ciphertext equality 

testing and re-encryption, which confirms the practicality of our construction. 

© 2020 Elsevier Inc. All rights reserved. 

1. Introduction 

Data outsourcing allows users to engage a remote storage server to hold user data, which relieves users from the over- 

head of managing their own storage devices. However, for privacy reasons, user data can only be stored on the remote server 

in ciphertext format. Recently, public key encryption with (authorized/delegated) equality test on ciphertext was proposed 

to not only guarantee data confidentiality at the remote server, but also enhance the functionality of the server by enabling 

it to compare outsourced ciphertexts. The property of ciphertext equality test in these encryption schemes has been ex- 

tensively utilized in achieving controlled equijoin in outsourced relational database [32] , partition of encrypted emails [18] , 

searchable encryption and partitioning encrypted data [40] , deduplication on outsourced encrypted data [6] , data monitoring 

[31] , etc. However, these schemes do not support efficient data sharing. 
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In this paper, we investigate data sharing cliques with the help of a remote server, where the data outsourced by users in 

a clique are shared only by these users. For example, for users in a workshop, the data can be shared among them to jointly 

perform a task. Data sharing clique raises the following requirements. First, all user data must be stored in ciphertext format 

to protect confidentiality and shared by all users in the clique. Second, to realize data sharing, each user does not need to 

directly produce ciphertext for all expected users; rather, the server will transform the ciphertext for the users in the clique 

without sacrificing confidentiality. Third, a user is able to add an attestation to a ciphertext with non-repudiation assurance, 

for instance to inform other users of the truthfulness of authenticity of the underlying message. Fourth, the delegated server 

is able to test whether the outsourced ciphertexts encrypt the same underlying message without decrypting them, to achieve 

controlled partitioning on encrypted data. 

With the data sharing property, a new user joining the clique will be able to access the data of other peer users in the 

clique, while his/her data also become accessible by the other users. To the best of our knowledge, there is no existing 

solution to achieve a secure data sharing clique with all the above requirements. Specifically, existing public key encryption 

technology with (authorized/delegated) equality test on ciphertexts (PKEET/PKE-AET/PKE-DET) can only realize the first and 

fourth requirements, whereas existing public key re-encryption technology (PRE) only solves the third requirement. 

1.1. Contributions 

To address the confidentiality and security issues in data sharing cliques, we present a public key re-encryption scheme 

with delegated equality test on ciphertexts (PRE-DET). Our notion of PRE-DET provides more powerful functionalities than 

PKEET/PKE-AET/PKE-DET and PRE. In PRE-DET, to share the ciphertexts of user A with user B , user A does not need to 

retrieve them from the server and perform an encryption under the public key of B . Instead, users A and B will jointly 

generate a re-encryption key, which enables the server to transform the ciphertexts of A to that of B . All users sharing their 

data constitute a user clique. When some user delegates the server to perform equality test on his/her ciphertexts by issuing 

a token, the server is implicitly authorized to compare all data owned by all users in the same clique due to the property 

of data sharing. 

PRE-DET allows users to dynamically join the clique by jointly issuing a re-encryption key, which demonstrates he/she 

is willing to share data with the other users in the clique. Users are able to attest the message underlying a ciphertext. The 

attestation must be publicly verifiable, so as to ensure authenticity. Moreover, in a PRE-DET scheme, the attestation cannot 

obstruct the re-encryption functionality (i.e., the data sharing property). In other words, all attested ciphertexts are also 

shared by the users in the clique, as the server is able to re-encrypt attested ciphertexts in the same way as re-encrypting 

ciphertexts. 

We formulate the security model of PRE-DET with respect to five types of adversaries, representing four security re- 

quirements on message confidentiality and a requirement on unforgeability of attestation. The four message confidentiality 

requirements capture IND-CCA2 and OW-CCA2 security against the server with/without re-encryption key and token, respec- 

tively, whereas the attestation unforgeability requirement is defined against malicious users. We present a concrete PRE-DET 

construction on symmetric bilinear groups, and prove that it is secure against the five types of adversaries as formalized in 

the security framework in the random oracle model. Comparison with related schemes show that our PRE-DET construction 

is practical in applications. 

1.2. Related work 

Mambo and Okamoto [21] introduced public key proxy encryption, which allows the decryptor to transform his/her 

ciphertext to that of another decryptor without decryting the original ciphertext. They presented concrete proxy encryp- 

tion constructions using the ElGamal and RSA cryptosystems. Blaze, Bleumer and Strauss [2] further studied atomic proxy 

cryptography such that the ciphertext/signature of some public key can be converted into ciphertext/signature of the same 

message under another public key. These schemes proposed in [2,21] only offer IND-CPA security on ciphertexts. 

Following the seminal work of [2,21] , a large number of public key re-encryption schemes have been proposed. In [4] , 

Canetti and Hohenberger for the first time introduced an IND-CCA secure public key bidirectional proxy re-encryption 

scheme in the standard model under the decisional bilinear Diffie-Hellman assumption. Deng et al. [7] and Weng et al. 

[36] designed IND-CCA secure bidirectional proxy re-encryption schemes without using bilinear pairings, which are thus 

more efficient than the method in [4] . Libert and Vergnaud [17] first presented IND-CCA secure unidirectional proxy re- 

encryption schemes in the standard model, which was further enhanced by Seo, Yum and Lee [24] . The CCA-secure unidi- 

rectional proxy re-encryption scheme presented by Weng et al. [35] can be proved in the adaptive corruption model. 

Green and Ateniese [9] first introduced the notion of identity-based proxy re-encryption (ID-PRE), which eliminates com- 

plicated certificate management in the public key setting. Then, Chu and Tzeng [5] considered ID-PRE schemes that are 

proved to be secure in the standard model. Multi-use and unidirectional ID-PRE schemes were investigated in [30] and [25] ; 

the security of the former is proved in the random oracle and the latter in the standard model. In [42] , Zhou et al. proposed 

a mechanism to allow an authorized proxy to convert a ciphertext in an identity-based broadcast encryption scheme into a 

ciphertext in an identity-based encryption scheme. Li et al. [13] proposed a novel solution to address the challenge problem 

of outsourcing computation with stronger attack model in data sharing and privacy-preserving outsourced machine learning. 

Different from the previous works, Li et al. [14] considered multiple devices and data sources in the attack models. 
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Recently, the proxy re-encryption technique has been extensively used in applications in clouds. In [41] , proxy re- 

encryption was used to achieve secure cloud-based data sharing, and the authors analyzed a ‘pitfall’ in the security proof 

of existing proxy re-encryption schemes. Nuñez, Agudo and Lopez [22] reviewed and compared many typical proxy re- 

encryption schemes, and applied proxy re-encryption to secure access delegation in clouds. Shao et al. [26] designed a 

bidirectional proxy re-encryption to secure cloud storage against collusion attacks. Liang and Susilo [16] proposed the first 

searchable attribute-based proxy re-encryption system to secure electronic personal data in clouds. In [15] , Liang et al. ad- 

dressed the privacy issue in data sharing and conjunctive keyword searching in clouds, which also supports secure keyword 

update. To address the security and integrity of outsourced data in clouds, Yang et al. [39] proposed a lightweight privacy- 

preserving delegatable proofs of storage scheme. 

The primitive of public key encryption with equality test (PKEET) was first introduced by Yang et al. [40] , which supports 

public equality test even on ciphertexts generated under different public keys. PKEET was extended to support authorized 

or delegated equality test on ciphertexts (PKE-AET/PKE-DET) [19,20,28] so that only a tester with valid authorization or 

delegation is able to compare ciphertexts. In [29] , Tang presented an all-or-nothing PKEET (AoN-PKEET), where a tester can 

be independently authorized by two users to test the equality of their ciphertexts. Slamanig, Spreitzer and Unterluggauer 

[27] designed a special case of AoN-PKEET [29] , called AoN-PKEET ∗ and constructed using the ElGamal encryption scheme 

[8] . The tester in AoN-PKEET ∗ is only allowed to compare ciphertexts of the same user. 

Combining the functionalities of PKEET and identity-based encryption, Ma [18] proposed an identity-based encryption 

scheme with equality test on ciphertexts (IBEET). Lee et al. [11] analyzed the security of [10] and presented an enhanced 

PKE-AET scheme. In [12] , Lee et al. presented semi-generic constructions for PKEET and IBEET. Wang et al. [34] designed a 

scheme on asymmetric bilinear groups using the ElGamal scheme, where the confidentiality of ciphertexts and tokens are 

proved in the standard model. Pang and Ding [23] first researched controlled equijoin in relational databases and designed 

a secure solution in secret key setting, built on equality test on ciphertext fields in outsourced records. Recently, controlled 

equijoin in relational databases in public key setting was investigated in [32] . Note that the functionality of equality test on 

ciphertexts was extensively used to preform deduplication on encrypted data [6,37,38] and secure messaging services [33] . 

1.3. Paper organization 

The remainder of this paper is organized as follows. In Section 2 , we formulate the framework of PRE-DET and its se- 

curity requirements. We present a PRE-DET construction in Section 3 , and prove its security in Section 4 . We compare the 

performance of our PRE-DET construction with those of existing schemes in Section 5 . Finally, Section 6 concludes the paper. 

2. PRE-DET Framework and security definitions 

2.1. System model and security requirements 

In a data sharing clique, there are two types of entities, that is, many users and a server. Users are data owners who 

encrypt and deposit data on the server. All the users in the clique share their outsourced data. Suppose there are only 

two users in the clique. When one user wants to share her data with the other, they and the server jointly generate a 

re-encryption key to enable the server to translate ciphertexts between them. A new user joining the clique only needs to 

jointly produce a re-encryption key with an existing user and the server, to start sharing her data as well as accessing the 

data of the other users in the clique. Users do not need to retrieve the ciphertexts from the server and encrypt the data 

under all public keys of the other users. 

Users in the clique are able to attest an outsourced (shared/re-encrypted) data. Specifically, the user first decrypts the 

data, determines its truthfulness, and generates an attested ciphertext. In this way, all users in the clique can see the at- 

testation of this data on the server without decrypting it. Note that all attested ciphertexts are also shared by all users in 

the same clique, which means they also support re-encryption by the server like original ciphertexts. The attestation pro- 

cedure should not degrade the ciphertext security. A clique user can authorize the server to test whether a pair of original 

or re-encrypted or attested or re-encrypted attested ciphertexts encrypt the same underlying message. With delegation, the 

server can partition the outsourced data for clique users by the underlying messages. 

In a data sharing clique, the server may be curious about the plaintext messages underlying the outsourced data. At some 

point of time, it could receive re-encryption keys and equality test tokens from the clique users. Thus, the server may lie in 

one of the following four status: 

1. The server does not hold any re-encryption key or equality test token; 

2. The server has a re-encryption key, but no equality test token; 

3. The server has an equality test token, but no re-encryption key; 

4. The server has both re-encryption key and equality test token. 

Some user may also try to attach a fake attestation to outsourced data in the name of others, for example, to claim that 

some sensible data has a lower sensibility level. 



Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 83 

2.2. PRE-DET framework 

A PRE-DET scheme for secure data sharing clique consists of the following efficient procedures. 

Setup (1 λ) → par: Given security parameter λ, the system setup procedure produces public parameter par. The public 

parameter par is an implicit input to all the following procedures. 

KeyGen ( par ) → ( sk i , pk i ) : With public parameter par, each user U i executes the key generation procedure to produce a 

pair of secret key sk i and public key pk i . 

ReKeyGen ( sk i , sk j ) → rk i ↔ j : With secret keys sk i and sk j , users U i and U j , along with the server, jointly run the re- 

encryption key procedure to produce a bidirectional re-encryption key rk i ↔ j . 

DataEnc ( pk i , m ) → C: With public key pk i of user U i , the encryption procedure produces a ciphertext C for input message 

m . 

ReEnc ( rk i ↔ j , C i l ) → C j l : With bidirectional re-encryption key rk i ↔ j and ciphertext C i l of user U i , the server runs the re- 

encryption procedure to produce a ciphertext C j l of user U j for the same underlying plaintext without decrypting C i l . Due to 

the bidirectional property of rk i ↔ j , the server may also perform ReEnc ( rk i ↔ j , C j l ) → C i l . 

DataDec ( sk i , C) → m/ ⊥ : With secret key sk i , user U i runs the decryption procedure on ciphertext C to produce a message 

m , or ⊥ that signifies an error in decryption. 

Attest ( sk i , pk i , C) → A : With secret key sk i and public key pk i of user U i , U i runs the attestation procedure on ciphertext 

C . In this procedure, user U i attaches an attestation att ∈ A to the underlying plaintext and produces an attested ciphertext 

A . 

