
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2020

Experimental comparison of features and classifiers for Android Experimental comparison of features and classifiers for Android

malware detection malware detection

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Biniam Fisseha DEMISSIE
Fondazione Bruno Kessler

Mariano CECCATO
University of Verona

Wei MINN
Singapore Management University, wei.minn.2018@sis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
SHAR, Lwin Khin; DEMISSIE, Biniam Fisseha; CECCATO, Mariano; and MINN, Wei. Experimental
comparison of features and classifiers for Android malware detection. (2020). MOBILESoft 2020:
Proceedings of the 7th IEEE/ACM International Conference on Mobile Software Engineering and Systems,
Seoul, South Korea, October 5-6. 50-60.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/5115

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F5115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Experimental Comparison of Features and Classifiers for
Android Malware Detection

Lwin Khin Shar
Singapore Management University

lkshar@smu.edu.sg

Biniam Fisseha Demissie
Fondazione Bruno Kessler

demissie@fbk.eu

Mariano Ceccato
University of Verona

mariano.ceccato@univr.it

Wei Minn
Singapore Management University
wei.minn.2018@sis.smu.edu.sg

ABSTRACT
Android platform has dominated the smart phone market for years
now and, consequently, gained a lot of attention from attackers.
Malicious apps (malware) pose a serious threat to the security and
privacy of Android smart phone users. Available approaches to
detect mobile malware based on machine learning rely on features
extracted with static analysis or dynamic analysis techniques. Dif-
ferent types of machine learning classifiers (such as support vector
machine and random forest) deep learning classifiers (based on
deep neural networks) are then trained on extracted features, to
produce models that can be used to detect mobile malware. The
usually-analyzed features include permissions requested/used, fre-
quency of API calls, use of API calls, and sequence of API calls. The
API calls are analyzed at various granularity levels such as method,
class, package, and family.

In the view of the proposals of different types of classifiers and
the use of different types of features and different underlying analy-
ses used for feature extraction, there is a need for a comprehensive
evaluation on the effectiveness of the current state-of-the-art stud-
ies in malware detection on a common benchmark. In this work,
we provide a baseline comparison of several conventional machine
learning classifiers and deep learning classifiers, without fine tun-
ing. We also provide the evaluation of different types of features
that characterize the use of API calls at class level and the sequence
of API calls at method level. Features have been extracted from
a common benchmark of 4572 benign samples and 2399 malware
samples, using both static analysis and dynamic analysis.

Among other interesting findings, we observed that classifiers
trained on the use of API calls generally perform better than those
trained on the sequence of API calls. Classifiers trained on static
analysis-based features perform better than those trained on dy-
namic analysis-based features. Deep learning classifiers, despite
their sophistication, are not necessarily better than conventional
classifiers, especially when they are not optimized. However, deep

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7959-5/20/05. . . $15.00
https://doi.org/10.1145/3387905.3388596

learning classifiers do perform better than conventional classifiers
when trained on dynamic analysis-based features.

KEYWORDS
Malware detection, machine learning, deep learning, Android

ACM Reference Format:
Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, and Wei Minn.
2020. Experimental Comparison of Features and Classifiers for Android
Malware Detection. In IEEE/ACM 7th International Conference on Mobile
Software Engineering and Systems (MOBILESoft ’20), October 5–6, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3387905.3388596

1 INTRODUCTION
Android platform has dominated the smart phone market for years
now.With currently more than two billion devices running Android,
it is the most popular end-user operating system in the world.
Its market dominance and open source nature has also made it
interesting for attackers. Symantec [40] reported that in 2018, it
detected an average of 10573 mobile malware per day; found that
one in 36 mobile devices had high risk apps installed; and one in
14.5 apps accesses high risk user data. Hence, Android malware
detection is currently an active area of research.

There have been a number of approaches proposed by the re-
search community to detect Android malware. Many approaches
have built malware detection models based on permissions re-
quest/use [5, 9, 16, 20, 26, 34, 36].

However, since benign apps also often request permissions clas-
sified as dangerous for legitimate reasons, permission-based ap-
proaches can be prone to false positives [16]. More recent ap-
proaches have built detection models based on sequence of API
calls [23, 30, 41], use of API calls [5, 9, 36, 47] or frequency of API
calls [1, 19].

The API calls can be extracted at various granularity levels such
as method, class, package, and family. Since there are millions of
unique methods in Android, some approaches [19, 21, 30] that
are based on the use or the frequency of API calls have proposed
to abstract API calls at class, package, and/or family levels. This
reduced the number of features significantly and yet produced
comparable or even better results [19, 21, 30].

To extract these features, in general two types of techniques are
used — static analysis [5, 9, 19, 21, 30, 46] and dynamic analysis [15,
41]. For instance, Drebin [5] extracts permissions and API calls by
scanning manifest files and disassembled code. DadiDroid [21] and

https://doi.org/10.1145/3387905.3388596
https://doi.org/10.1145/3387905.3388596
https://doi.org/10.1145/3387905.3388596

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, and Wei Minn

MamaDroid [30] extract API calls from call graphs. The majority of
the approaches has relied on static analysis for feature extraction.
Those approaches that apply dynamic analysis [15, 41] have mainly
focused on features at native level API calls (system calls). Typically,
static analysis-based features cover more information since static
analysis can reason with the whole program code whereas dynamic
analysis-based features are limited to the code that are executed.
On the other hand, static analysis may have issues dealing with
complex code such as code obfuscation, and modern malware are
usually crafted with obfuscated code [19]. Hence, in general, static
analysis and dynamic analysis complement each other.

Once these features are extracted using program analyses, these
approaches typically use machine learning classifiers to train on the
features and build malware detection model. For instance, Support
Vector Machines (SVM), K-Nearest Neighbours, and Random Forest
were used in [21, 30]; AdaBoost, Naive Bayes, Decision Tree, and
SVM were used in [20].

In parallel, other studies [23, 27, 41, 45] have focused on the use
of deep learning classifiers, such as Convolutional Neural network
and Recurrent Neural Network, instead of conventional machine
learning classifiers, to build malware detectors. Deep learning clas-
sifiers use several layers to study various levels of representations
and extract higher-level features from the given lower-level ones.
Hence, in general they have built-in feature selection process and
are better at learning complex patterns.

In the view of the proposals of different types of classifiers and
the use of different types of features and different analyses used for
feature extraction, there is a need for a comprehensive evaluation on
the effectiveness of the current state-of-the-art inmalware detection
on a common benchmark. This study aims to evaluate the malware
detection accuracy of various classifiers without fine tuning, when
learnt on different types of features from a common benchmark,
using both static and dynamic program analyses.

We use 4572 benign samples and 2399 malware samples. Benign
samples were randomly collected from Androzoo repository [2],
which are released from year 2017 to 2019. 1208 malware samples
are collected from Androzoo repository [2], which are from year
2017 and 2019, and 1191 malware samples are from Drebin repos-
itory [5]. We extract static features from call graph of Android
package (apk) codes and dynamic features by executing the app in
an Android emulator using our in-house intent-fuzzer combined
with Android’s Monkey testing framework [4].

Specifically, we make the following contributions in this paper.

