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Abstract—Singapore has the fastest ageing population in the
Asia Pacific region, with an estimated 82,000 seniors living with
dementia. These figures are projected to increase to more than
130,000 by 2030. The challenge is to identify more community
dwelling seniors with Mild Cognitive Impairment (MCI), a
prodromal state, as it provides an opportunity for evidence-based
early intervention to delay the onset of dementia.

In this paper, we explore the use of Internet of Things (IoT)
systems in detecting MCI symptoms in seniors who are living
alone, and accurately grouping them into MCI positive and
negative subjects. We present feature extraction methods and
findings from real data captured via selected sensors installed
in the homes of 49 seniors for up to two months. Performance
evaluation shows that the sleep state variability, as measured
through bed sensors, yields a recall of over 70% in predicting
MCI in these community dwelling seniors.

Index Terms - Internet of Things (IoT), senior monitoring,
mild cognitive impairment, early detection, eldercare, dementia

I. INTRODUCTION

Dementia affects millions of people worldwide, mostly
older adults or seniors, and is viewed as a ‘late and irreversible
stage’ in the continuum of cognitive disabilities. In Singapore,
seniors aged 65 years old and above will constitute 20% of the
population by 2025, where the prevalence rate of dementia is
about 6.2%. However, there is evidence to show that pathologi-
cal changes begin many years prior to the onset of dementia, in
the form of Mild Cognitive Impairment (MCI). The challenge
therefore is to identify subtle changes in cognition [1], as inter-
vention is most likely to be effective [2]. In a Singapore-based
study on 473 MCI seniors aged 55 years and above [3], 44%
reverted to normal cognition. In particular, MCI individuals
who were significantly younger and more educated, as well as
those with greater participation in leisure-time activities and
higher Mini-Mental State Examination (MMSE) scores, were
more likely to revert to normal cognition.

The ability to detect MCI through objective monitoring of
seniors’ activities can overcome the limitations of conventional
assessment questionnaires and ad-hoc health screenings, which
are labor intensive and unable to track longitudinal changes
in daily living patterns of the seniors. Studies on objective
monitoring for early detection of MCI [4] can be categorized
as: (i) scenario-based assessment; or (ii) real-life monitoring.
In the latter, seniors continue with their daily routines with
privacy-preserving sensors - such as passive infrared (PIR)

motion sensors, contact sensors and other environmental sen-
sors - installed in their homes for weeks to years, without any
ground truth recording. In scenario-based assessment studies,
seniors are invited to research lab apartments that are designed
to simulate real-life situations. Seniors are then asked to
perform a series of Activities of Daily Living (ADLs) and
instrumented ADLs (iADLs), in fixed or flexible order and
over a short duration (typically between hours to days). Their
performances are observed by an experimenter and recorded
through multimodal sensors - including video [5] and audio
recording devices. Although scenario-based assessments tend
to result in fine-grained objective data and can be validated
through ground truth observations by the experimenter, they
are limited by high set-up and running costs, as well as short
observation periods that may not capture the seniors’ daily
routines as compared to real-life monitoring.

Between Sep 2016 to May 2018, we conducted a study
in partnership with a clinical investigator from a healthcare
organization, whereby in-home sensors are setup for real-
life monitoring to distinguish between seniors with healthy
cognition (HC) from those with mild cognitive impairment
(MCI) [6–8]. We recruited a total of 59 seniors aged 65 and
above who are living alone, across 6 blocks of 7-9 seniors
each; 49 of these seniors eventually completed the study. Each
block, comprising both HC and MCI seniors, are monitored
with in-home sensors for 2 months.

Unlike prior work on cross-sectional designs [9–12], our
study comprises a richer set of sensors that includes fixed
passive sensors and wearable devices to monitor activities
related to mobility, leisure and self-care [13]. The novel
contributions in this paper are two-fold:

1) blind analysis of objective data with the Pittsburgh Sleep
Quality Index (PSQI) to uncover sensor-derived features
to differentiate between HC and MCI seniors; and

2) subsequent validation by the clinical investigator.

In Section II, we describe related work on the use of
sensor data for real-life monitoring of mobility and self-care
activities for early detection of MCI. We describe the various
data sources as well as our approach to data preparation and
analysis in Section III. We discuss interesting and important
findings of our study in Section IV before we conclude and
present our future work in Section V.



Fig. 1: Typical sensor deployment for MCI detection.

II. RELATED WORK

In this section, we describe related work on the use of sensor
data for real-life monitoring of mobility and self-care activities
for early detection of MCI: (i) outside of; and (ii) in Singapore.