AttReEnc ( rk i ↔ j , pk i , pk � , A i l 
) → A j l 

: With bidirectional re-encryption key rk i ↔ j , two public keys pk i , pk � of users U i and 

U � , and attested ciphertext A i l 
of user U i where the attestation was added by user U � , the server runs the re-encryption 

procedure to produce an attested ciphertext A j l 
for user U j , so that user U j can decrypt A j l 

. Due to the bidirectional property 

of rk i ↔ j , the server may also perform AttReEnc ( rk i ↔ j , pk j , pk � , A j l 
) → A i l 

. 

AttVer ( pk i , A ) → 1 / 0 : With public key pk i , any user may run the attestation verification procedure on attested ciphertext 

A . The procedure outputs 1 if the attestation att in A is valid under pk i , i.e., att was originally added by user U i , or 0 

otherwise. 

AttDec ( pk i , pk j , sk j , A ) → m/ ⊥ : With public keys pk i , pk j and secret key sk j , user U j runs the decryption procedure on 

attested ciphertext A to produce a message m , or ⊥ that signifies an error in decryption, where the attestation in A was 

added by user U i . 
Delegate ( sk i ) → tk i : With secret key sk i , user U i runs the delegation procedure to produce a token tk i to enable the 

server to perform equality test on ciphertexts of users in the clique. 

EqTest ( tk i , C i l /A i l 
, tk j , C j h /A j h 

) → 0 / 1 : With two tokens tk i and tk j respectively issued by users U i and U j , the server runs 

the equality test procedure on two (attested) ciphertexts C i l (or A i l 
) and C j h (or A j h 

). The procedure outputs 1 if C i l (or A i l 
) 

and C j h (or A j h 
) encrypt the same plaintext; otherwise, the procedure outputs 0. 

A valid attestation requires that attested ciphertexts preserve the same properties of re-encryption and equality test 

as ciphertexts. A PRE-DET scheme must be sound in the sense that: (1) Every ciphertext generated by DataEnc or re- 

encrypted by ReEnc is decryptable by DataDec , and every attested ciphertext generated by Attest or re-encrypted by 

AttReEnc is decryptable by AttDec ; (2) Any two (attested) ciphertexts generated by DataEnc / Attest or re-encrypted 

by ReEnc / AttReEnc for the same message, must pass the equality test procedure EqTest ; (3) The attestation in any 

attested ciphertext generated by Attest or re-encrypted by AttReEnc is publicly verifiable. Formally, the soundness of a 

bidirectional PRE-DET scheme can be defined as follows. 

Definition 1 (Soundness) . A PRE-DET scheme is sound if, for any security parameter λ ∈ N and any public parameter par ← 

Setup (1 λ) , the following conditions are satisfied: 

1. For any secret/public key pair ( sk i , pk i ) ← KeyGen ( par ) and every message m ∈ M , DataDec ( sk i , DataEnc ( pk i , m )) = m . 

2. For any τ > 1, any secret/public key pairs ( sk i , pk i ) , ( sk i +1 , pk i +1 ) , · · · , ( sk i + τ , pk i + τ ) ← KeyGen ( par ) , any π < τ , all 

re-encryption keys rk (i + π) ↔ (i + π+1) ← ReKeyGen ( sk i + π , sk i + π+1 ) , and every message m ∈ M , we have 

DataDec 
(
sk i + τ , ReEnc 

(
rk (i + τ−1) ↔ (i + τ ) , · · · , ReEnc 

(
rk i ↔ (i +1) , DataEnc ( pk i , m ) 

)
· · ·

))
= m. 

3. For any m 1 , m 2 ∈ M , any τ 1 , τ 2 > 1, any secret/public key pairs ( sk i −τ1 , pk i −τ1 ) , · · · , ( sk i , pk i ) , ( sk j−τ2 , pk j−τ2 ) , · · · , 

( sk j , pk j ) ← KeyGen ( par ) , any π1 < τ 1 , π2 < τ 2 , all re-encryption keys rk (i −π1 ) ↔ (i −π1 +1) ← ReKeyGen ( sk i −π1 , sk i −π1 +1 ) , 

rk ( j−π2 ) ↔ ( j−π2 +1) ← ReKeyGen ( sk j−π2 , sk j−π2 +1 ) , if m 1 = m 2 , then EqTest ( tk i , C 1 , tk j , C 2 ) = 1 where 

• C 1 ← DataEnc ( pk i , m 1 ) or 

C 1 ← ReEnc 
(
rk (i −1) ↔ i , · · · , ReEnc 

(
rk (i −τ1 ) ↔ (i −τ1 +1) , DataEnc 

(
pk i −τ1 , m 1 

))
· · ·

)
;

• C 2 ← DataEnc ( pk j , m 2 ) or 

C 2 ← ReEnc 
(
rk ( j−1) ↔ j , · · · , ReEnc 

(
rk ( j−τ2 ) ↔ ( j−τ2 +1) , DataEnc 

(
pk j−τ2 , m 2 

))
· · ·

)
;

• tk i ← Delegate ( sk i ) and tk j ← Delegate ( sk j ) . 
Otherwise, EqTest ( tk i , C 1 , tk j , C 2 ) = 0 . 
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4. For any secret/public key pair ( sk i , pk i ) ← KeyGen ( par ) , and A ← Attest ( sk i , pk i , C) for any well-formed ciphertext C 

with any att ∈ A , we have AttDec ( pk i , sk i , A ) = m if DataDec ( sk i , C) = m . 

5. For any τ > 1, any secret/public key pairs ( sk i , pk i ) , ( sk i +1 , pk i +1 ) , · · · , ( sk i + τ , pk i + τ ) ← KeyGen ( par ) , any π < τ , all re- 

encryption keys rk (i + π) ↔ (i + π+1) ← ReKeyGen ( sk i + π , sk i + π+1 ) , and A ← Attest ( sk i , pk i , C) for any well-formed cipher- 

text C with any att ∈ A , we have 

AttDec 
(
pk i , pk i + τ , sk i + τ , AttReEnc 

(
rk (i + τ−1) ↔ (i + τ ) , pk i + τ−1 , pk i , AttReEnc (

· · · , AttReEnc 
(
rk i ↔ (i +1) , pk i , pk i , A 

)
· · ·

)))
= m 

if DataDec ( sk i , C) = m . 

6. For any two well-formed ciphertexts C 1 , C 2 with respective at t 1 , at t 2 ∈ A , any τ 1 , τ 2 > 1, any secret/public 

key pairs ( sk i −τ1 , pk i −τ1 ) , · · · , ( sk i , pk i ) , ( sk j−τ2 , pk j−τ2 ) , · · · , ( sk j , pk j ) ← KeyGen ( par ) , any π1 < τ 1 , π2 < τ 2 , all 

re-encryption keys rk (i −π1 ) ↔ (i −π1 +1) ← ReKeyGen ( sk i −π1 , sk i −π1 +1 ) , rk ( j−π2 ) ↔ ( j−π2 +1) ← ReKeyGen ( sk j−π2 , sk j−π2 +1 ) , if 

DataDec ( sk i −τ1 , C 1 ) = DataDec ( sk j−τ2 , C 2 ) � = ⊥ , then EqTest ( tk i , A 1 , tk j , A 2 ) = 1 where 

A 1 ← AttReEnc 
(
rk ( i −1 ) ↔ i , pk i −1 , pk i −π1 , AttReEnc 

(
· · · , AttReEnc 

(
rk ( i −π1 ) ↔ ( i −π1 +1 ) , pk i −π1 , pk i −π1 , 

Attest 
(
sk i −π1 , pk i −π1 , ReEnc 

(
rk ( i −π1 −1 ) ↔ ( i −π1 ) , · · · , ReEnc 

(
rk ( i −τ1 ) ↔ ( i −τ1 +1 ) , C 1 

)
· · ·

)))
· · ·

))
, 

A 2 ← AttReEnc 
(
rk ( j−1 ) ↔ j , pk j−1 , pk j−π2 , AttReEnc 

(
· · · , AttReEnc 

(
rk ( j −π2 ) ↔ ( j −π2 +1 ) , pk j −π2 , pk j −π2 , 

Attest 
(
sk j −π2 , pk j −π2 , ReEnc 

(
rk ( j −π2 −1 ) ↔ ( j −π2 ) , · · · , ReEnc 

(
rk ( j −τ2 ) ↔ ( j −τ2 +1 ) , C 2 

)
· · ·

)))
· · ·

))
, 

tk i ← Delegate ( sk i ) and tk j ← Delegate ( sk j ) . 
Otherwise, EqTest ( tk i , A 1 , tk j , A 2 ) = 0 . 

7. For any τ ≥ 1, any secret/public key pairs ( sk i , pk i ) , · · · , ( sk i + τ , pk i + τ ) ← KeyGen ( par ) , any π < τ , all re-encryption 

keys rk (i + π) ↔ (i + π+1) ← ReKeyGen ( sk i + π , sk i + π+1 ) , we have AttVer ( pk i , A ) = 1 where 

A ← AttReEnc 
(
rk ( i + τ−1 ) ↔ ( i + τ ) , pk i + τ−1 , pk i , AttReEnc 

(
· · · , AttReEnc 

(
rk i ↔ ( i+1 ) , pk i , pk i , Attest ( sk i , pk i , C i ) 

)
· · ·

))
2.3. Security definitions 

In this section, we define the security model of PRE-DET to capture the confidentiality requirements formalized in 

Section 2.1 , for Type-1, 2, 3, 4 adversaries against message confidentiality, and Type-5 adversary against attestation un- 

forgeability. 

Definition 2 (PD-IND-CCA1 security against Type-1 adversary) . Let � be a PRE-DET scheme. Suppose A 1 is a probabilistic 

polynomial-time (PPT) adversary who interacts with a challenger C to perform the following security game. 

Set-up : With a security parameter λ, the challenger runs the Setup procedure to produce public parameter par, which 

is given to the adversary. 

Phase 1 : The adversary is able to adaptively issue the following queries. 

• Uncorrupted key generation query O ukgen : With public parameter par, the challenger runs the KeyGen procedure to 

produce a pair of secret/public keys ( sk i , pk i ) , and gives pk i to A 1 . 

• Corrupted key generation query O ckgen : With public parameter par, the challenger runs the KeyGen procedure to 

produce a pair of secret/public keys ( sk i , pk i ) , which are given to A 1 . 

• Decryption query 1 O dec1 : For a query (C, pk ) , if pk was not generated by the KeyGen procedure, then the challenger 

returns ⊥ , otherwise the challenger returns DataDec ( sk , C) . 

• Attestation query O att : For a query (C, pk ) where C is a ciphertext under pk , if pk was not generated by the KeyGen 
procedure, then the challenger returns ⊥ , otherwise the challenger returns Attest ( sk , pk , C) . 

• Decryption query 2 O dec2 : For a query ((A, pk i ) , pk j ) where A is an attested ciphertext under pk j such that the at- 

testation was originally added by user U i , if either pk i or pk j was not generated by the KeyGen procedure, then the 

challenger returns ⊥ , otherwise the challenger returns AttDec ( pk i , pk j , sk j , A ) . 

Challenge : At the end of Phase 1, the adversary outputs two messages m 0 , m 1 ∈ R M and a challenge public key pk ∗, 
where pk ∗ is the public key of an uncorrupted user. The challenger chooses a random value b ∈ R {0, 1}, computes C ∗ ← 

DataEnc ( pk ∗, m b ) , and gives C ∗ to the adversary. 

Phase 2 : The adversary is able to issue queries in the same way as in Phase 1, except that C ∗ and its attested ciphertexts 

cannot be submitted for decryption. 

Guess: At the end of Phase 2, the adversary outputs a guess b ′ , and succeeds in the security game if b ′ = b. 

Let 

Adv 
pd - ind - cca1 
�, A 1 = 

∣∣∣Pr [ b ′ = b] − 1 

2 

∣∣∣
� is said to offer indistinguishability under adaptive chosen ciphertext attack (PD-IND-CCA1) for ciphertext against Type-1 

adversary if, for all PPT adversary A 1 , there exists a negligible function ε ( ·) such that Adv pd - ind - cca1 
�, A 1 

≤ ε(·) . 
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Definition 3 (PD-IND-CCA2 security against Type-2 adversary) . Let � be a PRE-DET scheme. Suppose A 2 is a PPT adversary 

who interacts with a challenger C to perform the following security game. 

Set-up : Same as in Definition 2 . 

Phase 1 : The adversary is able to adaptively issue the following queries. 

• Uncorrupted key generation query O ukgen : Same as in Definition 2 . 

• Corrupted key generation query O ckgen : Same as in Definition 2 . 

• Re-encryption key generation query O rkgen : For a queried pair ( pk i , pk j ) , where both pk i and pk j have been generated 

by the KeyGen procedure, the challenger returns rk i ↔ j ← ReKeyGen ( sk i , sk j ) . 

Remark 1. As noted in [4] , Section 2.1 for a bidirectional proxy re-encryption scheme, O rkgen requires that either both 

U i and U j are corrupted users, or both are uncorrupted. 