• We evaluate several conventional machine learning clas-
sifiers and deep learning classifiers. More specifically, we
assess seven machine learning classifiers, namely K-Nearest
Neighbors (KNN), Support Vector Machines (SVM), Deci-
sion Tree (DT), Random Forest (RF), AdaBoost (AB), Naive
Bayes (NB), and Logistic regression (LR). We assess four deep
learning classifiers, namely Simple Artificial Neural Network
(sANN), Complex Artificial Neural Network (cANN), Con-
volutional Neural Network (CNN), and Recurrent Neural
Network with long short term memory (RNN);
• We compare the malware detection accuracy of using the
features that characterize the sequence of API calls and that
of using the features that characterize the use of API calls;

• We compare the malware detection accuracy of using the
static analysis-based features, the dynamic analysis-based
features, and the combined set of static and dynamic analysis-
based features. To the best of our knowledge, we have not
observed a hybrid approach that utilizes both analyses to
extract features on API calls at method and class levels;
• We compare the cost in terms of training time requirement
of using different types of features.

We make the dataset and the scripts used in our experiments
available [35] so that researchers could replicate or extend our
experiments.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 thoroughly discuses the methodology and
an overview of malware detection; it explains the data collection
and features extraction processes, and the machine learning and
deep learning classifiers we use. Section 4 presents the evaluation
studies and discusses the experimental results. Section 5 provides
the concluding remarks and proposals for future studies.

2 RELATEDWORK
Naway and Li [29] reviewed the use of deep learning in combination
with program analysis for Android malware detection. However,
their contribution was a literature survey (focusing on the differ-
ences between key concepts of different DL classifiers and different
feature extraction techniques) rather than an empirical study like
ours. Experimental comparisons are available in literature, con-
trasting different types of features and classifiers to detect Android
malware. However, these approaches usually compare their single
proposed method against other recent approaches. Conversely, our
study aims at comparing different types of features and classifiers
that have been used by the research community, on a common
benchmark.

Static analysis-based features. Several approaches rely on static
analysis to extract features from the app such as requested permis-
sions [5, 9, 16, 20, 26, 34, 36], the sequence of API calls [11, 23, 27, 30,
37], the use of API calls [5, 9, 21, 36, 47, 50], or the frequency of API
calls [1, 11, 18, 19]. Our study also investigates and compares the
performance of using API use features and API sequence features.
However, our study is not limited to features extracted with static
analysis, but also with dynamic analysis. Additionally, we also study
the performance of combining the features obtained from the two
analyses, and we evaluate these features across several classifiers.

Like our study, some approaches [21, 30] extract static features
from call graphs. Other approaches rely, instead, on data depen-
dency graphs [37, 50] or control flow graph [12]. In future, we plan
to evaluate the difference between using different kinds of graphs.

Considering that analysis at method level led to millions of fea-
tures, resulting in long training time and memory consumption,
some approaches [21, 30, 46] abstracted features at class, package,
family, or entity levels, to save memory and time. Our study adopts
both views, by evaluating features either at method level and at the
class level.

Dynamic analysis-based features. Dynamic analysis-based ap-
proaches such as [15, 41] have mainly focused on features at native
level API calls (system calls). Narudin et al. [28] evaluated the per-
formance of five ML classifiers on network features (API calls that

Experimental Comparison of Features and Classifiers for Android Malware DetectionMOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

involve network communication) extracted with dynamic analysis.
In contrast to these approaches, we consider all the standard APIs,
and we evaluate both ML and DL classifiers.

Hybrid analysis-based features. Few approaches [3, 25, 48] apply
both static analysis and dynamic analysis techniques. However,
these approaches focused on extracting specific features that are
generally considered to be dangerous, such as sending SMS and
connecting to Internet. By contrast, we do not discriminate features,
and we consider a more complete set of features, which are not
considered in those approaches. This implies that our test generator
has to be more comprehensive to cover more program behaviours.
While most dynamic analysis approaches have largely usedMonkey
(UI) test generator [29], our approach employs a combination of
Monkey test generator and intent fuzzing to also cover component
interactions.

Deep learning vs Machine learning. Recently, deep learning for
Androidmalware detection has been endorsed [23, 27, 43, 45]. Droid-
sec [48] compared a deep belief network classifier against conven-
tional ML classifiers such as NB, SVM, and LR. But their study
excludes Random Forest, and their dataset was limited to only 250
malware and 250 benign samples. Their results showed that DL
classifier is more accurate. On the other hand, MaMaDroid [30]
found that conventional ML classifiers like Random Forest and
K-Nearest Neighbours perform better.

3 METHODOLOGY
This section presents the overall workflow of the experiments. Fig-
ure 1 illustrates the workflow, which consists of three stages. The
first stage is program analysis, which extracts call graphs and execu-
tion traces from benign and malware samples. The second stage is
feature extraction in which six datasets are extracted, namely static
method sequence features, dynamic method sequence features, hy-
brid method sequence features, static class features, dynamic class
features, and hybrid class features, from call graphs and execution
traces. And they are labeled. In the last stage, conventional machine
learning classifiers (denoted as ML classifiers) and deep learning
classifiers (denoted as DL classifiers) are trained and tested on the
labeled dataset and produce the evaluation results. The following
subsections discuss each stage in detail.

3.1 Program Analysis
In this phase, we perform static and dynamic analysis on the given
Android application packages (apks).

For static analysis, we use FlowDroid [6] with its default settings,
to extract call graphs from an apk. FlowDroid is based on Soot [38].
Firstly, given an apk, Soot converts it into an intermediate represen-
tation called Jimple and FlowDroid performs flow analysis on the
Jimple code. The analysis is flow- and context-sensitive. FlowDroid
also has an optional feature for handling reflections. We opted to
use this feature since Android malware increasingly makes use of
reflection to avoid detection. However, like other static analysis
tools, FlowDroid also shares inherent limitation of static analysis.
It can only resolve reflective calls when the arguments used in
the call are all string constants. Dynamic analysis can overcome
this limitation. In addition, FlowDroid also handles common native

Program Analysis

Benign and Malware samples

Dynamic Analysis
- Generate test inputs using

Monkey test
- Generate test inputs using

Intent-fuzzing

Features Extraction

Static Features Extraction
- Extract method sequences

from call graphs
- Extract class signatures

from call graphs

Static Analysis
- Generate call graphs

Dynamic Features Extraction
- Extract method sequence

from execution traces
- Extract class signatures

from execution traces

Classifiers Training
and TestingConventional

Machine Learning
(ML) Classifiers

Deep Learning (DL)
Classifiers

Malware Detection Models
and Evaluation Results

Features Concatenation

Labels Labels

static-seq.
features

dynamic-seq.
features

hybrid-seq.
features

static-use
features

dynamic-use
features

hybrid-use
features

Call graphs Execution traces

Stage 1

Stage 2

Stage 3

Figure 1: The workflow of the experiments

calls, i.e., using some heuristics, it can track data flow across some
commonly used native calls.

Dynamic analysis is performed in two phases: the first phase
analyzes call graph of the app to extract paths from public entry-
points (i.e., inter-component communication interfaces) to the leaf
nodes. Similar to the static analysis phase, we generate the call
graph of the app using Soot with FlowDroid plugin for Android. The
call graph is then traversed forward in depth-first search manner
starting from the root node until a leaf node is reached. The output
of this step is paths from the roots (entry-points of each component)
to the different leaf nodes (method calls without outgoing edges).

Once the list of paths is available, the next step is to instantiate
an inter-component communication message (intent) fuzzer to gen-
erate inputs that execute the paths. To this end, we first instrument
the app to collect method execution traces and install the app on
an Android emulator. We then run our intent fuzzer with statically
collected values (such as static strings) from the app as seed (initial
values).

The generated inputs are Intent messages that are sent to the
app under test via the Android Debug Bridge (ADB). Our goal is
to maximize coverage and collect as many traces as possible. The
traces are also used to guide the test generation.

While this step exercises code parts that involve inter-component
(inter-app) communications, it does not address user interactions
such as UI inputs.