Outside of Singapore: In [9], 10 HC and 4 MCI seniors
between 67 to 90 years old and living alone in Japan, were
monitored over 78 days with PIR motion sensors deployed
in each zone of the apartment (corresponding to a subset
of our setup as depicted in Figure 1). MCI seniors were
found to have significantly less outings and shorter sleeping
times as compared to HC seniors. In [10], 18 seniors aged
between 73 and 92 years old were monitored over a 2-year
period with PIR motion sensors, contact sensors, as well as
light and temperature sensors. At baseline, 7 were HC, while
the remaining 11 were at risk or had cognitive difficulties.
The study found significant correlations between the level of
mobility at home and clinically-provided cognitive scores. In
[11], 59 HC and 26 MCI seniors, aged 70 years and above and
living alone, were monitored with a similar setup as [9], and
included contact sensors at the main door. Using combined
room activity distribution over a 20-week window, the system
was able to detect MCI seniors with an F0.5 score of 85.6%.
Finally, in [12], 35 HC and 3 MCI seniors, aged 75 to 99
years old, received 7-day pillboxes that continuously tracked
inferred medication for at least one prescription medication
over a 13-month period. Seniors with poorer cognitive scores
were found to have higher and increasing variance in their
medication intake timing.

Singapore: In [6], we present practical insights gained in
terms of the design, testing and deployment of the in-home
sensor systems in the first 2 blocks that resulted in significant
improvements in system uptime and reduction in maintenance
visits in subsequent blocks. Early results based on blind
analysis [7] on the first 2 blocks comprising 12 MCI and 5 HC
seniors indicate that the use of IoT for early detection of MCI
is promising. Using only three features (forgetfulness incidents
of personal items, forgetfulness incidents of medication intake,
and medication intake timings), we identified 2 seniors who
were likely to have MCI, and 4 seniors who were likely to be
CH. This corroborates with corresponding non-blind analysis
[8], whereby MCI seniors were more likely to forget personal

Fig. 2: System architecture.

effects (keychain, wallet) and skip doses of medication, as
compared to HC seniors. In particular, MCI seniors were more
likely to forget their wallets than their keys, as compared to
HC seniors. In addition, qualitative feedback from participants
were positive and there was enthusiasm for the system to be
fine-tuned to support more seniors living alone.

In this paper, we extend the blind analysis and establish sta-
tistically significant relationships of extracted sensor-derived
features against psychometric evaluation measures based on
data collected from 49 seniors. We explore these features
for grouping of MCI versus HC seniors, and present the
performance of our classification model through ground truth
validation by the clinical investigator.

III. DATA SOURCES

At the beginning of each block, a sensor system is deployed
in the home of each participant. Each study participant must
be: (i) 65 years of age and above; (ii) able to provide written
informed consent in English or Mandarin; (iii) cognitively
healthy or suffering from MCI; and (iv) able to function inde-
pendently within the community. The sensor system measures
various activities of daily living that are hypothesized to differ
between MCI and HC seniors. To derive meaningful measures
of these activities while minimizing withdrawals from the
study, the in-home sensor system should achieve a minimum
of one-month’s sensor data with minimum active participation
from the seniors, as well as maintenance visits.

In the following, we describe the various data sources, as
well as our approach to data preparation and analysis.

A. Description of supporting data

Among various questionnaires administered at baseline,
only the gender, Pittsburgh Sleep Quality Index (PSQI) as
well as Geriatric Depression Scale (GDS) are provided to the
technical research team for blind analysis. The PSQI consists
of 19 individual items that measure different aspects of sleep,
offering seven component scores and one composite score.
Each item is weighted on a 0-3 interval scale. The global PSQI
score is calculated by totalling the seven component scores,
where a score of 5 or greater is indicative of poor sleep quality
[14]. With the GDS, users respond in a Yes/No format to 15
questions. Scores above 5 are suggestive of depression [15].



TABLE I: Sensor modalities and their contribution to the
measurement of in-home functions and ADLs.

Device Monitoring of Update ADLs
rate measured

Wearable Heart rate Every Physical
Skin temperature few mins activity level
Pedometer

BLE Beacon Keys Every Forgetfulness
Wallet/ 4 mins Going out
Handbag patterns

Motion Living room When Zonal
Kitchen triggered activity level
Toilet

Contact Main door When Going-out
triggered activity level

Medication Inferred medication When Self-care activity
Box intake triggered and forgetfulness

Faucet Water use When Forgetfulness
Usage at kitchen sink triggered

Smart plug TV Every Forgetfulness
usage 10 mins

Bed sleep state Every Sleep quality
occupancy 5 mins

B. Description of sensor data

The in-home sensor system comprises two key components:
(i) IoT device frontend deployed for in-home sensing and
monitoring; and (ii) backend server that houses the data
management, data analytics and system monitoring engines.
The IoT device frontend, as illustrated in Figure 1, comprises:
(i) infrastructured sensors such as PIR motion sensors in
each zone of the apartment, contact sensor at the main door,
bed sensor, sensorized medication box, water sensor in the
kitchen faucet and smart plug; (ii) non-infrastructured sensors
including a commercially available wearable, as well as BLE-
enabled proximity beacons that are attached to personal items
(such as house keys and wallets/purses); and (iii) gateway
devices, including an Android Phone and a Raspberry Pi to
aggregate and transmit data from the sensors to the backend
server. The system architecture is depicted in Figure 2. Each
sensor modality contributes to the various measures of in-
home functions and activities of daily living according to the
mapping shown in Table I.