• Re-encryption query 1 O renc1 : For a query ((C i , pk i ) , pk j ) , where both pk i and pk j have been generated by 

the KeyGen procedure and C i is a ciphertext under pk i , the challenger returns a re-encrypted ciphertext C j = 

ReEnc ( ReKeyGen ( sk i , sk j ) , C i ) . 
• Attestation query O att : Same as in Definition 2 . 

• Re-encryption query 2 O renc2 : For a query ((A j , pk i , pk j ) , pk k ) , where all pk i , pk j , pk k have been generated by the 

KeyGen procedure, and A j is an attested ciphertext under pk j such that the attestation was originally added by user 

U i , the challenger returns a re-encrypted attested ciphertext A k = AttReEnc ( ReKeyGen ( sk j , sk k ) , pk j , pk i , A j ) . 

• Decryption query 1 O dec1 : Same as in Definition 2 . 

• Decryption query 2 O dec2 : Same as in Definition 2 . 

Challenge : At the end of Phase 1, the adversary outputs two messages m 0 , m 1 ∈ R M and a challenge public key pk ∗, 
where pk ∗ is the public key of an uncorrupted user U ∗. The challenger chooses a random value b ∈ R {0, 1}, computes 

C ∗ ← DataEnc ( pk ∗, m b ) , and gives C ∗ to the adversary. 

Phase 2 : The adversary is able to issue queries in the same way as in Phase 1, except that: 

• Re-encryption query 1 O renc1 : For a query ((C i , pk i ) , pk j ) , where both pk i and pk j have been generated by the 

KeyGen procedure and C i is a ciphertext under pk i , if pk j is the public key of a corrupted user U j and (C i , pk i ) is 

a derivative of (C ∗, pk ∗) , then the challenger returns ⊥ ; otherwise, the challenger returns a re-encrypted ciphertext 

C j = ReEnc ( ReKeyGen ( sk i , sk j ) , C i ) . 
The definition of derivative of (C ∗, pk ∗) will be defined below this definition. 

• Re-encryption query 2 O renc2 : For a query ((A j , pk i , pk j ) , pk k ) , where all pk i , pk j , pk k have been generated by 

the KeyGen procedure, and A j is an attested ciphertext under pk j such that the attestation was originally 

added by user U i , if pk k is the public key of a corrupted user U k and (A j , pk i , pk j ) is a derivative of 

(C ∗, pk ∗) , then the challenger returns ⊥ ; otherwise, the challenger returns a re-encrypted attested ciphertext A k = 

AttReEnc ( ReKeyGen ( sk j , sk k ) , pk j , pk i , A j ) . 

• Decryption query 1 O dec1 : Every derivative of (C ∗, pk ∗) cannot be submitted for decryption. 

• Decryption query 2 O dec2 : Every derivative of (C ∗, pk ∗) cannot be submitted for decryption. 

Guess: At the end of Phase 2, the adversary outputs a guess b ′ , and succeeds in the security game if b ′ = b. 

Let 

Adv 
pd - ind - cca2 
�, A 2 = 

∣∣∣Pr [ b ′ = b] − 1 

2 

∣∣∣
� is said to offer indistinguishability under adaptive chosen ciphertext attack (PD-IND-CCA2) for ciphertext against Type-2 

adversary if, for all PPT adversary A 2 , there exists a negligible function ε ( ·) such that Adv pd - ind - cca2 
�, A 2 

≤ ε(·) . 

Derivative of (C ∗, pk ∗) is defined as follows. For simplicity, let � � 	 denote that � is a derivative of 	 . 

• Reflexivity: (C ∗, pk ∗) � (C ∗, pk ∗) . 
• Transitivity: If (C ′ , pk ′ ) � (C ∗, pk ∗) and (C ′′ , pk ′′ ) � (C ′ , pk ′ ) , then (C ′′ , pk ′′ ) � (C ∗, pk ∗) . 
• Re-encryption produces a derivative: If C ′ ← O renc ((C, pk ) , pk ′ ) , then (C ′ , pk ′ ) � (C, pk ) . 

• Attestation produces a derivative: If (C ′ , pk ′ ) � (C ∗, pk ∗) , then (A, pk ′ ) � (C ∗, pk ∗) where A ← Attest ( sk ′ , pk ′ , C ′ ) . 
• Data sharing produces a derivative: Given rk i ↔ (i +1) ← O rkgen ( pk i , pk i +1 ) , rk (i +1) ↔ (i +2) ← O rkgen ( pk i +1 , pk i +2 ) , ���, 

rk (i + π) ↔ i ∗ ← O rkgen ( pk i + π , pk ∗) , where π denotes some non-negative integer, if O dec1 (C, pk i ) ∈ { m 0 , m 1 } , then 

(C, pk i ) � (C ∗, pk ∗) ; or if O dec2 ((A, pk i ) , pk j ) ∈ { m 0 , m 1 } where j ∈ [ i, i + π ] , then (A, pk i , pk j ) � (C ∗, pk ∗) . 

When the server has the equality test token, it is able to compare the ciphertexts owned by the users in the same clique, 

which implies the ciphertexts in this phase are distinguishable and the PRE-DET system cannot offer indistinguishability for 

encrypted user data under chosen plaintext/ciphertext attacks. In [40] , Yang et al. have noticed that indistinguishability- 

based security notions are not applicable to the public key encryption schemes with equality test on ciphertexts. 

Definition 4 (PD-OW-CCA3 security against Type-3 adversary) . Let � be a PRE-DET scheme. Suppose A 3 is a PPT adversary 

who interacts with a challenger C to perform the following security game. 
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Set-up : Same as in Definition 2 . 

Phase 1 : The adversary is able to adaptively issue the following queries. 

• Uncorrupted key generation query O ukgen : Same as in Definition 2 . 

• Corrupted key generation query O ckgen : Same as in Definition 2 . 

• Delegation generation query O delgen : For a queried pk i of some uncorrupted user U i , where pk i has been generated by 

the KeyGen procedure, the challenger returns Delegate ( sk i ) . 
• Attestation query O att : Same as in Definition 2 . 

• Decryption query 1 O dec1 : Same as in Definition 2 . 

• Decryption query 2 O dec2 : Same as in Definition 2 . 

Challenge : At the end of Phase 1, the adversary outputs a challenge public key pk ∗ of an uncorrupted user U ∗. The chal- 

lenger picks a message m ∗ ∈ R M , computes C ∗ ← DataEnc ( pk ∗, m ∗) , and gives C ∗ to adversary A 3 . 

Phase 2 : The adversary is able to issue queries in the same way as in Phase 1, except that C ∗ and its attested ciphertext 

cannot be submitted for decryption. 

Guess: At the end of Phase 2, the adversary outputs a guess m ′ , and succeeds in the security game if m ′ = m ∗. 

Let 

Adv 
pd - owcca3 
�, A 3 = Pr 

[
m ′ = m ∗

]
� is said to offer one-wayness under adaptive chosen ciphertext attack (PD-OW-CCA3) for ciphertext against Type-3 adver- 

sary if, for all PPT adversary A 3 , there exists a negligible function ε( · ) such that Adv pd - owcca3 
�, A 3 

≤ ε(·) . 

Definition 5 (PD-OW-CCA4 security against Type-4 adversary) . Let � be a PRE-DET scheme. Suppose A 4 is a PPT adversary 

who interacts with a challenger C to perform the following security game. 

Set-up : Same as in Definition 3 . 

Phase 1 : The adversary is able to adaptively issue the following queries. 

• Uncorrupted key generation query O ukgen : Same as in Definition 3 . 

• Corrupted key generation query O ckgen : Same as in Definition 3 . 

• Re-encryption key generation query O rkgen : Same as in Definition 3 . 

• Re-encryption query 1 O renc1 : Same as in Definition 3 . 

• Attestation query O att : Same as in Definition 3 . 

• Re-encryption query 2 O renc2 : Same as in Definition 3 . 

• Delegation generation query O delgen : For a queried pk i of some uncorrupted user U i , where pk i has been generated by 

the KeyGen procedure, the challenger returns Delegate ( sk i ) . 
• Decryption query 1 O dec1 : Same as in Definition 3 . 

• Decryption query 2 O dec2 : Same as in Definition 3 . 

Challenge : At the end of Phase 1, the adversary outputs a challenge public key pk ∗ of an uncorrupted user U ∗. The chal- 

lenger picks a message m ∗ ∈ R M , computes C ∗ ← DataEnc ( pk ∗, m ∗) , and gives C ∗ to adversary A 4 . 

Phase 2 : The adversary is able to issue queries in the same way as in Phase 1, except that: 

• Re-encryption query 1 O renc1 : Same as in Definition 3 . 

• Re-encryption query 2 O renc2 : Same as in Definition 3 . 

• Decryption query 1 O dec1 : Same as in Definition 3 . 

• Decryption query 2 O dec2 : Same as in Definition 3 . 

Guess: At the end of Phase 2, the adversary outputs a guess m ′ , and succeeds in the security game if m ′ = m ∗. 

Let 

Adv 
pd - owcca4 
�, A 4 = Pr 

[
m ′ = m ∗

]
� is said to offer one-wayness under adaptive chosen ciphertext attack (PD-OW-CCA4) for ciphertext against Type-4 adver- 

sary if, for all PPT adversary A 4 , there exists a negligible function ε ( ·) such that Adv pd - owcca4 
�, A 4 

≤ ε(·) . 

Definition 6 (PD-EUCMA security against Type-5 adversary) . Let � be a bidirectional PRE-DET scheme. Suppose A 5 is a PPT 

adversary who interacts with a challenger C to perform the following security game. 

Set-up : With a security parameter λ, the challenger runs the Setup procedure to produce public parameter par, which 

is given to the adversary. The challenger generates a pair of challenge key pair ( pk ∗, sk ∗) . 
Queries : The adversary is able to adaptively issue the queries as defined in Phase 1 of Definition 5 . 

Output : Eventually, the adversary outputs a tuple (C ∗, A ∗, pk ∗i ) . Adversary A 5 wins the game if both the following condi- 

tions are satisfied: 

1. (C ∗, pk ∗) has not been submitted in attestation queries; 

2. (A ∗, pk ∗, pk ∗i ) � (C ∗, pk ∗) , which implies AttDec ( pk ∗, pk ∗i , sk 
∗
i , A ∗) = DataDec ( sk ∗, C ∗) � = ⊥ and AttVer ( pk ∗, A ∗) = 1 . 
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Fig. 1. Procedure of ReKeyGen . 

Let 

Adv 
pd - eucma 
�, A 5 = Pr [ A 5 wins ] 

� is said to offer existential unforgeability under adaptively chosen message attack (PD-EUCMA) for attested ciphertext 

against Type-5 adversary if, for all PPT adversary A 5 , there exists a negligible function ε( · ) such that Adv pd - eucma 
�, A 5 

≤ ε(·) . 

3. A PRE-DET construction 

Suppose G = 〈 g〉 and G T are cyclic groups with prime order p and efficient group operations. The mapping ˆ e : G × G → 

G T is bilinear if the following properties are satisfied: 

• Bilinearity: ∀ μ, ν ∈ G , and ∀ x, y ∈ Z ∗p , ˆ e (μx , νy ) = ˆ e (μ, ν) xy ; 

• Non-degeneracy: ˆ e (g, g) � = 1 ; 

• Efficiency: ˆ e is efficiently computable. 

The security of our construction relies on the following complexity assumptions [1,36] . 

Computational Diffie-Hellman Assumption (CDH). Let G = 〈 g〉 be a cyclic group with prime order p . The CDH assumption 

states that given a tuple (g, g x , g y ) ∈ G 3 , where x, y ∈ R Z ∗p , any PPT algorithm has negligible advantage ε cdh in computing g xy . 

Divisible Computational Diffie-Hellman Assumption (DCDH). Let G = 〈 g〉 be a cyclic group with prime order p . The DDH 

assumption states that given a tuple (g, g 1 /x , g y ) ∈ G 3 , where x, y ∈ R Z ∗p , any PPT algorithm has negligible advantage ε dcdh in 

computing g xy . 

Bao, Deng and Zhu [1] proved that the DCDH and CDH assumptions are equivalent. 

We now present a PRE-DET construction in bilinear groups. 

Setup (1 λ) : Choose a bilinear map ˆ e : G × G → G T , where G = 〈 g〉 and G T are cyclic groups with prime order p . Let τG de- 

note the element size in G and τp = log p. Let OS = ( KGen , Sign , Vrfy ) be a strong one-time signature scheme with verifica- 

tion key space {0, 1} q ( λ) , where q ( λ) is a polynomial in λ. Pick two random elements h, ̄h ∈ R G and seven cryptographic hash 

functions: H 1 : { 0 , 1 } τp +2 λ+ q (λ) → Z p , H 2 : G → { 0 , 1 } τp +2 λ, H 3 : { 0 , 1 } τp + λ+ q (λ) → Z p , H 4 : G → G , H 5 : { 0 , 1 } τp +2 λ+2 τG → Z p , 

H 6 : { 0 , 1 } τp + λ+2 τG → Z p , H 7 : { 0 , 1 } 2 τp +2 λ+3 τG → G . The message space is M = Z p . Let the attestation space be A = Z p . The 

system public parameter is par = (G , G T , ̂  e , p, g, h, ̄h , H 1 , H 2 , H 3 , H 4 , H 5 , H 6 , H 7 , OS ) . 