In order to complement the first phase, we instantiate the second
phase that uses Google’s Android Monkey tool [4]. Monkey comes
with the Android SDK and is used to randomly generate input
events such as tap, input text or toggle WIFI in an attempt to trigger
abnormal app behaviors.

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, and Wei Minn

The combined test generator covers app behaviors in a more
comprehensive way. While Monkey tool covers GUI-related fea-
tures, our fuzzer focuses on exercising inter-component (inter-app)
interactions.

3.2 Features Extraction
From the call graphs and the execution traces generated in the
previous phase, we extract six datasets as explained in the following:

Extracting from the sequences of API calls. Three datasets are ex-
tracted from the sequences of API calls at method level — one from
call graphs, one from execution traces, and one from combining the
former two. Given a call graph, we traverse the graph in a depth
first search manner and extract methods as we traverse (hence, se-
quence). If there is a loop, the method is traversed only once. Note
that we only extract the methods from Android framework classes,
Java classes, and standard Org classes (org.apache, org.xml, etc.).
This is because it is common for malware to be obfuscated to circum-
vent malware detectors. The obfuscation often involves renaming
of library and custom (user defined) methods and classes. Hence, a
malware detector will not be resilient to obfuscation if it is trained
on library and custom methods and classes. A previous study has
shown that a simple renaming obfuscation method can prevent
popular anti-malware products from detecting the transformed
malware samples [33]. Hence, we skipped methods that are not
from the above-mentioned standard packages as we traverse the
call graph. Similarly, we extract methods from the execution traces.
However, since execution traces are already sequences, depth first
search is not necessary. An excerpt of an extracted sequence is
shown in Figure 2.

Next, we discretized the sequence of method calls we extract
above so that it can be processed by machine learning and deep
learning classifiers. More precisely, we replace each unique method
with an identifier, resulting in a sequence of numbers. We build
a dictionary that maps each method call to its identifier. During
the testing or deployment phase, we may encounter unknown API
calls. To address this, (1) we consider a large dictionary that covers
nearly 2.9 millions of unique methods from standard libraries and
(2) we replace all unknown API calls with a fixed identifier.

The length of the sequences varies from one app to another.
Thus, it is necessary to unify the length of the sequences. Since
we have two types of method sequences — from call graphs and
from execution traces, we chose two different uniform sequence
lengths. Initially, we extracted the whole sequences. We then took
the median length of sequences from call graphs as the uniform
sequence size, denoted asLcд , for call graph-basedmethod sequence
features and took the median length of sequences from execution
traces as the uniform sequence, denoted as Ltr , for execution traces-
based method sequence1. If the length of a given sequence is less
than L, we pad the sequence with zeros; if the length is longer than
L, we trim it to L, from the right. Hence, for each app, we end up
with a sequence of numbers which is a feature vector. Each number
in the sequence corresponds to the categorical value of a feature.
The number of features is the uniform sequence length L.

1Lcд=85000, Ltr =20000

As a result, we obtain one dataset from call graphs that charac-
terizes the sequence of API calls at method level, denoted as static-
sequence features. Likewise, we obtain one dataset from execution
traces, denoted as dynamic-sequence features. We also concatenate
the two sets of features into one dataset, denoted as hybrid-sequence
features. In general, we will denote them as sequence features.

Figure 3 shows a sample dataset containing the sequence features.

android.webkit.WebSettings: void setPluginsEnabled(boolean)
android.webkit.WebView: void setVisibility(int)
android.os.Handler: void <init>()
java.lang.Boolean: java.lang.Boolean valueOf(boolean)
android.webkit.WebView: void loadUrl(java.lang.String)

Figure 2: An excerpt of a sequence ofAPI calls froma sample

seq0 seq1 . . . seqn label
benign1 74921 567 . . . 84111 0
benign2 12901 4490 . . . 3923 0
mal1 23712 6812 . . . 0 1
mal2 23 63011 . . . 0 1

Figure 3: Example of the sequence of API calls features

WebView Picture SQLiteDatabase label
benign1 1 0 0 0
benign2 0 0 1 0
mal1 1 1 0 1
mal2 0 1 1 1

Figure 4: Example of the use of API calls features

Extracting from the uses of API calls. Three datasets are extracted
from the uses of API calls at class level — one from call graphs, one
from execution traces, and one from combining the former two.
The rationale for choosing class level features instead of method
level features is to reduce the amount of features such as those
approaches in [19, 21, 30]. Method level features would result in
millions of features and yet the classifiers may not achieve a better
accuracy since the feature vectors of the samples would be sparse.2.

The extraction process is the same for both call graphs and execu-
tion traces. We initially build a database that stores unique classes.
Again for obfuscation resiliency, we only consider the Android
framework, Java, and standard Org classes as explained above. We
currently maintain 134,558 classes. Given call graphs or execution
traces, we scan the files and extract the class signatures (sequence
does not matter in this case). Each unique class in our database
corresponds to a feature. The value of a feature is 1 if the corre-
sponding class is found in the given call graph or execution trace;
otherwise, it is 0.

As a result, we obtain one dataset, from call graphs, which char-
acterizes the use of API calls at class level, denoted as static-use
features. Likewise, we obtain one dataset from execution traces, de-
noted as dynamic-use features. We also concatenate the two sets of
2we did a preliminary study on the use of method level and class level features on
a randomly selected sample set containing 50 benign and 50 malware samples and
observed that the classifiers achieved similar results.

Experimental Comparison of Features and Classifiers for Android Malware DetectionMOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

features into one dataset, denoted as hybrid-use features. In general,
we will denote them as use features.

Figure 4 shows a sample dataset containing the use features.

3.3 Classifiers
In the last phase, classifiers are trained and tested on each dataset
extracted in phase 2. The following briefly describes the classifiers
used in our evaluations.

3.3.1 Conventional Machine Learning (ML) Classifiers. We eval-
uate seven ML classifiers:

K-Nearest Neighbours, KNN is one of the simplest classification
techniques, with less or no prior knowledge of data distribution.
The predicted test sample class is set equal to the true class among
the nearest training instances [24]. In our experiments, three neigh-
bours comprised the KNN setting to perform the classifier.

Linear Support Vector Machines, SVM determines a hyperplane
that separates both classes with maximal margin, given vectors
of two classes as training data. One of these classes is associated
with malware, whereas the other class corresponds to benign in-
stances. An unknown/new instance is classified bymapping it to the
vector space and determining whether it falls on the malicious or
benign side of the hyperplane [13]. SVM is widely used in malware
classification task as it produces explainable detection model.

Decision Trees, DT builds a rule-based model that predicts the
class of a target variable by learning decision rules inferred from
the given set of features. The depth of the tree can be customized to
fit the model. The deeper the tree, the more complex the decision
rules and the fitter the model. Deep trees may not generalize the
data well (overfitting problem) and thus, usually it is necessary to
limit the maximum depth of the tree. There are a few variants of
decision tree such as ID3, C4.5, C5.0, and CART. We use CART [8].

Random Forest, RF is an ensemble of classifiers using many deci-
sion tree models [7]. A different subset of training data is selected
with a replacement to train each tree. The remaining training data
serves to estimate the error and variable importance. RF has been
proved to be highly accurate classifier for malware detection [17].
In our experiments, we used 10 classifiers to form an ensemble.

AdaBoost, AB is also an ensemble of classifiers. It fits a sequence
of weak models (i.e., models that are only slightly better than ran-
dom guessing, such as small decision trees) on repeatedly modified
versions of the data. The predictions from all of them are then
combined through a weighted majority vote to produce the final
classification.

Naive Bayes, NB classifier applies Bayes’ theoremwith the “naive”
assumption of conditional independence between every pair of
features given the value of the class variable [49]. This assumption
allows NB to learn the model extremely fast.