IV. DATA ANALYSIS AND FINDINGS

Among the 52 participants with complete PSQI, GDS and
gender data, 3 participants withdrew from the study without
completing the required 2-months of monitoring. As the sys-
tem was upgraded from Block 3 onwards, the data analysis in
the rest of this paper will be based on data from 32 participants
(S21 to S59) from Blocks 3-6. Based on the histogram of
PSQI and GDS scores in Figure 3, we observe that while the
participants experience both good (PSQI < 5) and poor (PSQI
≥ 5) sleep quality, there is no indication of risk of depression
in any participant (GDS < 5). As such, we proceed to analyse
each set of sensor modalities as follows:

(a) PSQI.

(b) GDS.

Fig. 3: Histogram of PSQI and GDS scores of 32 participants.

1) Clean data and visually explore different sets of sensor
modalities of interest that may lead to areas of further
investigation.

2) Perform deep exploration by generating data visualiza-
tions of different activity patterns for participants.

3) Define and quantify measures, as well as perform sta-
tistical analysis of both sensor data and PSQI scores to
identify correlations to inform grouping of participants.

Each grouping of participants is validated with the ground
truth that is known only to the clinical investigator. We note
that in our performance evaluation, recall is more important
than precision, as the cost of a missed detection (i.e., a senior
with MCI is not recommended for screening) is much higher
than the cost of wrong detection (i.e., a HC senior is recom-
mended for screening, which turns out to be unnecessary).

A. Bed Sensor (24 hourly)

Among the 32 participants, 30 have bed sensors installed,
of which 23 have sufficient data (1 month or more) for further
analysis. Each bed sensor comprises a sleep mat and a WiFi-
enabled interrogator. The sleep mat is installed under the
senior’s bed mattress, and actively sends the sleep state to the
backend servers via the WiFi-enabled interrogator at every 5-
minute intervals. Figure 4 compares the pairwise distinct sleep
patterns between: (i) S21 and S45; and (ii) S56 and S35. Our
exploratory analysis thus indicates that there are differences
in sleep latency, duration and variability between participants
with good (PSQI < 5) and poor (PSQI ≥ 5) sleep quality.



(a) S21 (PSQI = 2) has regular sleep patterns with
consistent changes and duration of each state.

(b) S45 (PSQI = 5) has irregular sleep patterns with
less consistent changes and duration of each state.

(c) S56 (PSQI = 3) has less time spent in bed,
and less in-bed time during the day.

(d) S35 (PSQI = 13) has longer in-bed duration and
higher frequency of in-bed time during the day.

Fig. 4: Pairwise comparison of sleep patterns: S21 vs S45 and S56 vs S35 over 4-week duration. The sleep states are colored
as follows: (i) ‘Away from bed’ - red; (ii) ‘In bed, awake’ - blue; and (iii) ‘In bed, asleep’ - green.

TABLE II: Measures derived from the bed sensor.

Sensor-derived measure Definition

Sleep latency N2

Sleep latency ratio N2
N2+N3

Sleep duration N3
N1+N2+N3

Sleep state variability
∑

t
st − st−1

We then define various sensor-derived measures of sleep
quality as shown in Table II, whereby Nj denotes the total
number of recorded instances of sleep state j for each partic-
ipant, and st = {1, 2, 3} is the sleep state at time t according
to the following mapping:

1 ‘Away from bed’
2 ‘In bed, awake’
3 ‘In bed, asleep’
The scatter plot between sleep state variability and PSQI in

Figure 5 reveals that seniors who frequently switch between
different sleep states tend to have higher PSQI scores (i.e.,
poorer sleep quality). Following this, we perform a logistic

Fig. 5: Scatter plot between sleep state variability and PSQI.

regression with PSQI as the predictor response variable, and
each sensor-derived measure as the independent variable. A



Fig. 6: Grouping of participants based on sleep variability.

TABLE III: Confusion matrices for participant grouping based
on sleep state variability.

Sleep State Variability (n = 23) Predicted: Yes Predicted: No

Actual: Yes (MCI) 10 4

Actual: No (HC) 1 8

TABLE IV: Confusion matrices for participant grouping based
on PSQI.