KeyGen ( par ): Randomly choose x i , y i , z i ∈ R Z ∗p , set sk i, 1 = x i , sk i, 2 = y i , sk i, 3 = z i , and compute pk i, 1 = g x i , pk i, 2 = g y i , 

pk i, 3 = g z i . The secret key and public key are sk i = ( sk i, 1 , sk i, 2 , sk i, 3 ) and pk i = ( pk i, 1 , pk i, 2 , pk i, 3 ) , respectively. 

ReKeyGen ( sk i , sk j ) : On input the secret keys sk i and sk j , output the bidirectional re-encryption key rk i ↔ j = 

( sk j, 1 / sk i, 1 mod p, sk j, 2 / sk i, 2 mod p) . 

Similar to [2,4] , the ReKeyGen procedure can be run as follows (see Fig. 1 ): user U i randomly picks r 1 , r 2 from Z ∗p , sends 

r 1 / x i ,1 , r 2 / x i ,2 to user U j and r 1 , r 2 to the server. User U j computes r 1 x j ,1 / x i ,1 , r 2 x j ,2 / x i ,2 and gives them to the server to recover 

the re-encryption key ( x j ,1 / x i ,1 , x j ,2 / x i ,2 ). 

DataEnc ( pk i , m ) : For a given message m ∈ M , randomly select α, β ∈ R {0, 1} λ, and generate a ciphertext C = 

(c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8 ) where 

( osk , ovk ) ← OS . KGen (1 λ) , 

θ = H 1 (m ‖ α‖ β‖ ovk ) , c 1 = H 2 (g θ ) � (m ‖ α‖ β) , 

c 2 = pk θ
i, 1 , c 3 = h θ , 

ϑ = H 3 (m ‖ α‖ ovk ) , c 4 = pk ϑ i, 2 , 

c 5 = h̄ ϑ , c 6 = g m · H 4 (g ϑ ) , 
c 7 = OS . Sign ( osk , c 1 ‖ c 3 ‖ c 5 ‖ c 6 ) , c 8 = ovk . 

ReEnc ( rk i ↔ j , C i l ) : For a given re-encryption key rk i ↔ j and a ciphertext C i l = (c i l , 1 , c i l , 2 , · · · , c i l , 8 ) of user U i , check 

OS . Vrfy 
(
c i l , 8 , c i l , 7 , c i l , 1 ‖ c i l , 3 ‖ c i l , 5 ‖ c i l , 6 

) ? = 1 , (1) 

ˆ e 
(
c i l , 2 , h 

) ? = ˆ e 
(
pk i, 1 , c i l , 3 

)
, (2) 
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ˆ e 
(
c i l , 4 , ̄h 

) ? = ˆ e 
(
pk i, 2 , c i l , 5 

)
. (3) 

If some condition is not met, then output ⊥ and halt; otherwise compute a ciphertext C j l = (c j l , 1 , c j l , 2 , · · · , c j l , 8 ) of user U j , 
where c j l , 2 = (c i l , 2 ) 

rk i ↔ j, 1 , c j l , 4 = (c i l , 4 ) 
rk i ↔ j, 2 and c j l ,t = c i l ,t for the other components. 

DataDec ( sk i , C) : Given a ciphertext C = (c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8 ) , check whether it satisfies equalities in (1), (2) and (3) . 

If some condition is not met, then output ⊥ and halt; otherwise compute 

m ‖ α‖ β = c 1 � H 2 

(
( c 2 ) 

x −1 
i, 1 
)
, 

θ = H 1 (m ‖ α‖ β‖ c 8 ) , 

ϑ = H 3 (m ‖ α‖ c 8 ) . (4) 

Then verify 

c 2 
? = g sk i, 1 ·θ , (5) 

c 4 
? = g sk i, 2 ·ϑ , (6) 

and 

c 6 
? = g m · H 4 

(
g ϑ 

)
. (7) 

If all conditions are met, then output m , otherwise output ⊥ . 

Attest ( sk i , pk i , C) : Let m ← DataDec ( sk i , C) . Let att be the attestation of m and m ‖ α‖ β be the output of Formula (4) in 

decryption. Randomly select α′ , β ′ ∈ R {0, 1} λ and compute an attested ciphertext A = (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 ) as fol- 

lows: 

θ ′ = H 5 

(
m ‖ α′ ‖ β ′ ‖ pk i, 1 ‖ pk i, 2 

)
, a 1 = H 2 

(
g θ

′ )
�

(
m ‖ α′ ‖ β ′ ), 

a 2 = pk θ
′ 

i, 1 , a 3 = h θ
′ 
, 

ϑ ′ = H 6 

(
m ‖ α′ ‖ pk i, 1 ‖ pk i, 2 

)
, a 4 = pk ϑ 

′ 
i, 2 , 

a 5 = h̄ ϑ 
′ 
, a 6 = g m · H 4 

(
g ϑ 

′ )
, 

a 7 = H 7 ( a 1 ‖ a 3 ‖ a 5 ‖ a 6 ‖ at t ) 
sk i, 3 , a 8 = at t . 

AttReEnc ( rk i ↔ j , pk i , pk � , A i l 
) : Given re-encryption key rk i ↔ j and an attested ciphertext A i l 

= (a i l , 1 , a i l , 2 , · · · , a i l , 8 ) of user 

U i , where the attestation was added by user U � , check 

ˆ e (a i l , 7 , g) 
? = ˆ e 

(
H 7 (a i l , 1 ‖ a i l , 3 ‖ a i l , 5 ‖ a i l , 6 ‖ a i l , 8 ) , pk �, 3 

)
, (8) 

ˆ e (a i l , 2 , h ) 
? = ˆ e 

(
pk i, 1 , a i l , 3 

)
, (9) 

ˆ e 
(
a i l , 4 , ̄h 

) ? = ˆ e 
(
pk i, 2 , a i l , 5 

)
. (10) 

If some condition is not met, then output ⊥ and halt; otherwise compute an attested ciphertext A j l 
= (a j l , 1 , a j l , 2 , · · · , a j l , 8 ) 

of user U j , where a j l , 2 = (a i l , 2 ) 
rk i ↔ j, 1 , a j l , 4 = (a i l , 4 ) 

rk i ↔ j, 2 and a j l ,t = a i l ,t for the other components. 

AttVer ( pk i , A ) : Note that a 8 ∈ A is the attestation. Run the verification procedure in the same way as in Formula (8) : 

ˆ e (a 7 , g) 
? = ˆ e 

(
H 7 (a 1 ‖ a 3 ‖ a 5 ‖ a 6 ‖ a 8 ) , pk i, 3 

)
(11) 

AttDec ( pk i , pk j , sk j , A ) : Given an attested ciphertext A = (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 ) , check whether it satisfies the equal- 

ities in (11), (9) and (10) under public key pk j . If some condition is not met, then output ⊥ and halt; otherwise compute 

m ‖ α′ ‖ β ′ = a 1 � H 2 

(
( a 2 ) 

x −1 
j, 1 
)
, 

θ ′ = H 5 

(
m ‖ α′ ‖ β ′ ‖ pk i, 1 ‖ pk i, 2 

)
, 

ϑ ′ = H 6 

(
m ‖ α′ ‖ pk i, 1 ‖ pk i, 2 

)
. (12) 

Then verify 

a 2 
? = g sk j, 1 ·θ

′ 
, (13) 

a 4 
? = g sk j, 2 ·ϑ 

′ 
, (14) 

and 

a 6 
? = g m · H 4 

(
g ϑ 

′ )
. (15) 

Delegate ( sk i ) : Output the token tk i = sk i, 2 . 
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Fig. 2. Usage of the re-encryption and attestation procedures. 

Remark 2. Combining Delegate with ReKeyGen achieves a more powerful delegation clique. Suppose there is a chain of 

re-encryption keys rk (i −τ1 ) ↔ (i −τ1 +1) , · · · , rk (i −1) ↔ i , rk i ↔ (i +1) , · · · , rk (i + τ2 −1) ↔ (i + τ2 ) for some positive τ 1 and τ 2 . Once given tk i , 

the server also gets tk i −τ1 , · · · , tk i −1 , tk i +1 , · · · , tk i + τ2 . In this way, the server is allowed to compare ciphertexts of a clique of 

users U i −τ1 , · · · , U i −1 , U i , U i +1 , · · · , U i + τ2 . 

EqTest ( tk i , C i l /A i l 
, tk j , C j h /A j h 

) : For two (re-encrypted) ciphertexts C i l and C j h under the public keys pk i and pk j , respec- 

tively, check whether they encrypt the same message (i.e., m i l 
= m j h 

) as follows: 

c i l , 6 

H 4 

((
c i l , 4 

)tk −1 
i 
) ? = 

c j h , 6 

H 4 

((
c j h , 4 

)tk −1 
j 
) (16) 

The equality test for (re-encrypted) attested ciphertext pair (A i l 
, A j h 

) can be performed similarly. 

Remark 3. The EqTest procedure in our construction also supports equality test on (re-encrypted) ciphertexts and (re- 

encrypted) attested ciphertexts. 

Fig. 2 depicts how the procedures ReEnc , Attest and AttReEnc are invoked in achieving a secure data sharing clique 

for a message m . 

Soundness. For validating the soundness of the proposed scheme, the straightforward steps can be omitted. For decryption 

of a ciphertext, we need only to show the following equality holds: 

c 1 � H 2 

(
( c 2 ) 

x −1 
i, 1 
)

= 
(
H 2 

(
g θ

)
� (m ‖ α‖ β) 

)
� H 2 

((
pk θi, 1 

)x −1 
i, 1 
)

= m ‖ α‖ β

For equality test, we have 

c i l , 6 

H 4 

((
c i l , 4 

)tk −1 
i 
) = 

g m i l · H 4 

(
g ϑ i l 

)
H 4 

((
pk 

ϑ i l 
i, 2 

)x −1 
i, 2 
) = 

g m i l · H 4 

(
g ϑ i l 

)
H 4 

(
g ϑ i l 

) = g m i l 

and similarly 

c j h , 6 

H 4 

((
c j h , 4 

)tk −1 
j 
) = 

g m j h · H 4 

(
g ϑ j h 

)
H 4 

((
pk 

ϑ j h 
j, 2 

)x −1 
j, 2 
) = 

g m j h · H 4 

(
g ϑ j h 

)
H 4 

(
g ϑ j h 

) = g m j h 

Thus, m i l 
= m j h 

if and only if Equality (16) holds. 

4. Security analysis 

Theorem 1. Suppose the DCDH assumption holds in group G . The proposed PRE-DET scheme offers PD-IND-CCA1 security for 

ciphertext against Type-1 adversary in the random oracle model. 

The proof can be captured as a special case of Theorem 2 without two types of re-encryption queries, which is thus 

omitted here. Specifically, if there is a Type-1 PPT adversary A 1 that has non-negligible advantage ε in attacking the PD- 

IND-CCA1 security for ciphertext in the PRE-DET scheme, then one can construct an algorithm I to solve the DCDH problem 

with non-negligible probability ε dcdh such that 

ε dcdh ≥ 1 

q H 2 

(
2 ε − q H 1 + q H 5 

4 λ
− q H 3 + q H 6 

2 λ
− q H 4 + 3 q D 

p 
− q D 

p · 4 λ
− (q H 1 + q H 3 ) · ρ − Pr [ A 1 breaks OS ] 

)

where A 1 is able to issue at most q D decryption queries to O dec1 , and at most q H 1 , q H 2 , q H 3 , q H 4 , q H 5 and q H 6 hash queries 

to H 1 , H 2 , H 3 , H 4 , H 5 and H 6 , respectively. OS = ( KGen , Sign , Vrfy ) is a strong one-time signature scheme, where KGen has 

super-logarithmic minimum entropy and maximum probability ρ of outputting a given verification key. 

Theorem 2. Suppose the DCDH assumption holds in group G . The proposed PRE-DET scheme offers PD-IND-CCA2 security for 

ciphertext against Type-2 adversary in the random oracle model. 
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The following proof follows the standard framework established in [4,36] . 