Logistic Regression, LR is a statistical model that uses a logistic
function to model the probability of a certain class such as pass/fail,
malware/benign, etc.

We used scikit-learn Python tool [32] to run the above classifiers.
We used the tool’s default settings, such as K=3 for KNN, number
of estimators = 10 for RF, etc, without any fine tuning. Use features
are fed into the classifiers as they are. Sequence features are fed into
the classifiers as categorical features.

3.3.2 Deep Learning (DL) Classifiers. Deep learning is a class
of machine learning algorithms that uses multiple layers to pro-
gressively extract higher level features from the raw input features.
Deep learning classifiers typically comprise an input layer, one or
more hidden layers, and an output layer. In our context, the input
layer accepts vectors of features — use features or sequence features
(Section 3.2). Each vector represents an app. The output layer is the
binary classification (benign/malware) of the given app.

This study uses the following deep learning classifiers:
Artificial Neural Network, ANN is a common deep learningmethod,

which comprises of an input layer, one or more hidden, fully-
connected (linear) layers, and an output layer. We used two different
configurations of ANN — different number of hidden layers and
different number of neurons in each layer — in our experiments.
The first ANN is a simple ANN, denoted as sANN, which consists
of two linear layers, with each layer containing 256 neurons. The
second ANN is a more complex ANN, denoted as cANN. It consists
of three linear layers — with 512, 256, 128 neurons, respectively. At
the end of these layers, cANN also has a dropout layer with p=0.5
to avoid overfitting [39].

Convolutional Neural Network, CNN typically comprises three
types of layers — convolutional layer, pooling layer, and linear layer
— between the input layer and the output layer. The convolutional
layer utilizes the convolution procedure to accomplish the weight
sharing. The pooling layer progressively reduce the dimension of
the feature map and thus, reduce the amount of parameters and
computation. It can be applied by an average pooling procedure or
a max pooling procedure. Thereafter, one or more linear layers and
the output layer, typically a SoftMax function, are placed on the
top layer for classification and recognition. In our experiments, we
built the CNN classifier with the following sequence of layers – the
input layer, a convolutional layer followed by a max pooling layer,
another convolutional layer, followed by a max pooling layer, and
one linear layer, a dropout layer with p=0.5, and finally the output
layer with Softmax function.

Recurrent Neural Network, RNN is suitable for handling sequen-
tial data. It has memory units, which retain the information of
previous inputs or the state of hidden layers and its output depends
on previous inputs. It can also have a special layer called LSTM,
which avoids the error vanishing problem by fixing weight of hid-
den layers to avoid error decay and retaining not all information
of input but only selected information which is required for future
outputs. RNN has shown good results in various fields which use
sequential data such as language processing or speech recogni-
tion [14]. In our experiments, we built the RNN with LSTM units.
Our RNN classifier consists of the input layer, one LSTM layer, one
linear layer, and the output layer with Softmax function. We also
use dropout with p=0.5.

We built the above DL classifiers by using Pytorch’s libraries [31].
As activation function for linear layers and convolutional layers,
we use rectified linear unit (ReLU) function. We use 30 epochs for
training the DL classifiers. The scripts are written in Python.

Table 1 shows a summary of general comparison among the clas-
sifiers we used, based on the documentations from scikit-learn [32]
and Pytorch [31], and the references from [28, 29].

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, and Wei Minn

Table 1: Pros and cons of the classifiers [28, 29, 31, 32]

Class Classifier Pros Cons

Statistics Naive Bayes very fast classifier; suitable for getting quick classifi-
cation results

unable to learn complex relationships among features

K-Nearest Neighbours typically more robust than other statistics-based clas-
sifiers for small k value

large memory and computation time for training

Linear SVM efficient; easy to analyze output only directly applicable for binary classification problems;
large memory and computation time for training

Logistic Regression can learn relatively complex relationships among fea-
tures

unpredictable performance as the learning process may fail to
converge (failure of the likelihood maximization algorithm)

Rules Random Forest randomization typically helps achieve good perfor-
mance

output is hard to analyze

Decision Trees fast and scalable classifier; easy to analyze output less effective when learning features with continuous values
AdaBoost built-in feature selection capability, which reduces

dimensionality and computation time
sensitive to noisy data and outliers

Deep Learn Simple/Complex Arti-
ficial Neural Network

parelellization of learning process and typically
achieves good performance

consume largememory and computation time for both training
and classification, compared to typical ML models

Convolutional Neural
Network

fewer neuron connections needed compared to a stan-
dard ANN, i.e., faster learning process; can be varied
to suit the need to a particular classifier problem

fine tuning is usually needed to discover a complete hierarchy
of features; it also needs a big dataset

Recurrent Neural Net-
work

modeling time dependencies; able to remember serial
events

learning process suffers from vanishing gradient problem; fine
tuning to suit a given classifier problem is usually needed to
avoid this problem

4 EVALUATION
This section presents the experimental comparison results of fea-
tures and classifiers for Android malware detection. Specifically,
we investigate the following research questions:

• RQ1: Which type of features — the use of API calls or the
sequence of API calls — achieves better malware detection
accuracy?
• RQ2: Which type of features — statically extracted, dynami-
cally extracted, or a combination of both — achieves better
malware detection accuracy?
• RQ3: Do deep learning classifiers achieve better malware
detection accuracy than conventional machine learning clas-
sifiers?
• RQ4:What are the training costs for different types of fea-
tures?

4.1 Experiment Design
Dataset. Initially we had 20k benign samples collected from An-
drozoo repository [2], which are released from year 2017 to 2019.
We also had 7757 malware samples — 5500 samples from Drebin
repository [5] and 2257 samples from Androzoo repository [2],
which are from year 2017 to 2019. However, as we evaluate the
use of both static- and dynamic analysis-based features, we had to
filter those samples that can be analyzed by both static analysis and
dynamic analysis tools. When we use FlowDroid [6] tool to extract
call graphs, some of the apps caused exceptions. And our intent-
fuzzing test generation tool also caused time-outs and crashes for
some of the apps during the dynamic analysis. Therefore, we were
not able to extract features for those cases. Note that these are the
limitations of the underlying program analysis tools; for future
work, we plan to investigate these issues and address them. Never-
theless, the objective of this experiment is to compare features and
classifiers and not to assess the feature collection components.

As a result, after we take the intersection of the apps that can
be commonly analyzed by static and dynamic tools, we ended up
with 4572 benign samples and 2399 malware samples — 1208 from
Androzoo repository [2] and 1191 from Drebin repository [5]. Note
that several of the malware samples from Drebin are obfuscated
and the malware samples from Androzoo are recent.

In comparison, Table 2 shows the sizes of dataset used byAndroid
malware detection approaches in related work. But note that these
studies only apply either static or dynamic analysis and evaluate a
few classifiers. Whereas we evaluate 11 classifiers and 6 different
types of features. Our dataset size is comparable to the sizes used
in some recent studies such as [37, 46].

Table 2: Sizes of dataset used in some of the malware detec-
tion approaches

Reference #Benign #Malware
Droid-sec [48] 250 250
DroidSift [50] 13500 2200
Drebin [5] 123453 5560

Narudin et al. [28] 20 1000
Maldozer [22] 37627 33066

RevealDroid [19] 24679 30203
Shen et al. [37] 3899 3899
EnMobile [46] 1717 4897
MaMadroid [30] 8447 35493
DaDiDroid [21] 43262 20431

Metrics. To assess the accuracy of the classifiers, we use the
standard metrics — Recall (probability of detection, Pd), Precision
(Pr), and F-measure (F) — which are typically used for evaluating
Malware detection accuracy [19, 30]. Recall is computed as Pd =
tp/(tp + f n); Precision is computed as Pr = tp/(tp + f p); and
F-measure is computed as F = 2 ∗ (Pr ∗ Pd)/(Pr + Pd).