PSQI (n = 23) Predicted: Yes Predicted: No

Actual: Yes (MCI) 12 2

Actual: No (HC) 2 7

statistical significant result of 0.006 was obtained in the overall
model test for only sleep state variability.

Accordingly, the seniors are categorized into two groups
based on the: (i) median value of sleep state variability; and
(ii) PSQI threshold of 5. This is illustrated in Figure 6, where
the horizontal line depicts the median value of sleep state
variability. We observe that seniors with high PSQI scores
have diverse sleep state variability values that span across the
entire y-axis, while seniors with low PSQI scores have sleep
state variability values that are below the median value.

Grouping based on PSQI scores (threshold of 5) yields an
accuracy of 82% with recall and precision of 85.7%, while
grouping based on sleep state variability (with the sample
median as the threshold) yields an accuracy of 78% with
recall of 71.4% and precision of 91%. This suggests that PSQI
(among other assessment scores) seems to be a good predictor
of MCI. With significant statistical correlation between sleep
state variability and PSQI, the former is a promising sensor-
derived measure for predicting MCI.

B. Bed Sensor (Bedtime only)

In Section IV-A, the various sensor-derived measures are
computed based on sensor readings that are acquired through-
out the day, and only aggregate PSQI scores are used in the

TABLE V: Mapping of sleep-related features with statistical
correlation with PSQI component scores.

PSQI Component Scores Relationship to variables

Q4 (hours of sleep) sleep state variability, duration
ratio & latency.C3 (Q4 comp. score) -

Q5c (get up to use bathroom) sleep state variability and duration

Q5g (feel too hot) sleep latency

Q5h (have bad dreams) sleep state variability

Q6 (sleep medication) sleep state variability

Q8 (enthusiasm to do things) sleep latency

TABLE VI: Confusion matrix for participant grouping based
on bedtime-normalized sleep state variability.

Bedtime-normalized sleep state
variability (n = 23)

Predicted: Yes Predicted: No

Actual: Yes (MCI) 11 3

Actual: No (HC) 3 6

analysis. We explore potential enhancements by filtering the
sensor-derived measures based on individual participants’ bed
times (i.e., the period between going to bed and waking up)
and exploring statistical correlations with PSQI component
scores. As self-reported bed times may be inaccurate [16] and
recognized bed times may not be locally contextualized, we
extract each senior’s bed times from the sensor data.

The same measures (c.f. Table II) are re-computed for each
senior’s bedtime. Statistical analysis between each measure
and the aggregate PSQI score reveals that, as like before, a
statistically significant relationship exists only between the
sleep state variability and PSQI. We then repeat the statis-
tical analysis between each sensor-derived measure and the
component PSQI scores. The latter are found to be correlated
with various sensor-derived measures as tabulated in Table V.
As expected, existing correlations are usually associated with
the sleep state variability measure.

Finally, the seniors are categorized into two groups based on
the median value of bedtime-normalized sleep state variability.
The resulting confusion matrix is shown in Table VI. This
grouping yields an accuracy of 74% with recall and precision
of 78.6%. We note an improvement in the recall from 71.4% to
78.6% as a result of removing the effects of day-time napping
on the sleep state variability.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present our findings based on blind analysis
of objective sensor and subjective assessment data collected
from a real-life monitoring study of 32 seniors living alone
in Singapore, who are either cognitively healthy (HC) or
have mild cognitive impairment (MCI). The objective data is
drawn from a rich set of in-home fixed passive sensors and
wearable devices that unobtrusively monitor activities related
to mobility, leisure and self-care over a two-month period.
These seniors experience both good and poor sleep quality
(based on PSQI), but do not have any risk of depression (based
on GDS). We perform data preparation and exploration, define



sensor-based measures and analyze potential correlations with
PSQI to inform the MCI/HC grouping of participants. The
accuracy of these groupings are then validated by the clinical
investigator.

Among the sensor-based measures, sleep state variability
is promising in detecting seniors with MCI, with a recall of
over 70%. This result is consistent with the corresponding
results obtained by using PSQI scores for grouping (with recall
of 86%). In particular, statistical correlations between various
sleep-related measures and PSQI component scores reveal that
correlations exist primarily with sleep state variability. While
promising, the correlation analysis is limited to the availability
of assessment measures, as well as the duration of usable data.
As such, we intend to extend the analysis to include other
assessment measures (such as MOCA and MMSE), where
well-defined thresholds exist for MCI seniors in Singapore. In
addition, together with the clinical investigator, we will soon
commence a follow-up study of 100 seniors (both HC and
MCI) with continuous in-home monitoring for up to 2 years.
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