Proof. Let A 2 be a Type-2 PPT adversary that has non-negligible advantage ε in attacking the PD-IND-CCA2 security for 

ciphertext in the PRE-DET scheme. Suppose A 2 issues at most q D decryption queries to O dec1 , at most q H 1 , q H 2 , q H 3 , q H 4 , 

q H 5 and q H 6 hash queries to H 1 , H 2 , H 3 , H 4 , H 5 and H 6 , respectively, at most q R 1 re-encryption queries to O renc1 , and at 

most q R 2 re-encryption queries to O renc2 . Let OS = ( KGen , Sign , Vrfy ) be a strong one-time signature scheme, where KGen 

has super-logarithmic minimum entropy and maximum probability ρ of outputting a given verification key. We show that 

if such an adversary A 2 exists, then one can construct an algorithm I to solve the DCDH problem with non-negligible 

probability ε dcdh . 

Let G = 〈 g〉 and G T be cycle groups with prime order p and bilinear map ˆ e : G × G → G T . At first, algorithm I is given 

a DCDH instance (g, g 1 /u , g v ) ∈ G 3 . The goal of I is to compute g uv . Algorithm I simulates the challenger and interacts with 

adversary A 2 as follows. 

Set-up : Algorithm I randomly picks ˜ a , ̃  b ∈ R Z ∗p , computes h = g ̃ a /u and h̄ = g 
˜ b , and sets the system public parameter as 

par = (G , G T , ̂  e , p, g, h, ̄h , H 1 , H 2 , · · · , H 7 , OS ) . 

Algorithm I runs ( osk ∗, ovk ∗) ← OS . KGen (1 λ) and records the key pair. 

Phase 1 : The adversary adaptively makes the following queries. 

• H 1 hash query O H 1 : For answering O H 1 queries, algorithm I maintains a list L 1 which is initially empty. For an input 

tuple (m, α, β, ovk ) , if there exists an entry (m, α, β, ovk , θ ) ∈ L 1 , then O H 1 responds with θ ; otherwise, a random 

value θ ∈ R Z ∗p is picked and returned, and L 1 is updated as L 1 ∪ (m, α, β, ovk , θ ) . 

• H 2 hash query O H 2 : For answering O H 2 queries, algorithm I maintains a list L 2 which is initially empty. For an input 

element T , if there exists an entry (T , �) ∈ L 2 , then O H 2 responds with �; otherwise, a random value � ∈ R { 0 , 1 } τp +2 λ

is picked and returned, and L 2 is updated as L 2 ∪ (T , �) . 

• H 3 hash query O H 3 : For answering O H 3 queries, algorithm I maintains a list L 3 which is initially empty. For an input 

tuple (m, α, ovk ) , if there exists an entry (m, α, ovk , ϑ) ∈ L 3 , then O H 3 responds with ϑ; otherwise, a random value 

ϑ ∈ R Z ∗p is picked and returned, and L 3 is updated as L 3 ∪ (m, α, ovk , ϑ) . 

• H 4 hash query O H 4 : For answering O H 4 queries, algorithm I maintains a list L 4 which is initially empty. For an input 

element T ∈ G , if there exists an entry (T , �) ∈ L 4 , then O H 4 responds with �; otherwise, a random value � ∈ R G is 

picked and returned, and L 4 is updated as L 4 ∪ (T , �) . 

• H 5 hash query O H 5 : For answering O H 5 queries, algorithm I maintains a list L 5 which is initially empty. For an input 

tuple (m, α, β, pk 1 , pk 2 ) , if there exists an entry (m, α, β, pk 1 , pk 2 , θ
′ ) ∈ L 5 , then O H 5 responds with θ ′ ; otherwise, a 

random value θ ′ ∈ R Z ∗p is picked and returned, and L 5 is updated as L 5 ∪ (m, α, β, pk 1 , pk 2 , θ
′ ) . 

• H 6 hash query O H 6 : For answering O H 6 queries, algorithm I maintains a list L 6 which is initially empty. For an 

input tuple (m, α, pk 1 , pk 2 ) , if there exists an entry (m, α, pk 1 , pk 2 , ϑ ′ ) ∈ L 6 , then O H 6 responds with ϑ′ ; otherwise, a 

random value ϑ ′ ∈ R Z ∗p is picked and returned, and L 6 is updated as L 6 ∪ (m, α, pk 1 , pk 2 , ϑ ′ ) . 
• H 7 hash query O H 7 : For answering O H 7 queries, algorithm I maintains a list L 7 which is initially empty. For an input 

tuple ( a 1 , a 3 , a 5 , a 6 , att ), if there exists an entry (a 1 , a 3 , a 5 , a 6 , at t , �) ∈ L 7 , then O H 7 responds with �; otherwise, a 

random value � ∈ R G is picked and returned, and L 7 is updated as L 7 ∪ (a 1 , a 3 , a 5 , a 6 , at t , �) . 

• Uncorrupted key generation query O ukgen : Algorithm I randomly picks x i, 1 , x i, 2 , x i, 3 ∈ R Z ∗p , sets sk i, 2 = x i, 2 , sk i, 3 = x i, 3 , 

and computes pk i, 1 = (g 1 /u ) x i, 1 = g x i, 1 /u , pk i, 2 = g x i, 2 and pk i, 3 = g x i, 3 . Next, algorithm I gives pk i = ( pk i, 1 , pk i, 2 , pk i, 3 ) to 

A 2 and adds (i, x i, 1 , pk i, 1 , x i, 2 , pk i, 2 , x i, 3 , pk i, 3 , 0) to the list L key , where ‘0’ denotes that pk i is an uncorrupted public 

key. 

• Corrupted key generation query O ckgen : Algorithm I randomly picks x j, 1 , x j, 2 , x j, 3 ∈ R Z ∗p , sets sk j, 1 = x j, 1 , sk j, 2 = x j, 2 
and sk j, 3 = x j, 3 , and computes pk j, 1 = g x j, 1 , pk j, 2 = g x j, 2 and pk j, 3 = g x j, 3 . Next, algorithm I gives ( sk j , pk j ) to A 2 and 

adds ( j, sk j, 1 , pk j, 1 , sk j, 2 , pk j, 2 , sk j, 3 , pk j, 3 , 1) to the list L key , where ‘1’ denotes that pk j is a corrupted public key. 

• Re-encryption key generation query O rkgen : For a queried pair ( pk i , pk j ) , if one of U i and U j is corrupted while the 

other is uncorrupted, then returns ⊥ . Otherwise, algorithm I outputs rk i ↔ j = (x j, 1 /x i, 1 mod p, x j, 2 /x i, 2 mod p) . 

• Re-encryption query O renc1 : For a query ((C i , pk i ) , pk j ) , algorithm I checks whether C i = (c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8 ) 

satisfies the equalities in (1), (2) and (3) . If some condition is not met, which means the ciphertext is not well-formed, 

then algorithm I returns ⊥ and halts. Otherwise, algorithm I works as follows: 

− If both users U i and U j are either corrupted or uncorrupted, then algorithm I computes rk i ↔ j = 

(x j, 1 /x i, 1 mod p, x j, 2 /x i, 2 mod p) and returns ReEnc ( rk i ↔ j , C i ) . 

− If one of U i and U j is corrupted and the other is uncorrupted, then algorithm I searches L 1 for a tuple 

(m, α, β, ovk , θ ) such that pk θi, 1 = c 2 and h θ = c 3 . If no such tuple can be found, algorithm I returns ⊥ ; oth- 

erwise, it retrieves (m, α, ovk , ϑ) from L 3 . If pk ϑ i, 2 = c 4 and h̄ ϑ = c 5 , then it computes c ′ 
2 = pk θj, 1 and c ′ 

4 = pk ϑ j, 2 , 

and returns (c 1 , c 
′ 
2 , c 3 , c 

′ 
4 , c 5 , c 6 , c 7 , c 8 ) ; otherwise it returns ⊥ . 

• Attestation query O att : For a query (C i , pk i ) , algorithm I performs the oracle O dec1 with input (C i , pk i ) . If O dec1 out- 

puts ⊥ , then algorithm I returns ⊥ and halts. Otherwise, letting (m, α, β, c 8 , θ ) ∈ L 1 be the retrieved tuple in O dec1 , 

algorithm I runs the oracle O H 5 with input (m, α, β, pk i, 1 , pk i, 2 ) to get θ ′ , runs O H 2 with input g θ
′ 

to get �′ , runs 

O H 6 with input (m, α, pk i, 1 , pk i, 2 ) to get ϑ′ , and runs O H 4 with input g ϑ 
′ 

to get �′ . Then algorithm I computes 
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a 1 = �′ 
� (m ‖ α‖ β) , a 2 = pk θ

′ 
i, 1 , a 3 = h θ

′ 
, a 4 = pk ϑ 

′ 
i, 2 , a 5 = h̄ ϑ 

′ 
and a 6 = g m · �′ , chooses a 8 = att ∈ Z p , runs O H 7 with 

input ( a 1 , a 3 , a 5 , a 6 , a 8 ) to get �, computes a 7 = �sk i, 3 , and returns A i = (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 ) . 

• Re-encryption query O renc2 : For a query ((A j , pk i , pk j ) , pk k ) , algorithm I checks whether (A j , pk i , pk j ) satisfies the 

equalities in (8), (9) and (10) . If some condition is not met, which means the attested ciphertext is not well-formed, 

then algorithm I returns ⊥ and halts. Otherwise, algorithm I works as follows: 

− If both users U j and U k are either corrupted or uncorrupted, then algorithm I computes rk j↔ j = 

(x k, 1 /x j, 1 mod p, x k, 2 /x j, 2 mod p) and returns AttReEnc ( rk j↔ k , A j ) . 

− If one of U j and U k is corrupted and the other is uncorrupted, then algorithm I searches L 5 for a tuple 

(m, α, β, pk i, 1 , pk i, 2 , θ
′ ) such that pk θ

′ 
j, 1 = a 2 and h θ

′ = a 3 . If no such tuple can be found, then algorithm I re- 

turns ⊥ ; otherwise, it retrieves (m, α, pk i, 1 , pk i, 2 , ϑ ′ ) from L 6 . If pk ϑ 
′ 

j, 2 = a 4 and h̄ ϑ 
′ = a 5 , then algorithm I com- 

putes a ′ 2 = pk θ
′ 

k, 1 and a ′ 4 = pk ϑ 
′ 

k, 2 , and returns (a 1 , a 
′ 
2 , a 3 , a 

′ 
4 , a 5 , a 6 , a 7 , a 8 ) ; otherwise it returns ⊥ . 

• Decryption query O dec1 : For input ciphertext (C i , pk i ) , algorithm I retrieves (i, x i, 1 , pk i, 1 , x i, 2 , pk i, 2 , x i, 3 , pk i, 3 , ς ) from 

L key . If ς = 1 , then algorithm I returns DataDec ( sk i , C) . Otherwise, it checks if the queried ciphertext satisfies the 

equalities in (1), (2) and (3) . If at least one condition is not met, then algorithm I returns ⊥ . Otherwise, it searches 

lists L 1 and L 2 for tuples (m, α, β, c 8 , θ ) ∈ L 1 and (T , �) ∈ L 2 such that � � (m ‖ α‖ β) = c 1 , pk θi, 1 = c 2 , T = g θ and 

c 3 = h θ . If such tuples exist, algorithm I retrieves (m, α, c 8 , ϑ) ∈ L 3 and (g ϑ , �) ∈ L 4 , and checks if both pk ϑ i, 2 = c 4 
and c 6 = g m · � hold. If so, algorithm I gives m to the adversary A 2 ; otherwise, it returns ⊥ . 

• Decryption query O dec2 : For a query (A j , pk i , pk j ) , algorithm I retrieves ( j, x j, 1 , pk j, 1 , x j, 2 , pk j, 2 , x j, 3 , pk j, 3 , ς ) from L key . 

If ς = 1 , then algorithm I returns AttDec ( pk i , pk j , sk j , A j ) . Otherwise, it checks if the queried attested ciphertext sat- 

isfies the equalities in (8), (9) and (10) . If at least one condition is not met, then algorithm I returns ⊥ . Otherwise, it 

searches lists L 5 and L 2 for tuples (m, α, β, pk i, 1 , pk i, 2 , θ
′ ) ∈ L 5 and (T , �) ∈ L 2 such that � � (m ‖ α‖ β) = a 1 , pk θ

′ 
j, 1 = 

a 2 , T = g θ
′ 

and a 3 = h θ
′ 
. If such tuples exist, then algorithm I retrieves (m, α, pk i, 1 , pk i, 2 , ϑ ′ ) ∈ L 6 and (g ϑ 

′ 
, �′ ) ∈ L 4 , 

and checks whether both pk ϑ 
′ 

j, 2 = a 4 and a 6 = g m · �′ hold. If so, algorithm I gives m to the adversary A 2 ; otherwise, 

it returns ⊥ . 

Challenge : Adversary A 2 outputs two random messages m 0 and m 1 of the same length and a challenge public key pk ∗. 