Experimental Comparison of Features and Classifiers for Android Malware DetectionMOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

Given that we have six datasets, our assessment includes six
experiments.We use stratified cross validation, a standard statistical
analysis method [44], to evaluate the performances. Ten-fold cross
validation is widely used [19, 21, 30, 46]. But given that we are
evaluating several classifiers and features, we instead used five-
fold cross validation, which was also used in [23, 42]. The data is
randomly divided into five sets. A classifier is trained on four sets
and then tested on the remaining set. This process is repeated five
times; each time testing on a different set. The order of training
and test set is randomized. This test design overcomes the ordering
effects due to randomization. This is important to avoid a malignant
increase in performance by a certain ordering of training and test
data. Isolating a test set from the training set also conforms to
hold-out test design which is important to evaluate the classifier’s
capability to predict new malware [44]. The mean and the standard
deviation of all five trials is computed to make an evaluation.

The experiments were performed on a Linux machine with 40
cores Intel CPU E5-2640 2.40GHz and 330GB RAM. It took us about
a month to extract call graphs and execution traces from all the 27k
plus samples. It took us about two weeks to extract the six datasets
from the final benchmark set which contains 6971 samples in total.

4.2 Result Comparisons
Table 3, Table 4 and Table 5 show the results of classifiers us-
ing static-sequence features, dynamic-sequence features, and hybrid-
sequence features, respectively. Table 6, Table 7 and Table 8 show the
results of classifiers using static-use features, dynamic-use features,
and hybrid-use features, respectively. The columns ‘Pd’, ‘Pr’, ‘F’ rep-
resent the mean recall, the mean precision, and the mean F-measure
results across cross validations. The columns ‘Pd (sd)’, ‘Pr (sd)’, ‘F
(sd)’ represent the standard deviations across cross validations.

4.2.1 RQ1: Use of API calls vs Sequence of API calls. As shown in
Tables 3, 4, 5, 6, 7, and 8, the F-measures of classifiers using use fea-
tures are statistically better than those of classifiers using sequence
features (according to Wilcoxon signed-ranks test). The standard
deviations of F-measures for the classifiers using use features are
generally quite low, with the maximum standard deviation of 0.209
(NB using dynamic API usage features), whereas the standard de-
viations of F-measures for the classifiers using sequence features
are statistically higher (according to Wilcoxon signed-ranks test),
with the maximum standard deviation of 0.406 (cANN using static-
sequence features).

In Figure 5, we plot the F-measures achieved by classifiers by
using static-sequence features, dynamic-sequence features, hybrid-
sequence features, static-use features, dynamic-use features, and hybrid-
use features, respectively. The figure clearly demonstrates that fea-
tures which characterize the use of API calls generally produce
better results than features which characterize the sequence of API
calls across all types of program analyses.

But there are a few exceptions. The best classifier in terms of
F-measure is Random Forest, F = 0.913 (Table 3), which is actually
trained with static-sequence features. AdaBoost also achieved better
F-measure scores when trained with static-sequence and hybrid-
sequence features. On the other hand, the second best classifier is
sANN, F = 0.901 (Table 8), which is trained with hybrid-use features.

●

●

Dynamic
Sequence of API calls

Dynamic
Use of API calls

Hybrid
Sequence of API calls

Hybrid
Use of API calls

Static
Sequence of API calls

Static
Use of API calls

0.00 0.25 0.50 0.75
F−measure

F
ea

tu
re

 ty
pe

Feature type median mean sd
Static - Use of API calls 0.88 0.86 0.06
Static - Sequence of API calls 0.69 0.67 0.26
Dynamic - Use of API calls 0.82 0.77 0.09
Dynamic - Sequence of API calls 0.60 0.60 0.12
Hybrid - Use of API calls 0.87 0.86 0.04
Hybrid - Sequence of API calls 0.67 0.61 0.28

Figure 5: F-measures of different types of features

In general, the results can be considered good given that we use
features that are not based on custom (user defined) methods and
classes. Approaches that use such features could see a malignant
increase in performance because they may then learn on the dis-
criminative features used by the malware. But on the other hand,
those approaches may later suffer from class and method renaming
obfuscation strategies [5].

Our observation from a few randomly selected malware samples
is that API sequence features contain more semantic information as
they capture a sequence of API calls involved in a malware activity,
whereas API use features capture malware patterns in a simpler
manner — based on what APIs are used in a malware activity.

On the other hand, based on the results, we believe that sequence
features are generally harder to train with. Parameters of the classi-
fiers such asmaximumdepth parameter in Decision Tree or Random
Forest, K parameter in KNN, number of neurons and memory units
in deep learning classifiers, etc. need to be fine tuned to improve the
performance. We randomly sampled 100 apps and fine tuned the
parameters of some of the classifiers for training with API sequence
features, and we observed that the accuracy did improve, especially
for CNN and RNN deep learning classifiers. Note that the task of
optimizing several classifiers on different types of features took a
lot of iterations and a lot of resources — training time and com-
putation. Therefore, in this study, we used the default settings for
the ML classifiers and we did not fine tune the DL classifiers at all.
We leave the task of optimizing the classifiers and systematically
evaluating the performance of optimal classifiers as future work.

Overall, we conclude that API use features produce better results,
on average. That is, classifiers trained with use featureswould detect
Android malware with good accuracy and they work out of the
box. On the other hand, since API sequence features provide more
semantic information, if time and effort could be spent on fine
tuning the classifier, sequence features could be a better choice.

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, and Wei Minn

Table 3: Results on using static features that characterize the
sequence of API calls at method level

Classifier Pd Pd (sd) Pr Pr (sd) F F (sd)
KNN 0.578 0.109 0.839 0.019 0.683 0.077
SVM 0.588 0.081 0.838 0.015 0.690 0.055
DT 0.885 0.047 0.852 0.039 0.868 0.025
RF 0.920 0.019 0.905 0.027 0.913 0.010
AB 0.903 0.024 0.869 0.027 0.885 0.010
NB 0.989 0.010 0.441 0.027 0.610 0.026
LR 0.843 0.031 0.888 0.036 0.865 0.021
sANN 0.865 0.082 0.837 0.238 0.843 0.105
cANN 0.868 0.188 0.422 0.591 0.496 0.406
CNN 0.667 0.127 0.461 0.196 0.542 0.186
RNN 0.365 0.254 0.014 0.018 0.027 0.034

Table 4: Results on using dynamic features that characterize
the sequence of API calls at method level

Classifier Pd Pd (sd) Pr Pr (sd) F F (sd)
KNN 0.651 0.123 0.782 0.106 0.707 0.058
SVM 0.633 0.198 0.785 0.079 0.696 0.130
DT 0.563 0.652 0.722 0.348 0.521 0.397
RF 0.550 0.239 0.691 0.169 0.605 0.171
AB 0.493 0.217 0.698 0.215 0.563 0.121
NB 0.991 0.010 0.376 0.016 0.546 0.016
LR 0.622 0.193 0.777 0.091 0.687 0.140
sANN 0.653 0.024 0.646 0.039 0.649 0.025
cANN 0.699 0.136 0.393 0.094 0.500 0.085
CNN 0.700 0.031 0.828 0.083 0.758 0.035
RNN 0.560 0.147 0.225 0.167 0.317 0.179

Table 5: Results on using hybrid features that characterize
the sequence of API calls at method level

Classifier Pd Pd (sd) Pr Pr (sd) F F (sd)
KNN 0.521 0.170 0.803 0.073 0.626 0.102
SVM 0.657 0.133 0.699 0.104 0.672 0.022
DT 0.862 0.086 0.807 0.076 0.832 0.043
RF 0.877 0.081 0.892 0.089 0.883 0.037
AB 0.887 0.088 0.843 0.039 0.863 0.024
NB 0.984 0.024 0.449 0.055 0.616 0.051
LR 0.807 0.148 0.861 0.112 0.828 0.034
sANN 0.899 0.057 0.742 0.243 0.805 0.127
cANN 0.923 0.085 0.135 0.137 0.230 0.199
CNN 0.714 0.134 0.121 0.060 0.204 0.078
RNN 0.527 0.092 0.106 0.018 0.176 0.028

4.2.2 RQ2: Static vs Dynamic vs Hybrid. Referring to Figure 5, we
can also observe that the static analysis-based features significantly
outperform the dynamic analysis-based features. The mean and
median of classifiers using static-use features are better than those
of classifiers using dynamic-use features. The same goes for static-
sequence features versus dynamic-sequence features. The overall
standard deviation for dynamic-based features is slightly better
than that of static-analysis features.

We looked at our data files and found that the sizes of execu-
tion traces are much smaller than the sizes of the call graphs. Our
analysis on all the execution traces showed that dynamic analysis

Table 6: Results on using static features that characterize the
use of API calls at class level

Classifier Pd Pd (sd) Pr Pr (sd) F F (sd)
KNN 0.617 0.035 0.907 0.041 0.734 0.011
SVM 0.922 0.011 0.863 0.029 0.892 0.01
DT 0.908 0.008 0.833 0.003 0.869 0.002
RF 0.924 0.020 0.879 0.044 0.901 0.028
AB 0.887 0.010 0.847 0.002 0.867 0.006
NB 0.968 0.004 0.675 0.006 0.795 0.005
LR 0.930 0.023 0.872 0.043 0.900 0.012
sANN 0.865 0.023 0.923 0.046 0.893 0.028
cANN 0.865 0.027 0.920 0.045 0.891 0.022
CNN 0.785 0.036 0.810 0.045 0.797 0.032
RNN 0.878 0.023 0.895 0.035 0.884 0.022

Table 7: Results on using dynamic features that characterize
the use of API calls at class level

Classifier Pd Pd (sd) Pr Pr (sd) F F (sd)
KNN 0.627 0.253 0.82 0.115 0.706 0.202
SVM 0.839 0.099 0.828 0.095 0.832 0.078
DT 0.660 0.376 0.678 0.270 0.637 0.195
RF 0.807 0.059 0.830 0.139 0.817 0.084
AB 0.723 0.247 0.789 0.096 0.750 0.178
NB 0.857 0.340 0.613 0.146 0.710 0.209
LR 0.848 0.093 0.831 0.117 0.838 0.088
sANN 0.853 0.046 0.887 0.046 0.869 0.016
cANN 0.842 0.031 0.895 0.027 0.868 0.022
CNN 0.638 0.043 0.618 0.062 0.627 0.037
RNN 0.852 0.016 0.869 0.062 0.860 0.027

Table 8: Results on using hybrid features that characterize
the use of API calls at class level

Classifier Pd Pd (sd) Pr Pr (sd) F F (sd)
KNN 0.911 0.078 0.833 0.133 0.868 0.064
SVM 0.916 0.056 0.861 0.135 0.885 0.066
DT 0.880 0.138 0.802 0.147 0.833 0.066
RF 0.905 0.074 0.847 0.138 0.872 0.060
AB 0.827 0.229 0.827 0.156 0.820 0.143
NB 0.863 0.272 0.706 0.150 0.773 0.185
LR 0.925 0.067 0.869 0.125 0.894 0.054
sANN 0.873 0.039 0.932 0.045 0.901 0.010
cANN 0.862 0.031 0.935 0.027 0.897 0.016
CNN 0.799 0.023 0.825 0.030 0.812 0.018
RNN 0.879 0.035 0.888 0.037 0.884 0.014

was only able to cover 19357 and 163292 distinct standard classes
and methods, respectively. By contrast, our analysis on all the call
graphs showed that static analysis covered 134558 and 2898245
distinct classes and methods, respectively. Therefore, the static
analysis-based features characterize more program behaviours and
were more informative for the classifiers than the dynamic analysis-
based features.

Note that to cover program behaviors as much as possible, we
used an intent fuzzer that handles inter-component (inter-app) in-
teractions complemented with GUI test generator that handles user

Experimental Comparison of Features and Classifiers for Android Malware DetectionMOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

interaction events and inputs. Even though static analysis is gener-
ally weak against code obfuscation and our dataset contains several
malware with obfuscated code, this did not have significant effect
on static analysis because we only used features that represent stan-
dard (not user defined) classes and methods to mitigate renaming
obfuscation (see Section 3.2).

Regarding the use of hybrid features, we found that it improved
the accuracy for only some of the classifiers and it had the negative
effect on other classifiers. For example, KNN’s F-measure when
trained with static-use features is 0.734 and it improved to 0.868
when static-use and dynamic-use features are combined. The same
goes for all four DL classifiers when trained with use features. But
the result of all other classifiers decreased. With respect to sequence
features, only NB’s F-measure was improved when static-sequence
and dynamic-sequence features are combined. For all the other cases,
the F-measure decreased. Therefore, we note that the usefulness
of combining static analysis and dynamic analysis is contextual.
Since the performances of classifiers using dynamic analysis-based
features are generally poor, those features may have polluted the
classifiers learning. Hence, we note that for combining statically-
and dynamically-extracted information, data preprocessing, such as
feature selection to remove redundant or irrelevant features, should
be applied.

Overall we conclude that static analysis is more desirable than
dynamic analysis, unless we can further improve the state-of-the-
art of test generation for Android apps to improve coverage.We find
that the limitation of static analysis can be mitigated by focusing
on the standard methods and classes. For using hybrid analysis,
data preprocessing should be considered.

4.2.3 RQ3: ML Classifiers vs DL Classifiers. In Figure 6, we plot
the recall and precision grid of the classifiers, averaged across all
types of features. Instead of F-measures, we will discuss here the
performance of classifiers based on recall and precision. This is
because in some contexts, e.g., in highly security-critical systems, a
higher recall at the expense of some precision loss is more desirable
whereas in some other contexts, a higher precision could be more
desirable.

As shown in Figure 6, overall, averaging across all types of
features, in terms of both recall and precision, the ML classifiers
achieved better scores than the DL classifiers. The ML classifiers
achieved the median and mean recall of 0.86 and 0.80, respectively,
and achieved the median and mean precision of 0.83 and 0.78, re-
spectively. The DL classifiers achieved the median and mean recall
of 0.85 and 0.77, respectively, and achieved the median and mean
precision of 0.82 and 0.64, respectively.

One possible reason why the ML classifiers generally perform
better than the DL classifiers may be due to the same fine tuning
issue as discussed in Section 4.2.1. We used the readily-available ML
classifiers from scikit-learn tool [32] with its built-in settings, which
may have been optimal for malware detection. By contrast, since
there are many different ways to build DL classifiers, Pytorch [31]
only provides abstract neural network classes on which custom DL
classifiers with specific configurations of DL layers are usually built.
As such, without fine tuning the parameters such as the number
of layers, the sequence of different types of layers, the number of

neurons, dropout value, training epochs, etc., the DL classifiers may
not perform well.