Then, algorithm I generates the challenge ciphertext C ∗ = (c ∗
1 , c 

∗
2 , · · · , c ∗

8 ) as follows: 

• Retrieve (i ∗, x ∗
1 , pk ∗1 , x 

∗
2 , pk ∗2 , x 

∗
3 , pk ∗3 , ς ∗) from L key . Note that ς ∗ = 0 , which implies pk ∗1 = g x 

∗
1 /u , pk ∗2 = g x 

∗
2 and pk ∗3 = g x 

∗
3 . 

• Randomly pick α∗, β∗ ∈ R {0, 1} λ, ϑ ∗ ∈ R Z ∗p , b ∈ R {0, 1}, S ∈ R { 0 , 1 } τp +2 λ and U ∈ R G , compute c ∗1 = S, c ∗2 = (g v ) x 
∗
1 , 

c ∗3 = (g v ) ̃ a , c ∗4 = ( pk ∗2 ) 
ϑ ∗ , c ∗5 = h̄ ϑ 

∗
, c ∗6 = g m b · U, c ∗7 = OS . Sign ( osk ∗, c ∗1 ‖ c ∗3 ‖ c ∗5 ‖ c ∗6 ) and c ∗8 = ovk ∗. This process implicitly 

defines θ ∗ = H 1 (m b ‖ α∗‖ β∗‖ ovk ∗) = u v , H 2 (g θ
∗
) = (m b ‖ α∗‖ β∗) � S, H 3 (m b ‖ α∗‖ ovk ∗) = ϑ ∗ and H 4 (g ϑ 

∗
) = U . 

Then, algorithm I returns the challenge ciphertext C ∗. 

Phase 2 : The adversary can continue to make queries except that the derivatives of C ∗ cannot be submitted for decryption 

and re-encryption queries. 

Guess : Eventually, adversary A 2 returns a guess b ′ . Algorithm I randomly picks a pair ( T , �) from the list H 2 and outputs 

T as the solution to the given DCDH problem instance. 

Analysis . The setup and key generation responses are perfectly simulated, where the parameters and keys are distributed 

in the same way as in the proposed PRE-DET scheme. As long as adversary A 2 does not submit (m b , α
∗, β∗, ovk ∗) to O H 1 , 

g uv to O H 2 , (m b , α
∗, ovk ∗) to O H 3 , g ϑ 

∗
to O H 4 , (m b , α

∗, β∗, pk ∗1 , pk ∗2 ) to O H 5 , nor (m b , α
∗, pk ∗1 , pk ∗2 ) to O H 6 , the simulation 

of the random oracles are perfect. Let EvtH ∗
1 , EvtH 

∗
2 , EvtH 

∗
3 , EvtH 

∗
4 , EvtH 

∗
5 and EvtH ∗

6 respectively denote the events that 

(m b , α
∗, β∗, ovk ∗) was submitted to O H 1 , g 

uv was submitted to O H 2 , (m b , α
∗, ovk ∗) was submitted to O H 3 , g 

ϑ ∗ was submitted 

to O H 4 , ( m b , α
∗, β∗, ∗, ∗) was submitted to O H 5 , and ( m b , α

∗, ∗, ∗) was submitted to O H 6 . 

The challenge ciphertext of message m b is identically distributed as in the PRE-DET scheme. Since H 1 , H 2 and H 3 are 

random oracles, it can be seen that c ∗
1 = H 2 (g u v ) � (m b ‖ α∗‖ β∗) = H 2 (g θ

∗
) � (m b ‖ α∗‖ β∗) , c ∗

2 = (g v ) x 
∗
1 = (g x 

∗
1 /u ) u v = ( pk ∗1 ) 

θ∗
, 

c ∗
3 = (g v ) ̃ a = (g ̃ a /u ) u v = h θ

∗
, and all other components directly follow the proposed scheme. Thus, adversary A 2 would guess 

b ′ = b with the same advantage as in a real execution of the PRE-DET scheme. 

The decryption responses by O dec1 are also perfect, except that algorithm I cannot always answer decryption queries 

with c 8 = ovk ∗ and may reject some valid ciphertexts. First, in Phase 1, adversary A 2 has a (q H 1 + q H 3 ) · ρ chance of querying 

oracle O dec1 with a component c 8 = ovk ∗. Second, in Phase 2, if the adversary queries O dec1 on a well-formed ciphertext C 

such that c 8 = ovk ∗ and C is not a derivative of C ∗, then A 2 breaks the one-time signature scheme OS , which means the 

adversary’s chance of submitting such queries equals to Pr [ A 2 breaks OS ] . Third, consider a well-formed ciphertext C is 

submitted for decryption but it is generated without querying (m ‖ α‖ β‖ ovk ) to H 1 , g θ to H 2 , (m ‖ α‖ ovk ) to H 3 and g ϑ to 

H 4 , where θ = H 1 (m ‖ α‖ β‖ ovk ) and ϑ = H 3 (m ‖ α‖ ovk ) . Let Wform denote the event that C is a well-formed ciphertext, and 

let EvtH 1 , EvtH 2 , EvtH 3 , EvtH 4 respectively denote the events that (m ‖ α‖ β‖ ovk ) was queried to H 1 , g 
θ was queried to H 2 , 

(m ‖ α‖ ovk ) was queried to H 3 , and g ϑ was queried to H 4 . Thus, 

Pr [ Wform | ¬ EvtH 1 ∨ ¬ EvtH 2 ∨ ¬ EvtH 3 ∨ ¬ EvtH 4 ] 

≤ Pr [ Wform | ¬ EvtH 1 ] + Pr [ Wform | ¬ EvtH 2 ] + Pr [ Wform | ¬ EvtH 3 ] + Pr [ Wform | ¬ EvtH 4 ] 
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≤ 1 

p 
+ 

1 

2 τp +2 λ
+ 

1 

p 
+ 

1 

p 
= 

3 

p 
+ 

1 

p · 4 λ
(17) 

Let DecErr denote the event that the above defined cases happen in decryption queries to O dec1 . Thus, 

Pr [ DecErr ] ≤ (q H 1 + q H 3 ) · ρ + Pr [ A 2 breaks OS ] + 
3 q D 

p 
+ 

q D 

p · 4 λ

The responses to re-encryption queries O renc1 are perfect, as long as no well-formed ciphertexts are submitted which are 

produced without querying to H 1 , H 2 , H 3 and H 4 . Let ReErr1 denote the event that such ciphertexts are queried to O renc1 . 

Since both H 1 and H 3 are random oracles, 

Pr [ ReErr1 ] ≤ q R 1 
p 

+ 
q R 1 
p 

= 
2 q R 1 

p 
. 

Similarly, the responses to re-encryption queries O renc2 are perfect, as long as no well-formed attested ciphertexts are sub- 

mitted which are produced without querying to H 2 , H 4 , H 5 , H 6 and H 7 . Let ReErr2 denote the event that such ciphertexts 

are queried to O renc2 . Since both H 5 and H 6 are random oracles, we know 

Pr [ ReErr2 ] ≤ q R 2 
p 

+ 
q R 2 
p 

= 
2 q R 2 

p 
. 

Let Good denote the event EvtH ∗
1 ∨ EvtH ∗

2 ∨ EvtH ∗
3 ∨ EvtH ∗

4 ∨ EvtH ∗
5 ∨ EvtH ∗

6 ∨ DecErr ∨ ReErr1 ∨ ReErr2 . If Good does not 

happen, then adversary A 2 can get no advantage in guessing b ′ = b, that is, Pr [ b ′ = b|¬ Good ] = 1 / 2 . Thus, according to 

Theorem 1 , ∣∣∣Pr [ b ′ = b] − 1 

2 

∣∣∣ ≤ 1 

2 
Pr [ Good ] 

We have 

ε = 

∣∣∣Pr [ b ′ = b] − 1 

2 

∣∣∣
≤ 1 

2 
Pr [ Good ] 

= 
1 

2 
Pr [ EvtH ∗1 ∨ EvtH ∗2 ∨ EvtH ∗3 ∨ EvtH ∗4 ∨ EvtH ∗5 ∨ EvtH ∗6 ∨ DecErr ∨ ReErr1 ∨ ReErr2 ] 

≤ 1 

2 
( Pr [ EvtH ∗1 ] + Pr [ EvtH ∗2 ] + Pr [ EvtH ∗3 ] + Pr [ EvtH ∗4 ] + Pr [ EvtH ∗5 ] + Pr [ EvtH ∗6 ] + Pr [ DecErr ] 

+ Pr [ ReErr1 ] + Pr [ ReErr2 ] ) 

As α∗ and β∗ are randomly chosen from {0, 1} λ, we have Pr [ EvtH ∗
1 ] ≤

q H 1 
4 λ

, Pr [ EvtH ∗
3 ] ≤

q H 3 
2 λ

, Pr [ EvtH ∗
4 ] ≤

q H 4 
p , Pr [ EvtH ∗

5 ] ≤
q H 5 
4 λ

and Pr [ EvtH ∗6 ] ≤
q H 6 
2 λ

. Thus, 

EvtH 
∗
2 ≥ 2 ε − ( Pr [ EvtH 

∗
1 ] + Pr [ EvtH 

∗
3 ] + Pr [ EvtH 

∗
4 ] + Pr [ EvtH 

∗
5 ] + Pr [ EvtH 

∗
6 ] + Pr [ DecErr ] 

+ Pr [ ReErr 1 ] + Pr [ ReErr 2 ] ) 

≥ 2 ε − q H 1 + q H 5 
4 λ

− q H 3 + q H 6 
2 λ

− q H 4 + 3 q D + 2 q R 1 + 2 q R 2 
p 

− q D 

p · 4 λ
−

(
q H 1 + q H 3 

)
· ρ − Pr [ A 2 brea ks OS ] 

Therefore, if event EvtH ∗
2 happens, then algorithm I can solve the given DCDH instance with advantage 

ε dcdh ≥ 1 

q H 2 

(
2 ε − q H 1 + q H 5 

4 λ
− q H 3 + q H 6 

2 λ
− q H 4 + 3 q D + 2 q R 1 + 2 q R 2 

p 
− q D 

p · 4 λ
− (q H 1 + q H 3 ) · ρ − Pr [ A 2 breaks OS ] 

)

This concludes Theorem 2 . �

Theorem 3. Suppose the DCDH assumption holds in group G . The proposed PRE-DET scheme offers PD-OW-CCA3 security for 

ciphertext against Type-3 adversary in the random oracle model. 

The proof can be captured as a special case of Theorem 4 without two types of re-encryption queries, which is thus 

omitted here. Specifically, if there is a Type-3 PPT adversary A 3 that has non-negligible advantage ε in attacking the PD- 

OW-CCA3 security for ciphertext in the PRE-DET scheme, then one can construct an algorithm I to solve the DCDH problem 

with non-negligible probability ε dcdh such that 

ε dcdh ≥ 1 

q H 2 

(
ε − q H 1 + q H 5 

4 λ
− q H 3 + q H 6 

2 λ
− q H 4 + 3 q D 

p 
− q D 

p · 4 λ
− (q H 1 + q H 3 ) · ρ − Pr [ A 3 breaks OS ] 

)

where A 3 is able to issue at most q D decryption queries to O dec1 , and at most q H 1 , q H 2 , q H 3 , q H 4 , q H 5 and q H 6 hash queries 

to H 1 , H 2 , H 3 , H 4 , H 5 and H 6 , respectively. OS = ( KGen , Sign , Vrfy ) is a strong one-time signature scheme, where KGen has 

super-logarithmic minimum entropy and maximum probability ρ of outputting a given verification key. 
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Theorem 4. Suppose the DCDH assumption holds in group G . The proposed PRE-DET scheme offers PD-OW-CCA4 security for 

ciphertext against Type-4 adversary in the random oracle model. 

The following proof follows the standard framework established in [4,29,36] . 

Proof. Let A 4 be a Type-4 PPT adversary that has non-negligible advantage ε in attacking the PD-OW-CCA4 security for 

ciphertext in the PRE-DET scheme. Suppose A 4 issues at most q D decryption queries to O dec1 , at most q H 1 , q H 2 , q H 3 , q H 4 , 

q H 5 and q H 6 hash queries to H 1 , H 2 , H 3 , H 4 , H 5 and H 6 , respectively, at most q R 1 re-encryption queries to O renc1 , and at 

most q R 2 re-encryption queries to O renc2 . Let OS = ( KGen , Sign , Vrfy ) be a strong one-time signature scheme, where KGen 

has super-logarithmic minimum entropy and maximum probability ρ of outputting a given verification key. We show that 

if such an adversary A 4 exists, then one can construct an algorithm I to solve the DCDH problem with non-negligible 

probability ε dcdh . 

Let G = 〈 g〉 and G T be cycle groups with prime order p and bilinear map ˆ e : G × G → G T . At first, algorithm I is given 

a DCDH instance (g, g 1 /u , g v ) ∈ G 3 . The goal of I is to compute g uv . Algorithm I simulates the challenger and interacts with 

adversary A 4 as follows. 