On the other hand, the DL classifiers did achieve better results
than theML classifiers when trained with dynamic features, on both
API sequence and API usage. As shown in Table 4, CNN achieved
Pd = 0.7 and Pr = 0.828, which are better than all other classifiers
trained with dynamic-sequence features, except NB that has Pd =
0.991 but with Pr = 0.376. Similarly, as shown in Table 7, sANN,
cANN, RNN achieved better results than the ML classifiers.

One other interesting finding is that the simplest classifier, Naive
Bayes, achieved Pd = 0.942, averaging across all types of features.
It is the highest recall among all the classifiers; that is, it detected
2260 out of 2399 malware from our dataset. On the other hand, it
only achieved Pr = 0.543 on average; that is, it produced one false
alarm for every two malware reports. When detecting malware is of
utmost importance, Naive Bayes can be a good option. When better
precision is more desirable, RF can be considered, which achieved
Pd = 0.831 and Pr = 0.841, averaging across all types of features. It
is the most balanced classifier and thus, can be considered as the
best, at least in our experiments.

●●

●

●

●●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●●

●

●

Static Dynamic Hybrid

S
equence of A

P
I calls

U
se of A

P
I calls

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

precision

re
ca

ll
classifier

●

●

●

●

●

●

●

●

●

●

●

AB

cANN

CNN

DT

KNN

LR

NB

RF

RNN

sANN

SVM

technology

● Deep learning

Machine learning

Classifier type Pd (median) Pd (mean) Pd (sd)
Machine learning 0.86 0.80 0.15
Deep learning 0.85 0.77 0.14

Pr (median) Pr (mean) Pr (sd)
Machine learning 0.83 0.78 0.12
Deep learning 0.82 0.64 0.32

Figure 6: Recall and precision of classifiers

4.2.4 RQ4: Training Costs. As Android platform is constantly
evolving, a malware detector may often need to be re-trained to
learn the new characteristics of Android. A slow training and anal-
ysis of Android apps could allow malware to remain undetected
long enough and cause undesirable effects on end users. Hence it is
important to assess the training cost of classifiers on using different
types of features.

In Figure 7, we plot the time taken by the classifiers when training
with different types of features. The figure illustrates the average
time taken for training the classifiers on each type of features. In
our five fold cross validation setting, the training time is computed
as the time taken to train on the four folds of the dataset. We first
compare the training time required for static, dynamic, and hybrid

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Lwin Khin Shar, Biniam Fisseha Demissie, Mariano Ceccato, and Wei Minn

cases. We then compare the training time required for API usage
features versus API sequence features.

As shown in Figure 7, intuitively, since there are more number
of features for hybrid case, classifiers took the longest to train with
hybrid features. Comparing the static and dynamic cases, classifiers
using the static-based features took longer than those using the
dynamic-based features. On average, the training cost of using
static-based features (1141 seconds) is 1.78 times more than the
training cost of using dynamic-based features (641 seconds).

We can also observe from Figure 7 that API use features are
much faster to train with than API sequence features. On average,
the training cost of using API sequence features (1485 seconds) is
two times more than that of using API use features (719 seconds).

Hence, overall it can be concluded that while dynamic-based
features are less accurate, they are much faster to train with, com-
pared to static-based features. API use features are both faster and
simpler (no fine tuning required to achieve good accuracy) to train
with, compared to API sequence features.

●

●

●

●

●

●

Dynamic
Sequence of API calls

Dynamic
Use of API calls

Hybrid
Sequence of API calls

Hybrid
Use of API calls

Static
Sequence of API calls

Static
Use of API calls

0 2500 5000 7500 10000
time

F
ea

tu
re

 ty
pe

Feature type median mean sd
Static - Use of API calls 395.01 580.36 614.93
Static - Sequence of API calls 532.42 1700.96 2624.58
Dynamic - Use of API calls 100.45 243.83 379.08
Dynamic - Sequence of API calls 369.50 1038.47 1514.59
Hybrid - Use of API calls 440.87 1333.75 2095.63
Hybrid - Sequence of API calls 716.40 1715.60 3018.26

Figure 7: Training time (in seconds) for different types of
features

4.3 Limitations
The main limitation of this work is that our study excludes fine-
tuning the parameters or data preprocessing except specifying
API sequence features as categorical. Tuning the parameters on the
eleven classifiers and the six types of features we usedwould require
huge amount of time and resources. Therefore, this study reports the
malware detection accuracy of baseline classifiers, without being
optimized. Hence, researchers are to consider the results regarding
the performances of classifiers as one data point, a starting point for
further exploration of optimized classifiers. This is the subject of our
future work. Especially, based on our current results, we observed
that this limitation hurts the deep learning classifiers more. This

could be the main focus of our future plan. In addition, it would
also be interesting to investigate if applying data preprocessing
such as feature selection would result in better performance for
hybrid features.

Our dataset is imbalanced. Our dataset’s benign-to-malware ratio
is 1.9 to 1, whichmay, in theory, affect precision and recall. However,
while it is challenging to approximate the actual ratio of benign
apps versus malware apps in the wild, it is more likely that they are
not balanced. Some study has chosen imbalanced dataset [5, 21]
and some has chosen balanced dataset [23, 37]. Certain Android
markets have been known to have a benign-to-malware ratio of 1.5
to 1 [10]. Hence, our dataset could reflect the reality better. We plan
to investigate the implication of different dataset ratios in future.

Our analysis does not consider native calls although FlowDroid,
the underlying static analysis tool we use, handles common native
calls using some heuristics. It is a challenging task to extract features
that characterize native calls using static analysis. Dynamic runtime
analysis approaches such as [15, 41] could be used. Our study also
did not consider API calls frequency. A recent study [30] found
that their proposed malware detection model is less accurate when
trained on API calls frequency features instead of API sequence
features. We plan to include this evaluation in our future work.

5 CONCLUSION
In this work, we evaluated six different types of features and eleven
classifiers. The features characterize the use of API calls at class
level and the sequence of API calls at method level. Both static
analysis and dynamic analysis are used. The classifiers include both
conventional machine learning and deep learning models. To assess
the accuracy, recall, precision, and mainly F-measure were used. We
also discussed the training costs. The experiments were conducted
on a common benchmark, containing 4572 benign samples and 2399
malware samples.

Our results show that compared to the features which character-
ize the sequence of API calls, the features which characterize the
use of API calls are faster and simpler to train with and produce
classifiers with better accuracies in general. Static analysis-based
features characterize more program behaviours compared to dy-
namic analysis-based features. Hence, they produced classifiers
with better accuracies but they came with training cost which is
1.78 times longer on average. Overall, the best F-measure (0.913)
was achieved by a ML classifier, Random Forest classifier, which
was trained with the static API sequence-based features. The sec-
ond best F-measure (0.901) was achieved by a DL classifier, a simple
Artificial Neural Network model, which was trained with the hybrid
API usage-based features. In our future work, we plan to investi-
gate into data preprocessing, feature selection, and parameter fine
tuning to produce optimal classifiers and evaluate their impacts.
We also plan to evaluate frequency-based features.

ACKNOWLEDGMENT
The work of L. K. Shar is supported by the National Research Foun-
dation Singapore, under the National Satellite of Excellence in Mo-
bile System Security and Cloud Security (NRF2018NCR-NSOE004-
0001).

Experimental Comparison of Features and Classifiers for Android Malware DetectionMOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api-level features for robust

malware detection in android. In International conference on security and privacy
in communication systems, pages 86–103. Springer, 2013.

[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collectingmillions of
android apps for the research community. In Proceedings of the 13th International
Conference on Mining Software Repositories, pages 468–471. ACM, 2016.