Set-up : Algorithm I randomly picks ˜ a , ̃  b ∈ R Z ∗p , computes h = g ̃ a /u and h̄ = g 
˜ b , and sets the system public parameter as 

par = (G , G T , ̂  e , p, g, h, ̄h , H 1 , H 2 , · · · , H 7 , OS ) . 

Algorithm I runs ( osk ∗, ovk ∗) ← OS . KGen (1 λ) and records the key pair. 

Phase 1 : The adversary adaptively makes the following queries. 

• H 1 hash query O H 1 : Same as in the proof of Theorem 2 . 

• H 2 hash query O H 2 : Same as in the proof of Theorem 2 . 

• H 3 hash query O H 3 : Same as in the proof of Theorem 2 . 

• H 4 hash query O H 4 : Same as in the proof of Theorem 2 . 

• H 5 hash query O H 5 : Same as in the proof of Theorem 2 . 

• H 6 hash query O H 6 : Same as in the proof of Theorem 2 . 

• H 7 hash query O H 7 : Same as in the proof of Theorem 2 . 

• Uncorrupted key generation query O ukgen : Same as in the proof of Theorem 2 . 

• Corrupted key generation query O ckgen : Same as in the proof of Theorem 2 . 

• Re-encryption key generation query O rkgen : Same as in the proof of Theorem 2 . 

• Re-encryption query O renc1 : Same as in the proof of Theorem 2 . 

• Attestation query O att : Same as in the proof of Theorem 2 . 

• Re-encryption query O renc2 : Same as in the proof of Theorem 2 . 

• Delegation generation query O delgen : For a query pk i , algorithm I outputs x i ,2 . 

• Decryption query O dec1 : Same as in the proof of Theorem 2 . 

• Decryption query O dec2 : Same as in the proof of Theorem 2 . 

Challenge : Adversary A 4 outputs a challenge public key pk ∗. Then, algorithm I picks a message m ∗ ∈ R Z p and generates 

the challenge ciphertext C ∗ = (c ∗1 , c 
∗
2 , · · · , c ∗8 ) as follows: 

• Retrieve (i ∗, x ∗
1 , pk ∗1 , x 

∗
2 , pk ∗2 , x 

∗
3 , pk ∗3 , ς ∗) from L key . Note that ς ∗ = 0 , which implies pk ∗1 = g x 

∗
1 /u , pk ∗2 = g x 

∗
2 and pk ∗3 = g x 

∗
3 . 

• Randomly pick α∗, β∗ ∈ R {0, 1} λ, ϑ ∗ ∈ R Z ∗p , S ∈ R { 0 , 1 } τp +2 λ and U ∈ R G , compute c ∗
1 = S, c ∗

2 = (g v ) x 
∗
1 , c ∗

3 = (g v ) ̃ a , 

c ∗
4 = ( pk ∗2 ) 

ϑ ∗ , c ∗
5 = h̄ ϑ 

∗
, c ∗

6 = g m ∗ · U, c ∗
7 = OS . Sign ( osk ∗, c ∗

1 ‖ c ∗3 ‖ c ∗5 ‖ c ∗6 ) and c ∗
8 = ovk ∗. This process implicitly defines 

θ ∗ = H 1 (m ∗‖ α∗‖ β∗‖ ovk ∗) = u v , H 2 (g θ
∗
) = (m ∗‖ α∗‖ β∗) � S, H 3 (m ∗‖ α∗‖ ovk ∗) = ϑ ∗ and H 4 (g ϑ 

∗
) = U . 

Then, algorithm I returns the challenge ciphertext C ∗. 

Phase 2 : The adversary can continue to make queries except that the derivatives of C ∗ cannot be submitted for decryption 

and re-encryption queries. 

Guess : Eventually, adversary A 4 outputs a guess m ′ . Algorithm I randomly picks a pair ( T , �) from the list H 2 and 

outputs T as the solution to the given DCDH problem instance. 

Analysis . The setup and key generation responses are perfectly simulated, where the parameters and keys are distributed 

in the same way as in the proposed PRE-DET scheme. As long as adversary A 4 does not submit (m ∗, α∗, β∗, ovk ∗) to O H 1 , 

g uv to O H 2 , (m ∗, α∗, ovk ∗) to O H 3 , g ϑ 
∗

to O H 4 , (m ∗, α∗, β∗, pk ∗1 , pk ∗2 ) to O H 5 , nor (m ∗, α∗, pk ∗1 , pk ∗2 ) to O H 6 , the simulation 

of the random oracles are perfect. Let EvtH ∗1 , EvtH 
∗
2 , EvtH 

∗
3 , EvtH 

∗
4 , EvtH 

∗
5 and EvtH ∗6 respectively denote the events that 

(m ∗, α∗, β∗, ovk ∗) was submitted to O H 1 , g 
uv was submitted to O H 2 , (m ∗, α∗, ovk ∗) was submitted to O H 3 , g 

ϑ ∗ was submitted 

to O H 4 , (m ∗, α∗, β∗, pk ∗1 , pk ∗2 ) was submitted to O H 5 , and (m ∗, α∗, pk ∗1 , pk ∗2 ) was submitted to O H 6 . 

The challenge ciphertext of message m ∗ is identically distributed as in the PRE-DET scheme. Since H 1 , H 2 , H 3 and H 4 are 

random oracles, it can be seen that c ∗1 = H 2 (g u v ) � (m ∗‖ α∗‖ β∗) = H 2 (g θ
∗
) � (m ∗‖ α∗‖ β∗) , c ∗2 = (g v ) x 

∗
1 = (g x 

∗
1 /u ) u v = ( pk ∗1 ) 

θ∗
, 

c ∗
3 = (g v ) ̃ a = (g ̃ a /u ) u v = h θ

∗
, and all other components directly follow the proposed scheme. Thus, adversary A 4 would guess 

m ′ = m ∗ with the same advantage as in a real execution of the PRE-DET scheme. 

The decryption responses by O dec1 are also perfect, except that algorithm I cannot always answer decryption queries 

with c 8 = ovk ∗ and may reject some valid ciphertexts. First, in Phase 1, adversary A 4 has a (q H 1 + q H 3 ) · ρ chance in querying 
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oracle O dec1 with a component c 8 = ovk ∗. Second, in Phase 2, if the adversary queries O dec1 on a well-formed ciphertext C 

such that c 8 = ovk ∗, and C is not a derivative of C ∗, then A 4 breaks the one-time signature scheme OS , which means the 

adversary’s chance of submitting such queries equals to Pr [ A 4 breaks OS ] . Third, consider a well-formed ciphertext C is 

submitted for decryption but it is generated without querying (m ‖ α‖ β‖ ovk ) to H 1 , g θ to H 2 , (m ‖ α‖ ovk ) to H 3 and g ϑ to 

H 4 , where θ = H 1 (m ‖ α‖ β‖ ovk ) and ϑ = H 3 (m ‖ α‖ ovk ) . Let Wform denote the event that C is a well-formed ciphertext, and 

let EvtH 1 , EvtH 2 , EvtH 3 , EvtH 4 respectively denote the events that (m ‖ α‖ β‖ ovk ) was queried to H 1 , g 
θ was queried to H 2 , 

(m ‖ α‖ ovk ) was queried to H 3 , and g ϑ was queried to H 4 . Let DecErr denote the event that the above defined cases happen 

in decryption queries to O dec1 . Thus, 

Pr [ DecErr ] ≤ (q H 1 + q H 3 ) · ρ + Pr [ A 4 breaks OS ] + 
3 q D 

p 
+ 

q D 

p · 4 λ

The responses to re-encryption queries O renc1 are perfect, as long as no well-formed ciphertexts are submitted which are 

produced without querying to H 1 , H 2 , H 3 and H 4 . Let ReErr1 denote the event that such ciphertexts are queried to O renc1 . 

Since both H 1 and H 3 are random oracles, 

Pr [ ReErr1 ] ≤ q R 1 
p 

+ 
q R 1 
p 

= 
2 q R 1 

p 
. 

Similarly, the responses to re-encryption queries O renc2 are perfect, as long as no well-formed attested ciphertexts are sub- 

mitted which are produced without querying to H 2 , H 4 , H 5 , H 6 and H 7 . Let ReErr2 denote the event that such ciphertexts 

are queried to O renc2 . Since both H 5 and H 6 are random oracles, 

Pr [ ReErr2 ] ≤ q R 2 
p 

+ 
q R 2 
p 

= 
2 q R 2 

p 
. 

Let Good denote the event EvtH ∗1 ∨ EvtH ∗2 ∨ EvtH ∗3 ∨ EvtH ∗4 ∨ EvtH ∗5 ∨ EvtH ∗6 ∨ DecErr ∨ ReErr1 ∨ ReErr2 . If Good does not 

happen, then adversary A 4 can get no advantage in guessing m ′ = m ∗. Thus, 

ε = Pr [ m ′ = m ∗] 

≤ Pr [ Good ] 

= Pr [ EvtH ∗1 ∨ EvtH ∗2 ∨ EvtH ∗3 ∨ EvtH ∗4 ∨ EvtH ∗5 ∨ EvtH ∗6 ∨ DecErr ∨ ReErr1 ∨ ReErr2 ] 

≤ Pr [ EvtH ∗1 ] + Pr [ EvtH ∗2 ] + Pr [ EvtH ∗3 ] + Pr [ EvtH ∗4 ] + Pr [ EvtH ∗5 ] + Pr [ EvtH ∗6 ] 

+ Pr [ DecErr ] + Pr [ ReErr1 ] + Pr [ ReErr2 ] 

As α∗ and β∗ are randomly chosen from {0, 1} λ, we have Pr [ EvtH ∗
1 ] ≤

q H 1 
4 λ

, Pr [ EvtH ∗
3 ] ≤

q H 3 
2 λ

, Pr [ EvtH ∗
4 ] ≤

q H 4 
p , Pr [ EvtH ∗

5 ] ≤
q H 5 
4 λ

and Pr [ EvtH ∗6 ] ≤
q H 6 
2 λ

. Thus, 

EvtH 
∗
2 ≥ ε − ( Pr [ EvtH 

∗
1 ] + Pr [ EvtH 

∗
3 ] + Pr [ EvtH 

∗
4 ] + Pr [ EvtH 

∗
5 ] + Pr [ EvtH 

∗
6 ] + Pr [ DecErr ] 

+ Pr [ ReErr 1 ] + Pr [ ReErr 2 ] ) 

≥ ε − q H 1 + q H 5 
4 λ

− q H 3 + q H 6 
2 λ

− q H 4 + 3 q D + 2 q R 1 + 2 q R 2 
p 

− q D 

p · 4 λ
−

(
q H 1 + q H 3 

)
· ρ − Pr [ A 4 brea ks OS ] 

Therefore, if event EvtH ∗
2 happens, then algorithm I can solve the given DCDH instance with advantage 

ε dcdh ≥ 1 

q H 2 

(
ε − q H 1 + q H 5 

4 λ
− q H 3 + q H 6 

2 λ
− q H 4 + 3 q D + 2 q R 1 + 2 q R 2 

p 
− q D 

p · 4 λ
− (q H 1 + q H 3 ) · ρ − Pr [ A 4 breaks OS ] 

)

This concludes Theorem 4 . �

Theorem 5. Suppose the CDH assumption holds in group G . The proposed PRE-DET scheme offers PD-EUCMA security for attested 

ciphertext against Type-5 adversary in the random oracle model. 

The proof for Theorem 5 follows the standard framework established in [3] . 

Proof. Let A 5 be a Type-5 PPT adversary that has non-negligible advantage ε in attacking the PD-EUCMA security for at- 

tested ciphertext in the PRE-DET scheme. Suppose A 5 issues at most q A attestation queries, and at most q H 1 , q H 2 , q H 3 , q H 4 , 

q H 5 , q H 6 and q H 7 hash queries. Let OS = ( KGen , Sign , Vrfy ) be a strong one-time signature scheme. We show that if such an 

adversary A 5 exists, then one can construct an algorithm I to solve the CDH problem with non-negligible probability ε cdh . 

Let G = 〈 g〉 and G T be cycle groups with prime order p and bilinear map ˆ e : G × G → G T . At first, algorithm I is given 

a CDH instance (g, g u , g v ) ∈ G 3 . The goal of I is to compute g uv . Algorithm I simulates the challenger and interacts with 

adversary A 5 as follows. 

Set-up : Algorithm I randomly picks ˜ a , ̃  b ∈ R Z ∗p , computes h = g ̃ a and h̄ = g 
˜ b , and sets the system public parameter 

as par = (G , G T , ̂  e , p, g, h, ̄h , H 1 , H 2 , · · · , H 7 , OS ) . Algorithm I randomly picks x ∗1 , x 
∗
2 ∈ R Z ∗p , sets sk ∗1 = x ∗1 , sk 

∗
2 = x ∗2 , pk ∗3 = g u 

which implies sk ∗3 = u, and computes pk ∗1 = g x 
∗
1 , pk 2 = g x 

∗
2 . Next, algorithm I publishes pk ∗ = ( pk ∗1 , pk ∗2 , pk ∗3 ) to A 5 and adds 



Y. Wang, H. Pang and R.H. Deng et al. / Information Sciences 522 (2020) 80–98 95 

(0 , x ∗1 , pk ∗1 , x 
∗
2 , pk ∗2 , � , pk ∗3 , 0) to the list L key , where � denotes an unknown value and the last entry ‘0’ denotes that pk ∗ is 

an uncorrupted public key. 

Queries : Adversary A can adaptively submit the following queries. 

• H 1 hash query O H 1 : Same as in the proof of Theorem 4 . 

• H 2 hash query O H 2 : Same as in the proof of Theorem 4 . 

• H 3 hash query O H 3 : Same as in the proof of Theorem 4 . 

• H 4 hash query O H 4 : Same as in the proof of Theorem 4 . 

• H 5 hash query O H 5 : Same as in the proof of Theorem 4 . 

• H 6 hash query O H 6 : Same as in the proof of Theorem 4 . 

• H 7 hash query O H 7 : For answering O H 7 queries, algorithm I maintains a list L 7 which is initially empty. For an 

input tuple ( a 1 , a 3 , a 5 , a 6 , att ), if there exists an entry (a 1 , a 3 , a 5 , a 6 , at t , μ, ν, �) ∈ L 7 , then O H 7 responds with �; 

otherwise, I picks a random coin μ ∈ R {0, 1} such that Pr [ μ = 0] = 1 
q A +1 , picks a random value ν ∈ R Z ∗p , computes 

� = (g v ) 1 −μg ν ∈ G , returns � and appends ( a 1 , a 3 , a 5 , a 6 , att, μ, ν , �) to L 7 . 

• Uncorrupted key generation query O ukgen : Algorithm I randomly picks x i, 1 , x i, 2 , x i, 3 ∈ R Z ∗p , sets sk i, 1 = x i, 1 , sk i, 2 = x i, 2 , 

sk i, 3 = x i, 3 , and computes pk i, 1 = g x i, 1 , pk i, 2 = g x i, 2 and pk i, 3 = g x i, 3 . Next, algorithm I gives pk i = ( pk i, 1 , pk i, 2 , pk i, 3 ) to 

A 5 and adds (i, x i, 1 , pk i, 1 , x i, 2 , pk i, 2 , x i, 3 , pk i, 3 , 0) to the list L key , where ‘0’ denotes that pk i is an uncorrupted public 

key. 

• Corrupted key generation query O ckgen : Same as in the proof of Theorem 4 . 

• Re-encryption key generation query O rkgen : For a queried pair ( pk i , pk j ) , algorithm I outputs rk i ↔ j = 

(x j, 1 /x i, 1 mod p, x j, 2 /x i, 2 mod p) . 

• Attestation query O att : For a query (C i , pk i ) , algorithm I performs the oracle O dec1 with input (C i , pk i ) . If O dec1 outputs 

⊥ , then algorithm I returns ⊥ and halts. Otherwise, letting (m i , αi , βi , c i, 8 , θi ) ∈ L 1 be the retrieved tuple in O dec1 , 

algorithm I runs the oracle O H 5 with input (m i , αi , βi , pk i, 1 , pk i, 2 ) to get θ ′ 
i , runs O H 2 with input g θ

′ 
i to get �′ 

i , runs 

O H 6 with input (m i , αi , pk i, 1 , pk i, 2 ) to get ϑ ′ 
i , and runs O H 4 with input g ϑ 

′ 
i to get �′ 

i . Then algorithm I computes 

a i, 1 = �′ 
i � (m i ‖ αi ‖ βi ) , a i, 2 = pk 

θ ′ 
i 

i, 1 , a i, 3 = h θ
′ 
i , a i, 4 = pk 

ϑ ′ 
i 

i, 2 , a i, 5 = h̄ ϑ 
′ 
i and a i, 6 = g m i · �′ 

i , chooses a i, 8 = att i ∈ Z p , and 

runs O H 7 with input ( a i ,1 , a i ,3 , a i ,5 , a i ,6 , a i ,8 ). Let ( a i ,1 , a i ,3 , a i ,5 , a i ,6 , att i , μi , ν i , �i ) be the corresponding entry in list L 7 . 

To compute a i ,7 , there are two cases to consider: 

Case 1 : pk i � = pk ∗. Algorithm I computes a i, 7 = �
sk i, 3 
i . 

Case 2 : pk i = pk ∗. If μi = 0 , then algorithm I reports failure and aborts the game. Otherwise, algorithm I computes 

a i, 7 = (g u ) νi , where H 7 (a i, 1 ‖ a i, 3 ‖ a i, 5 ‖ a i, 6 ‖ a i, 8 ) = g νi ∈ G . Note that the attested ciphertexts are perfectly simulated in 

adversary A ’s view when the abortion case does not occur. 

At last, algorithm I returns A i = (a i, 1 , a i, 2 , a i, 3 , a i, 4 , a i, 5 , a i, 6 , a i, 7 , a i, 8 ) . 

• Delegation generation query O delgen : Same as in the proof of Theorem 4 . 

• Decryption query O dec1 : For input ciphertext (C i , pk i ) , algorithm I returns DataDec ( sk i , C) . 

• Decryption query O dec2 : For a query (A j , pk i , pk j ) , algorithm I returns AttDec ( pk i , pk j , sk j , A j ) . 

Output : Eventually, adversary A outputs a tuple (C ∗, A ∗, pk ∗i ) such that C ∗ is a well-formed ciphertext under pk ∗ and 

every derivative of (C ∗, pk ∗) has not been queried to O att . Assume (A ∗, pk ∗, pk ∗i ) is a valid derivative of (C ∗, pk ∗) ; otherwise, 

I reports failure and aborts the game. In the random oracle model, (a ∗1 , a 
∗
3 , a 

∗
5 , a 

∗
6 , a 

∗
8 ) should have been queried to O H 7 . 

Algorithm I retrieves the tuple (a ∗
1 , a 

∗
3 , a 

∗
5 , a 

∗
6 , a 

∗
8 , μ

∗, ν∗, �∗) from the list L 7 . If μ
∗ = 1 , then I reports failure and aborts 

the game. Otherwise, i.e., μ∗ = 0 , we know H 7 (a ∗
1 ‖ a ∗3 ‖ a ∗5 ‖ a ∗6 ‖ a ∗8 ) = �∗ = g v · g ν

∗ ∈ G . Therefore, a ∗
7 = g u v · g uν∗

. Next, algo- 

rithm I computes g u v = a ∗7 / (g u ) ν
∗
. 

To analyze the probability of solving the given CDH instance, we define three events: 

• Let Evt 1 be the event that algorithm I does not abort in responding to attestation queries. 

• Let Evt 2 be the event that (A ∗, pk ∗, pk ∗i ) is a valid forged derivative of (C ∗, pk ∗) . 
• Let Evt 3 be the event that μ∗ = 1 . 

As discussed in [3] , we know 

Pr [ Evt 1 ] = 

(
1 − 1 

q A + 1 

)q A 
≥ 1 

e 
, Pr [ Evt 2 | Evt 1 ] ≥ ε, Pr [ Evt 3 | Evt 2 ∩ Evt 1 ] = 

1 

q A + 1 

where e denotes the base of the natural logarithm. Therefore, algorithm I can correctly solve the given CDH problem with 

the following probability: 

Pr [ I success ] = Pr [ Evt 1 ∩ Evt 2 ∩ Evt 3 ] = Pr [ Evt 1 ] · Pr [ Evt 2 | Evt 1 ] · Pr [ Evt 3 | Evt 2 ∩ Evt 1 ] ≥ ε 

e (q A + 1) 

This completes the proof of Theorem 5 . �
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Table 1 
Comparison with related encryption schemes. 

Scheme Ciphertext size Computation cost 

Encryption Decryption Equality test 

Yang et al. [40] 3 τG + τp 3 δG 3 δG 2 δ ˆ e 
Tang [28] τG + 2 τG 1 + τp + τM + λ 2 δG + 2 δG 1 2 δG 4 δa ̂ e 
Tang [29] 3 τG + τp + τM + λ 5 δG 2 δG 4 δG 
Lee et al. [11] 3 τG + τp 4 δG 3 δG 2 δG + 2 δ ˆ e 
Ma et al. [19] 5 τG + τp 6 δG 5 δG 2 δG + 2 δ ˆ e 
Ma [18] 5 τG + τp 6 δG + 2 δ ˆ e 2 δG + 2 δ ˆ e 4 δ ˆ e 
Ma et al. [20] τG 1 + 3 τG 2 + τp δG 1 + 3 δG 2 δG 1 + 2 δG 2 4 δ ˆ ae 

+ δG T + δ ˆ ae + δG T + δ ˆ ae 
Wang and Pang [32] 5 τG + τp 8 δG + δ ˆ e 3 δG + 4 δ ˆ e 2 δG + 4 δ ˆ e 
Slamanig, Spreitzer 4 τG 1 + 3 τp 6 δG 1 5 δG 1 2 δ ˆ ae 
and Unterluggauer [27] 
Wang et al. [34] 4 τG 1 4 δG 1 3 δG 1 2 δ ˆ ae 
Pang and Ding [23] 7 τG + τG T 7 δG + δ ˆ e — 2 δG + 5 δ ˆ e 
This paper (a) 5 τG + τp + 2 λ + τos + q (λ) 7 δG + δos 5 δG + 4 δ ˆ e + δov 2 δG 

(b) 6 τG + 2 τp + 2 λ 13 δG + 4 δ ˆ e + δov 5 δG + 6 δ ˆ e 2 δG 

5. Analysis and comparison 

In this section, we analyze and compare our PRE-DET construction with existing encryption techniques. Table 1 summa- 

rizes the comparison in terms of ciphertext size and computation costs of encryption, decryption and equality test. In the 

comparison, we focus mainly on resource-intensive computations including exponentiation and bilinear mapping, whereas 

all lightweight computations such as addition and hash evaluation are omitted. 

In Table 1 , we let τG denote the element size in group G , and δG and δ ˆ e respectively represent the evaluation costs of 

an exponentiation in G and a bilinear map ˆ e (·, ·) for a symmetric bilinear map ˆ e : G × G → G T . Similarly, for an asymmetric 

bilinear map ˆ e : G 1 × G 2 → G T , we let τG 1 and τG 2 respectively denote the element sizes in G 1 and G 2 , whereas δG 1 , δG 2 
and δa ̂ e respectively represent the evaluation costs of an exponentiation in G 1 and G 2 and a bilinear map ˆ e (·, ·) . Also, we 

use τ p and τG T to respectively denote the element sizes in Z p and G T for both types of bilinear maps, and δG T to denote the 

cost of an exponentiation in G T . For Tang’s schemes [28,29] , we let τG and τM respectively represent the size of an ordinary 

multiplicative cyclic group G and message space M , whereas δG denotes the computation cost of an exponentiation in G . 

For the one-time signature scheme OS employed in our PRE-DET scheme, we let τ os denote its signature size, and δos and 

δov respectively represent the computation costs of OS . Sign and OS . Vrfy . 

The efficiency of ciphertexts and attested ciphertexts of our PRE-DET scheme are given in lines (a) and (b), respectively. 

From the table, we see that only our PRE-DET scheme supports ciphertext re-encryption. Also, our PRE-DET construction 

allows the user to add attestation to ciphertext, without affecting the functionality of equality test. 

Our PRE-DET construction can be implemented using the Pairing Based Cryptography Library (PBC, http://crypto.stanford. 

edu/pbc/) . When executed on a system with Intel(R) Core(TM) i5-5200U CPU at 2.20GHz, 8.00GB RAM and running Windows 

7, and chosen the elliptic curve of Type A ( y 2 = x 3 + x ) such that p is a 160-bit prime and τG = 256 , we obtained the 

benchmark where δ ˆ e = 2 . 4 ms, δG = 2 . 7 ms and δG T = 0 . 6 ms. With this benchmark, it is easy to estimate the rough running 

time of every procedure of our PRE-DET construction. 

6. Conclusion 

Motivated by the need to support partitioning and attestation on encrypted data in a secure data sharing clique, we 

introduced the notion of public key re-encryption with delegated equality test on ciphertexts (PRE-DET). We formalized the 

PRE-DET framework and its security model with respect to five types of adversaries, four for message confidentiality and one 

for attestation unforgeability. We then proposed a concrete PRE-DET construction in symmetric bilinear groups and formally 

proved its security in the formal security model. An analysis and comparison with related schemes showed the practicality 

of our PRE-DET construction. 
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