[3] H. Alshahrani, H. Mansourt, S. Thorn, A. Alshehri, A. Alzahrani, and H. Fu. Dde-
fender: Android application threat detection using static and dynamic analysis.
In 2018 IEEE International Conference on Consumer Electronics (ICCE), pages 1–6.
IEEE, 2018.

[4] Android. UI/Application Exerciser Monkey. https://developer.android.com/
studio/test/monkey, 2019.

[5] D. Arp, M. Spreitzenbarth, H. Gascon, K. Rieck, and C. Siemens. Drebin: Effective
and explainable detection of android malware in your pocket. 2014.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, pages 259–269, New York, NY, USA, 2014. ACM.

[7] I. Barandiaran. The random subspace method for constructing decision forests.
IEEE Trans. Pattern Anal. Mach. Intell, 20(8):1–22, 1998.

[8] L. Breiman. Classification and regression trees. Routledge, 2017.
[9] P. P. Chan and W.-K. Song. Static detection of android malware by using per-

missions and api calls. In 2014 International Conference on Machine Learning and
Cybernetics, volume 1, pages 82–87. IEEE, 2014.

[10] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and P. Liu.
Finding unknown malice in 10 seconds: Mass vetting for new threats at the
google-play scale. In 24th {USENIX} Security Symposium ({USENIX} Security 15),
pages 659–674, 2015.

[11] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. Stormdroid: A streaminglized
machine learning-based system for detecting android malware. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security,
pages 377–388, 2016.

[12] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware
malware detection. In 2005 IEEE Symposium on Security and Privacy (S&P’05),
pages 32–46. IEEE, 2005.

[13] N. Cristianini, J. Shawe-Taylor, et al. An introduction to support vector machines
and other kernel-based learning methods. Cambridge university press, 2000.

[14] L. Deng, D. Yu, et al. Deep learning: methods and applications. Foundations and
Trends® in Signal Processing, 7(3–4):197–387, 2014.

[15] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra. Madam: a multi-level anom-
aly detector for android malware. In International Conference on Mathematical
Methods, Models, and Architectures for Computer Network Security, pages 240–253.
Springer, 2012.

[16] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone applica-
tion certification. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 235–245. ACM, 2009.

[17] M. Eskandari and S. Hashemi. A graph mining approach for detecting unknown
malwares. Journal of Visual Languages & Computing, 23(3):154–162, 2012.

[18] M. Fan, J. Liu, X. Luo, K. Chen, T. Chen, Z. Tian, X. Zhang, Q. Zheng, and T. Liu.
Frequent subgraph based familial classification of android malware. In 2016 IEEE
27th International Symposium on Software Reliability Engineering (ISSRE), pages
24–35. IEEE, 2016.

[19] J. Garcia, M. Hammad, and S. Malek. Lightweight, obfuscation-resilient detection
and family identification of android malware. ACM Transactions on Software
Engineering and Methodology (TOSEM), 26(3):11, 2018.

[20] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu. Performance evaluation on permission-
based detection for android malware. In Advances in Intelligent Systems and
Applications-Volume 2, pages 111–120. Springer, 2013.

[21] M. Ikram, P. Beaume, and M. A. Kaafar. Dadidroid: An obfuscation resilient tool
for detecting android malware via weighted directed call graph modelling. arXiv
preprint arXiv:1905.09136, 2019.

[22] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb. Android malware detection
using deep learning on api method sequences. arXiv preprint arXiv:1712.08996,
2017.

[23] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb. Maldozer: Automatic frame-
work for android malware detection using deep learning. Digital Investigation,
24:S48–S59, 2018.

[24] Y. Liao and V. R. Vemuri. Use of k-nearest neighbor classifier for intrusion
detection. Computers & security, 21(5):439–448, 2002.

[25] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van
Der Veen, and C. Platzer. Andrubis–1,000,000 apps later: A view on current
android malware behaviors. In 2014 third international workshop on building
analysis datasets and gathering experience returns for security (BADGERS), pages
3–17. IEEE, 2014.

[26] X. Liu and J. Liu. A two-layered permission-based android malware detection
scheme. In 2014 2nd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, pages 142–148. IEEE, 2014.

[27] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer,
Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, et al. Deep android malware detection.
In Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, pages 301–308. ACM, 2017.

[28] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani. Evaluation of machine
learning classifiers for mobile malware detection. Soft Computing, 20(1):343–357,
2016.

[29] A. Naway and Y. Li. A review on the use of deep learning in android malware
detection. arXiv preprint arXiv:1812.10360, 2018.

[30] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross, and G. Stringh-
ini. Mamadroid: Detecting android malware by building markov chains of be-
havioral models (extended version). ACM Transactions on Privacy and Security
(TOPS), 22(2):14, 2019.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems,
pages 8024–8035, 2019.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[33] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating android anti-
malware against transformation attacks. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, pages 329–334,
2013.

[34] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and G. Álvarez.
Puma: Permission usage to detect malware in android. In International Joint Con-
ference CISISâĂŹ12-ICEUTE 12-SOCO 12 Special Sessions, pages 289–298. Springer,
2013.

[35] L. K. Shar. Experimental comparison of features and machine learning classifiers
for android malware detection. https://github.com/sharlwinkhin/msoft20, 2020.

[36] A. Sharma and S. K. Dash. Mining api calls and permissions for android malware
detection. In International Conference on Cryptology and Network Security, pages
191–205. Springer, 2014.

[37] F. Shen, J. Del Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek. Android mal-
ware detection using complex-flows. IEEE Transactions on Mobile Computing,
18(6):1231–1245, 2018.

[38] Soot. Soot - a java optimization framework, https://github.com/sable/soot. 2018.
[39] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

[40] Symantec. Internet Security Threat Report. https://www.symantec.com/content/
dam/symantec/docs/reports/istr-24-2019-en.pdf, 2019.

[41] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi. Malware detection
with deep neural network using process behavior. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), volume 2, pages
577–582. IEEE, 2016.

[42] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi. Malware detection
with deep neural network using process behavior. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), volume 2, pages
577–582. IEEE, 2016.

[43] R. Vinayakumar, K. Soman, P. Poornachandran, and S. Sachin Kumar. Detecting
android malware using long short-term memory (lstm). Journal of Intelligent &
Fuzzy Systems, 34(3):1277–1288, 2018.

[44] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

[45] K. Xu, Y. Li, R. H. Deng, and K. Chen. Deeprefiner: Multi-layer android mal-
ware detection system applying deep neural networks. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 473–487. IEEE, 2018.

[46] W. Yang, M. Prasad, and T. Xie. Enmobile: Entity-based characterization and
analysis of mobile malware. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 384–394. IEEE, 2018.

[47] S. Y. Yerima, S. Sezer, and I. Muttik. High accuracy android malware detection
using ensemble learning. IET Information Security, 9(6):313–320, 2015.

[48] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue. Droid-sec: deep learning in android malware
detection. In ACM SIGCOMM Computer Communication Review, volume 44, pages
371–372. ACM, 2014.

[49] H. Zhang. The optimality of naive bayes. AA, 1(2):3, 2004.
[50] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android malware

classification using weighted contextual api dependency graphs. In Proceedings
of the 2014 ACM SIGSAC conference on computer and communications security,
pages 1105–1116, 2014.

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://github.com/sharlwinkhin/msoft20
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf

	Experimental comparison of features and classifiers for Android malware detection
	Citation

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Program Analysis
	3.2 Features Extraction
	3.3 Classifiers

	4 Evaluation
	4.1 Experiment Design
	4.2 Result Comparisons
	4.3 Limitations

	5 Conclusion
	References

